November 1978

RSX-11M System Logic Manual

Order No. AA-5579A-TC

VOLUME 1

RSX-11M V3.1

To order additional copies of this document, contact the Accessories and Supplies Group, Product Line 86, Digital Equipment Corporation, Cotton Road, Nashua, New Hampshire 03060.

digital equipment corporation · maynard. massachusetts

The information in this document is subject to change without notice and should not be construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright (C) 1978 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this document requests the user's critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL	DECsystem-10	MASSBUS
DEC	DECtape	OMNIBUS
PDP	DIBOL	os/8
DECUS	EDUSYSTEM	PHA
UNIBUS	FLIP CHIP	RSTS
COMPUTER LABS	FOCAL	RSX
COMTEX	INDAC	TYPESET-8
DDT	LAB-8	TYPESET-11
DECCOMM	DECSYSTEM-20	TMS-11
ASSIST-11	RTS-8	ITPS-10
VAX	VMS	SBI
DECnet	IAS	

CONTENTS

VOLUME I

			Page
PREFACE			xvii
CHAPTER	1	INTRODUCTION TO THE RSX-11M V3.1 OPERATING SYSTEM EXECUTIVE	1-1
	1.1	RSX-11M SYSTEM	1-1
	1.2	SYSTEM GENERATION	1-1
	1.3	MAJOR COMPONENTS OF RSX-11M	1-2
	1.4	MEMORY	1-2
	1.4.1	Memory Partitions	1-2
	1.4.2	Partitions In Mapped And Unmapped Systems	1-3
	1.4.3	Partition Types	1-3
	1.4.4	Subpartitions	1-4
	1.4.5	Memory Structure	1-4
	1.4.6 1.4.7	Example Of A 16K Unmapped System Example Of A Mapped 124K-word RSX-11M	1-7
		System	1-9
	1.5	TASK PROCESSING	1-11
	1.5.1	Task States	1-11
	1.5.2	Fixed Tasks	1-12
	1.5.3	Priority	1-12
	1.5.4	Round-robin Scheduling	1-13
	1.5.5	Checkpointing	1-13
	1.5.6	Task Swapping	1-14
	1.5.7	The Shuffler Task	1-15
	1.5.8	Extended Logical Address Space	1-15
	1.6	RSX-11M INTERRUPT PROCESSING	1-17
	1.6.1	Interrupt Vectors	1-17
	1.6.2 1.6.3	System Stack	1-17
	1.6.4	Processor Traps	1-18 1-18
	1.6.5	External Interruptions Interrupt And Trap Vector Locations	1-10
	1.6.6	System Traps	1-19
	1.7	EXECUTIVE DIRECTIVES	1-20
	1.7.1	Event Flags	1-25
	1.8	THE MCR INTERFACE	1-26
	1.8.1	Privileged Commands	1-26
	1.8.2	External Scheduling Of Task Execution	1-27
	1.9	TERMINAL OPERATION	1-27
	1.9.1	Attached Terminals	1-27
	1.9.2	Slave Terminals	1-28
	1.10	MULTIUSER PROTECTION	1-28
	1.10.1	Public And Private Devices	1-28
	1.11	SYSTEM MAINTENANCE	1-28
	1.11.1	Error Logging	1-28
	1.11.2	Diagnostic Tasks	1-29
	1.11.3	Power Failure Restart	1-30

			Page
CHAPTER	2	MEMORY RESOURCE ALLOCATION	2-1
	2.1	INTRODUCTION	2-1
	2.1.1	Memory Addressing	2-1
	2.1.2	Memory Management - An Overview	2-2
	2.1.3	Virtual And Logical Addresses	2-2
	2.1.4	Task Windows	2-4
	2.1.5		2-8
	2.1.5	Regions	2-10
		MEMORY ALLOCATION	
	2.2.1	Checkpointing	2-10
	2.2.2	Disk Swapping	2-12
	2.2.3	Shuffler (Memory Compaction)	2-13
	2.2.4	The Loader (the System Loader Task)	2-15
	2.2.5	The \$NXTSK Routine	2-17
	2.2.6	Routines That Call \$NXTSK	2-18
	2.2.7	Routines That \$NXTSK Calls	2-22
	2.2.8	\$FNDSP Routine	2-22
	2.2.9	\$ICHKP Routine	2-23
	2.2.10	\$TSTCP Routine	2-23
	2.3	MEMORY ALLOCATION FLOW DIAGRAMS	2-24
	2.3.1	\$ALCLK Logical Flow Diagram	2-25
	2.3.2	\$ALOCB Logical Flow Diagram	2-26
	2.3.3	\$CHKPT Logical Flow Diagram	2-28
	2.3.4	\$DECLK-\$DEPKT-\$DEACB Logical Flow Diagram	
	2.3.5	\$FNDSP Logical Flow Diagram	2-35
	2.3.6	\$ICHKP Logical Flow Diagram	2-36
	2.3.7	\$NXTSK Logical Flow Diagram	2-37
	2.3.8	\$TSTCP Logical Flow Diagram	2-42
	2.3.9	Loader Logical Flow Diagram	2-43
	2.3.10	Shuffler Logical Flow Diagram	2-51
	2.4	MEMORY ALLOCATION DATA STRUCTURES	2-61
	2.4.1	Partition Control Block (PCB)	2-61
	2.4.2	Task Control Block (TCB)	2-65
CHAPTER	3	INTERRUPT PROCESSING	3-1
	3.1	INTRODUCTION	3-1
	3.2	INTERRUPT MECHANISMS	3-1
	3.2.1	Hardware Interrupt Mechanisms - Review	
		and Overview	3-1
	3.2.2	Executive and Stack Processing	3-2
	3.3	INTERRUPT PROCESSES	3-2
	3.3.1	The INTSV\$ Macro	3-3
	3.3.2	External Interrupt from the Task	
	-	State (\$STKDP=1)	3-4
	3.3.3	External Interrupts from the System	
		State (\$STKDP < =0)	3-5
	3.3.4	Processor Traps from the Task State	5 5
	3.3.4		27
	2 2 5	(\$STKDP <=1) Progressor Trans from the Sustan State	3-7
	3.3.5	Processor Traps from the System State	2 0
	2 2 6	(\$STKDP <=0)	3-9
	3.3.6	Powerfail Processing	3-11
	3.3.7	Processing Within Interrupt Routines	3-12
	3.3.8	Fork Processing	3-13
	3.3.9	Exiting the System State	3-15
	3.3.10	Interrupt Processing Code	3-17
	3 3 11	Interrupt Processing Summary	3-10

			Page
CHAPTER	4	PRIVILEGED TASKS	4-1
	4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4	INTRODUCTION PRIVILEGED TASKS Privileged Task Hazards Specifying a Task as Privileged Writing a Privileged Task The \$SWSTK Routine Described - Unmapped	4-1 4-1 4-1 4-2 4-4
	4.2.5	and Mapped Systems Task Mapping	4-5 4-10
CHAPTER	5	MCR INTERFACE	5-1
	5.1 5.1.1	MCR - MONITOR CONSOLE ROUTINE Structure and Operation Environment	5-1
	5.1.2 5.1.3	of MCR The Terminal Driver and MCR Initiation	5-2 5-3 5-5
CHAPTER	6	I/O PROCESSING	6-1
	6.1 6.2 6.2.1 6.2.2 6.2.3 6.3 6.4	IMPLEMENTATION RSX-11M I/O DATA STRUCTURES The Device Control Block (DCB) The Unit Control Block (UCB) The Status Control Block (SCB) QUEUE I/O DIRECTIVE PARAMETER BLOCK QIO DIRECTIVE LOGICAL FLOW	6-1 6-1 6-2 6-2 6-2 6-3 6-5
CHAPTER	7	MODULE DESCRIPTIONS	7-1
	7.1 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 7.2.8 7.2.9 7.2.10 7.2.11 7.2.12 7.2.13 7.2.14 7.2.15	CHAPTER ORGANIZATION Module Name Macro Library Calls Entry Points Calls Entry (input) Conditions Exit (output) Conditions EXECUTIVE MODULE DESCRIPTIONS BFCTL Module CORAL Module CRASH Module CRASH Module DRABO Module DRASG Module DRATX Module DRATX Module DRCIN Module DRCIN Module DRCIN Module DRCIN Module DRCIN Module DRCHT Module DRDCP Module DRDCP Module DREIF Module DREIF Module DRGCL Module	7-1 7-1 7-1 7-2 7-2 7-2 7-2 7-2 7-2 7-4 7-6 7-7 7-8 7-8 7-9 7-11 7-12 7-13 7-14 7-15 7-17

			Page
	7.2.17	DRGPP Module	7-19
	7.2.18	DDCCC Medule	7-20
	7.2.18 7.2.19	DRGTK Module	7-21
	7.2.20		7-21
	7.2.21	DRMAP Module	7-22
	7.2.22		7-29
	7.2.23	DRPUT Module	7-31
	7.2.24	DRQIO Module	7-33
	7.2.25	DPRAS Module	7-34
	7.2.26	DRREG Module	7-36
	7.2.27	DRREQ Module	7-39
		DRRES Module	7-40
			7-42
	7.2.30	DRSED Module DRSST Module	7-45
	7.2.31	ERROR Module	7-47
	7 2 32	TNITT. Module	7-49
	7.2.33	IOSUB Module	7-50
	7.2.34	LOADR Module	7-62
	7.2.35	LOADR Module LOWCR Module	7-62
	7.2.36	PARTY Module	7-63
	7.2.37	PLSUB Module	7-64
	7.2.38	PLSUB Module POWER Module	7-66
		QUEUE Module	7-67
	7.2.40	REOSB Module	7-69
	7.2.41	REQSB Module SSTSR Module	7-77
	7.2.42	SYSCM Module	7-80
	7.2.43	SYSDF Module	7-82
	7.2.43 7.2.44	SYSTB Module	7-83
		SYSXT Module	7-83
	7.2.46	TDSCH Module	7-89
CHAPTER	8	DATA AREAS AND CONTROL BLOCKS	8-1
	8.1	INTRODUCTION	8-1
	8.2	SYSTEM POINTERS AND LINKAGES	8-1
	8.2.1	SYSTEM POINTERS AND LINKAGES Device Control Block Pointer (\$DEVHD)	8-4
	8.2.2	Unit Control Blocks	8-4
	8.2.3	Status Control Block (SCB)	8-5
	8.2.4	Status Control Block (SCB) Partition Control Block (PCB) Pointer	8-5
	8.2.5	Task Control Block (TCB) Pointers	
		(\$TSKHD And \$ACTHD)	8-5
	8.2.6	Reschedule Pointer (\$RQSCH)	8-6
	8.2.7	Current Task Pointer (\$TKTCB)	8-6
	8.2.8	Loader Pointer (\$LDRPT)	8-6
	8.2.9	Task Termination Task Pointer (\$TKNPT)	8-6
	8.2.10	Free Storage Block Pointer (\$CRAVL)	8-6
	8.2.11	Fork Queue List Pointer (\$FRKHD)	8-6
	8.2.12	Clock Queue Pointer (\$CLKHD)	8-6
	8.2.13	Current Task Header Pointer (\$HEADR)	8-7
	8.2.14	Examples Of System Linkages	8-7
	8.2.15	Interrelationship Of The DCB, UCB,	
	0 0	And SCB	8-24
	8.3	I/O CONTROL BLOCK LINKAGES	8-26
	8.4	CONTROL BLOCK OFFSET DEFINITIONS	8-29
	8.4.1	Asynchronous System Trap Control	0.00
		Block (ASTCB)	8-29

			Page
	8.4.2	Clock Queue Control Block (CQCB)	8-31
	8.4.3	Communications Control Block (CCB)	8-32
	8.4.4	Device Control Block (DCB)	8-34
	8.4.5	Error Message Block (EMB)	8-36
	8.4.6	File Control Block (FCB)	8-37
	8.4.7	Get Command Line Control Block (GCML)	8-38
	8.4.8	Hardware Definitions	8-39
	8.4.9	Interrupt Transfer Block (ITB)	8-40
	8.4.10	Logical Assignment Control Block	8-41
	8.4.11	Partition Control Block (PCB)	8-41
	8.4.12	Region Definition Block (RDB)	8-43
	8.4.13		8-44
	8.4.14	Snap Block	8-46
	8.4.15	Task Control Codes	8-47
	8.4.16	Task Control Block (TCB) And Status	
		Definitions	8-47
	8.4.17	Task Header	8-49
	8.4.18		8-50
	8.4.19	Task Termination Notification Message	
		Codes	8-51
	8.4.20	Unit Control Block (UCB)	8-51
	8.4.21	Volume Control Block (VCB)	8-56
		Window Definition Block (WDB)	8-56
CHAPTER	9	CROSS-REFERENCES	9-1
	9.1	EXECUTIVE MODULE TO ROUTINE CROSS-REFERENCE	
	9.2	RSX-11M EXECUTIVE GLOBAL CROSS-REFERENCE	9-18
	9.3	MCRMU GLOBAL CROSS-REFERENCE	9-30
	9.4	MCRMU SEGMENT CROSS-REFERENCE	9-41
		SYS GLOBAL CROSS-REFERENCES	9-42
	9.6	SYS SEGMENT CROSS-REFERENCES	9-54
	9.7	BIGFCP GLOBAL CROSS REFERENCES	9-54
	9.8	BIGFCP SEGMENT CROSS-REFERENCES	9-69
	9.9	CONDITIONAL ASSEMBLY PARAMETER TO MODULE	
		CROSS-REFERENCE	9-69
	9.10	MODULE TO CONDITIONAL ASSEMBLY PARAMETER	
		CROSS-REFERENCE	9-75

CONTENTS

VOLUME II

			Page
APPENDIX	A	RSX-11M SUPPORTED DEVICES	A-1
	A.1 A.1.1 A.1.2 A.1.3 A.1.4 A.1.5 A.1.6 A.1.7 A.1.8 A.1.9 A.1.10	RSX-11M DEVICE SUPPORT Processors And Options Card Readers Communications Data Acquisition Disk Devices Laboratory/industrial Control Printers Tape Devices, Magnetic Tape Devices, Paper Terminals	A-1 A-2 A-2 A-2 A-3 A-3 A-4 A-4 A-5 A-5
APPENDIX	В	CODING STANDARDS AND CONVENTIONS	B-1
	B.1 B.1.1 B.1.2 B.1.3 B.1.4 B.1.5 B.1.6 B.1.7 B.1.8 B.1.9 B.1.10 B.1.11	CODING STANDARD INTRODUCTION Line Format Comments Naming Standards Symbols Program Modules Formatting Standards Program Source Files Forbidden Instruction Usage Recommended Coding Practice PDP-11 Version Number Standard Co-routines	B-1 B-1 B-2 B-3 B-5 B-9 B-11 B-11 B-12 B-14
APPENDIX	С	MACRO EXPANSIONS	C-1
	C.1 C.1.1 C.1.2 C.1.3 C.1.4 C.1.5 C.1.6 C.1.7 C.2 C.2.1 C.2.2 C.2.1 C.2.2 C.2.3 C.2.4 C.2.5 C.2.6 C.2.7	COMMAND STRING INTERPRETER MACRO EXPANSIONS CSI\$1 Macro CSI\$2 Macro CSI\$SW Macro CSI\$ND Macro CSI\$NV Macro LDRO\$ Macro CSI\$ Macro DIRECTIVE MACRO EXPANSIONS ABRT\$C Macro ABRT\$S Macro ABRT\$S Macro ALTP\$C Macro ALTP\$ Macro	C-1 C-1 C-2 C-3 C-4 C-5 C-6 C-6 C-7 C-7

		Page
C.2.8	ALUN\$S Macro	C-8
C.2.9	ALUN\$ Macro	C-9
C.2.10	ASTX\$C Macro	C-10
C.2.11	ASTX\$S Macro	C-10
C.2.12	ASTX\$ Macro	C-10
C.2.13	CINT\$C Macro	C-11
C.2.14	CINT\$S Macro	C-11
C.2.15	CINT\$ Macro	C-12
C.2.16	CLEF\$C Macro	C-13
C.2.17	CLEF\$S Macro	C-13
C.2.18	CLEF\$ Macro	C-14
C.2.19	CMKT\$C Macro	C-14
C.2.20	CMKT\$S Macro	C-15
C.2.21	CMKT\$ Macro	C-15 C-15
C.2.22	CSRQ\$C Macro	C-16
C.2.23 C.2.24	CSRQ\$S Macro	C-16
C.2.25	CSRQ\$ Macro DECL\$C Macro	C-17
C.2.26	DECL\$S Macro	C-17
C.2.27	DECL\$ Macro	C-18
C.2.28	DIR\$ Macro	C-18
C.2.29	DSAR\$C Macro	C-19
C. 2. 30	DSAR\$S Macro	C-19
C.2.31	DSAR\$ Macro	C-19
C.2.32	DSCPSC Macro	C-20
C.2.33	DSCP\$S Macro	C-20
C.2.34	DSCP\$ Macro	C-20
C.2.35	ENAR\$C Macro	C-21
C.2.36	ENAR\$S Macro	C-21
C.2.37	ENAR\$ Macro	C-21
C.2.38	ENCP\$C Macro	C-22
C.2.39	ENCP\$S Macro	C-22
C.2.40	ENCP\$ Macro	C-22
C.2.41	ERR\$ Macro	C-23
C.2.42	EXIF\$C Macro	C-23
C.2.43	EXIF\$S Macro	C-24
C.2.44	EXIF\$ Macro	C-24
C.2.45	EXITSC Macro	C-24
C.2.46 C.2.47	EXIT\$S Macro	C-25 C-25
C.2.47	EXIT\$ Macro EXTK\$C Macro	C-25
C.2.49	EXTK\$S Macro	C-26
C.2.50	EXTK\$ Macro	C-26
C.2.51	GLUN\$C Macro	C-27
C.2.52	GLUN\$S Macro	C-27
C.2.53	GLUNS Macro	C-28
C.2.54	GMCR\$C Macro	C-29
C.2.55	GMCR\$ Macro	C-29
C.2.56	GPRT\$C Macro	C-30
C.2.57	GPRT\$S Macro	C-30
C.2.58	GPRT\$ Macro	C-31
C.2.59	GSSW\$C Macro	C-32
C.2.60	GSSW\$S Macro	C-32
C.2.61	GSSW\$ Macro	C-32
C.2.62	GTIM\$C Macro	C-33

		Page
C.2.63	GTIM\$S Macro	C-33
C.2.64	GTIM\$ Macro	C-34
C.2.65	GTSK\$C Macro	C-34
C.2.66	GTSK\$S Macro	C-35
C.2.67	GTSK\$ Macro	C-36
C.2.68	IHAR\$C Macro	C-37
C.2.69	IHAR\$S Macro	C-37
C.2.70	IHAR\$ Macro	C-37
C.2.71	MOV\$ Macro	C-38
C.2.72	MRKT\$C Macro	C-38
C.2.73	MRKT\$S Macro	C-39
C.2.74	MRKT\$ Macro	C-39
C.2.75	MVB\$ Macro	C-40 C-40
C.2.76	OFF\$ Macro	C-40 C-41
C.2.77	QDPB\$S Macro	C-41 C-41
C.2.78	QDPB\$ Macro QIO\$C Macro	C-41
C.2.79		C-42
C.2.80 C.2.81	QIO\$S Macro QIO\$ Macro	C-43
C.2.82	QIOU Macro	C-43
C.2.83	QIOW\$S Macro	C-44
C.2.84	QIOW\$ Macro	C-44
C.2.85	R50\$ Macro	C-45
C.2.86	RCVD\$C Macro	C-45
C.2.87	RCVD\$S Macro	C-46
C.2.88	RCVD\$ Macro	C-46
C.2.89	RCVX\$C Macro	C-47
C.2.90	RCVX\$S Macro	C-47
C.2.91	RCVX\$ Macro	C-48
C.2.92	RDAF\$C Macro	C-48
C.2.93	RDAF\$S Macro	C-49
C.2.94	RDAF\$ Macro	C-49
C.2.95	RFA\$ Macro	C-50
C.2.96	RQST\$C Macro	C-50
C.2.97	RQST\$S Macro	C-51
C.2.98	RQST\$ Macro	C-51
C.2.99	RSUM\$C Macro	C-52
C.2.100	RSUM\$S Macro	C-52
C.2.101	RSUM\$ Macro	C-53
C.2.102	RUN\$C Macro	C-53
C.2.103	RUN\$S Macro	C-54
C.2.104	RUNS Macro	C-54 C-55
C.2.105 C.2.106	RVP\$ Macro	C-56
C.2.107	SDATSC Macro SDATSS Macro	C-56
C.2.107	SDATS Macro	C-57
C.2.109	SETF\$C Macro	C-57
C.2.110	SETF\$S Macro	C-58
C.2.111	SETF\$ Macro	C-58
C.2.112	SFPA\$C Macro	C-59
C.2.113	SFPA\$S Macro	C-59
C.2.114	SFPA\$ Macro	C-59
C.2.115	SPND\$C Macro	C-60
C.2.116	SPND\$S Macro	C-60
C.2.117	SPND\$ Macro	C-61

		Page
	anni Aa . Wa awa	0.61
C.2.118 C.2.119	SPRA\$C Macro SPRA\$S Macro	C-61 C-61
C.2.120	SPRAS Macro	C-62
C.2.121	SRDA\$C Macro	C-62
C.2.122	SRDA\$S Macro	C-63
C.2.123	SRDA\$ Macro	C-63
C.2.124	SVDB\$C Macro	C-64
C.2.125	SVDB\$S Macro	C-64
C.2.126	SVDB\$ Macro	C-65
C.2.127	SVTK\$C Macro	C-65
C.2.128	SVTK\$S Macro	C-66
C.2.129	SVTK\$ Macro	C-66
C.2.130	WSIG\$C Macro	C-67
C.2.131 C.2.132	WSIG\$S Macro WSIG\$ Macro	C-67 C-67
C.2.132	WTLO\$C Macro	C-68
C.2.134	WTLOSS Macro	C-68
C.2.135	WTLO\$ Macro	C-69
C.2.136	WTSE\$C Macro	C-69
C.2.137	WTSE\$S Macro	C-70
C.2.138	WTSE\$ Macro	C-70
C.3	EXECUTIVE MACRO EXPANSIONS	C-71
C.3.1	CALL Macro	C-71
C.3.2	CALLR Macro	C-71
C.3.3	CRASH Macro	C-72
C.3.4	DIRSV\$ Macro	C-72
C.3.5 C.3.6	DRSTS Macro GTUCB\$ Macro	C-72 C-72
C.3.7	INTLB Macro	C-72
C.3.8	INTSE\$ Macro	C-73
C.3.9	INTSV\$ Macro	C-73
C.3.10	MFPS/MTPS Macros	C-74
C.3.11	RETURN Macro	C-74
C.3.12	SAVNR Macro	C-74
C.3.13	SCBLB Macro	C-74
C.3.14	SETD Macro	C-75
C.3.15	SOB Macro	C-75
C.3.16 C.3.17	STD Macro STFPS Macro	C-75 C-75
C.3.18	STST Macro	C-75
C.3.19	SWSTK\$ Macro	C-76
C.3.20	LDD Macro	C-76
C.3.21	LDFPS Macro	C-76
C.4	FILES-11 HEADER OFFSETS MACRO DEFINITIONS	C-76
C.4.1	FHDO1\$ Macro	C-76
C.4.2	FHDOF\$ Macro	C-77
C.4.3	HMBOF\$ And HMBO1\$ Macros	C-78
C.5	FILE CONTROL SERVICES MACRO EXPANSIONS	C-79
C.5.1 C.5.2	BDOFF\$ Macro CBYTE\$ Macro	C-79 C-80
C.5.2	CLOSE\$ Macro	C-80
C.5.4	CMOV\$2 Macro	C-80
C.5.5	CMOV\$B Macro	C-80
C.5.6	CMOV\$W Macro	C-81
C.5.7	CWORD\$ Macro	C-82

		Page
C.5.8	DEF\$G Macro	C-81
C.5.9	DEF\$I Macro	C-81
C.5.10	DEF\$L Macro	C-81
C.5.11	DEF\$N Macro	C-82
C.5.12	DEFIN\$ Macro	C-82
C.5.13	DELETS Macro	C-82
C.5.14	FCSBT\$ Macro	C-82
C.5.15	FCSMC\$ Macro	C-84
C.5.16	FDAT\$A Macro	C-85
C.5.17	FDAT\$R Macro	C-85
C.5.18	FDBDF\$ Macro	C-85
C.5.19	FDBF\$A Macro	C-85
C.5.20	FDBF\$R Macro	C-86
C.5.21	FDBK\$A Macro	C-86
C.5.22	FDBK\$R Macro	C-86
C.5.23	FDBSZ\$ Macro	C-86
C.5.24	FDOP\$A Macro	C-87
C.5.25	FDOP\$R Macro	C-87
C.5.26	FDRC\$A Macro	C-87
C.5.27	FDRC\$R Macro	C-87
C.5.28	FDOF\$L Macro	C-88
C.5.29	FDOFF\$ Macro	C-88
C.5.30	FDSOF\$ Macro	C-89
C.5.31	FINIT\$ and FSRSZ\$ Macros	C-90
C.5.32	FSROF\$ Macro	C-90
C.5.33	GET\$ Macro	C-91
C.5.34	GET\$R Macro	C-91
C.5.35	GET\$S Macro	C-91
C.5.36	NBOF\$L Macro	C-91
C.5.37	NBOFF\$ Macro	C-92
C.5.38	NMBLK\$ Macro	C-92
C.5.39	OPEN\$ Macro	C-93
C.5.40	OPEN\$A Macro	C-93
C.5.41	OPEN\$M Macro	C-93
C.5.42	OPEN\$R Macro	C-93
C.5.43	OPENŞU Macro	C-94
C.5.44	OPEN\$W Macro	C-94
C.5.45	OPNS\$A Macro	C-94
C.5.46	OPNS\$M Macro	C-94
C.5.47	OPNS\$R Macro	C-94
C.5.48	OPNSSU Macro	C-94 C-95
C.5.49 C.5.50	OPNS\$W Macro OPNT\$D Macro	C-95
C.5.51 C.5.52	OPNT\$W Macro OFID\$ Macro	C-95 C-95
C.5.53	OFID\$A Macro	C-95
C.5.54	OFID\$M Macro	C-96
C.5.55	OFID\$R Macro	C-96
C.5.56	OFID\$U Macro	C-96
C.5.57	OFID\$W Macro	C-96
C.5.58	OFNB\$ Macro	C-96
C.5.59	OFNB\$A Macro	C-97
C.5.60	OFNB\$M Macro	C-97
C.5.61	OFNB\$R Macro	C-97
C.5.62	OFNB\$U Macro	C-97

C.5.63 OFNBSW Macro C.97 C.5.64 PUTS Macro C.98 C.5.65 PUTSR Macro C.98 C.5.66 PUTSS Macro C.98 C.5.67 RAD505 Macro C.98 C.5.68 READS Macro C.99 C.5.69 TRUNCS Macro C.99 C.5.69 TRUNCS Macro C.99 C.5.70 WAIT\$ Macro C.99 C.5.71 WRITE\$ Macro C.99 C.6.1 COMDF\$ Macro C.99 C.7.71 WRITE\$ Macro C.99 C.7.71 ATRG\$, ATRG\$C, and ATRG\$S Macros C.100 C.7.1 ATRG\$, ATRG\$C, and ATRG\$S Macros C.101 C.7.2 LBLK., BLKB., and BLKW. Macros C.102 C.7.3 CRAW\$C, CRAW\$C, CRAW\$S Macros C.102 C.7.4 CRRG\$, CRRG\$C, and CRRG\$S Macros C.102 C.7.5 DTRG\$C, CRAW\$C, CRAW\$S Macros C.104 C.7.6 ELAW\$ ELAW\$C, and ELAW\$ Macros C.104 C.7.7 GMCX\$, GMCX\$C, and GMCX\$S Macros C.104 C.7.7 GMCX\$, GMCX\$C, and GMCX\$S Macros C.104 C.7.9 MAP\$, MAP\$C, MAP\$S Macros C.105 C.7.9 MAP\$, MAP\$C, MAP\$S Macros C.105 C.7.10 RDBK\$ Macro C.106 C.7.11 RREF\$, RREF\$C, and RREF\$S Macros C.106 C.7.11 RREF\$, SREF\$C, and RRE\$S Macros C.106 C.7.11 RREF\$, SREF\$C, and RRE\$S Macros C.107 C.7.12 RDBK\$ Macro C.107 C.7.11 RREF\$, RREF\$C, and RRE\$S Macros C.106 C.7.10 RDBK\$ Macro C.107 C.7.11 RREF\$, RREF\$C, and RRE\$S Macros C.106 C.7.10 RDBK\$ Macro C.107 C.7.11 RREF\$, RREF\$C, and RRE\$S Macros C.107 C.7.12 RRE\$, SREF\$C, and RRE\$S Macros C.107 C.7.13 RRA\$, SRA\$C, and RRE\$S Macros C.107 C.7.14 UMAP\$, UMAP\$C, MAP\$S Macros C.107 C.7.15 WBBB\$ Macro C.107 C.8.1 RCLOSS Macro C.107 C.8.1 RCLOSS Macro C.107 C.8.3 RFIND\$ Macro C.110 C.8.4 RFOF\$L Macro C.110 C.8.5 RFOF\$ Macro C.110 C.8.1 RCLOSS Macro C.110 C.8.2 RCDBT\$ Macro C.111 C.8.3 RFIND\$ Macro C.111 C.8.4 RFOF\$L Macro C.111 C.8.5 RFOF\$M Macro C.112 C.8.1 ROPN\$M Macro C.112 C.8.1 ROPN\$M Macro C.112 C.8.1 ROPN\$M Macro C.112 C.8.1 ROPN\$M Macro C.113 C.8.1 ROPN\$M Macro C.114 C.8.1 ROPN\$M Macro C.114 C.8.1 ROPN\$M Macro C.114 C.8.1 ROPN\$M MACRO DEFINITIONS C.114 C.8.1 ROPR\$M Macro C.114 C.8.2 RPD\$M Macro C.116 C.9.1 PRER\$ Macro C.117 C.9.1 PRER\$ Macro C.116 C.9.1 PRER\$ Macro C.117 C.9.1 PRER\$ Macro C.117 C.9.1 PRER\$ Macro C.116 C.9.1 PRER\$ Macro C.117 C.9.1 PRER\$ Macro C.117 C.9.2 FILIO\$ Macro C.117 C.9.4 LOPR\$MACRO C.117		•	
C.5.64 PUTS Macro C-98 C.5.65 PUTSS Macro C-98 C.5.66 PUTSS Macro C-98 C.5.67 RAD508 Macro C-98 C.5.68 READ\$ Macro C-99 C.5.69 TRUNCS Macro C-99 C.5.70 WAIT\$ Macro C-99 C.5.71 WRITE\$ Macro C-99 C.5.71 WRITE\$ Macro C-99 C.6.1 COMDF\$ Macro C-100 C.7 PROGRAM LOGICAL ADDRESS SPACE EXTENSION MACRO C-100 C.7 PROGRAM LOGICAL ADDRESS SPACE EXTENSION MACRO EXPANSIONS C-101 C.7.1 ATRG\$, ATRG\$C, and ATRG\$S Macros C-102 C.7.3 CRAW\$, CRAW\$C, CRAW\$S Macros C-102 C.7.4 CRRG\$, CRRG\$C, and CRRG\$S Macros C-102 C.7.5 DTRG\$, DTRG\$C, and CRRG\$S Macros C-102 C.7.6 ELAW\$, ELAW\$C, and ELAW\$S Macros C-104 C.7.6 ELAW\$, ELAW\$C, and ELAW\$S Macros C-104 C.7.7 GMCX\$C, GMCX\$C, and GREG\$S Macros C-105 C.7.9 MAP\$, MAP\$C, ADGRESS MACROS C-105 C.7.10 ROBB\$S Macro C-106 C.7.11 RREF\$, RREF\$C, and RREF\$S Macros C-106 C.7.12 SREF\$, SREF\$C, and SRR\$S Macros C-106 C.7.13 SRRA\$, SRRA\$C, and RREF\$S Macros C-106 C.7.11 RREF\$, RREF\$C, and RREF\$S Macros C-107 C.7.12 SREF\$, SREF\$C, and RREF\$S Macros C-106 C.7.13 SRRA\$, SRRA\$C, and GREG\$S Macros C-106 C.7.14 UMAP\$, UMAP\$C, ADGRESS MACROS C-107 C.7.15 ROBB\$S Macro C-107 C.7.16 REDB\$C, ADGRESS MACROS C-106 C.7.17 RROBS\$C, ADGRESS MACROS C-106 C.7.18 RREF\$, RREF\$C, and RREF\$S MACROS C-106 C.7.19 RRDB\$C, ADGRESS MACROS C-107 C.7.11 RREF\$, RREF\$C, and RREF\$S MACROS C-107 C.7.12 SREF\$, SREF\$C, and RREF\$S MACROS C-107 C.7.13 SRRA\$, SRRA\$C, and WAP\$S MACROS C-107 C.7.14 UMAP\$, UMAP\$C CARD C-107 C.7.15 WDBB\$K MACRO C-110 C.8.1 RCLOSS MACRO C-110 C.8.2 RPDBT MACRO C-111 C.8.3 RFIND\$ MACRO C-112 C.8.4 RROF\$S MACRO C-112 C.8.5 RPOF\$S MACRO C-112 C.8.6 RGET\$ MACRO C-112 C.8.7 ROPN\$M MACRO C-113 C.8.1 ROPN\$M MACRO C-113 C.8.1 ROPN\$M MACRO C-113 C.8.11 ROPN\$M MACRO C-114 C.8.11 ROPS\$M MACRO C-114 C.8.11 ROPS\$M MACRO C-114 C.8.12 ROPN\$M MACRO C-115 C.8.13 ROPS\$M MACRO C-114 C.8.14 ROPS\$M MACRO C-115 C.8.15 ROPS\$M MACRO C-116 C.8.19 ROPN\$M MACRO C-117 C.8.19 ROPN\$M MACRO C-117 C.8.11 ROPS\$M MACRO C-117 C.8.11 ROPS\$M MACRO C-117 C.8.12 ROPN\$M MACRO C-117 C.8.13 ROPS\$M MACRO C-117 C.9.1 DRERR\$ MACRO C-117 C.9.1 DRERR\$ MACRO C-			Page
C.5.64 PUTS Macro C-98 C.5.66 PUTSS Macro C-98 C.5.66 PUTSS Macro C-98 C.5.67 RAD508 Macro C-98 C.5.68 READ\$ Macro C-99 C.5.69 TRUNCS Macro C-99 C.5.70 WAIT\$ Macro C-99 C.5.71 WRITES Macro C-99 C.5.71 WRITES Macro C-99 C.6.1 COMDF\$ Macro C-100 C.7 PROGRAM LOGICAL ADDRESS SPACE EXTENSION MACRO C-100 C.7 PROGRAM LOGICAL ADDRESS SPACE EXTENSION MACRO EXPANSIONS C-101 C.7.1 ATRG\$, ATRG\$C, and ATRG\$S Macros C-102 C.7.3 CRAW\$, CRAW\$C, CRAW\$S Macros C-102 C.7.4 CRRG\$, CRRG\$C, and CRRG\$S Macros C-102 C.7.5 DTRG\$, DTRG\$C, and CRRG\$S Macros C-102 C.7.6 ELAW\$, ELAW\$C, and ELAW\$S Macros C-104 C.7.6 ELAW\$, ELAW\$C, and ELAW\$S Macros C-104 C.7.7 GMCX\$, GMCX\$C, and GMCX\$S Macros C-105 C.7.9 MAP\$, MAP\$C, ADGRESS MACROS C-105 C.7.10 RBB&S Macro C-106 C.7.11 RREF\$, RREF\$C, and RREF\$S Macros C-106 C.7.11 RREF\$, RREF\$C, and RREF\$S Macros C-106 C.7.12 SILF\$, SREF\$C, and RREF\$S Macros C-106 C.7.13 SRRA\$, SRRA\$C, and GREG\$\$ Macros C-106 C.7.14 CUMAP\$ UMAP\$C, and WAP\$S Macros C-106 C.7.15 RDB&S Macro C-106 C.7.11 RREF\$, RREF\$C, and RREF\$S Macros C-106 C.7.12 SREF\$, SREF\$C, and RREF\$S Macros C-107 C.7.13 SRRA\$, SRRA\$C, and GREG\$\$ Macros C-107 C.7.14 UMAP\$ UMAP\$C, and UMAP\$S Macros C-107 C.7.15 WDBBK\$ Macro C-107 C.8.1 RCLOSS Macro C-110 C.8.2 RPDBT\$ Macro C-110 C.8.3 RFIND\$ Macro C-110 C.8.4 RFOF\$L Macro C-111 C.8.5 RFOF\$S Macro C-110 C.8.6 RGET\$ Macro C-111 C.8.7 ROPN\$M Macro C-112 C.8.8 ROPN\$M Macro C-112 C.8.9 ROPN\$M Macro C-112 C.8.10 ROPN\$M Macro C-112 C.8.11 ROPN\$M Macro C-112 C.8.12 ROPN\$M Macro C-112 C.8.13 ROPN\$M Macro C-112 C.8.14 ROPS\$M Macro C-112 C.8.15 ROPS\$M Macro C-112 C.8.16 ROPS\$M Macro C-112 C.8.17 ROPN\$M Macro C-114 C.8.18 ROPN\$M Macro C-114 C.8.19 ROPN\$M Macro C-114 C.8.19 ROPN\$M Macro C-114 C.8.11 ROPN\$M Macro C-114 C.8.11 ROPN\$M Macro C-114 C.8.12 ROPN\$M Macro C-114 C.8.13 ROPN\$M Macro C-114 C.8.14 ROPS\$M Macro C-114 C.8.15 ROPS\$M Macro C-116 C.8.11 ROPN\$M Macro C-117 C.8.11 ROPN\$M Macro C-117 C.9.1 DRERS Macro C-116 C.9.1 DRERS Macro C-117 C.9.1 DRERS Macro C-117 C.9.1 DRERS Macro C-117 C.9.2 FILIO Macro C-117 C.	C E 63	OENDŚW Magro	C-97
C.5.65 PUTSR Macro C.98 C.5.67 RAD50\$ Macro C.98 C.5.68 PUTSR Macro C.99 C.5.69 TRUNC\$ Macro C.99 C.5.69 TRUNC\$ Macro C.99 C.5.70 WAITS Macro C.99 C.5.71 WRITE\$ Macro C.99 C.5.71 WRITE\$ Macro C.99 C.5.71 WRITE\$ Macro C.100 C.6.1 COMDF\$ Macro C.100 C.7.1 PROGRAM LOGICAL ADDRESS SPACE EXTENSION MACRO EXPANSIONS C.101 C.7.2 .BLK., BLKB., and ATRG\$\$ Macros C.102 C.7.3 CRAW\$, CRAW\$C, CRAW\$S Macros C.102 C.7.4 CRRG\$, ATRG\$C, and ATRG\$\$ Macros C.102 C.7.5 DTRG\$, DTRG\$C, and ELAW\$S Macros C.103 C.7.6 ELAW\$, ELAW\$C, and ELAW\$S Macros C.104 C.7.7 GMCX\$, GMCX\$C, and GMCX\$S Macros C.104 C.7.8 GREG\$, GREG\$C, and GREG\$\$ Macros C.104 C.7.9 MAP\$, MAP\$C, and ELAW\$S Macros C.105 C.7.9 MAP\$, MAP\$C, and GREG\$\$ Macros C.105 C.7.10 RDBBK\$ Macro C.105 C.7.11 RREF\$, RREF\$C, and RREF\$S Macros C.106 C.7.12 SREF\$, SREF\$C, and RREF\$S Macros C.107 C.7.11 RREF\$, RREF\$C, and SREF\$\$ Macros C.107 C.7.12 SREF\$, SREF\$C, and SREF\$\$ Macros C.107 C.7.13 SRRA\$, SRRA\$C, and SREF\$\$ Macros C.107 C.7.14 WMAP\$, MAP\$C, and SREF\$\$ Macros C.107 C.7.15 WDBBK\$ Macro C.107 C.7.16 RELAW\$C, AMP\$\$ Macros C.107 C.7.17 GROSS MACROS C.107 C.7.18 RREF\$, RREF\$C, and RREF\$S Macros C.107 C.7.19 RDBBK\$ Macro C.107 C.7.10 RDBBK\$ Macro C.107 C.7.11 RREF\$, RREF\$C, and SREF\$S Macros C.107 C.7.12 SREF\$, SREF\$C, and SREF\$S Macros C.107 C.7.13 SRRA\$, SRRA\$C, and WMAP\$S Macros C.107 C.7.14 WMAP\$, UMAP\$C, and UMAP\$S Macros C.107 C.8.1 RCLOS\$ Macro C.110 C.8.1 RCLOS\$ Macro C.110 C.8.2 RFDBT\$ Macro C.110 C.8.3 RFDBT\$ Macro C.111 C.8.4 RFOF\$L Macro C.111 C.8.5 RFOF\$F Macro C.112 C.8.6 RGET\$ Macro C.112 C.8.1 ROPN\$M Macro C.112 C.8.1 ROPN\$M Macro C.112 C.8.2 ROPN\$M Macro C.112 C.8.3 ROPN\$M Macro C.112 C.8.11 ROPN\$M Macro C.113 C.8.12 ROPN\$M Macro C.114 C.8.13 ROPS\$M Macro C.114 C.8.14 ROPS\$M Macro C.114 C.8.17 ROPS\$M Macro C.114 C.8.18 ROPN\$M Macro C.114 C.8.19 ROPN\$M Macro C.114 C.8.19 ROPN\$M Macro C.114 C.8.19 ROPN\$M Macro C.114 C.8.19 ROPN\$M Macro C.115 C.9.2 FILIO\$ Macro C.116 C.9.3 LOER Macro C.117 C.9.4 LOER MACRO DEFINITIONS C.115 C.9.5 FILIO\$ Macro C.116 C.9.6 ROPS\$C.100 C.9.		•	
C.5.66 PUTSS Macro C-98 C.5.68 READ\$ Macro C-99 C.5.69 TRUNC\$ Macro C-99 C.5.70 WAITS Macro C-99 C.5.71 WRITE\$ Macro C-99 C.5.71 WRITE\$ Macro C-99 C.6. NETWORK SYMBOL DEFINITION MACRO C-100 C.6. NETWORK SYMBOL DEFINITION MACRO C-100 C.7. PROGRAM LOGICAL ADDRESS SPACE EXTENSION MACRO EXPANSIONS C-101 C.7.1 ATRG\$, ATRG\$C, and ATRG\$S Macros C-101 C.7.2 BLK., BLKB., and BLKW. Macros C-102 C.7.3 CRAW\$, CRRG\$C, and CRRG\$S Macros C-102 C.7.4 CRRG\$, CRRG\$C, and DTRG\$S Macros C-103 C.7.5 DTRG\$C, and DTRG\$S Macros C-104 C.7.6 ELAW\$, ELAW\$C, and ELAW\$S Macros C-104 C.7.7 GMCX\$, GMCX\$C, and GMCX\$S Macros C-105 C.7.8 GREG\$C, and GRCX\$S Macros C-105 C.7.9 MAP\$, MAP\$C, AMGRX\$C MACROS C-105 C.7.10 RDBBK\$ Macro C-107 C.7.11 RREF\$, RREF\$C, and RREF\$S Macros C-106 C.7.12 SREF\$, SREF\$C, and RREF\$S Macros C-107 C.7.13 SRRA\$, SRRA\$C, and SRRA\$S Macros C-107 C.7.14 CRBS\$, MACROS C-107 C.7.15 WDBBK\$ Macro C-107 C.7.11 RREF\$, RREF\$C, and RREF\$S Macros C-106 C.7.10 RDBBK\$ Macro C-107 C.7.11 RREF\$, RREF\$C, and SREF\$S Macros C-107 C.7.12 SREF\$, SREF\$C, and SRRA\$S MACROS C-108 C.7.13 SRRA\$, SRRA\$C, and SRRA\$S MACROS C-108 C.7.14 UMAP\$, UMAP\$C, and UMAP\$S MACROS C-108 C.7.15 WDBBK\$ Macro C-108 C.8.1 RCLOS\$ Macro C-110 C.8.2 RFDBT\$ MACRO C-110 C.8.3 RFIND\$ MACRO C-110 C.8.4 RFOF\$L MACRO C-110 C.8.5 RGF\$F\$ MACRO C-111 C.8.6 RGET\$ MACRO C-111 C.8.7 ROPN\$ MACRO C-112 C.8.8 ROPN\$M MACRO C-112 C.8.10 ROPN\$M MACRO C-112 C.8.11 ROPN\$M MACRO C-112 C.8.11 ROPN\$M MACRO C-112 C.8.11 ROPN\$M MACRO C-112 C.8.12 ROPN\$M MACRO C-112 C.8.13 ROPN\$M MACRO C-113 C.8.14 ROPS\$M MACRO C-112 C.8.15 ROPN\$M MACRO C-112 C.8.16 ROPS\$M MACRO C-113 C.8.17 ROPN\$M MACRO C-114 C.8.18 ROPN\$M MACRO C-114 C.8.19 ROPN\$M MACRO C-114 C.8.11 ROPN\$M MACRO C-114 C.8.11 ROPN\$M MACRO C-114 C.8.11 ROPN\$M MACRO C-114 C.8.12 ROPN\$M MACRO C-114 C.8.13 ROPS\$M MACRO C-114 C.8.14 ROPS\$M MACRO C-114 C.8.15 ROPS\$M MACRO C-114 C.8.16 ROPS\$M MACRO C-114 C.8.17 ROPS\$M MACRO DEFINITIONS C-115 C.9.2 PUTYS MACRO C-117 C.9.3 LOBER MACRO C-117 C.9.4 LOBER MACRO C-117 C.9.5 LOBER MACRO C-117 C.9.7 LOBER			
C.5.67 RADSOS MACTO C-98 C.5.68 READS MACTO C-99 C.5.70 WAIT'S MACTO C-99 C.5.71 WAIT'S MACTO C-99 C.5.71 WAIT'S MACTO C-99 C.5.71 WAIT'S MACTO C-99 C.6.1 COMDFS MACTO C-100 C.6.1 COMDFS MACTO C-100 C.7 PROGRAM LOGICAL ADDRESS SPACE EXTENSION MACRO EXPANSIONS C.7.1 ATRGS, ATRGSC, and ATRG\$S MACTOS C-101 C.7.2 BLK., BLKB., and BLKW. MACTOS C-102 C.7.3 CRAW\$, CRAW\$C, CRAW\$S MACTOS C-102 C.7.4 CRAC\$, CRAW\$C, CRAW\$S MACTOS C-103 C.7.5 DTRG\$C, AND DTRG\$S MACTOS C-103 C.7.6 ELAW\$C, CRAW\$C, and CRRG\$S MACTOS C-104 C.7.7 GMCX\$, GMCX\$C, and DTRG\$S MACTOS C-104 C.7.7 GMCX\$, GMCX\$C, and GMCX\$S MACTOS C-104 C.7.8 GREG\$, GREG\$C, and GMCX\$S MACTOS C-104 C.7.9 MAP\$, MAP\$C, AND ELAW\$S MACTOS C-105 C.7.10 RDBBK\$ MACTO C-105 C.7.11 RREF\$, REF\$C, and RREF\$S MACTOS C-105 C.7.12 SREF\$, SREF\$C, and RREF\$S MACTOS C-106 C.7.13 SRRA\$, SRRA\$C, and SRRA\$S MACTOS C-107 C.7.11 RREF\$, RREF\$C, and RREF\$S MACTOS C-107 C.7.12 SREF\$, SREF\$C, and SREF\$S MACTOS C-107 C.7.13 SRRA\$, SRRA\$C, and SRRA\$S MACTOS C-107 C.7.14 UMAP\$, UMAP\$C, and UMAP\$S MACTOS C-108 C.7.15 WDBBK\$ MACTO C-107 C.8.1 RCLOS\$ MACTO C-110 C.8.2 RFDBT\$ MACTO C-110 C.8.3 RFIND\$ MACTO C-110 C.8.4 RFOF\$L MACTO C-110 C.8.5 RFOF\$F MACTO C-110 C.8.6 RGET\$ MACTO C-110 C.8.7 ROPN\$ MACTO C-111 C.8.7 ROPN\$MACTO C-112 C.8.8 ROPN\$M MACTO C-112 C.8.9 ROPN\$M MACTO C-112 C.8.10 ROPN\$M MACTO C-112 C.8.11 ROPN\$M MACTO C-112 C.8.11 ROPN\$M MACTO C-112 C.8.12 ROPN\$M MACTO C-113 C.8.13 ROPN\$M MACTO C-112 C.8.14 ROPS\$M MACTO C-112 C.8.15 ROPN\$M MACTO C-113 C.8.16 ROPN\$M MACTO C-113 C.8.17 ROPS\$M MACTO C-114 C.8.18 ROPN\$M MACTO C-112 C.8.19 ROPN\$M MACTO C-113 C.8.11 ROPN\$M MACTO C-114 C.8.11 ROPS\$M MACTO C-112 C.8.11 ROPN\$M MACTO C-112 C.8.11 ROPN\$M MACTO C-112 C.8.11 ROPN\$M MACTO C-112 C.8.12 ROPN\$M MACTO C-113 C.8.13 ROPN\$M MACTO C-114 C.8.14 ROPS\$M MACTO C-114 C.8.15 ROPN\$M MACTO C-114 C.8.16 ROPS\$M MACTO C-114 C.8.17 ROPS\$M MACTO C-114 C.8.19 ROPN\$M MACTO C-114 C.8.19 ROPN\$M MACTO DEFINITIONS C-115 C.9.2 FILIO\$ MACTO C-117 C.9.3 LOBEM MACTO C-117 C.9.4 LOBER\$MACTO C-117	C 5 66		
C.5.68 READS Macro C-99 C.5.69 TRUNCS Macro C-99 C.5.71 WRITES Macro C-99 C.5.71 WRITES Macro C-99 C.6.1 NETWORK SYMBOL DEFINITION MACRO C-100 C.6.1 COMDFS Macro C-100 C.6.1 COMDFS Macro C-100 C.7.1 PROGRAM LOGICAL ADDRESS SPACE EXTENSION MACRO EXPANSIONS C-101 C.7.2 BLK., BLKB., and ATRG\$S Macros C-102 C.7.3 CRAW\$, CRAW\$C, CRAW\$S Macro C-102 C.7.4 CRRG\$, CRRG\$C, and DTRG\$S Macros C-103 C.7.5 DTRG\$, DTRG\$C, and DTRG\$S Macros C-104 C.7.6 ELAW\$, ELAW\$C, and ELAW\$S Macros C-104 C.7.7 GRCX\$, GMCX\$C, and GMCX\$S Macros C-105 C.7.8 GREG\$, GREG\$C, and GREG\$S Macros C-105 C.7.9 MAP\$, MAP\$C, and GREG\$S Macros C-105 C.7.10 RDBK\$ Macro C-105 C.7.11 RREF\$, RREF\$C, and RREF\$S Macros C-106 C.7.11 RREF\$, RREF\$C, and RREF\$S Macros C-107 C.7.12 SREF\$, SREF\$C, and SREF\$S Macros C-107 C.7.13 SRRA\$, SRRA\$C, and SRRA\$S Macros C-106 C.7.14 UMAP\$, UMAP\$C, and SRRA\$S Macros C-107 C.7.15 WDBBK\$ Macro C-107 C.7.16 WDBBK\$ Macro C-108 C.7.17 RREP\$, RREF\$C, and RREF\$S Macros C-108 C.7.18 RREP\$, RREF\$C, and SRRA\$S Macros C-107 C.7.19 ROBBK\$ Macro C-107 C.7.11 RREP\$, RREF\$C, and SRRA\$S Macros C-107 C.7.12 SREF\$, SREF\$C, and SRRA\$S Macros C-107 C.7.14 UMAP\$, UMAP\$C, and UMAP\$\$ Macro C-107 C.7.15 WDBBK\$ Macro C-110 C.8.1 RCLOS\$ Macro C-110 C.8.2 RFDBT\$ Macro C-110 C.8.3 RFIND\$ Macro C-110 C.8.4 RFOF\$L Macro C-111 C.8.5 RFOF\$S Macro C-112 C.8.6 RGET\$ Macro C-112 C.8.7 ROPN\$ Macro C-112 C.8.8 ROPN\$M Macro C-112 C.8.9 ROPN\$M Macro C-112 C.8.11 ROPN\$W Macro C-112 C.8.11 ROPN\$W Macro C-112 C.8.12 ROPN\$W Macro C-113 C.8.13 ROPS\$M Macro C-113 C.8.14 ROPS\$W Macro C-114 C.8.15 ROPS\$W Macro C-114 C.8.17 ROPS\$W Macro C-114 C.8.18 ROPS\$W Macro C-114 C.8.19 ROPN\$W Macro C-114 C.8.11 ROPS\$W Macro C-114 C.8.11 ROPS\$W Macro C-114 C.8.12 ROPN\$W Macro C-114 C.8.13 ROPS\$W Macro C-114 C.8.14 ROPS\$W Macro C-115 C.9.1 DERR\$W Macro C-116 C.9.2 FILIO\$ Macro C-117 C.9.3 LIGER\$ Macro C-117 C.9.4 LIGER\$WACRO DEFINITIONS C-115 C.9.5 FILIO\$ Macr	C 5 67		
C.5.69 TRUNC\$ Macro C-99 C.5.71 WRITE\$ Macro C-99 C.5.71 WRITE\$ Macro C-90 C.6.1 NETWORK SYMBOL DEFINITION MACRO C-100 C.6.1 PROGRAM LOGICAL ADDRESS SPACE EXTENSION MACRO EXPANSIONS C-101 C.7.1 ATRG\$, ATRG\$C, and ATRG\$S Macros C-101 C.7.2 BLK., BLKB., and .BLKW. Macros C-102 C.7.3 CRAW\$, CRAW\$C, CRAW\$S Macro C-102 C.7.4 CRRG\$, CRRG\$C, and CRRG\$S Macros C-103 C.7.5 DTRG\$C, and DTRG\$S Macros C-103 C.7.6 ELAW\$, CLAW\$C, CRAW\$S Macros C-104 C.7.7 GMCX\$, GMCX\$C, and ELAW\$S Macros C-104 C.7.8 GREG\$, GREG\$C, and GREG\$S Macros C-104 C.7.9 MAP\$, MAP\$C, MAP\$S Macros C-105 C.7.9 MAP\$, MAP\$C, MAP\$S Macros C-105 C.7.10 RDBK\$ Macro C-106 C.7.11 RREF\$, RREF\$C, and RREF\$S Macros C-106 C.7.12 SREF\$, SREF\$C, and RREF\$S Macros C-107 C.7.13 SRRA\$, SRRA\$C, and SREF\$S Macros C-107 C.7.14 UMAP\$, UMAP\$C, and UMAP\$S Macros C-109 C.7.15 WDBBK\$ Macro C-109 C.7.16 RELATIVE FILES MACROS - EXPANSIONS C-109 C.7.17 CREATIVE FILES MACROS - EXPANSIONS C-110 C.8.1 RCLOS\$ Macro C-110 C.8.2 RFDBT\$ Macro C-110 C.8.3 RFIND\$ Macro C-111 C.8.4 RFOF\$L Macro C-110 C.8.5 RFOF\$\$ Macro C-111 C.8.6 RGET\$ Macro C-112 C.8.7 ROPN\$ Macro C-112 C.8.8 ROPN\$A Macro C-112 C.8.8 ROPN\$A Macro C-112 C.8.9 ROPN\$M Macro C-112 C.8.11 ROPN\$W Macro C-112 C.8.12 ROPS\$W Macro C-112 C.8.13 ROPS\$W Macro C-112 C.8.14 ROPS\$W Macro C-112 C.8.15 ROPS\$W Macro C-112 C.8.16 ROPS\$W Macro C-112 C.8.17 ROPS\$W Macro C-113 C.8.18 ROPS\$W Macro C-112 C.8.19 ROPS\$W Macro C-112 C.8.11 ROPS\$W Macro C-112 C.8.11 ROPS\$W Macro C-113 C.8.12 ROPS\$W Macro C-113 C.8.13 ROPS\$W Macro C-114 C.8.14 ROPS\$W Macro C-112 C.8.15 ROPS\$W Macro C-113 C.8.16 ROPS\$W Macro C-114 C.8.17 ROPS\$W Macro C-114 C.8.18 ROPS\$W Macro C-114 C.8.19 ROPS\$W Macro C-115 C.9.1 PRER\$ Macro C-115 C.9.2 FILIO\$ Macro C-117 C.9.3 LOER Macro C-117 C.9.4 LOER\$W MACRO DEFINITIONS C-115 C.9.5 FILIO\$ RACRO C-11		DEADS Macro	
C.5.70 WAIT\$ MACTO C-99 C.5.71 WRITE\$ MACTO C-99 C.6 NETWORK SYMBOL DEFINITION MACRO C-100 C.6.1 COMDF\$ MACTO C-100 C.7 PROGRAM LOGICAL ADDRESS SPACE EXTENSION MACRO EXPANSIONS C-101 C.7.1 ATRG\$, ATRG\$C, and ATRG\$S MACTOS C-102 C.7.2 BLK., BLKB., and BLKW. MACTOS C-102 C.7.3 CRAW\$, CRAW\$C, CRAW\$S MACTO C-102 C.7.4 CRRG\$, CRRG\$C, and CRRG\$S MACTOS C-102 C.7.5 DTRG\$, DTRG\$C, and DTRG\$S MACTOS C-104 C.7.6 ELAW\$, ELAW\$C, AND TRG\$S MACTOS C-104 C.7.7 GMCX\$, GMCX\$C, and GMCX\$S MACTOS C-104 C.7.8 GREG\$, CREG\$C, and GMCX\$S MACTOS C-105 C.7.9 MAP\$, MAP\$C, MAP\$S MACTOS C-105 C.7.10 RDBBK\$ MACTO C.7.11 RREF\$, RREF\$C, and SREF\$S MACTOS C-105 C.7.12 SEEF\$, SREF\$C, and SREF\$S MACTOS C-107 C.7.13 SRRA\$, SREF\$C, and SREF\$S MACTOS C-107 C.7.14 UMAP\$, UMAP\$C, and JREF\$S MACTOS C-107 C.7.15 WDBBK\$ MACTO C.7.14 UMAP\$, UMAP\$C, and UMAP\$S MACTOS C-108 C.7.15 WDBBK\$ MACTO C.7.16 RELAW\$ SREF\$C, and SREF\$S MACTOS C-109 C.7.17 WDBBK\$ MACTO C-100 C.7.18 REF\$, SREF\$C, and SREF\$S MACTOS C-109 C.7.19 WDBBK\$ MACTO C-110 C.8.1 RCLOS\$ MACTO C-110 C.8.1 RCLOS\$ MACTO C-110 C.8.2 RFDBT\$ MACTO C-110 C.8.3 RFIND\$ MACTO C-110 C.8.4 RFOF\$L MACTO C-111 C.8.5 RFOF\$L MACTO C-111 C.8.6 RGET\$ MACTO C-111 C.8.7 ROPN\$ MACTO C-112 C.8.8 ROPN\$A MACTO C-112 C.8.9 ROPN\$A MACTO C-112 C.8.10 ROPN\$R MACTO C-112 C.8.11 ROPN\$W MACTO C-112 C.8.12 ROPN\$W MACTO C-112 C.8.13 ROPS\$M MACTO C-112 C.8.14 ROPS\$W MACTO C-112 C.8.15 ROPS\$M MACTO C-112 C.8.16 ROPS\$W MACTO C-112 C.8.17 ROPS\$W MACTO C-112 C.8.18 ROPS\$W MACTO C-112 C.8.19 ROPS\$W MACTO C-113 C.8.14 ROPS\$W MACTO C-114 C.8.15 ROPS\$W MACTO C-114 C.8.17 ROPS\$W MACTO C-114 C.8.18 ROPS\$W MACTO C-114 C.8.19 RPRTC\$ MACTO C-114 C.8.19 RPRTC\$ MACTO C-114 C.8.19 RPRTC\$ MACTO C-114 C.8.19 RPRTC\$ MACTO C-114 C.8.10 ROPS\$W MACTO C-114 C.8.11 ROPS\$W MACTO C-114 C.8.11 ROPS\$W MACTO C-114 C.8.12 ROPS\$W MACTO C-114 C.8.13 ROPS\$W MACTO C-114 C.8.14 ROPS\$W MACTO C-114 C.8.19 RPRTC\$ MACTO C-114 C.8.19 RPRTC\$ MACTO C-114 C.8.19 RPRTC\$ MACTO C-114 C.8.19 RPRTC\$ MACTO C-115 C.9.2 FILLIO\$ MACTO C-117 C.9.3 LICER MACTO C-117			
C.5.71 WRITES MACTO C.6.1 NETWORK SYMBOL DEFINITION MACRO C.6.1.7 PROGRAM LOGICAL ADDRESS SPACE EXTENSION MACRO EXPANSIONS C.7.1 ATRG\$, ATRG\$C, and ATRG\$S MACTOS C.7.2 BLK., BLKB., and BLKW. MACTOS C.7.3 CRAW\$, CRAW\$C, CRAW\$S MACTO C.7.4 CRRG\$, CRRG\$C, and CRRG\$S MACTOS C.7.5 DTRG\$, DTRG\$C, and DTRG\$S MACTOS C.7.6 ELLAW\$, ELAW\$C, and ELAW\$S MACTOS C.7.7 GMCX\$, GMCX\$C, and DTRG\$S MACTOS C.7.8 GREG\$, GREG\$C, and GRCG\$S MACTOS C.7.9 MAP\$, MAP\$C, MAP\$S MACTOS C.7.10 RDBBK\$ MACTO C.7.11 RREF\$, RREF\$C, and RREF\$S MACTOS C.7.12 SREF\$, SREF\$C, and RREF\$S MACTOS C.7.13 SRA\$, SRA\$C, and GRCG\$S MACTOS C.7.14 UMAP\$, MAP\$C, MAP\$S MACTOS C.7.15 WDBBK\$ MACTO C.7.11 RREF\$, RREF\$C, and RREF\$S MACTOS C.7.12 SREF\$, SREF\$C, and RREF\$S MACTOS C.7.13 SRA\$, SRRA\$C, and SRRA\$S MACTOS C.7.14 UMAP\$, UMAP\$C, and UMAP\$\$ MACTOS C.7.15 WDBBK\$ MACTO C.7.16 RELATIVE FILES MACROS C-109 C.7.17 MODBK\$ MACTO C.8.1 RCLOS\$ MACTO C.8.2 RFDBT\$ MACTO C.8.3 RFIND\$ MACTO C.8.4 RFOF\$L MACTO C.8.5 RFOFF\$ MACTO C.8.6 RGF\$ MACTO C.8.7 ROPN\$ MACTO C.8.8 RFOF\$ MACTO C.8.11 CRUS\$ MACTO C.8.11 ROPS\$M MACTO C.8.2 RFDBT\$ MACTO C.8.3 RFIND\$ MACTO C.9.4 ROPN\$M MACTO C.9.112 C.8.6 RGF\$ MACTO C.9.112 C.8.11 ROPS\$M MACTO C.9.112 C.8.12 ROPN\$M MACTO C.9.113 C.8.14 ROPS\$M MACTO C.9.114 C.8.15 ROPS\$M MACTO C.9.115 C.8.16 ROPS\$M MACTO C.9.116 C.8.17 ROPS\$M MACTO C.9.117 C.8.18 ROPS\$M MACTO C.9.118 ROPS\$M MACTO C.9.119 REF\$MACTO C.9.110 C.8.119 ROPS\$M MACTO C.9.110 C.8.12 ROPN\$M MACTO C.9.111 C.8.15 ROPS\$M MACTO C.9.112 C.8.16 ROPS\$M MACTO C.9.113 C.8.17 ROPS\$M MACTO C.9.114 C.8.19 ROPS\$M MACTO C.9.115 C.9.1 RERR\$ MACTO C.9.116 C.9.1 DRERR\$ MACTO C.9.117 C.9.2 FILIO\$ MACTO C.9.116 C.9.3 LOER MACTO C.9.117 C.9.1 DRERR\$ MACTO C.9.117 C.9.1 DRERR\$ MACTO C.9.117 C.9.1 DRERR\$ MACTO C.9.117 C.9.2 FILIO\$ MACTO C.9.117 C.9.3 LOER MACTO C.9.117 C.9.17 C.9.1 DRERR\$ MACTO C.9.117 C.9.1 DRERR\$ MACTO			
C.6. NETWORK SYMBOL DEFINITION MACRO C-100 C.6.1 COMDF\$ MAGTO C-100 C.7.1 PROGRAM LOGICAL ADDRESS SPACE EXTENSION MACRO EXPANSIONS C-101 C.7.1 ATRG\$, ATRG\$C, and ATRG\$S MAGTOS C-102 C.7.2 BLK., BLKB., and BLKW. Macros C-102 C.7.3 CRAW\$, CRAW\$C, CRAW\$S MAGTO C-102 C.7.4 CRRG\$, CRRG\$C, and CRRG\$S MAGTOS C-103 C.7.5 DTRG\$, DTRG\$C, and DTRG\$S MAGTOS C-104 C.7.6 ELAW\$, ELAW\$C, and DTRG\$S MAGTOS C-104 C.7.7 GMCX\$, GMCX\$C, and GMCX\$S MAGTOS C-105 C.7.9 MAP\$, MAP\$C, MAP\$S MAGTOS C-105 C.7.10 RDBBK\$ MAGTO C.7.11 RREF\$, RREF\$C, and GREG\$\$ MAGTOS C-105 C.7.12 SREF\$, SREF\$C, and SREF\$S MAGTOS C-107 C.7.11 RREF\$, RREF\$C, and RREF\$S MAGTOS C-107 C.7.12 SRE\$\$, SREF\$C, and SREF\$S MAGTOS C-107 C.7.13 SRRA\$, SRRA\$C, and SREF\$S MAGTOS C-109 C.7.14 UMAP\$, UMAP\$C, and UMAP\$S MAGTOS C-109 C.7.15 WDBBK\$ MAGTO C.7.16 RELATIVE FILES MACROS - EXPANSIONS C-109 C.7.17 WDBBK\$ MAGTO C.7.18 RELATIVE FILES MACROS - EXPANSIONS C-110 C.8.2 RPDBT\$ MAGTO C.110 C.8.3 RFIND\$ MAGTO C.110 C.8.4 RFOF\$L MAGTO C.111 C.8.5 RFOF\$\$ MAGTO C.112 C.8.6 RGET\$ MAGTO C.111 C.8.7 ROPN\$ MAGTO C.112 C.8.8 ROPN\$ MAGTO C.112 C.8.8 ROPN\$ MAGTO C.112 C.8.9 ROPN\$M MAGTO C.112 C.8.10 ROPN\$M MAGTO C.112 C.8.11 ROPN\$W MAGTO C.113 C.8.12 ROPN\$W MAGTO C.114 C.8.13 ROPS\$M MAGTO C.115 C.8.14 ROPS\$M MAGTO C.116 C.8.15 ROPS\$M MAGTO C.117 C.8.16 ROPS\$M MAGTO C.111 C.8.17 ROPS\$W MAGTO C.112 C.8.18 ROPN\$W MAGTO C.113 C.8.19 ROPS\$W MAGTO C.114 C.8.19 ROPS\$W MAGTO C.115 C.8.11 ROPS\$W MAGTO C.116 C.8.19 ROPS\$W MAGTO C.117 C.8.19 ROPS\$W MAGTO C.1114 C.8.19 ROPS\$W MAGTO C.114 C.8.19 ROPS\$W MAGTO C.116 C.9.1 DRERR\$ MAGTO C.116 C.9.1 DRERR\$ MAGTO C.117 C.9.1 DRERR\$ MAGTO C.116 C.9.2 FILIO\$ MAGTO C.117 C.9.3 LIOER, MAGTO C.116 C.9.4 LIOER, MAGTO C.117			
C.6.1 COMDF\$ Macro PROGRAM LOGICAL ADDRESS SPACE EXTENSION MACRO EXPANSIONS C.7.1 ATRG\$, ATRG\$C, and ATRG\$S Macros C.7.2 BLK., BLKB., and BLKW. Macros C.7.3 CRAW\$, CRRW\$C, CRAW\$S Macro C.7.4 CRRG\$, CRRG\$C, and CRRG\$S Macros C.7.5 DTRG\$, DTRG\$C, and DTRG\$S Macros C.7.6 ELAW\$, ELAW\$C, and DTRG\$S Macros C.7.7 GMCX\$, GMCX\$C, and GMCX\$S Macros C.7.8 GRG\$G, GREG\$C, and GREG\$S Macros C.7.9 MAP\$, MAP\$C, AAP\$S Macros C.7.10 RDBK\$ Macro C.7.11 RREF\$, RREF\$C, and GREG\$S Macros C.7.12 SREF\$, SREF\$C, and SREF\$S Macros C.7.13 SRRA\$, SRRA\$C, and SREF\$S Macros C.7.14 UMAP\$, UMAP\$C, and SREF\$S Macros C.7.15 WDBBK\$ Macro C.7.15 WDBBK\$ Macro C.7.16 RELAW\$ MAP\$C, and SREF\$S Macros C.7.17 C.7.12 CREF\$, RREF\$C, and SREF\$S Macros C.7.10 C.7.11 RREF\$, RREF\$C, and SREF\$S Macros C.7.12 SREF\$, SREF\$C, and SREF\$S Macros C.7.14 UMAP\$, UMAP\$C, and UMAP\$S Macros C.7.15 WDBBK\$ Macro C.7.16 RELATIVE FILES MACROS - EXPANSIONS C.7.10 C.8.1 RCLOS\$ Macro C.8.1 RCLOS\$ Macro C.8.2 RFDBT\$ Macro C.8.3 RFIND\$ Macro C.8.3 RFIND\$ Macro C.8.4 RFOF\$L Macro C.8.4 RFOF\$L Macro C.8.5 RGF\$ Macro C.110 C.8.6 RGET\$ Macro C.111 C.8.7 ROPN\$ Macro C.112 C.8.8 ROPN\$A Macro C.112 C.8.8 ROPN\$A Macro C.112 C.8.9 ROPN\$M Macro C.113 C.8.11 ROPN\$M Macro C.112 C.8.12 ROPN\$W Macro C.113 C.8.14 ROPS\$W Macro C.113 C.8.15 ROPS\$W Macro C.114 C.8.16 ROPS\$W Macro C.113 C.8.17 ROPS\$W Macro C.114 C.8.18 ROPS\$W Macro C.115 C.8.18 ROPS\$W Macro C.116 C.8.19 ROPS\$W Macro C.117 C.8.19 ROPS\$W Macro C.114 C.8.20 RPUT\$ Macro C.115 C.9.1 DERR\$ Macro C.116 C.9.1 DERR\$ Macro C.117 C.9.2 FILIO\$ Macro C.117 C.9.3 LOERR\$ Macro C.117 C.9.4 LOERR\$ Macro C.117 C.9.4 LOERR\$ Macro C.117 C.9.5 LOERR\$ Macro C.117 C.9.4 LOERR\$ Macro C.117 C.9.7 LOERR\$ Macro C.117 C.9.1 LOERR\$ Macro C.117 C.9.1 LOERR\$ Macro C.117 C.9.1 LOERR\$ Macro C.117 C.9.1 LOERR\$ Macro			
C.7			
MACRO EXPANSIONS C-101			0 100
C.7.1 ATRG\$, ATRG\$C, and ATRG\$S Macros C-101 C.7.2 .BLK., .BLKB., and .BLKW. Macros C-102 C.7.3 CRAW\$, CRRAW\$C, CRAW\$S Macro C-102 C.7.4 CRRG\$, CRRG\$C, and CRRG\$S Macros C-103 C.7.5 DTRG\$, DTRG\$C, and DTRG\$S Macros C-104 C.7.6 ELAW\$, ELAW\$C, and ELAW\$S Macros C-104 C.7.7 GMCX\$, GMCX\$C, and GMCX\$S Macros C-105 C.7.8 GREG\$, GREG\$C, and GMCX\$S Macros C-105 C.7.9 MAP\$, MAP\$C, MAP\$S Macros C-106 C.7.10 RDBBR\$ Macro C-107 C.7.11 RREF\$, RREF\$C, and RREF\$S Macros C-107 C.7.12 SREF\$, SREF\$C, and SREF\$S Macros C-108 C.7.13 SRRA\$, SRRA\$C, and SRRA\$S Macros C-108 C.7.14 UMAP\$, UMAP\$C, and UMAP\$S Macros C-109 C.7.15 WDBBK\$ Macro C-109 C.7.14 UMAP\$, UMAP\$C, and UMAP\$S Macros C-109 C.7.15 WDBBK\$ Macro C-110 C.8.1 RCLOS\$ Macro C-110 C.8.2 RFDBT\$ Macro C-110 C.8.3 RFIND\$ Macro C-110 C.8.4 RFOF\$L Macro C-111 C.8.5 RFOFF\$ Macro C-111 C.8.6 RGET\$ Macro C-111 C.8.7 ROPN\$ Macro C-112 C.8.8 ROPN\$A Macro C-112 C.8.9 ROPN\$A Macro C-112 C.8.10 ROPN\$M Macro C-112 C.8.11 ROPN\$U Macro C-112 C.8.11 ROPN\$U Macro C-112 C.8.12 ROPN\$M Macro C-112 C.8.13 ROPN\$M Macro C-112 C.8.14 ROPS\$M Macro C-113 C.8.15 ROPN\$M Macro C-112 C.8.16 ROPS\$M Macro C-112 C.8.17 ROPN\$M Macro C-112 C.8.18 ROPN\$M Macro C-113 C.8.11 ROPN\$W Macro C-114 C.8.17 ROPS\$W Macro C-114 C.8.18 ROPS\$M Macro C-113 C.8.14 ROPS\$M Macro C-114 C.8.17 ROPS\$W Macro C-114 C.8.18 ROPS\$M Macro C-114 C.8.19 ROPT\$ Macro C-114 C.8.19 ROPT\$ Macro C-114 C.8.11 ROPS\$W Macro C-114 C.8.12 ROPT\$ Macro C-114 C.8.13 ROPS\$W Macro C-114 C.8.14 ROPS\$W Macro C-114 C.8.15 ROPS\$W Macro C-114 C.8.19 ROPT\$ Macro C-114 C.8.19 ROPT\$ Macro C-114 C.8.10 ROPT\$ Macro C-116 C.9.1 DRER\$ Macro C-116 C.9.1 DRER\$ Macro C-116 C.9.1 DRER\$ Macro C-116 C.9.1 DRER\$ Macro C-117 C.9.2 FILIO\$ Macro C-117 C.9.3 LIOER. Macro C-117 C.9.4 LIOER. Macro C-117	· · ·		C-101
C.7.2	C.7.1		
C.7.3 CRAW\$, CRAW\$S Macro C-102 C.7.4 CRRG\$, CRRG\$C, and CRRG\$S Macros C-103 C.7.5 DTRG\$, DTRG\$C, and DTRG\$S Macros C-104 C.7.6 ELAW\$, ELAW\$C, and ELAW\$S Macros C-104 C.7.7 GMCX\$, GMCX\$C, and GMCX\$S Macros C-105 C.7.8 GREG\$, GREG\$C, and GRCX\$S Macros C-105 C.7.9 MAP\$, MAP\$C, MAP\$S Macros C-106 C.7.10 RDBBK\$ Macro C-107 C.7.11 RREF\$, RREF\$C, and RREF\$S Macros C-107 C.7.12 SREF\$, SREF\$C, and SREF\$S Macros C-108 C.7.13 SRRA\$, SRRA\$C, and SRRA\$S Macros C-109 C.7.14 UMAP\$, UMAP\$C, and UMAP\$S Macros C-109 C.7.15 WDBBK\$ Macro C-109 C.7.16 RELATIVE FILES MACROS - EXPANSIONS C-110 C.8.1 RCLOS\$ Macro C-110 C.8.2 RFDBT\$ Macro C-110 C.8.3 RFIND\$ Macro C-111 C.8.4 RFOF\$L Macro C-111 C.8.5 RFOF\$\$ Macro C-112 C.8.6 RGET\$ Macro C-112 C.8.7 ROPN\$ Macro C-112 C.8.8 ROPN\$A Macro C-112 C.8.8 ROPN\$A Macro C-112 C.8.9 ROPN\$M Macro C-112 C.8.11 ROPN\$M Macro C-112 C.8.12 ROPN\$M Macro C-112 C.8.13 ROPS\$A Macro C-112 C.8.14 ROPS\$M Macro C-112 C.8.15 ROPN\$M Macro C-112 C.8.16 ROPS\$M Macro C-112 C.8.17 ROPN\$M Macro C-112 C.8.18 ROPN\$M Macro C-112 C.8.19 ROPN\$M Macro C-112 C.8.11 ROPN\$W Macro C-112 C.8.12 ROPN\$W Macro C-112 C.8.13 ROPS\$A Macro C-112 C.8.14 ROPS\$M Macro C-112 C.8.15 ROPS\$M Macro C-112 C.8.16 ROPS\$M Macro C-113 C.8.17 ROPS\$M Macro C-114 C.8.18 ROPS\$M Macro C-114 C.8.19 ROPS\$M Macro C-116 C.9.1 DERR\$M Macro C-117 C.9.2 FILIO\$ Macro C-117 C.9.3 LIDER\$M MACRO DEFINITIONS C-115			_
C.7.4 CRRG\$, CRRG\$C, and CRRG\$S Macros C-104 C.7.5 DTRG\$C, and DTRG\$S Macros C-104 C.7.6 ELAW\$, ELAW\$C, and ELAW\$S Macros C-104 C.7.7 GMCX\$, GMCX\$C, and GMCX\$S Macros C-105 C.7.8 GREG\$, GREG\$C, and GREG\$S Macros C-105 C.7.9 MAP\$, MAP\$C, MAP\$S Macros C-106 C.7.10 RDBBK\$ Macro C-107 C.7.11 RREF\$, RREF\$C, and RREF\$S Macros C-107 C.7.12 SREF\$, SREF\$C, and SREF\$S Macros C-108 C.7.13 SRRA\$, SRRA\$C, and SRRA\$S Macros C-109 C.7.14 UMAP\$, UMAP\$C, and UMAP\$S Macros C-109 C.7.15 WDBBK\$ Macro C-110 C.8 RELATIVE FILES MACROS - EXPANSIONS C-110 C.8.1 RCLOS\$ Macro C-110 C.8.2 RFDBT\$ Macro C-110 C.8.3 RFIND\$ Macro C-111 C.8.4 RFOF\$L Macro C-111 C.8.5 RFOFF\$ Macro C-112 C.8.6 RGET\$ Macro C-112 C.8.7 ROPN\$ Macro C-112 C.8.8 ROPN\$A Macro C-112 C.8.9 ROPN\$M Macro C-112 C.8.10 ROPN\$R Macro C-112 C.8.11 ROPN\$W Macro C-112 C.8.12 ROPN\$W Macro C-112 C.8.13 ROPN\$M Macro C-112 C.8.14 ROPS\$M Macro C-112 C.8.15 ROPN\$W Macro C-112 C.8.16 ROPN\$W Macro C-112 C.8.17 ROPN\$W Macro C-112 C.8.18 ROPN\$W Macro C-112 C.8.18 ROPN\$W Macro C-112 C.8.19 ROPN\$W Macro C-113 C.8.11 ROPS\$W Macro C-114 C.8.12 ROPS\$W Macro C-114 C.8.13 ROPS\$W Macro C-114 C.8.14 ROPS\$W Macro C-114 C.8.15 ROPS\$W Macro C-114 C.8.16 ROPS\$W Macro C-114 C.8.17 ROPS\$W Macro C-114 C.8.18 ROPS\$W Macro C-114 C.8.19 ROPS\$W Macro C-114 C.9.2 FILIO\$ Macro C-115 C.9.3 LIDER\$W Macro C-116 C.9.4 LIDER\$W Macro C-117 C.9.4 LIDER\$W Macro C-117			
C.7.5 DTRG\$, DTRG\$C, and DTRG\$S Macros C-104 C.7.6 ELAW\$, ELAW\$C, and ELAW\$S Macros C-105 C.7.7 GMCX\$, GRCX\$C, and GRCX\$S Macros C-105 C.7.8 GREG\$, GREG\$C, and GREG\$S Macros C-105 C.7.9 MAP\$, MAP\$C, MAP\$S Macros C-106 C.7.10 RDBEK\$ Macro C-107 C.7.11 RREF\$, RREF\$C, and RREF\$S Macros C-107 C.7.12 SREF\$, SREF\$C, and SREF\$S Macros C-108 C.7.13 SRRA\$, SRRA\$C, and SREF\$S Macros C-109 C.7.14 UMAP\$, UMAP\$C, and UMAP\$S Macros C-109 C.7.15 WDBBK\$ Macro C-109 C.7.16 RELATIVE FILES MACROS - EXPANSIONS C-110 C.8 RELATIVE FILES MACROS - EXPANSIONS C-110 C.8.1 RCLOS\$ Macro C-110 C.8.2 RFDBT\$ Macro C-111 C.8.3 RFIND\$ Macro C-111 C.8.4 RFOF\$L Macro C-111 C.8.5 RFOFF\$ Macro C-111 C.8.6 RGET\$ Macro C-112 C.8.7 ROPN\$ Macro C-112 C.8.8 ROPN\$A Macro C-112 C.8.9 ROPN\$A Macro C-112 C.8.10 ROPN\$A Macro C-112 C.8.11 ROPN\$M Macro C-112 C.8.12 ROPN\$M Macro C-113 C.8.13 ROPS\$A Macro C-113 C.8.14 ROPS\$M Macro C-113 C.8.15 ROPS\$R Macro C-113 C.8.16 ROPS\$W Macro C-113 C.8.17 ROPN\$W Macro C-113 C.8.18 ROPS\$M Macro C-113 C.8.19 ROPN\$M Macro C-113 C.8.11 ROPS\$M Macro C-113 C.8.12 ROPN\$M Macro C-113 C.8.13 ROPS\$M Macro C-114 C.8.14 ROPS\$W Macro C-113 C.8.15 ROPS\$R Macro C-113 C.8.16 ROPS\$W Macro C-113 C.8.17 ROPS\$W Macro C-114 C.8.19 ROPS\$W Macro C-116 C.9.10 ROPS\$W Macro C-117 C.9.1 DRERR\$ Macro C-117 C.9.1 DRERR\$ Macro C-117	C-7.4		
C.7.6 ELAW\$, ELAW\$C, and ELAW\$S Macros C-104 C.7.7 GMCX\$, GMCX\$C, and GMCX\$S Macros C-105 C.7.8 GREG\$, GREG\$C, and GREG\$S Macros C-106 C.7.9 MAP\$, MAP\$C, MAP\$S Macros C-106 C.7.10 RDBR\$ Macro C-107 C.7.11 RREF\$, RREF\$C, and RREF\$S Macros C-107 C.7.12 SREF\$, SREF\$C, and SREF\$S Macros C-108 C.7.13 SRRA\$, SRRA\$C, and SREF\$S Macros C-109 C.7.14 UMAP\$, UMAP\$C, and UMAP\$S Macros C-109 C.7.15 WDBBK\$ Macro C-109 C.7.16 RELATIVE FILES MACROS - EXPANSIONS C-110 C.8 RELATIVE FILES MACROS - EXPANSIONS C-110 C.8.1 RCLOS\$ Macro C-110 C.8.2 RFDBT\$ Macro C-110 C.8.3 RFIND\$ Macro C-111 C.8.4 RFOF\$L Macro C-111 C.8.5 RFOFF\$ Macro C-111 C.8.6 RGET\$ Macro C-112 C.8.7 ROPN\$ Macro C-112 C.8.8 ROPN\$A Macro C-112 C.8.8 ROPN\$A Macro C-112 C.8.10 ROPN\$M Macro C-112 C.8.11 ROPN\$W Macro C-112 C.8.12 ROPN\$W Macro C-113 C.8.13 ROPN\$W Macro C-113 C.8.14 ROPN\$W Macro C-113 C.8.15 ROPS\$M Macro C-113 C.8.16 ROPS\$M Macro C-113 C.8.17 ROPN\$W Macro C-113 C.8.18 ROPS\$M Macro C-113 C.8.18 ROPS\$M Macro C-114 C.8.19 ROPS\$M Macro C-114 C.8.19 ROPS\$M Macro C-114 C.8.19 ROPS\$W Macro C-114 C.9.2 FILIO\$ Macro C-115 C.9.3 LIOER. Macro C-117 C.9.4 LIOERS\$W Macro C-117			
C.7.7 GMCX\$, GMCX\$C, and GMCX\$S Macros C.7.8 GREG\$, GREG\$C, and GREG\$\$ Macros C.7.9 MAP\$, MAP\$C, MAP\$S Macros C.7.10 RDBBK\$ Macro C.7.11 RREF\$, RREF\$C, and RREF\$S Macros C.7.12 SREF\$, SREF\$C, and SREF\$S Macros C.7.13 SRRA\$, SRRA\$C, and SREF\$S Macros C.7.14 UMAP\$, UMAP\$C, and UMAP\$S Macros C.7.15 WDBBK\$ Macro C.7.16 WDBBK\$ Macro C.7.17 WDBBK\$ Macro C.7.18 RELATIVE FILES MACROS - EXPANSIONS C.7.10 C.8.1 RCLOS\$ Macro C.8.1 RCLOS\$ Macro C.8.2 RFDBT\$ Macro C.8.3 RFIND\$ Macro C.8.4 RFOF\$L Macro C.8.5 RFOFF\$ Macro C.8.6 RGET\$ Macro C.8.7 ROPN\$ Macro C.8.7 ROPN\$ Macro C.8.9 ROPN\$M Macro C.8.10 ROPN\$M Macro C.8.11 ROPN\$M Macro C.8.11 ROPN\$M Macro C.8.12 ROPN\$M Macro C.8.11 ROPN\$M Macro C.8.11 ROPN\$M Macro C.112 C.8.8 ROPN\$A Macro C.112 C.8.9 ROPN\$M Macro C.113 C.8.11 ROPN\$W Macro C.113 C.8.12 ROPN\$W Macro C.113 C.8.13 ROPS\$A Macro C.113 C.8.14 ROPS\$M Macro C.113 C.8.15 ROPS\$R Macro C.113 C.8.16 ROPS\$M Macro C.113 C.8.17 ROPS\$M Macro C.113 C.8.18 ROPS\$M Macro C.114 C.8.19 RPRTC\$ Macro C.116 C.9.1 DRERR\$ Macro C.117 C.9.2 FILIO\$ Macro C.116 C.9.3 I.OER. Macro C.117 C.9.4 IOERR\$ Macro C.117	C 7 6		
C.7.8 GREG\$, GREG\$C, and GREG\$S Macros C-105 C.7.9 MAP\$, MAP\$C, MAP\$S Macros C-106 C.7.10 RDBK\$ Macro C-107 C.7.11 RREF\$, RREF\$C, and RREF\$S Macros C-107 C.7.12 SREF\$, SREF\$C, and SREF\$S Macros C-108 C.7.13 SRRA\$, SRRA\$C, and SRRA\$S Macros C-109 C.7.14 UMAP\$, UMAP\$C, and UMAP\$S Macros C-109 C.7.15 WDBBK\$ Macro C-110 C.8 RELATIVE FILES MACROS - EXPANSIONS C-110 C.8.1 RCLOS\$ Macro C-110 C.8.2 RFDBT\$ Macro C-110 C.8.3 RFIND\$ Macro C-111 C.8.4 RFOF\$L Macro C-111 C.8.5 RFOFF\$ Macro C-112 C.8.6 RGET\$ Macro C-112 C.8.7 ROPN\$ Macro C-112 C.8.8 ROPN\$M Macro C-112 C.8.9 ROPN\$M Macro C-112 C.8.10 ROPN\$R Macro C-112 C.8.11 ROPN\$W Macro C-113 C.8.11 ROPN\$W Macro C-112 C.8.12 ROPN\$W Macro C-113 C.8.14 ROPS\$M Macro C-113 C.8.15 ROPS\$M Macro C-113 C.8.16 ROP\$M Macro C-113 C.8.17 ROPS\$M Macro C-113 C.8.18 ROPS\$M Macro C-114 C.8.18 ROPS\$M Macro C-114 C.8.19 ROPS\$W Macro C-115 C.9.1 DRERR\$ Macro C-116 C.9.2 FILIO\$ Macro C-117 C.9.4 IOERR\$ Macro C-117	C 7 7		
C.7.9 MAP\$, MAP\$C, MAP\$S Macros C-106 C.7.10 RDBBK\$ Macro C-107 C.7.11 RREF\$, RREF\$C, and RREF\$S Macros C-108 C.7.12 SREF\$, SREF\$C, and SREF\$S Macros C-108 C.7.13 SRRA\$, SRRA\$C, and SRRA\$S Macros C-109 C.7.14 UMAP\$, UMAP\$C, and UMAP\$S Macros C-1109 C.7.15 WDBBK\$ Macro C-110 C.8 RELATIVE FILES MACROS - EXPANSIONS C-110 C.8.1 RCLOS\$ Macro C-110 C.8.2 RFDBT\$ Macro C-110 C.8.3 RFIND\$ Macro C-111 C.8.4 RFOF\$L Macro C-111 C.8.5 RFOFF\$ Macro C-111 C.8.6 RGET\$ Macro C-112 C.8.7 ROPN\$ Macro C-112 C.8.8 ROPN\$M Macro C-112 C.8.8 ROPN\$M Macro C-112 C.8.10 ROPN\$M Macro C-112 C.8.11 ROPN\$U Macro C-112 C.8.11 ROPN\$U Macro C-113 C.8.12 ROPN\$W Macro C-113 C.8.13 ROPS\$A Macro C-113 C.8.14 ROPS\$M Macro C-113 C.8.15 ROPS\$R Macro C-113 C.8.16 ROPS\$R Macro C-113 C.8.17 ROPS\$W Macro C-113 C.8.18 ROPS\$N Macro C-113 C.8.19 ROPS\$N Macro C-114 C.8.19 ROPS\$N Macro C-114 C.8.19 ROPS\$N Macro C-114 C.8.19 ROPT\$ Macro C-114 C.8.19 RPRT\$ Macro C-114 C.9.1 DRERR\$ Macro C-115 C.9.2 FILIO\$ Macro C-116 C.9.3 .IOER. Macro C-117 C.9.4 IOERR\$ Macro C-117			
C.7.10 RDBBK\$ Macro C.7.11 RREF\$, RREF\$C, and RREF\$S Macros C.7.12 SREF\$, SREF\$C, and SREF\$S Macros C.7.13 SRRA\$, SRRA\$C, and SRRA\$S Macros C.7.14 UMAP\$, UMAP\$C, and UMAP\$S Macros C.7.15 WDBBK\$ Macro C.7.15 WDBBK\$ Macro C.7.16 WDBBK\$ Macro C.7.17 WDBBK\$ Macro C.7.18 RELATIVE FILES MACROS - EXPANSIONS C.7.10 C.8.1 RCLOS\$ Macro C.8.2 RFDBT\$ Macro C.8.3 RFIND\$ Macro C.8.3 RFIND\$ Macro C.8.4 RFOF\$L Macro C.8.5 RFOFF\$ Macro C.8.6 RGET\$ Macro C.9.11 C.8.6 RGET\$ Macro C.112 C.8.7 ROPN\$ Macro C.8.9 ROPN\$A Macro C.8.9 ROPN\$A Macro C.8.11 ROPN\$C Macro C.8.11 ROPN\$C Macro C.8.11 ROPN\$C Macro C.8.11 ROPN\$C Macro C.112 C.8.11 ROPN\$C Macro C.113 C.8.12 ROPN\$C Macro C.113 C.8.14 ROPS\$M Macro C.113 C.8.15 ROPS\$C Macro C.113 C.8.16 ROPS\$C Macro C.113 C.8.17 ROPS\$C Macro C.113 C.8.18 ROPS\$C Macro C.114 ROPS\$C Macro C.115 C.8.19 ROPS\$C Macro C.116 ROPS\$C Macro C.117 C.8.10 ROPS\$C Macro C.118 C.8.11 ROPS\$C Macro C.119 C.8.11 ROPS\$C Macro C.110 C.8.12 ROPS\$C Macro C.1110 C.8.15 ROPS\$C Macro C.1111 C.8.16 ROPS\$C Macro C.1111 C.8.17 ROPS\$C Macro C.1114 ROPS\$C Macro C.114 ROPS\$C Macro C.114 ROPS\$C Macro C.115 C.9.1 DRER\$C MACRO C.116 C.9.1 DRER\$C MACRO C.117 C.9.2 FILIO\$C MACRO C.117 C.9.4 IOERR\$C MACRO C.117 C.9.4 IOERR\$C C.117			
C.7.11 RREF\$, RREF\$C, and RREF\$S Macros C-107 C.7.12 SREF\$, SREF\$C, and SREF\$S Macros C-108 C.7.13 SRRA\$, SRRA\$C, and SREF\$S Macros C-109 C.7.14 UMAP\$, UMAP\$C, and UMAP\$S Macros C-109 C.7.15 WDBBK\$ Macro C-110 C.8 RELATIVE FILES MACROS - EXPANSIONS C-110 C.8.1 RCLOS\$ Macro C-110 C.8.2 RFDBT\$ Macro C-110 C.8.3 RFIND\$ Macro C-111 C.8.4 RFOF\$L Macro C-111 C.8.5 RFOFF\$ Macro C-111 C.8.6 RGET\$ Macro C-111 C.8.7 ROPN\$ Macro C-112 C.8.8 ROPN\$A Macro C-112 C.8.9 ROPN\$M Macro C-112 C.8.10 ROPN\$R Macro C-112 C.8.11 ROPN\$W Macro C-112 C.8.11 ROPN\$W Macro C-113 C.8.12 ROPN\$W Macro C-113 C.8.13 ROPS\$A Macro C-113 C.8.14 ROPS\$M Macro C-113 C.8.15 ROPS\$R Macro C-113 C.8.16 ROPS\$W Macro C-113 C.8.17 ROPS\$W Macro C-114 C.8.18 ROPS\$M Macro C-114 C.8.19 ROPS\$W Macro C-114 C.8.19 ROPS\$W Macro C-114 C.8.10 ROPS\$W Macro C-114 C.8.11 ROPS\$W Macro C-114 C.8.12 ROPS\$W Macro C-114 C.8.14 ROPS\$W Macro C-114 C.8.15 ROPS\$R Macro C-114 C.8.16 ROPS\$W Macro C-114 C.8.17 ROPS\$W Macro C-114 C.8.18 ROPS\$W Macro C-114 C.8.19 RPRTC\$ Macro C-114 C.8.19 RPRTC\$ Macro C-114 C.8.19 RPRTC\$ Macro C-114 C.9 QIOMAC - QIOSYM MACRO DEFINITIONS C-115 C.9.1 DRERR\$ Macro C-116 C.9.2 FILIO\$ Macro C-117 C.9.4 IOERR\$ Macro C-117			
C.7.12 SREF\$, SREF\$C, and SREF\$S Macros C-108 C.7.13 SRRA\$, SRRA\$C, and SRRA\$S Macros C-109 C.7.14 UMAP\$, UMAP\$C, and UMAP\$S Macros C-110 C.7.15 WDBBK\$ Macro C-110 C.8 RELATIVE FILES MACROS - EXPANSIONS C-110 C.8.1 RCLOS\$ Macro C-110 C.8.2 RFDBT\$ Macro C-110 C.8.3 RFIND\$ Macro C-111 C.8.4 RFOF\$L Macro C-111 C.8.5 RFOF\$\$ Macro C-111 C.8.6 RGET\$ Macro C-112 C.8.7 ROPN\$ Macro C-112 C.8.8 ROPN\$A Macro C-112 C.8.9 ROPN\$M Macro C-112 C.8.10 ROPN\$R Macro C-112 C.8.11 ROPN\$W Macro C-112 C.8.11 ROPN\$W Macro C-113 C.8.11 ROPN\$W Macro C-113 C.8.12 ROPN\$W Macro C-113 C.8.13 ROPS\$A Macro C-113 C.8.14 ROPS\$M Macro C-113 C.8.15 ROPS\$M Macro C-113 C.8.16 ROPS\$W Macro C-113 C.8.17 ROPS\$W Macro C-114 C.8.18 RPORT\$ Macro C-114 C.8.19 RPTC\$ Macro C-114 C.9 QIOMAC - QIOSYM MACRO DEFINITIONS C-115 C.9.1 DRERR\$ Macro C-116 C.9.2 FILIO\$ Macro C-117 C.9.4 IOER\$ Macro C-117			
C.7.13 SRRA\$, SRRA\$C, and SRRA\$S Macros C-109 C.7.14 UMAP\$, UMAP\$C, and UMAP\$S Macros C-109 C.7.15 WDBBK\$ Macro C-110 C.8 RELATIVE FILES MACROS - EXPANSIONS C-110 C.8.1 RCLOS\$ Macro C-110 C.8.2 RFDBT\$ Macro C-110 C.8.3 RFIND\$ Macro C-111 C.8.4 RFOF\$L Macro C-111 C.8.5 RFOFF\$ Macro C-111 C.8.6 RGET\$ Macro C-112 C.8.7 ROPN\$ Macro C-112 C.8.8 ROPN\$A Macro C-112 C.8.9 ROPN\$M Macro C-112 C.8.10 ROPN\$R Macro C-113 C.8.11 ROPN\$U Macro C-113 C.8.12 ROPN\$W Macro C-113 C.8.13 ROPS\$A Macro C-113 C.8.14 ROPS\$M Macro C-113 C.8.15 ROPS\$R Macro C-113 C.8.16 ROPS\$M Macro C-113 C.8.17 ROPS\$M Macro C-113 C.8.18 ROPS\$M Macro C-113 C.8.19 ROPS\$M Macro C-114 C.8.10 ROPS\$M Macro C-114 C.8.11 ROPS\$M Macro C-114 C.8.12 ROPS\$M Macro C-114 C.8.13 ROPS\$M Macro C-114 C.8.14 ROPS\$M Macro C-114 C.8.15 ROPS\$M Macro C-114 C.8.16 ROPS\$U Macro C-114 C.8.17 ROPS\$W Macro C-114 C.8.18 RPORT\$ Macro C-114 C.8.19 RPRTC\$ Macro C-114 C.8.19 RPRTC\$ Macro C-114 C.9 QIOMAC - QIOSYM MACRO DEFINITIONS C-115 C.9.1 DRERR\$ Macro C-116 C.9.2 FILIO\$ Macro C-117 C.9.4 IOERR\$ Macro C-117			
C.7.14 UMAP\$, UMAP\$C, and UMAP\$S Macros C-109 C.7.15 WDBBK\$ Macro C-110 C.8 RELATIVE FILES MACROS - EXPANSIONS C-110 C.8.1 RCLOS\$ Macro C-110 C.8.2 RFDBT\$ Macro C-110 C.8.3 RFIND\$ Macro C-111 C.8.4 RFOF\$L Macro C-111 C.8.5 RFOFF\$ Macro C-111 C.8.6 RGET\$ Macro C-112 C.8.7 ROPN\$ Macro C-112 C.8.8 ROPN\$A Macro C-112 C.8.9 ROPN\$M Macro C-112 C.8.10 ROPN\$R Macro C-112 C.8.11 ROPN\$U Macro C-113 C.8.12 ROPN\$W Macro C-113 C.8.13 ROPS\$A Macro C-113 C.8.14 ROPS\$M Macro C-113 C.8.15 ROPS\$M Macro C-113 C.8.16 ROPS\$M Macro C-113 C.8.17 ROPS\$M Macro C-113 C.8.18 ROPS\$M Macro C-113 C.8.19 ROPS\$M Macro C-114 C.8.16 ROPS\$W Macro C-114 C.8.17 ROPS\$W Macro C-114 C.8.18 ROPS\$W Macro C-114 C.8.19 RPRTC\$ Macro C-114 C.8.19 RPRTC\$ Macro C-114 C.8.20 RPUT\$ Macro C-114 C.8.20 RPUT\$ Macro C-114 C.8.21 ROPS\$M Macro C-114 C.8.22 RPUT\$ Macro C-114 C.8.23 ROPS\$M Macro C-114 C.8.24 RPUT\$ Macro C-114 C.8.25 ROPS\$M Macro C-114 C.8.26 RPUT\$ Macro C-114 C.8.27 ROPS\$M Macro C-114 C.8.29 LILIO\$ Macro C-115 C.9.1 DRERR\$ Macro C-116 C.9.2 FILIO\$ Macro C-116 C.9.3 .IOER. Macro C-117 C.9.4 IOERR\$ Macro C-117			
C.7.15 WDBBK\$ Macro C.8 RELATIVE FILES MACROS - EXPANSIONS C-110 C.8.1 RCLOS\$ Macro C.8.2 RFDBT\$ Macro C.8.3 RFIND\$ Macro C.8.4 RFOF\$L Macro C.8.4 RFOF\$L Macro C.8.5 RFOFF\$ Macro C-111 C.8.6 RGET\$ Macro C-112 C.8.7 ROPN\$ Macro C-112 C.8.8 ROPN\$A Macro C-112 C.8.9 ROPN\$M Macro C-112 C.8.10 ROPN\$R Macro C-112 C.8.11 ROPN\$U Macro C-113 C.8.12 ROPN\$W Macro C-113 C.8.13 ROPS\$A Macro C-113 C.8.14 ROPS\$M Macro C-113 C.8.15 ROPS\$M Macro C-113 C.8.16 ROPS\$M Macro C-113 C.8.17 ROPS\$W Macro C-114 C.8.18 RPORT\$ Macro C-114 C.8.19 RPRTC\$ Macro C-114 C.8.20 RPUT\$ Macro C-115 C.9.1 DRERR\$ Macro C-116 C.9.2 FILIO\$ Macro C-116 C.9.3 .IOER. Macro C-117 C.9.4 IOERR\$ Macro C-117		HMAPS HMAPSC and HMAPSS Macros	
C.8 RELATIVE FILES MACROS - EXPANSIONS C-110 C.8.1 RCLOS\$ Macro C-110 C.8.2 RFDBT\$ Macro C-110 C.8.3 RFIND\$ Macro C-111 C.8.4 RFOF\$L Macro C-111 C.8.5 RFOFF\$ Macro C-111 C.8.6 RGET\$ Macro C-112 C.8.7 ROPN\$ Macro C-112 C.8.8 ROPN\$A Macro C-112 C.8.9 ROPN\$M Macro C-112 C.8.10 ROPN\$M Macro C-112 C.8.11 ROPN\$W Macro C-113 C.8.12 ROPN\$W Macro C-113 C.8.13 ROPS\$A Macro C-113 C.8.14 ROPS\$M Macro C-113 C.8.15 ROPS\$M Macro C-113 C.8.16 ROPS\$M Macro C-113 C.8.17 ROPS\$M Macro C-113 C.8.18 RPORT\$ Macro C-114 C.8.19 RPTC\$ Macro C-114 C.8.19 RPTC\$ Macro C-114 C.8.19 RPRTC\$ Macro C-114 C.8.20 RPUT\$ Macro C-114 C.9 QIOMAC - QIOSYM MACRO DEFINITIONS C-115 C.9.1 DRERR\$ Macro C-116 C.9.2 FILIO\$ Macro C-117 C.9.4 IOERR\$ Macro C-117			
C.8.1 RCLOS\$ Macro C-110 C.8.2 RFDBT\$ Macro C-110 C.8.3 RFIND\$ Macro C-111 C.8.4 RFOF\$L Macro C-111 C.8.5 RFOFF\$ Macro C-111 C.8.6 RGET\$ Macro C-112 C.8.7 ROPN\$ Macro C-112 C.8.8 ROPN\$A Macro C-112 C.8.9 ROPN\$M Macro C-112 C.8.10 ROPN\$M Macro C-112 C.8.11 ROPN\$U Macro C-113 C.8.11 ROPN\$U Macro C-113 C.8.12 ROPN\$W Macro C-113 C.8.13 ROPS\$A Macro C-113 C.8.14 ROPS\$M Macro C-113 C.8.15 ROPS\$R Macro C-113 C.8.16 ROPS\$W Macro C-113 C.8.17 ROPS\$W Macro C-114 C.8.18 RPORT\$ Macro C-114 C.8.19 RPTC\$ Macro C-114 C.8.19 RPTC\$ Macro C-114 C.8.19 RPRTC\$ Macro C-117 C.9.1 DRERR\$ Macro C-115 C.9.2 FILIO\$ Macro C-117 C.9.4 IOERR\$ Macro C-117			
C.8.2 RFDBT\$ Macro C-110 C.8.3 RFIND\$ Macro C-111 C.8.4 RFOF\$L Macro C-111 C.8.5 RFOFF\$ Macro C-111 C.8.6 RGET\$ Macro C-112 C.8.7 ROPN\$ Macro C-112 C.8.8 ROPN\$A Macro C-112 C.8.9 ROPN\$M Macro C-112 C.8.10 ROPN\$R Macro C-113 C.8.11 ROPN\$U Macro C-113 C.8.12 ROPN\$W Macro C-113 C.8.13 ROPS\$A Macro C-113 C.8.14 ROPS\$M Macro C-113 C.8.15 ROPS\$M Macro C-113 C.8.16 ROPS\$N Macro C-113 C.8.17 ROPS\$W Macro C-114 C.8.18 RPORT\$ Macro C-114 C.8.19 RPRTC\$ Macro C-115 C.9.1 DRERR\$ Macro C-115 C.9.2 FILIO\$ Macro C-117 C.9.4 IOERR\$ Macro C-117			
C.8.3 RFIND\$ Macro C-111 C.8.4 RFOF\$L Macro C-111 C.8.5 RFOFF\$ Macro C-111 C.8.6 RGET\$ Macro C-112 C.8.7 ROPN\$ Macro C-112 C.8.8 ROPN\$A Macro C-112 C.8.9 ROPN\$M Macro C-112 C.8.10 ROPN\$R Macro C-113 C.8.11 ROPN\$U Macro C-113 C.8.12 ROPN\$W Macro C-113 C.8.13 ROPS\$A Macro C-113 C.8.14 ROPS\$M Macro C-113 C.8.15 ROPS\$M Macro C-113 C.8.16 ROPS\$U Macro C-113 C.8.17 ROPS\$W Macro C-114 C.8.17 ROPS\$W Macro C-114 C.8.18 RPORT\$ Macro C-114 C.8.19 RPRTC\$ Macro C-114 C.8.19 RPRTC\$ Macro C-114 C.8.20 RPUT\$ Macro C-114 C.9 QIOMAC - QIOSYM MACRO DEFINITIONS C-115 C.9.1 DRERR\$ Macro C-115 C.9.2 FILIO\$ Macro C-117 C.9.4 IOERR\$ Macro C-117		·	
C. 8.5 RFOFF\$ Macro C-111 C. 8.6 RGET\$ Macro C-112 C. 8.7 ROPN\$ Macro C-112 C. 8.8 ROPN\$A Macro C-112 C. 8.9 ROPN\$M Macro C-112 C. 8.10 ROPN\$R Macro C-113 C. 8.11 ROPN\$U Macro C-113 C. 8.12 ROPN\$W Macro C-113 C. 8.13 ROPS\$A Macro C-113 C. 8.14 ROPS\$M Macro C-113 C. 8.15 ROPS\$R Macro C-113 C. 8.16 ROPS\$U Macro C-114 C. 8.17 ROPS\$W Macro C-114 C. 8.18 RPORT\$ Macro C-114 C. 8.19 RPRTC\$ Macro C-114 C. 8.10 RPUT\$ Macro C-114 C. 8.11 ROPS\$W MACRO DEFINITIONS C-115 C. 9.1 DEERR\$ Macro C-115 C. 9.2 FILIO\$ Macro C-116 C. 9.3 .IOER. Macro C-117 C. 9.4 IOERR\$ Macro C-117	C. 8. 3	· · · · · · · · · · · · · · · · · · ·	
C.8.5 RFOFF\$ Macro C-111 C.8.6 RGET\$ Macro C-112 C.8.7 ROPN\$ Macro C-112 C.8.8 ROPN\$A Macro C-112 C.8.9 ROPN\$M Macro C-112 C.8.10 ROPN\$R Macro C-113 C.8.11 ROPN\$U Macro C-113 C.8.12 ROPN\$W Macro C-113 C.8.13 ROPS\$M Macro C-113 C.8.14 ROPS\$M Macro C-113 C.8.15 ROPS\$M Macro C-113 C.8.16 ROPS\$W Macro C-113 C.8.17 ROPS\$W Macro C-114 C.8.18 RPORT\$ Macro C-114 C.8.19 RPRTC\$ Macro C-114 C.8.19 RPRTC\$ Macro C-114 C.8.20 RPUT\$ Macro C-114 C.9.1 DRERR\$ Macro C-115 C.9.1 DRERR\$ Macro C-115 C.9.2 FILIO\$ Macro C-116 C.9.3 .IOER. Macro C-117 C.9.4 IOERR\$ Macro C-117	C. 8. 4	· · · · · · · · · · · · · · · · · · ·	
C.8.6 RGET\$ Macro C.8.7 ROPN\$ Macro C.8.8 ROPN\$A Macro C.8.9 ROPN\$M Macro C.8.10 ROPN\$R Macro C.8.11 ROPN\$U Macro C.8.12 ROPN\$W Macro C.8.13 ROPS\$A Macro C.8.14 ROPS\$M Macro C.8.15 ROPS\$M Macro C.8.16 ROPS\$U Macro C.8.17 ROPS\$W Macro C.8.18 ROPS\$U Macro C.8.18 ROPS\$U Macro C.8.19 ROPS\$W Macro C.8.19 ROPS\$W Macro C.8.10 ROPS\$W Macro C.8.110 ROPS\$W Macro C.8.1110 ROPS\$W Macro C.8.1110 ROPS\$W Macro C.8.1110 ROPS\$W Macro C.8.1111 ROPS\$W Macro ROPS\$W	C. 8. 5		
C.8.7 ROPNS Macro C-112 C.8.8 ROPNSA Macro C-112 C.8.9 ROPNSM Macro C-112 C.8.10 ROPNSR Macro C-113 C.8.11 ROPNSU Macro C-113 C.8.12 ROPNSW Macro C-113 C.8.13 ROPSSA Macro C-113 C.8.14 ROPSSM Macro C-113 C.8.15 ROPSSR Macro C-113 C.8.16 ROPSSU Macro C-114 C.8.17 ROPSSW Macro C-114 C.8.18 RPORTS Macro C-114 C.8.19 RPRTCS Macro C-114 C.8.19 RPRTCS Macro C-114 C.9.1 DRERRS Macro C-115 C.9.1 DRERRS Macro C-115 C.9.2 FILIOS Macro C-116 C.9.3 .IOER. Macro C-117 C.9.4 IOERRS Macro C-117	C. 8. 6		
C.8.8 ROPN\$A Macro C-112 C.8.9 ROPN\$M Macro C-112 C.8.10 ROPN\$R Macro C-113 C.8.11 ROPN\$U Macro C-113 C.8.12 ROPN\$W Macro C-113 C.8.13 ROPS\$A Macro C-113 C.8.14 ROPS\$M Macro C-113 C.8.15 ROPS\$R Macro C-113 C.8.16 ROPS\$U Macro C-114 C.8.17 ROPS\$W Macro C-114 C.8.18 RPORT\$ Macro C-114 C.8.19 RPRTC\$ Macro C-114 C.8.19 RPRTC\$ Macro C-114 C.9 QIOMAC - QIOSYM MACRO DEFINITIONS C-115 C.9.1 DRERR\$ Macro C-115 C.9.2 FILIO\$ Macro C-116 C.9.3 .IOER. Macro C-117 C.9.4 IOERR\$ Macro C-117		ROPNS Macro	
C.8.12 ROPN\$W Macro C-113 C.8.13 ROPS\$A Macro C-113 C.8.14 ROPS\$M Macro C-113 C.8.15 ROPS\$R Macro C-113 C.8.16 ROPS\$U Macro C-114 C.8.17 ROPS\$W Macro C-114 C.8.18 RPORT\$ Macro C-114 C.8.19 RPRTC\$ Macro C-114 C.8.20 RPUT\$ Macro C-114 C.9.1 DRERR\$ Macro C-115 C.9.1 DRERR\$ Macro C-115 C.9.2 FILIO\$ Macro C-116 C.9.3 .IOER. Macro C-117 C.9.4 IOERR\$ Macro C-117		ROPNSA Macro	
C.8.12 ROPN\$W Macro C-113 C.8.13 ROPS\$A Macro C-113 C.8.14 ROPS\$M Macro C-113 C.8.15 ROPS\$R Macro C-113 C.8.16 ROPS\$U Macro C-114 C.8.17 ROPS\$W Macro C-114 C.8.18 RPORT\$ Macro C-114 C.8.19 RPRTC\$ Macro C-114 C.8.20 RPUT\$ Macro C-114 C.9.1 DRERR\$ Macro C-115 C.9.1 DRERR\$ Macro C-115 C.9.2 FILIO\$ Macro C-116 C.9.3 .IOER. Macro C-117 C.9.4 IOERR\$ Macro C-117		ROPNSM Macro	
C.8.12 ROPN\$W Macro C-113 C.8.13 ROPS\$A Macro C-113 C.8.14 ROPS\$M Macro C-113 C.8.15 ROPS\$R Macro C-113 C.8.16 ROPS\$U Macro C-114 C.8.17 ROPS\$W Macro C-114 C.8.18 RPORT\$ Macro C-114 C.8.19 RPRTC\$ Macro C-114 C.8.20 RPUT\$ Macro C-114 C.9.1 DRERR\$ Macro C-115 C.9.1 DRERR\$ Macro C-115 C.9.2 FILIO\$ Macro C-116 C.9.3 .IOER. Macro C-117 C.9.4 IOERR\$ Macro C-117		ROPNSR Macro	
C.8.12 ROPN\$W Macro C-113 C.8.13 ROPS\$A Macro C-113 C.8.14 ROPS\$M Macro C-113 C.8.15 ROPS\$R Macro C-113 C.8.16 ROPS\$U Macro C-114 C.8.17 ROPS\$W Macro C-114 C.8.18 RPORT\$ Macro C-114 C.8.19 RPRTC\$ Macro C-114 C.8.20 RPUT\$ Macro C-114 C.9.1 DRERR\$ Macro C-115 C.9.1 DRERR\$ Macro C-115 C.9.2 FILIO\$ Macro C-116 C.9.3 .IOER. Macro C-117 C.9.4 IOERR\$ Macro C-117		ROPNSU Macro	
C.8.13 ROPS\$A Macro C-113 C.8.14 ROPS\$M Macro C-113 C.8.15 ROPS\$R Macro C-113 C.8.16 ROPS\$U Macro C-114 C.8.17 ROPS\$W Macro C-114 C.8.18 RPORT\$ Macro C-114 C.8.19 RPRTC\$ Macro C-114 C.8.20 RPUT\$ Macro C-114 C.9 QIOMAC - QIOSYM MACRO DEFINITIONS C-115 C.9.1 DRERR\$ Macro C-115 C.9.2 FILIO\$ Macro C-116 C.9.3 .IOER. Macro C-117 C.9.4 IOERR\$ Macro C-117		•	
C.8.14 ROPS\$M Macro C-113 C.8.15 ROPS\$R Macro C-113 C.8.16 ROPS\$U Macro C-114 C.8.17 ROPS\$W Macro C-114 C.8.18 RPORT\$ Macro C-114 C.8.19 RPRTC\$ Macro C-114 C.8.20 RPUT\$ Macro C-114 C.9 QIOMAC - QIOSYM MACRO DEFINITIONS C-115 C.9.1 DRERR\$ Macro C-115 C.9.2 FILIO\$ Macro C-116 C.9.3 .IOER. Macro C-117 C.9.4 IOERR\$ Macro C-117		ROPSSA Macro	
C.8.15 ROPS\$R Macro C-113 C.8.16 ROPS\$U Macro C-114 C.8.17 ROPS\$W Macro C-114 C.8.18 RPORT\$ Macro C-114 C.8.19 RPRTC\$ Macro C-114 C.8.20 RPUT\$ Macro C-114 C.9 QIOMAC - QIOSYM MACRO DEFINITIONS C-115 C.9.1 DRERR\$ Macro C-115 C.9.2 FILIO\$ Macro C-116 C.9.3 .IOER. Macro C-117 C.9.4 IOERR\$ Macro C-117		ROPSSM Macro	
C.8.16 ROPS\$U Macro C-114 C.8.17 ROPS\$W Macro C-114 C.8.18 RPORT\$ Macro C-114 C.8.19 RPRTC\$ Macro C-114 C.8.20 RPUT\$ Macro C-114 C.9 QIOMAC - QIOSYM MACRO DEFINITIONS C-115 C.9.1 DRERR\$ Macro C-115 C.9.2 FILIO\$ Macro C-116 C.9.3 .IOER. Macro C-117 C.9.4 IOERR\$ Macro C-117			
C.8.17 ROPS\$W Macro C-114 C.8.18 RPORT\$ Macro C-114 C.8.19 RPRTC\$ Macro C-114 C.8.20 RPUT\$ Macro C-114 C.9 QIOMAC - QIOSYM MACRO DEFINITIONS C-115 C.9.1 DRERR\$ Macro C-115 C.9.2 FILIO\$ Macro C-116 C.9.3 .IOER. Macro C-117 C.9.4 IOERR\$ Macro C-117			
C.8.18 RPORT\$ Macro C-114 C.8.19 RPRTC\$ Macro C-114 C.8.20 RPUT\$ Macro C-114 C.9 QIOMAC - QIOSYM MACRO DEFINITIONS C-115 C.9.1 DRERR\$ Macro C-115 C.9.2 FILIO\$ Macro C-116 C.9.3 .IOER. Macro C-117 C.9.4 IOERR\$ Macro C-117		· ·	
C.8.19 RPRTC\$ Macro C-114 C.8.20 RPUT\$ Macro C-114 C.9 QIOMAC - QIOSYM MACRO DEFINITIONS C-115 C.9.1 DRERR\$ Macro C-115 C.9.2 FILIO\$ Macro C-116 C.9.3 .IOER. Macro C-117 C.9.4 IOERR\$ Macro C-117			
C.8.20 RPUT\$ Macro C-114 C.9 QIOMAC - QIOSYM MACRO DEFINITIONS C-115 C.9.1 DRERR\$ Macro C-115 C.9.2 FILIO\$ Macro C-116 C.9.3 .IOER. Macro C-117 C.9.4 IOERR\$ Macro C-117			
C.9 QIOMAC - QIOSYM MACRO DEFINITIONS C-115 C.9.1 DRERR\$ Macro C-115 C.9.2 FILIO\$ Macro C-116 C.9.3 .IOER. Macro C-117 C.9.4 IOERR\$ Macro C-117			
C.9.1 DRERR\$ Macro C-115 C.9.2 FILIO\$ Macro C-116 C.9.3 .IOER. Macro C-117 C.9.4 IOERR\$ Macro C-117		·	
C.9.2 FILIO\$ Macro C-116 C.9.3 .IOER. Macro C-117 C.9.4 IOERR\$ Macro C-117			
C.9.3 .IOER. Macro C-117 C.9.4 IOERS Macro C-117			
C.9.4 IOERR\$ Macro C-117			

			Page
	C.9.7 C.9.8 C.9.9 C.10 C.10.1 C.10.2 C.10.3 C.11 C.11.1	QIOSY\$ Macro SPCIO\$ Macro UMDIO\$ Macro .WORD. Macro SNAP CONTROL BLOCK AND SNAPSHOT DUMP MACROS SNAP\$ Macro SNPBK\$ Macro SNPBK\$ Macro STATE AND KEYWORD TABLE GENERATION MACROS ISTAT\$ Macro MTRAN\$ Macro STATE\$ Macro STATE\$ Macro STATE\$ Macro SUBMIT FILE TO PRINT SPOOLER (PRT) MACRO (PRINT\$) PRINT\$ Macro	C-120 C-12: C-12: C-12: C-12: C-12: C-12: C-12: C-12: C-12: C-12: C-12:
	C.12.1 C.13 C.13.1	ININIO MACLO	C-128 C-128 C-128 C-128
APPENDIX	D _i	LISTING OF CONDITIONAL ASSEMBLY PARAMETERS	D-1
	D.1	LISTING OF CONDITIONAL ASSEMBLY PARAMETERS	D-1
APPENDIX	E	GENERAL FAULT ISOLATION	E-1
	E.2 E.3 E.3.1	INTRODUCTION FAULT CLASSIFICATIONS SERVICING FAULTS Gathering Pertinent Fault Isolation Data Tracing Faults	E-1 E-1 E-1 E-3 E-4
APPENDIX	F	SYSTEM TUNING	F-1
	F.5 F.6	HARDWARE CONSIDERATIONS MEMORY LAYOUT EXECUTIVE SOFTWARE OPTIONS FILE SYSTEM OPTIONS HELPFUL HINTS SOME USEFUL COMMANDS A USEFUL TOOL	F-1 F-1 F-2 F-3 F-4 F-5 F-8
INDEX		Ind	ex-1
		FIGURES	
FIGURE	1-1 1-2 2-1 2-2 2-3 2-4	Sample Unmapped 16K System Memory Layout Example of a Mapped 124K RSX-11M System Memory Management - Virtual to Logical Address Space Relationship Routines That Call \$NXTSK \$ALCLK Logical Flow Diagram \$ALOCB Logical Flow Diagram	1-8 1-10 2-5 2-19 2-25 2-26

		Page
2-5	\$CHKPT Logical Flow Diagram	2-28
2-6	\$DECLK-\$DEPKT-\$DEACB Logical Flow Diagram	2-30
2-7	\$FNDSP Logical Flow Diagram	2-35
2-8	\$ICHKP Logical Flow Diagram	2-36
2-9	\$NXTSK Logical Flow Diagram	2-37
2-10	\$TSTCP Logical Flow Diagram	2-42
2-11	Loader Logical Flow Diagram	2-43
2-12	Shuffler Logical Flow Diagram	2-51
2-13	Partition Control Block	2-63
2-14	Task Control Block	2-66
3-1	INTSV\$ Macro Expansion	3-6
3-2	Example of a Driver Using \$INTSV	3-6
3-3	Example of Use of \$DIRSV by the \$EMTRP	
	Routine	3-8
3-4	Stack State Upon Entry into Directive	
	Processing	3-10
3-5	Example Driver Interrupt Routine	3-14
3-6	Interrupt Flow of Control	3-18
4-1	User Task in Unmapped System	4-11
4-2	4K Nonprivileged User Task Mapping in a	
	PDP-11/70	4-12
4-3	8K Nonprivileged User Task Mapping in a	
	PDP-11/70	4-13
4-4	8K Nonprivileged Task Mapping in a PDP-11/70	
	Using PLAS Directives	4-14
4-5	Privileged Task Mapping	4-15
5-1	MCR Tree Structure	5-2
5-2	Input Buffer	5-6
5-3	Function Table Entry	5-7
5-4	Parser Table Entry	5-8
6-1	Queue Directive Parameter Block	6-3
6-2	QIO Directive Processing	6-6
8-1	Linked Lists on RSX-11M	8-2
8-2	Overview of RSX-11M System Control Blocks	8-3
8-3	Example of PCB Listings	8-8
8-4	Example of a Partition Wait Queue	8-9
8-5	Example of a PCB List for Checkpoint Files	8-10
8-6	Example of a System Task Directory (STD)	• ••
•	and Active Task List	8-11
8-7	Simplified User-Controlled Partition TCB,	
.	Task Header, and PCB Relationship	8-12
8-8	TCB, Task Header, and PCB Relationships	·
•	in a System-Controlled Partition	8-13
8-9	Example of an AST Queue	8-14
8-10	The Loader Queue	8-15
8-11	Send/Receive Data Queue	8-15
8-12	Send/Receive by Reference Queue	8-16
8-13	The Clock Queue	8-16
8-14	The Fork Queue	8-17
8-15	Example of DCB, SCB, UCB, LCB Relationship	8-18
8-16	Logical Assignment Control Block (LCB) List	8-19
8-17	MCR Queues	8-20
8-18	Pre-allocated I/O Packet Queue	8-21
Ω_1Q	Tack Termination Notification (TKTN) Output	0_22

		Page
8-20	Dynamic Storage Region Free Block Queue	8-23
8-21	DH11 Terminal I/O Data Structure	8-24
8-22	RK11 Disk I/O Data Structure	8-25
8-23	I/O Data Structure for Two RK11 Disk	
	Controllers	8-25
8-24	I/O Data Structure	8-27
B-1	Difference Among Global and Local	
	Symbols	B-3
E-1	Task Header on an Unmapped System	E-5
E-2	Task Header on a Mapped System	E-5
E-3	Stack Structure: Internal SST Fault	E-6
E-4	Stack Structure: Abnormal SST Fault	E-7
E-5	Stack Structure: Data Items on Stack	E-8

PREFACE

MANUAL OBJECTIVES AND READER ASSUMPTIONS

This manual is intended for the experienced system programmer; one who is familiar with RSX-11M operation and has an acquaintance with the RSX-11M Executive code. The manual presents information tutorially. However, the manual also contains a great deal of cross-reference information for very experienced programmers who may not need the tutorial information.

The System Logic Manual primarily discusses the Executive. However, cross-references for MCR and File Control Processor are also included.

PREREQUISITE MANUALS

The reader and user of this manual is expected to have read and understood the contents of the following manuals:

Introduction to RSX-11M

IAS/RSX-11 MACRO-11 Reference Manual

RSX-llM Executive Reference Manual

RSX-llM Task Builder Reference Manual

RSX-llM Guide to Writing an I/O Driver

RSX-11M Operator's Procedures Manual

RSX-11M System Generation Manual

THE STRUCTURE OF THE LOGIC MANUAL

VOLUME 1

Chapter 1 - Introduction

Chapter 1 presents a general description of the RSX-11M V3.1 system for those who may need a fundamental introduction. This chapter expands much of the material found in Introduction to RSX-11M.

- Chapter 2 Memory Resource Allocation
 Chapter 2 describes Memory Management and the important routines
 that allocate memory resources. Specifically, Chapter 2
 describes the Loader, the Shuffler, \$NXTSK, \$CHKPT, and
 associated routines.
- Chapter 3 Interrupt Processing

 Chapter 3 describes Executive interrupt and fork processing. The important interrupt routines are described. A figure along with supporting text describes the code path followed by the interrupt and fork routines that a sample driver uses.
- Chapter 4 Privileged Tasks

 Chapter 4 describes the purpose of privileged tasks, their use and the cautions concerning their use, the use of \$SWSTK (switch stack), and mapping for both privileged and nonprivileged tasks.
- Chapter 5 MCR Interface

 Chapter 5 describes the function of the MCR interface, the MCR Dispatcher, and how MCR processes a command line entered at a terminal.
- Chapter 6 I/O Processing
 Chapter 6 discusses the internal processing of the QIO directive.
- Chapter 7 Module Descriptions
 Chapter 7 contains brief descriptions of the modules that make up
 the Executive. Entry points, inputs, outputs, and exit status of
 the modules are also described.
- Chapter 8 Data Areas and Control Blocks
 Chapter 8 contains figures that show various system linkages in a generalized form. Important functions of the Device Control Block, Unit Control Block, and Status Control Block are also discussed. Also shown are all the bit definitions for the system control blocks.
- Chapter 9 Cross-references

 Chapter 9 contains important cross-references, created by the CREF program, that you can use to find your way through the system listings. The references include:

For the Executive:

- Module-to-routine cross-references
- Symbol-to-module cross-references

For MCRMU (multiuser MCR):

- Symbol-to-module cross-references (created by the CREF program)
- MCRMU segment cross-references
- SYS symbol-to-module cross-references
- SYS segment cross-references

For the File Control Processor (BIGFCP):

- Symbol-to-module cross-references
- BIGFCP segment cross-reference

Chapter 9 also contains cross-references between Executive modules and conditional assembly parameters that these modules contain.

VOLUME 2

- Appendix A RSX-11M Supported Devices
 Appendix A contains a list of devices supported by RSX-11M V3.1.
- Appendix B Coding Standards and Conventions
 Appendix B contains an explanation of the coding standards and conventions that RSX-11M follows. Appendix B also describes the Executive's use of co-routines by explaining an example co-routine from Executive code.
- Appendix C Macro Expansions
 Appendix C contains the expansions of all the macros used in the system code.
- Appendix D Listing of Conditional Assembly Parameters
 Appendix D lists all the conditional assembly parameters and their meanings.
- Appendix E General Fault Isolation
 Appendix E contains a generalized approach to program fault isolation for RSX-1lM.
- Appendix F System Tuning
 Appendix F contains many ideas that can help you to improve system performance.

CHAPTER 1

INTRODUCTION TO THE RSX-11M V3.1 OPERATING SYSTEM EXECUTIVE

This introduction is a tutorial for those who are beginning to learn the RSX-11M Executive internal logic. However, this manual assumes that you have at least read and understood the RSX-11M Introduction, the RSX-11M Operator's Procedures Manual, the RSX-11M Task Builder Reference Manual, and the RSX-11M System Generation Manual. If you are familiar with the RSX-11M Executive or you are an experienced system programmer, you may want to begin this manual with Chapter 2, which assumes that you have a basic knowledge of the Executive and describes the memory structures of RSX-11M.

1.1 RSX-11M SYSTEM

RSX-llM is a real-time operating system. This means that RSX-llM responds quickly to input conditions or input data. RSX-llM is also a multiprogramming system. This combination allows real-time activity (for example, process control) to occur along with program development (interactive terminals) and other user jobs. At one extreme, RSX-llM can be a dedicated process control system, and at the other, a system for developing and running applications programs.

1.2 SYSTEM GENERATION

RSX-llM offers a wide range of services and utilities from which to choose. Each installation selects from these options to shape its version of RSX-llM according to the processor and peripherals available and the purpose of the system. You perform a system generation (SYSGEN) process to select these options.

Every installation intitially receives an RSX-11M system on distribution media. You run this system and use its resources to generate a target system configured to your installation's needs.

System generation is done in two phases. During the first phase SYSGEN defines and assembles the Executive (the kernel or "brain" of the operating system that responds to external requests) by conducting a dialogue with you. Query programs pose questions at a terminal. Your answers to the questions determine the Executive service options, processor options, and peripheral devices to be incorporated into the system. During the second phase, SYSGEN builds the Executive, allows you to define memory structures called partitions, and builds and installs the system programs.

You complete the SYSGEN process by saving and bootstrapping the new system. Saving a system means writing the image of an RSX-llM system that has been resident in main memory into the system image file from

which it was bootstrapped. You do this with the Save command, which saves the image to allow a hardware bootstrap or the Boot command to later reload and restart the system.

You bootstrap (boot) a system by either using the switches on the processor control panel or using the Boot command. The Boot command bootstraps a system that exists as a system image file on a Files-11 (the RSX-11M file structure) volume. The Boot command immediately terminates the system in operation and starts another. The Save command, the Boot command, and the process of booting a system with the switches are all described in the RSX-11M Operator's Procedures Manual.

To change either the hardware or software configuration of an installation, you must perform another system generation. The RSX-llm System Generation Manual describes the system generation process in detail.

1.3 MAJOR COMPONENTS OF RSX-11M

RSX-11M requires the organized interaction of the following components:

- Memory resource management. Memory is the processor storage medium in which loaded user programs, the Executive, and control blocks of data reside. Much of the Executive's work involves memory resource management and control.
- Task scheduling and processing. Tasks are system or user programs that perform needed functions and manipulate data to achieve some goal. The Executive controls task processing and handles specific requests issued by the tasks.
- Interrupt processing. The Executive processes synchronous and asynchronous events that occur as a result of task processing. Examples of these events include software errors, I/O completion, illegal instructions, and power failure.

1.4 MEMORY

1.4.1 Memory Partitions

A partition is a continuous area of memory in which executable programs called tasks can be run. The typical memory organization consists of an area for the Executive and areas for system- or user-controlled partitions. A partition has the following characteristics:

- A name
- A defined size
- A fixed base address
- A defined type

1.4.2 Partitions In Mapped And Unmapped Systems

RSX-11M runs on almost all models of the PDP-11 processor. The PDP-11 addressing scheme allows a program to address directly only 32K words of memory. For larger memories, DIGITAL has a KT-11 Memory Management Unit (hardware) available for all models of the PDP-11 except the PDP-11/03/04/05/10/20 processors. The KT11 Memory Management Unit associates addresses expressed in programs ("virtual" addresses in the range 0 to 32K) with actual locations in memory ("physical" addresses). Physical addresses can range from 0 to 124K words on all processors other than the PDP-11/70. Physical addresses on a PDP-11/70 can range from 0 to 1920K words.

Mapping is the process that associates virtual addresses with physical addresses. Therefore, a PDP-11 system that includes a KT11 Memory Management Unit is called a mapped system. Conversely, systems without a KT11 are called unmapped systems. In a mapped system, a task can be installed in any system partition or user partition large enough to contain it. In an unmapped system, the task is bound to physical memory and must be installed in the partition that starts at the same memory address as the partition for which it was built.

Whether a system is mapped or unmapped affects the way in which you create tasks. Before a compiled program (object code) can be run, it must be processed by the Task Builder program (linker). The Task Builder produces a task image that runs in a memory partition.

If a system is unmapped, you must specify to the Task Builder the base address of the partition in which the task is to be run. You cannot run the resulting task in a partition that has a base address different from the address you specified to the Task Builder.

In a mapped system, however, every task (other than a privileged task mapped into the Executive) has a virtual base address of 0. Transparently to the user, the KT11 maps the virtual addresses of a task to the actual physical addresses in which the task resides. A task in a mapped system can therefore run in any partition large enough to contain it.

You need not rebuild nonprivileged tasks in a mapped system when physical partition boundaries move. This is true because nonprivileged tasks on a mapped system run at a virtual base address of 0, rather than at a physical base address.

If you move the symbols that are referenced in the code, you must rebuild privileged tasks in either system because they are linked to the Executive symbol table file. You may be required to rebuild nonprivileged tasks only if you change any of the task's attributes such as checkpointability. The task's attributes can be changed when you use the Install command to install the task. You use the Task Builder to establish the attributes when building a task. Consult the RSX-llM Task Builder Reference Manual for a comprehensive discussion of task attributes and associated Task Builder switches. See the RSX-llM Operator's Procedures Manual for a description of the Install command.

1.4.3 Partition Types

RSX-11M supports two types of partitions in which tasks can execute:

- 1. System-controlled
- 2. User-controlled

In a system-controlled partition, the Executive allocates available space to accommodate as many tasks as possible at any one time. This allocation may involve shuffling resident tasks to arrange available space into a continuous block large enough to contain a requested task. The Shuffler, which is a privileged task and a SYSGEN option, shuffles the tasks and memory space to make the needed space for the requested task. Only mapped systems support system-controlled partitions.

A user-controlled partition is exclusively allocated to one task at a time. Both mapped and unmapped systems support this type of partition.

1.4.4 Subpartitions

You can subdivide a user-controlled partition into as many as seven nonoverlapping subpartitions. Like its parent main partition, a subpartition can contain only one task at a time. Because the subpartitions occupy the same physical memory as the main partition, tasks cannot be simultaneously resident in both the main partition and one of its subpartitions. However, because each subpartition can contain a task, up to seven tasks can potentially run in parallel within a main partition.

The purpose of subpartitioning is to reclaim large memory areas in unmapped systems. For example, when a large task that requires a main partition is either no longer active or can be checkpointed (written out to a disk to make room for a higher priority task), subpartitioning allows a number of smaller tasks to use the partition space.

1.4.5 Memory Structure

RSX-11M memory in a typical system can be divided into the following parts:

- The Executive, which consists of:
 - Trap vectors. The trap vector area contains the hardware and interrupt vectors; it requires 128 words. During SYSGEN, you can expand this area to 256 words.
 - System stack. The system stack area is an internal storage area for Executive use. The Executive uses it for nesting interrupts, saving registers and data, and internal calls. The stack requires 60 to 110 words depending upon options selected at system generation time.
 - System common data. This area contains system pointers that are filled in during system generation and used by the Executive and privileged tasks during execution.
 - The Executive code. The Executive coordinates and manages system resources and processes specialized system functions. System generation options determine the size and abilities of the Executive.

- Dynamic Storage Region (DSR). The Executive continually uses temporary storage in memory. The Executive acquires, uses, and then returns the memory that it used to the available memory pool. If a given Executive service routine requests dynamic storage and it is unavailable, the Executive informs the user task, which usually waits for some memory to become available. The size of this region is important. If it is too small, long waiting periods or system deadlocks can occur. If it is too large, fewer tasks can fit into the remaining memory. The size of the region is a system generation parameter.

You can extend the initial allocation of dynamic storage on line by issuing the MCR command, Set /Pool, from the console. However, the use of this command is limited in that this expansion can occur only into space that is not being used. This space, if it exists, is between the Dynamic Storage Region space and the first partition of memory.

Device drivers:

You can include three drivers in the 8K Executive during SYSGEN: .

- 1. A disk driver
- A cassette, DECtape, magtape, line printer, or floppy disk driver
- 3. A terminal driver

In general, Executives larger than 8K contain additional resident drivers which you include during system generation. Some drivers can be made loadable; that is, they reside on disk and are loaded into memory when they are needed. Therefore, loadable drivers save memory space because they occupy memory only when needed and they do not occupy Executive virtual address space.

• Loader:

The Loader is a task that runs in its own partition, which is resident in the Executive. Thus, it can run in parallel with system and user tasks. The Loader, which is device independent:

1. Loads tasks upon initial load requests

. .

- Writes checkpointable tasks to disk when required (see checkpointing, in this chapter)
- Reloads previously checkpointed tasks when memory becomes available, allowing them to actively compete for processor resources.

MCR and TKTN tasks:

- The Monitor Console Routine (MCR) processes system commands that you enter at a terminal. These commands are directed to the MCR processor. MCR either executes the commands itself, or activates a system or user-written task that can service the commands.

- The Task Termination Notification Task (TKTN) performs two functions:
 - It prints out messages and tries to print the contents of the registers of a task that has been aborted due to an error.
 - 2. It prints out messages for device drivers.

Ideally, TKTN runs either in a partition in which all tasks are checkpointable or execute guickly, or in its own partition. The reason for this is that TKTN must be in memory in order to print messages. If TKTN cannot get memory space to execute, the Executive gueues up messages to TKTN, thereby using up Dynamic Storage Region space. It is conceivable that all the Dynamic Storage Region could be used up for this purpose; this would cause the system to hang up.

The file system:

Files-ll is a system of formatting files that are held on volumes. Files-ll volumes are magnetic media (tapes or disks) that have been specially formatted by the MCR command, Initialize Volume. Volumes that are not properly formatted are considered to be "foreign." RSX-llM includes a file exchange utility that translates files in DIGITAL's DOS or RT-ll format into Files-ll format.

Your tasks that run on RSX-11M access data within files on Files-11 volumes through the use of two sets of subroutines:

- File Control Services (FCS)
- Record Management Services (RMS)

Both FCS and RMS provide the ability for your tasks to perform record— or block-I/O operations on Files-11 volumes. FCS and RMS are system interfaces between the I/O programs that you write and the files on the Files-11 volumes that you want to access. These interfaces provide device independence and allow you to take advantage of different methods of file organization.

FCS imposes a single logical organization on your files. This logical organization is called the sequential file organization and FCS imposes it on all files regardless of medium.

In contrast to FCS, RMS provides three file organizations - sequential, relative, and indexed.

The MACRO-11 I/O programming that you do differs between FCS or RMS. Therefore, you must become familiar with the contents of the manuals that describe each one. The respective manuals are:

For FCS:

- IAS/RSX-11 I/O Operations Reference Manual
- RSX-11M I/O Drivers Reference Manual

For RMS:

- Introduction to RMS-11
- IAS/RSX-11M RMS-11 MACRO Programmer's Reference Manual

The Files-11 Ancillary Control Processor (F11ACP) is a group of Executive subroutines that process and control the I/O control structures and devices for RMS or FCS. The Executive, FCS, and RMS use F11ACP; however, its operation is transparent to you.

F11ACP is available in three versions. The first and smallest (FCPNMH.TSK) requires 2K of memory. FCPNMH does not support multi-header files or RMS record blocking. The second (FCP.TSK) requires 2.5K of memory. The third version (BIGFCP.TSK) requires from 4.5K to 8K of memory. You select these versions during SYSGEN. The RSX-11M System Generation Manual fully describes these versions, the reasons for their use, and the methods of installation.

• The print spooler:

The print spooler task (PRT) speeds up the operation of MACRO-11, the Task Builder, and compilers because they do not have to wait for I/O to complete on the relatively slow line printer. Instead, the listing files are written to a disk. Subsequently, PRT prints the files as they appear in a gueue.

Any task that uses the line printer to print files may use the print spooler. For example, the RSX-11M Peripheral Interchange Program (PIP) can optionally use the PRT task to print files.

• User task partitions

User tasks run in the remaining memory in the memory structure. The partitions and tasks can be configured to the system user's requirements.

1.4.6 Example Of A 16K Unmapped System

Figure 1-1 illustrates the memory layout of a sample 16K unmapped system. The Executive region, which requires 8K, consists of the Executive and the user-controlled main partition named SYSPAR. This partition contains the file system (FCPNMH), the Monitor Console Routine (MCR), and the Task Termination Notification routine (TKTN). The file system is checkpointable and has a lower priority than MCR or TKTN. Therefore, if the file system is running and a system user requests MCR, the Executive checkpoints the file system and loads and starts MCR.

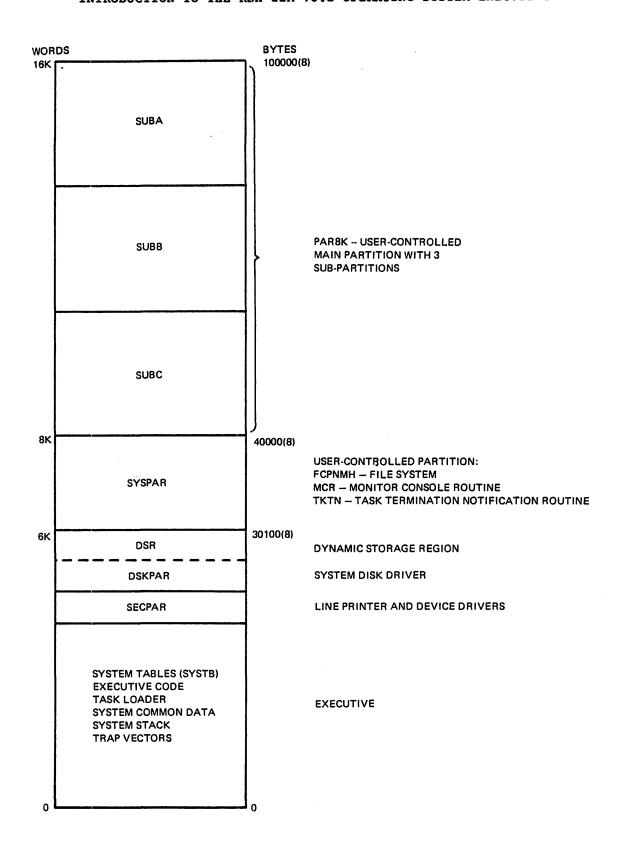


Figure 1-1 Sample Unmapped 16K System Memory Layout

The user area contains a user-controlled main partition named PAR8K, 8K in length. PAR8K contains three subpartitions, named SUBA, SUBB, and SUBC. Language processors and the Task Builder use the 8K partition for program preparation. These programs usually have a low priority and may be checkpointable.

The three subpartitions are available for real-time tasks. A task in the main partition is checkpointed if:

- It is checkpointable
- Another higher priority task needs the partition, or a subparition

If tasks occupy the partitions SUBA, SUBB, SUBC, and SYSPAR and the tasks are ready to run, the Executive gives CPU resources to the task with highest priority.

1.4.7 Example Of A Mapped 124K-word RSX-11M System

Figure 1-2 is an example of a large mapped system.

Besides the Executive, the system contains DRVPAR, which is a system-controlled partition for loadable device drivers including the terminal driver. Loadable drivers residing on a disk are loaded by a user command when they are needed.

SYSPAR is a 2K user-controlled partition that contains the Monitor Console Routine Multi-user (MCRMU) task, TKTN, and the Shuffler task. The Shuffler is discussed later in this chapter.

FCPPAR is a 6K partition for the primary file control system, BIGFCP. The 6K size is sufficient to allocate approximately 50 file control blocks (FCBs).

All other tasks run in the system-controlled GEN partition.

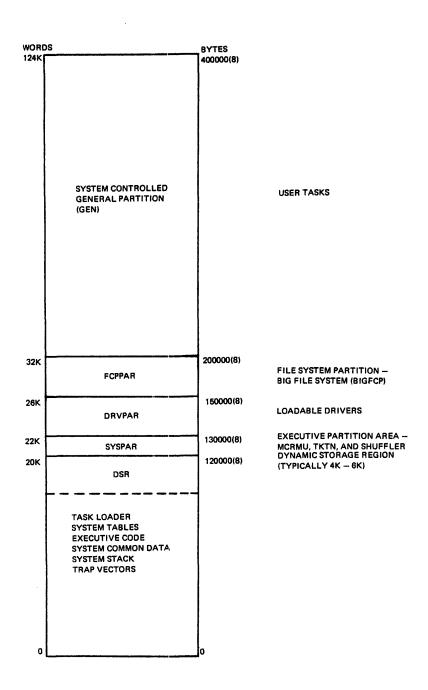


Figure 1-2 Example of a Mapped 124K RSX-11M System

1.5 TASK PROCESSING

To make a task known to the Executive, you install it. When you install a task (by issuing the Install command; see the RSX-11M Operator's Procedures Manual), the system records a number of task parameters in a system-resident table called the System Task Directory (STD). The recorded parameters include the name and size of the task, the disk address at which the task's image starts, and the address of the Partition Control Block (PCB) of the partition in which the task is to run.

1.5.1 Task States

An installed task is defined as a task that has an entry in the STD. It is neither resident in memory nor competing for system resources. The Executive considers it to be dormant until a running task or a command issued from a terminal requests the Executive to activate it. The Executive therefore recognizes two task states:

- Dormant. A dormant task is one that has been installed (has an entry in the STD), but has not been requested to run.
- Active. An active task is an installed task that has been requested to run. It remains active until it exits, or gets aborted. It then returns to the dormant state.

An active task can be in one of two substates, ready-to-run or blocked.

- Ready-to-run. A ready-to-run task competes with other tasks for CPU time on the basis of priority. The ready-to-run task having the highest priority obtains CPU time and thus becomes the current task.
- Blocked. A blocked task is unable to compete for CPU time for synchronization reasons or because a needed resource is not available.

The distinction between dormant tasks and active tasks is important in a real-time system. A dormant task uses little memory; and yet when the task is needed to service a real-time event, the Executive can quickly and efficiently introduce it into active competition for system resources. An installed task's STD entry enables this quick response because it contains all the parameters the system needs to retrieve the requested task. Note that the number of installed, dormant tasks can, and usually will, far exceed the number of active tasks.

When the Executive receives a request to activate a dormant nonresident task, it performs a series of actions:

- It allocates the required memory resources on the basis of the task's priority.
- It brings the task into memory.
- It places the task in active competition for system resources with other resident tasks.

If tasks fully occupy the partition in which a task is installed and no resident task can be checkpointed (see Checkpointing in this chapter), the task is placed in a gueue by priority with other

activated tasks, each waiting for space to become available in its partition.

1.5.2 Fixed Tasks

A task can be loaded and locked into its partition. Such a task is called a fixed task. The Fix command (see the RSX-llM Operator's Procedures Manual) allows you to fix a task in memory. The Executive services subsequent requests to run the task more quickly because the task is resident in memory and does not have to be loaded from the disk before it can run. The system can fix a task in memory only when the partition in which it is to be fixed becomes available.

Fixed tasks remain physically in memory even after they finish execution. Therefore, the Executive does not have to reload them when they are again requested to run. However, tasks that can be fixed in memory must have re-entrant code if it is to be reused by another program or system user. Re-entrant code must be used because the task cannot be allowed to change its own internal data base if another program uses it. Only an Unfix or Remove command can free the memory that the task occupies.

NOTE

See the RSX-11M Operator's Procedures Manual for the Fix, Unfix, and Remove commands.

The following restrictions apply to tasks that you want to fix in memory:

- You must first install the task.
- You cannot fix an active task.
- You cannot fix a checkpointable task.

1.5.3 Priority

Active tasks compete for system resources on the basis of their relative priorities. The Executive gives control of the processor to the active task that has the highest priority and that also has access to all the other resources it needs. When this task becomes blocked (while waiting for I/O to complete, for example), the Executive looks for another task to use the processor. The chosen task is again the one that has the highest priority and has access to all the resources it needs.

You initially assign a default priority to a task when you task-build it. This priority is a number between 1 and 250 (decimal); higher numbers indicate higher priority. Later, you can change the priority when you install the task; or the system can change the priority while the task is running (see Swapping).

In an RSX-llM installation that mixes real-time applications with less urgent work, higher priority numbers should be assigned to the real-time tasks. This assignment ensures that the Executive gives processor time to the real-time tasks ahead of the others. Text

editors are an example of real-time tasks, because they must respond within a short time period. Text editors, commonly used for program development or text processing, spend a large part of their time waiting for terminal I/O to complete and are therefore out of competition for processor time. However, when the I/O operation ends, the terminal needs a rapid response. To get the higher response, the installation system manager can assign to text editors a higher priority than that of more processor bound tasks like the Task Builder or Assembler.

- 1.5.3.1 Establishing Task Priority You can establish task priority when you use the Task Builder to build a task from an object module. See the RSX-11M Task Builder Reference Manual for a description of the priority option.
- 1.5.3.2 Installed Priority When you install a task using the Install command, you can specify a priority different from the one that you specified when you built the task. The priority specified in the Install command overrides the priority that was specified for the task in the Task Builder command. See the RSX-llM Operator's Procedures Manual for a complete description of the Install command.
- 1.5.3.3 Altering Priority You may want to alter a task's priority after it is installed. The Alter command provides a way to change priority. With the Alter command you can change the task's static installed priority or change the task's running priority. However, you can make these changes only if the system supports the Alter Priority directive. See the RSX-llM Operator's Procedures Manual for a complete description of the Alter command.

1.5.4 Round-robin Scheduling

When numerous competing memory-resident tasks have equal priorities, the Executive tends to give processor time more often to those tasks that appear first in the System Task Directory (STD) queue. Entries with equal priorities normally appear in the STD in the order in which the tasks were installed. Therefore, the Executive favors tasks that were installed first. To avoid this problem, RSX-11M provides a system generation option called round-robin scheduling. Round-robin scheduling uses an algorithm that periodically rotates the execution of tasks of equal priority in the STD. The overall effect is that processor time is distributed more evenly among tasks. Each equal-priority task has its turn toward the head of the STD queue.

1.5.5 Checkpointing

In a programming system where many tasks of equal or different priorities are competing for memory space and system resources, the Executive must have a method of distributing processor usage and resources to all the tasks. The RSX-11M Executive uses a process called checkpointing to allocate system resources among tasks. The Executive uses task priority as the basis for the checkpointing scheme.

In some instances, an active task cannot get into memory and compete for processor resources because the partition in which it was installed is fully occupied. If the partition contains a task that has a lower priority and is checkpointable, the Executive moves that task out of memory and writes it on a disk to make room for the higher priority task. When the high priority task is finished, the Executive reloads the low priority task, which is now on the disk, to allow it to continue processing from the point at which it was interrupted. This roll-out, roll-in process is called checkpointing.

RSX-llM supports checkpointing in both user-controlled and system-controlled partitions. The objective is to avoid preempting a lower priority task, unless a higher priority task can be brought in to make use of the freed memory. This optimizes the use of system resources while maintaining a priority scheduling discipline.

1.5.5.1 Disk Space for Checkpointing - To checkpoint a task, checkpoint space equal to the size of the partition that contains the task must be available on disk. (Checkpoint space contains the checkpointed task while a higher priority task executes.) You can allocate checkpoint space either statically when building the task, or dynamically at run time. You can use both kinds of checkpointing to balance the advantages and disadvantages of the different allocation methods.

When you use the Task Builder to create a task from an object module, you can request checkpoint space allocation in the task image file on the disk; this is the same disk as the one on which the task resides. The task image file is the executable task on the disk. While the task is running, its checkpoint space is always allocated on disk, whether or not the Executive actually checkpoints the task.

You can use disk space more efficiently if you allocate checkpoint space dynamically. Instead of reserving disk space equal to the size of each checkpointable task, you can create one or more checkpoint files on disk to contain all checkpointed tasks. The size of the files depends on an estimation of the checkpoint space required at any given time. When the system allocates checkpoint space dynamically, tasks need not be built as checkpointable. Instead, you decide if a task can be checkpointed when the task is installed. You create a checkpoint file, independent of individual tasks, by issuing the ACS (Allocate Checkpoint Space) command from the terminal. Then, when the Executive needs to checkpoint a task, it writes the task out into the available space in the checkpoint file. A drawback to dynamic allocation of checkpoint space is that space in a checkpoint file may, at times, be filled. However, system performance may be improved if the checkpoint file is on a fast disk.

See the RSX-11M Operator's Procedures Manual for the Allocate Checkpoint Space (ACS) command.

1.5.6 Task Swapping

The Executive must deal with the situation that occurs when several active tasks with equal priorities compete for partition space in memory. A task cannot normally cause the Executive to checkpoint another task with the same priority. Therefore, a task of equal priority cannot get into memory. The Executive includes a task swapping algorithm that uses checkpointing to allow tasks of equal priority to successfully compete for memory.

Swapping is a variation of checkpointing that enables the Executive to checkpoint tasks with equal priorities in and out of memory. Swapping does not work, of course, unless the tasks are checkpointable. When an eligible task begins to run, the Executive adds a number to the task's normal running priority. This number is called the swapping priority and is used for swapping only. The old running priority still exists. As the task runs, the Executive decrements the swapping priority. Eventually, the sum of the decremented swapping priority and the task's running priority causes the running task to have a priority (for swapping) less than that of a competing task. When this occurs, the Executive checkpoints the running task to make room for the competing task. The Executive then places the checkpointed task in the gueue of active tasks that are competing for memory. The swapping priority does not affect task scheduling or I/O dispatching, which are governed solely by the task's running priority.

1.5.7 The Shuffler Task

In trying to accommodate the execution of as many tasks as possible, the Executive moves tasks in and out of memory depending upon available space, priority, etc. This operation can result in fragmented memory, a situation in which many small tasks occupy memory with unused spaces in between. Taken individually, these spaces may not be large enough to allow large tasks to be loaded and executed. The Shuffler task, a system generation option, solves this problem by performing memory compaction in a system-controlled partition.

The Shuffler starts at the beginning of the system-controlled partition and tries to move (shuffle) all tasks that are sitting above a gap of free space down to the base of the free space. When possible, it also checkpoints any tasks that it encounters that are waiting for terminal input.

If there are some tasks still actively competing for memory in the partition, the Shuffler creates an ascending, priority-ordered list of the tasks in the partition. If the sum of the free space now in the partition and the space occupied by the low priority, checkpointable tasks in the partition is enough to allow the waiting task to run, the Shuffler checkpoints the lower priority tasks. The Shuffler then compacts memory again to make room for the waiting task.

The foregoing Shuffler action should result in all free space being at the top of the partition. However, there may be additional holes below tasks because some things (drivers and regions) cannot be shuffled. These additional holes cannot be reclaimed.

1.5.8 Extended Logical Address Space

An RSX-11M task specifies an address in a 16-bit word. The largest address that can be expressed in a 16-bit word is 65,536 bytes or 32,768 words (commonly referred to as 32K words). To avoid limiting the effective size of a task to only 32K words, a task can use overlays that you define when you use the Task Builder to build the task. Another option is that the task can use memory management directives to access greater amounts of memory.

1.5.8.1 Overlays - An overlaid task has parts called segments. The segments are the parts that overlay one another. The segments are also sometimes called overlays. The root segment, which is always in memory and never overlaid, and one or more overlay segments compose an overlaid task. The overlay segments can be read into memory as required. However, all the segments in memory at one time cannot exceed 32K words.

See the RSX-11M Task Builder Reference Manual for a complete description of overlay segments.

1.5.8.2 Memory Management Directives - Memory management directives allow task segments resident in memory to access more than 32K words of physical memory. The memory management directives, a subset of the Executive directives, use the KTll hardware to map task addresses to different logical areas within the task. Instead of displacing task segments in memory, the task can reside entirely in memory and map its virtual addresses to different physical addresses.

RSX-11M defines three kinds of address space:

- Physical address space. Physical address space consists of the physical memory in which tasks reside and execute.
- Logical address space. Logical address space is the total amount of physical address space to which the task has access rights.
- Virtual address space. Virtual address space corresponds to the 32K of addresses that the task can explicitly specify in a 16-bit word. If a task does not use memory management directives, its logical and virtual address spaces directly correspond one to the other. However, if the task uses these directives, it can map its virtual addresses to different parts of its logical address space. The net effect is to allow a task's logical address space to exceed 32K.

The memory management directives also allow a task to expand dynamically its logical address space. In other words, a task can access logical areas that are not part of its static task image (the executable task produced by the Task Builder). A task can issue directives that create a new region of logical space and then map a range of virtual addresses to the newly created region. A task can also map its virtual addresses to logical areas that belong to another task. The mapped area then becomes part of the former task's logical address space.

The ability to create and map to a new region allows tasks to communicate with one another by means of shared regions. For example, at run time a task can create a new region of logical space, into which it writes a large amount of data. Any number of tasks can then access that data by mapping a range of their virtual addresses to the region. Another benefit of mapping to different regions is an ability to use a greater number of common routines. Tasks can map to the required routines at run time, rather than link to them when the tasks are built by the Task Builder.

1.6 RSX-11M INTERRUPT PROCESSING

The RSX-llM system recognizes two kinds of hardware interrupts: processor traps and external interrupts. Processor traps occur synchronously; that is, the same sequence of instructions causes the same processor trap to occur at the same place and time in the program. Processor traps usually have a cause originating from within the processor. See Processor Traps, in this chapter, for the causes of processor traps. External interrupts, which are usually caused by I/O devices, are asynchronous in that they may occur anywhere or at any time in the program's execution.

Programs that use input and output routines would spend most of their time waiting for I/O devices to complete their operations if it were not for the program interrupt facility of RSX-llM. The program interrupt facility allows asynchronous events, such as I/O completion, to interrupt the running program so that a routine can service the interrupting device. An interrupt is analagous to a subroutine jump. However, to preserve program integrity, interrupts are allowed to occur only after the completion of an instruction and before the start of the next instruction.

As an example of the program interrupt facility, programs can continue operation after starting a device, then allow the device to interrupt when it is ready to signal the program about its resulting status.

The addresses of the interrupt processing routines must be made known to the Executive. These addresses are called interrupt vectors and they are in the Executive's low memory area.

1.6.1 Interrupt Vectors

Each peripheral device controller in the RSX-11M system has a hardware pointer to its own pair of memory words. These words are located in the low memory of the Executive. One word contains a vector (address) for the device's interrupt service routine. The vector may be an entry point address or an Interupt Control Block address. If this vector is an entry point address, it becomes the contents of R7 the program counter or PC word) when the service routine begins its execution. For loadable drivers, the vector points to an Interrupt Control Block.

The other word is the processor status (PS) word. It contains the mode and the priority of operation for the interrupt routine. The hardware saves the status of the interrupted program (the PC and PS) before the interrupt routine begins its processing.

The Executive has an area called a stack in which it saves status, register contents, parameters, or any other data that it may need.

1.6.2 System Stack

RSX-llM maintains a push-down stack using general register 6, which is the stack pointer or SP. External interrupts, subroutine calls, and processor traps use this stack to save program status. When an interrupt occurs, the hardware first saves the current processor status word (PS) and the program counter (PC) on the stack. It then uses the new PS and PC from the trap and interrupt vector area in low memory, and begins processing the interrupt routine that handles that particular interrupt. A return from interrupt (RTI) instruction restores the original PS and PC values from the stack, thereby restoring the original interrupted program.

1.6.3 Processor Traps

A variety of errors and programming conditions cause the processor to trap to a set of fixed locations. These locations contain the PC and PS for the trap processing routines. Processor traps include the following:

- Power failure
- Odd addressing errors
- Stack errors
- Timeout errors
- Non-existent memory errors
- Memory parity errors
- Memory management violations
- Floating point processor exceptions
- Use of reserved instructions
- Use of the T-bit in the PS word
- Use of the IOT, EMT, and TRAP instructions

Processor traps cannot be masked off. That is, when they occur, the processor immediately enters the trap sequence of pushing the current PS and PC onto the current stack, retrieving the new PS and PC from a specific hardware trap vector, and executing the code that begins at the location specified by the trap vector.

Although there are several processor traps (see Interrupt and Trap Vectors, below), the trap of main interest is the emulator trap. The EMT instruction causes the emulator trap. This instruction calls the Executive whenever a user task has an Executive directive written into it that requests the Executive to perform some specific function (see Executive Directives below).

1.6.4 External Interruptions

External interrupts are hard-wired into one of four priority levels of the processor (labeled 4 to 7, with 7 being the highest priority). These interrupts are maskable in that they can cause an interrupt only if the priority level held in the processor status word is less than the priority of the interrupting source. When an interrupting device causes a new priority level to be loaded from its vector PS word, interrupts at the same or lower levels are blocked out. The system, however, remembers that the interrupts occurred and it processes them in turn by priority.

Certain traps, however, cannot be masked by the priority field in the PS word. These traps are: parity error, memory management violation, stack limit yellow, power failure (power down), and floating-point exception.

1.6.5 Interrupt And Trap Vector Locations

The following chart shows some of the interrupt and trap vectors used by RSX-11M interrupt and trap processing. The PC for the interrupt routine is taken from the specified memory location. The next word contains the new PS word.

Memory	Interrupt and		
Location	Trap Vector		
000	Reserved for DEC use		
004	CPU errors		
010	Illegal and reserved instructions		
014	Breakpoint trap (BPT)		
020	Input/output trap (IOT)		
024	Power fail		
030	Emulator trap		
034	TRAP instruction		
•			
•			
•			
244	Floating-point error		
250	Memory management		

For a complete list of vectors, see the pertinent $\underline{ t PDP11}$ Processor Handbook.

1.6.6 System Traps

System traps are transfers of control (also called software interrupts) that provide tasks with another means of monitoring and reacting to events. The Executive initiates system traps when certain events occur. The trap transfers control to the task associated with the event and gives the task the opportunity to service the event by entering a user-written routine.

There are two distinct kinds of system traps:

- Synchronous System Traps (SSTs). SSTs detect events directly associated with program instruction execution. They are "synchronous" because they always occur at the same point in the program when previous instructions are repeated. For example, an illegal instruction causes an SST to occur.
- Asynchronous System Traps (ASTs). ASTs detect significant events that occur asynchronously to the task's execution; that is, the task has no direct control over the precise time that the event occurs. For example, the completion of an I/O transfer may cause an AST to occur.

To use the system traps, a task issues system directives that establish entry points for user-written service routines. Entry points for SSTs are specified in a single table. AST entry points are set by individual directives for each kind of AST. When a trap occurs, the task enters the appropriate routine via the specified entry point.

Debugging aid programs (On-line Debugging Tool and Executive Debugging Tool) can be entered from points, which are called breakpoints, that you insert into a memory-resident task. These breakpoints cause a breakpoint trap that transfers execution to the debugging aid program. The debugging aid, by means of its own table of trap vectors, can

execute special processing for certain SSTs that can occur. The IAS/RSX-11 ODT Reference Manual discusses the On-line Debugging Tool in detail. The Executive Debugging Tool (XDT) is described in the RSX-11M Guide to Writing an I/O Driver.

1.7 EXECUTIVE DIRECTIVES

An Executive directive is a request from a task to the Executive to perform an indicated operation. A programmer uses Executive directives to control the execution and interaction of tasks.

Executive directives enable tasks to perform functions such as the following:

- Obtain task and system information
- Measure time intervals
- Perform I/O operations
- Manipulate a task's logical and virtual address space
- Suspend and resume execution of tasks
- Reguest the execution of another task
- Exit from a task

System directives allow tasks to exploit some major system functions, including the following:

- Event flags
- System traps
- Extended logical address space

RSX-11M MACRO programs execute Executive directives by using macro calls and the EMT 377 instruction. FORTRAN uses DIGITAL-supplied library routines to use the directives.

You should always use macro calls instead of directly executing the directive. Then, if system changes are made in the directive specifications, you need only to reassemble the program rather than edit the source code.

Listed below is a brief summary of the directive functions that are possible for RSX-11M. For a complete description of RSX-11M Executive directives, see the RSX-11M Executive Reference Manual.

Task Execution Control Directives

Abort Task Causes the Executive to terminate the execution of the task named in this directive.

Cancel Time Based Causes the Executive to cancel Initiation Reguests all time-synchronized initiation requests for the execution of the task named in this directive, regardless of the source of each request.

Task Exit Informs the Executive that the task issuing the Exit has completed its execution. Unless the exiting task is

fixed, its memory is freed for use by other tasks.

Extend Task

Causes the Executive to modify the size of the task that issues this directive by a positive or negative

number of 32-word blocks.

Causes the Executive to Request Task

immediate execution of the task named

in the directive.

Resume Task Causes the Executive to resume the

execution of a task that has issued a

Suspend directive.

Run Task

Causes the Executive to schedule the execution of the task named in this directive at a time specified in terms of a time period from the issuance of

the directive.

Causes the Executive to suspend Suspend

execution of the task that issued the Suspend until explicitly resumed, either by a Resume directive from another task or the MCR command,

Resume.

Task Status Control Directives

Causes the Executive to change the Alter Priority running priority of the installed and

active task named in this directive.

Disable Checkpointing Causes the Executive to make the task

that issues this directive no longer

checkpointable.

Causes the Executive to nullify the Enable Checkpointing

previously issued Disable

Checkpointing directive.

Informational Directives

Causes the Executive to fill a 3-word Get Partition Parameters buffer, which is specified in this

directive, with parameters related to the memory partition specified in this directive or related to the task that

issues this directive.

Get Region Parameters Causes the Executive to fill a 3-word buffer, which is specified in this

directive, with region parameters.

Causes the Executive to return the settings of the 16 console switches to Get Sense Switches

the task that issues this directive.

Get Task Parameters Causes the Executive to fill a 16-word buffer with parameters related to the

task that issues this directive.

Get Time Parameters Causes the Executive to return the current time parameters (year, month, day, hour, minute, second, tick and

ticks/second) of the task.

Event-associated Directives

Causes the Executive to clear an event flag specified in the directive and return the previous polarity of the Clear Event Flag

flag.

Cancel Mark Time Requests Causes the Executive to cancel MARK TIME requests that have been made by

the task that issues this directive.

Declare Significant Event Causes the Executive to declare a significant event. The Executive

scans the STD for the highest priority task capable of execution. It then saves the context of the currently executing task and starts the execution of the new highest priority

task.

Exitif Causes the Executive to cause an exit of the task that issues the directive

if, and only if, a specified event

flag is clear.

Mark Time Causes the Executive to declare a significant event after the expiration

of the time interval specified in the directive. If an event flag is specified in the directive, it is cleared when the directive is issued and set when the significant event occurs. If an Asynchronous System Trap (AST) entry point address is specified in the directive, an AST occurs at the time of the significant

event.

Read All Event Flags Instructs the Executive to return to the task that issued this directive

the polarities of all 64 event flags

in a 4-word buffer.

Set Event Flag Causes the Executive to indicated event flag and return the previous polarity of the indicated flag (without a declaration of a

significant event).

Causes the Executive to suspend the execution of the task that issues the Wait For Significant Event

directive until the next significant

event occurs.

Wait For Logical Or Of Event Flags Causes the Executive to suspend the execution of the task that issues the directive until one or more specified event flags of a group of event flags is set.

Wait For Single Event Flag Instructs the executive to suspend the execution of the task that issues the directive until an event flag that is specified in the directive is set.

Trap-associated Directives

AST Service Exit

Causes the Executive to terminate the execution of the AST service routine.

Disable AST Recognition

Causes the Executive to disable AST recognition for the task that issues this directive. The ASTs are queued and only their recognition is inhibited.

Enable AST Recognition

Causes the Executive to enable AST recognition for the task that issues this directive.

Specify FPP Exception AST

Informs the Executive that the specified AST routine within the task is to begin execution whenever a floating-point processor exception occurs, or that floating-point processor exception ASTs are no longer wanted.

Specify Power Recovery AST

Informs the Executive whether or not power recovery ASTs are wanted for the task that issues this directive. If the ASTs are wanted, this directive indicates where control is to be transferred when the AST occurs.

Specify Receive Data AST

Informs the Executive whether or not receive data ASTs for the task issuing this directive are wanted. If the ASTs are wanted, task execution is transferred to the address of the AST service routine within the task when data is placed in the task's receive queue.

Specify Receive By Reference AST

Informs the Executive to transfer control to an address in the task specified in the directive when the Receive-by-Reference AST occurs, or that receive-by-reference ASTs are no longer desired for the task that issued this directive.

Specify SST Vector Table For Debugging Aid

Specifies the address of a table of synchronous system trap service routine entry points for use by ODT or other debugging aids.

Specify SST Vector Table For Task

Informs the Executive that the task that issues this directive contains a table of addresses of service routines to be executed upon task trap or fault conditions.

I/O and Intertask Related Directives

Assign LUN Causes the Executive to assign physical device unit to a logical unit number (LUN). The LUN, device name, and device unit number are specified in this directive.

Causes the Executive to allow a task to process hardware interrupts by a routine specified in the directive. The Interrupt Service Routine (ISR) must be in the task's own space. Vector

Get LUN Information Causes the Executive to information regarding the logical unit specified in the directive to the task that issues this directive.

> Causes the Executive to transfer an MCR (terminal) command line to the task that issues this directive.

Causes the Executive to gueue an I/O request for the issuing task. This request is queued by priority for a logical unit which is assigned to a physical unit. An event flag, an AST, and an I/O status block may be I/O specified as completion indications.

Similar to the gueue I/O request directive except for one aspect. The Queue I/O Request And Wait directive specifies an event flag and the Executive executes an implied Wait For Single Event Flag directive.

Informs the Executive that the task that issues this directive is ready to receive data (in a 13-word data block) that has been sent from another task by means of the Send directive.

Causes the Executive to attempt to receive data (dequeue a 13-word data block) for the task that issues this directive. If no data is received, the task that issues this directive exits.

Causes the Executive to declare a significant event and to gueue the 13-word block of data that the task named in this directive is to receive.

Connect To Interrupt

Get MCR Command Line

Queue I/O Request

Queue I/O Request And Wait

Receive Data

Receive Data Or Exit

Send Data

Memory Management Directives

Attach Region	Causes the Executive to attach the task that issues this directive to a static common region or to a named dynamic region.
Create Address Window	Causes the Executive to create a new virtual address window by allocating a window block from the header of the task that issues this directive and establishing the window's virtual address base and size.
Create Region	Causes the Executive to create a dynamic region in a system-controlled partition and, as an option, attach it to the task that issues this directive.
Detach Region	Causes the Executive to detach the task that issues this directive from the previously attached region that is specified in this directive.
Eliminate Address Window	Causes the Executive to delete an existing address window, unmapping it first if necessary.
Get Mapping Context	Causes the Executive to return a description of the current window-to-region mapping assignments.
Map Address Window	Causes the Executive to map an existing window to an attached region.
Receive By Reference	Causes the Executive to dequeue the next packet in the receive-by-reference queue of the task that issues this directive.
Send By Reference	Causes the Executive to insert a packet containing a reference to a region into the receive-by-reference queue of a receiver task that is specified in this directive.
Unmap Address Window	Causes the Executive to unmap the window that is specified in this directive.

1.7.1 Event Flags

The execution of certain directives causes significant events to occur. In fact, most significant events are caused, either directly or indirectly, by system directives.

A significant event occurs when a task issues a system directive that implicitly or explicitly suspends a task's execution, or when an external interrupt occurs that can affect a task's execution. Event flags are associated with significant events. When a significant event occurs, the event flag indicates the specific cause of the significant event.

The Executive uses significant events and event flags to manage task execution. However, tasks can also use significant events to coordinate internal task activity and to communicate with other tasks. For example, a task can issue an Executive directive to associate an event flag with a specific significant event. When that event occurs, the Executive sets the associated flag. Therefore, by testing the state of the flag, a task can determine whether or not the event has occurred.

Sixty-four event flags are available to enable tasks to distinguish one event from another. Each event flag has a corresponding event flag number. The first 32 flags are local to each task and are set or cleared as a result of each task's requirements. The second 32 flags are common to all tasks and are therefore called global or common event flags. Global flags can be set or cleared as a result of any task's operation. Tasks use global flags to communicate with other tasks because one task cannot refer to another task's local flags. Eight of the local event flags and eight of the common event flags are reserved exclusively for the Executive.

1.8 THE MCR INTERFACE

You communicate with RSX-11M by entering commands at a terminal. The terminal driver directs the commands to the Monitor Console Routine (MCR) processor. The MCR processor either executes the commands itself, or it activates a system or user-written task that can service the commands.

MCR commands allow you to:

- Start up the system
- Manage peripheral devices
- Control task execution
- Obtain system and task information
- Activate system or user-written tasks that request input from the terminal

The MCR commands that control task execution are particularly significant to system performance. You must use an MCR command (Install) to install a task into the system. Therefore, you establish the base of installed tasks, which the Executive, other installed and active tasks, and further MCR commands can manipulate.

1.8.1 Privileged Commands

To restrict the use of commands that directly affect system performance, RSX-11M considers some MCR commands and command options to be privileged. You can issue a privileged command only from a privileged terminal. In multiuser protection systems, individual users are either privileged or nonprivileged; when a user logs on, the terminal assumes the privilege status assigned to that user's identification code (UIC). A user can issue an MCR command at a privileged terminal to modify the privilege status of any other terminal connected to the system. If multiuser protection support is not included during system generation, all terminals are privileged.

1.8.2 External Scheduling Of Task Execution

An important MCR function is the external scheduling of task execution. This type of scheduling works in conjunction with the Executive's priority driven internal scheduling of active tasks. You can include time parameters with the command that activates an installed task. The time parameters request the Executive to run a task:

- At a specified time from the current moment
- At a specified time from clock unit synchronization
- At an absolute time of day
- Immediately

All of these time options are available with or without periodic rescheduling. RSX-11M also supports an unlimited number of programmed timers for each task in the system. The user task can create its own timer, which the Executive then decrements at regular intervals. When the timer reaches zero, the Executive sets an event flag or generates an Asynchronous System Trap (AST) that passes control to the task at a prespecified address.

1.9 TERMINAL OPERATION

In RSX-11M, a variable number of terminals can operate concurrently. In addition, each terminal operates independently of others in the system to allow each to run a different task. In a system that supports multiuser protection, a user must log onto a terminal before issuing further commands. In other RSX-11M systems, a user can issue commands whenever the terminal displays an appropriate prompt.

1.9.1 Attached Terminals

RSX-11M allows tasks to request input from a terminal. To ensure that a requesting task receives input intended for it, the task usually attaches to the terminal. While the task is attached, the terminal directs all input to the attached task, with one exception. The exception is a control C character (the C key pressed while pressing the CTRL key), which gains the attention of the MCR processor. An attached terminal ensures that a soliciting task properly receives its input; but it also allows a user to interrupt the task's control of the terminal to communicate with MCR. Note that attaching to the terminal is a function of the task rather than of a user.

Some applications may require that a user be denied access to MCR but allowed access to a specific task only. In this case, a task can attach to the terminal with a special subfunction. The subfunction causes the system to generate an AST for the attached task whenever someone enters unrequested input, including CTRL/C, at the terminal. However, making the terminal a slave terminal is another way of doing this.

1.9.2 Slave Terminals

When your installation needs to dedicate a terminal exclusively to one or more tasks, you issue an MCR command (or a task issues a special I/O function) that sets the terminal to slave status. The difference between a slave terminal and an attached terminal is that the system ignores all unsolicited input, including CTRL/C, that is entered at a slave terminal. Until you issue another MCR command to delete the slave status, the terminal can only be used to communicate with the task soliciting input from the terminal. An I/O function issued by a task can also delete the slave status of the terminal. Slave terminals are often dedicated to real-time applications.

1.10 MULTIUSER PROTECTION

Multiuser protection, a system generation option, allows an RSX-11M installation to monitor and control individual users of the system. Individual users are either privileged or nonprivileged. The system manager, who is the one assigned responsibility for system configuration and operation, assigns a user identification code (UIC) to each user, which determines the user's privilege status. When logging onto a terminal, the user supplies a last name or UIC and a password. If the user gives a name, the system finds the associated UIC. The system then checks that the password matches the last name or UIC, and sets the terminal to privileged or nonprivileged status, according to the user's UIC.

1.10.1 Public And Private Devices

In a multiuser protection system, some commands allow you to do things that are not allowed in systems without multiuser protection. For example, the Allocate command allows you (or any user) to allocate a device (a disk drive) as your private device; allocating the device prevents other nonprivileged users from accessing it.

A nonprivileged user can access a private device that he has allocated to perform MCR functions that are normally privileged. These functions include preparing a disk or magnetic tape for use by the RSX-11M file system.

To complement the private device feature, multiuser protection allows the system manager or privileged user to declare certain devices to be public. Public devices cannot be allocated to individual users. By declaring a line printer to be public, for example, the system manager can ensure that all users have access to that commonly used output device.

1.11 SYSTEM MAINTENANCE

1.11.1 Error Logging

RSX-llM provides an error logging facility as a system generation option for systems that are 24K words or larger. The error logging facility monitors the hardware reliability of an RSX-llM system; it continually detects and records information about disk, DECtape,

magtape, and memory errors as they occur, regardless of whether or not the error is recoverable. The Executive automatically retries recoverable errors. However, you might be unaware that the error occurred. Therefore, at user-determined intervals, a formatting task can be run to generate individual error and summary reports on some or all of these errors.

Please note that only the following four types of errors are loggable:

- Device errors (disks, magtapes, DECtapes)
- Undefined interrupts
- Timeout
- Memory parity errors

In summary, the error logging facility performs the following functions:

- Detects a hardware error as it occurs (done by Executive modules)
- Gathers information about the error
- Stores the information in a file
- Formats the information to produce an error report

Control of the facility is shared between routines in the Executive and specific error logging tasks. These routines and tasks interface with each other to carry out the four operations described above.

You can generate a wide variety of error reports. Among many options, you can specify a report that covers only a certain time period, a certain device or group of devices, or perhaps a certain type of error. You can also request a report that contains only information on individual errors, one that contains only summary information, or one that contains both kinds of statistics.

Because the error log files may be written to a removable volume, an operator can generate the reports either on site or at any other RSX-llM installation that supports the error logging facility.

1.11.2 Diagnostic Tasks

RSX-11M also provides a group of diagnostic tasks which you can incorporate into the Executive support at system generation time. A diagnostic task tests a specific device to identify the source of any errors. RSX-11M diagnostic tasks test for malfunctions on most disks, DECtapes, magnetic tapes, and terminals. The tasks are simple to use and require little memory space.

When used in connection with error logging reports, the diagnostic tasks can significantly reduce system downtime. The system manager should regularly generate error reports to check on hardware performance. When a number of errors indicates that a particular device is beginning to malfunction, the manager can run the diagnostic task for the erring device to help isolate the source of the errors.

Each diagnostic task has two modes of operation: customer mode and service mode. In customer mode, the user activates the appropriate

task, which then runs to completion and reports its findings. (Because the tests destroy any data resident on the device being tested, only authorized users should be allowed to run diagnostic tasks.) Service mode is intended for use by DIGITAL Field Service engineers. Service mode allows the user to modify the test content initially and to interrupt the running test to make further modifications.

1.11.3 Power Failure Restart

RSX-llM can execute a power failure restart that smooths out intermittent short-term power fluctuations with little loss of service or data. Power failure restart functions in four phases:

- When power begins to fail, the CPU traps to the Executive, which stores volatile register contents, thereby bringing system operations to a controlled halt.
- When power is restored, the Executive again receives control and restores the preserved state of the system.
- The Executive then schedules all device drivers that were active at the time of the power failure at their power-fail entry points. Drivers have the option of being scheduled one of two ways:
 - 1. Whenever power fails
 - Only when power fails while the driver is servicing an I/O request

The drivers can then make any necessary restorations of state (repeat an I/O transfer, for example).

• The Executive then determines if any user-level tasks have requested notification of power failure by issuing a system directive requesting an AST on power recovery. The Executive initiates ASTs for any tasks that have requested them.

CHAPTER 2

MEMORY RESOURCE ALLOCATION

2.1 INTRODUCTION

Chapter 2 contains information about how the Executive manages, structures, allocates, and deallocates memory resources in RSX-11M. Any discussion of memory functions in RSX-11M necessarily overlaps the closely related functions of task management and processing. However, this discussion emphasizes memory allocation, deallocation, and management to allow a more logical and coherent presentation of memory in RSX-11M.

The functions of the core allocation routines, the Shuffler and the Loader, are part of Executive memory management. However, the term "memory management" also refers to the KTll Memory Management Unit, which is hardware and not software. The use of the term "memory management" has been avoided in this manual where confusion between the Executive's role and the hardware's role in memory management would arise. At the end of this chapter, flow diagrams show important processes that the Executive performs to allocate and manage memory.

2.1.1 Memory Addressing

Because of the 16-bit word size of the PDP-11, an RSX-11M task can have an address no larger than 177777(8) (an addressing range of 32K words for nonprivileged tasks). In RSX-11M, you can use a task that contains overlays to avoid limiting its size to its addressing range. An overlaid task contains segments — a root segment that is always in memory, and any number of other segments that are loaded into memory when required. When task segments are not in memory, they reside on disk. Large task segments that are in memory may not be able to access large amounts of disk-based data because the data may not fit into the available memory with the task. A heavily overlaid task that transfers large amounts of data to another task via disk incurs a throughput penalty because of the many I/O transfers needed to move segments in addition to those I/O transfers needed by the task's function.

The combined size of an overlaid task's segments may exceed 32K, which is the limit imposed by 16-bit addressing. Normally, the sum of task segment sizes in memory is 32K or less. However, a non-privileged task can exceed the 32K physical size imposed by the 16-bit address structure by using the memory management programmed logical address space (PLAS) directives. Combining the PLAS directives with memory-resident overlays is an effective way to avoid throughput problems caused by many I/O transfers. With this combination, I/O transfers occur to move only data to another task and, because the entire task is in memory, all or most of the task segments do not have to be loaded or unloaded during task execution.

Task throughput can be faster if all or a greater portion of the task is resident in memory during task execution. RSX-llM contains a group of memory management directives that provide the task with this capability. The directives overcome the 32K word addressing restriction. They allow the task to change the physical memory locations referred to by a given range of addresses. Using these directives, a task can increase its execution speed by reducing its disk I/O requirements at the expense of increased memory requirements.

The memory management directives that a task can use for expanding the 32K range of accessible addresses are:

CRRG\$ -- Create Region

ATRG\$ -- Attach Region

DTRG\$ -- Detach Region

CRAW\$ -- Create Address Window

ELAW\$ -- Eliminate Address Window

MAP\$ -- Map Address Window

UNMAP\$ -- Unmap Address Window

SREF\$ -- Send by Reference

RREF\$ -- Receive by Reference

GMCX\$ -- Get Mapping Context

GREG\$ -- Get Region Parameters

The use of these directives is fully described in the RSX-11M Executive Reference Manual. The RSX-11M Task Builder Reference Manual describes overlay structures and overlaid tasks.

2.1.2 Memory Management - An Overview

In a mapped system, the KTll Memory Management Unit associates task addresses with available physical memory. This process, which is transparent to the user, is called mapping. Addresses used within a task are virtual addresses and their correspondence to actual physical memory addresses is known to the KTll unit only. However, memory management directives can control and manipulate the KTll, which physically performs the address mapping.

A privileged task can address all of available memory by directly using the KT11 Memory Management Unit. There is some danger in doing this because the programmer must be very certain that the task does not corrupt system space, system routines and data (for instance, the Executive itself, its pool space, or the I/O page), or other tasks.

2.1.3 Virtual And Logical Addresses

Virtual and logical addresses, and virtual and logical address space are concepts that provide a basis for understanding the functions performed by memory management directives and the use of task windows.

 Physical addresses - Memory is divided into discrete addressable parts called bytes. They are numbered according to their position in memory. Therefore, the lowest byte is 0 and the highest byte is whatever the upper limit of memory may be for a particular system; for example, 32K, 64K, etc. The assigned number is called the physical address.

A task contains virtual addresses (for example, 0 through 2200). The Task Builder relocates the task's virtual addresses in an unmapped system by a number represented by the base address of the partition in which it is installed. After installation, the task's addresses refer to logical addresses of memory, which always correspond to the same physical memory in an unmapped system (unless you change the partition or task code). Therefore, the addresses have an actual one-to-one relationship to physical memory. The same relationship exists any time the task is in memory. The logical addresses may not be from 0 through 2200. For example, after the task is installed in the partition, the task's virtual address 0 may become logical and physical address 17000 because the Task Builder added in the offset, which is equal to the partition base address. In a mapped system, the virtual addresses remain the same but the logical addresses may change due to Executive processes (checkpointing, swapping, etc.). Therefore, the logical addresses do not always refer to the same physical memory. If the task uses memory management directives, the logical addressing can be changed by the task to include any part of physical memory that it is allowed to access.

- Virtual addresses -- A task's virtual addresses are the addresses within the task. The PDP-11's 16-bit word length (a mapped system) imposes the address range of 32K-words on the virtual addresses. Therefore, these task addresses could include addresses zero through 177777(8) depending on the length of the task. However, in a system that uses the KT11 (mapped system), these task addresses may not be the same as the actual addresses of the memory in which the task resides. The KT11 Memory Management Unit maps the task's virtual addresses to the logical addresses of memory.
- Virtual address space -- A task's virtual address space is that space encompassed by the range of virtual addresses that the task uses. With the CRAW\$ memory management directive, a task can divide its virtual address space into segments called virtual address windows. By using address windows, you can manipulate the mapping of virtual addresses to different areas of physical memory (see Virtual Address Windows below).
- Logical addresses -- A task's logical addresses are the actual physical memory addresses that the task can access.
- Logical address space -- The task's logical address space is the total amount of physical memory to which the task has access rights. The physical memory represented by the logical addresses may or may not be continuous. In other words, though a task's virtual addresses may be continuous, its logical address space may be divided among non-adjacent parts of physical memory. Using the CRRG\$ (Create Region) memory management directive, you can divide the task's logical address space into various areas called regions. Each region is a continuous block of memory; however, the regions may not be adjacent.

If the capabilities of the memory management directives were not available, a nonprivileged task's virtual address space and logical address space would directly correspond. That is, a single virtual address would always point to the same logical location. Both types of address space would have a maximum size of 32K. However, you can use directives to assign a range of virtual addresses (a window) to different logical areas (regions), thereby extending a task's logical address space beyond 32K words.

Figure 2-1 shows a virtual address in a user task translated into a logical address in physical memory by the KTll Memory Management Unit. The paragraphs following Figure 2-1 briefly describe the task virtual space, memory management, and task logical space relationships. A complete discussion of tasks, task windows, and regions can be found in the RSX-11M Task Builder Manual. Task mapping is also discussed in Chapter 4, Privileged Tasks.

2.1.4 Task Windows

Referring to Figure 2-1, which illustrates a mapped system, you can observe that a large 32K user task contains three distinct areas of continuous space called "windows". When referring to task windows (a file window is a similar but slightly different concept) the term, window, is a construct that encompasses and defines an area of continuous, virtual, program space in the task. Windows must have a specified size and starting address. The window size can be from 32 words to 32K-32 words and windows must start on a 4K address boundary. Figure 2-1 shows three windows that are not continuous in the task's virtual address space. However, the space within each window is continuous. In this task, the size of window 0 is 11K; the size of window 1 is 11K; and the size of window 2 is 8K. The concept of windows exists for the following specific reason.

By using the concept of windows and the Memory Management directives, a nonprivileged task can access a larger logical memory space than that implied by the 32K virtual addressing range and normally accessible by the 16-bit address. A task can, in fact, only access 32K of memory at one time. However, a nonprivileged task can change its access to logical addresses (real, physical memory). The area that your program accesses can be changed by the program during program execution. The process of accessing different logical areas of memory is called "mapping". By referring to Figure 2-1, you can see that Window 1 in the task is mapped to Static Common Region 1 in physical memory. The Window 1 mapping can be changed by the task to map to Static Common Region 0 in physical memory. In effect then, though a task is limited to a range of 32K virtual addresses, a task can access all the physical memory available to it (determined by the way that you set up the mapping) by changing the mapping of its windows to different logical addresses. Figure 2-1 provides a visual description of the concept of mapping to different logical addresses.

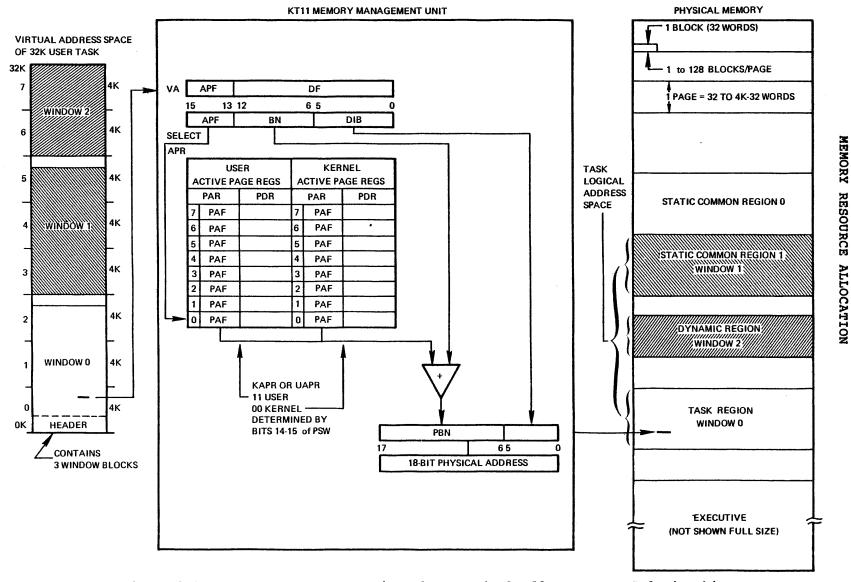


Figure 2-1 Memory Management - Virtual to Logical Address Space Relationship

Figure 2-1 shows a task that has three windows. One of the windows can map to two different logical areas of memory. Window 0 in the task maps to the task region. The task region is llK in size and this size corresponds to the size of Window 0 in the task. The task region contains the task root and header. The program cannot change this mapping because window 0 is a default of the Task Builder and must contain the root and header. If no windows were specified, the Task Builder would create Window 0 for the entire task to map to its own logical space in memory. Window 1 maps to Static Common Region 1. Window 1 and Static Common Region 1 are both llK in size. The task can change the mapping of Window 1 to map to Static Common Region 0. Observe here that the task can access llK more physical memory than it occupies. In other words, a task of this size (32K), without windows, can access 32K of memory. The task that is illustrated can access 43K of memory.

The last window, Window 2, accesses the Dynamic Common Region. Both Window 2 and the Dynamic Common Region are 8k in size.

Note that the spaces that exist between the windows in the illustrated task do not refer to any logical memory address because no window (mapping) exists for those spaces.

The discussion now proceeds to setting up the task's windows. This is done by defining task window blocks to the Task Builder.

To manipulate virtual address mapping to various logical areas, the programmer must first divide a task's 32K of virtual address space into segments. These segments are task (virtual address) windows. Each window encompasses a continuous range of virtual addresses. The first address of the window address range must be a multiple of 4K (the first address must begin on a 4K boundary) because of the way that the KT-11 Memory Management Unit uses Aetire Page Registers (APRs). The number of windows defined in a task can vary from 1 to 7. Window 0 is not available to non-privileged tasks. The size of each window can range from a minimum of 32 words to a maximum of 32K minus 32 words.

A task that includes directives that dynamically manipulate address windows must have task window blocks set up in its task header as well as Window Definition Blocks in the code for use by the Create Address Window directive. The Executive uses task window blocks to identify and describe each currently existing window. When linking the task, the programmer specifies the number of window blocks to be set up by the Task Builder. The number of blocks should equal the maximum number of windows that will exist concurrently while the task is running.

A window's identification is a number from 0 to 7, which is an index to the window's corresponding window block. The address window identified by 0 is the window that always maps the task's header and root segment. The Task Builder creates window 0, which the Executive uses to map the task. No directive should specify window 0.

When a task uses memory management directives, the Executive views the relationship between the task's virtual and logical address space in terms of windows and regions. Unless a virtual address is part of an existing address window, the address does not point anywhere. This is a point to watch when setting up windows with the Create Address Window directive (CRAW\$). Similarly, a window can be mapped only to an area that is all or part of an existing region within the task's logical address space.

Once a task has defined the necessary windows and regions, the task can issue memory management directives to perform operations such as the following:

- Map a window to all or part of a region.
- Unmap a window from one region in order to map it to another region.
- Unmap a window from one part of a region in order to map it to another part of the same region.

NOTE

It is currently possible for a task with outstanding I/O to unmap from a region although it cannot detach from a region under this condition. Because this feature may be impossible to support in future releases of the system, DIGITAL recommends that users consider carefully before designing an application based on this ability.

2.1.4.1 Task Window Block - A task that includes Memory Management directives to manipulate address windows must have window blocks set up in the task header. The Executive uses the task window blocks to identify and describe each currently existing window. When linking the task you must specify the number of window blocks to be set up by the Task Builder. To do this, you specify a number in the WNDWS options of the Task Builder to define the number of windows to be used (in addition to the default window, Window 0). The Task Builder reserves space in the task header for window blocks - one block for each window. The Task Builder always reserves at least one block (for Window 0) as a default.

The label block group in the task header contains the number of task windows. The word where this number is found is L\$BWND. The number that is contained here does not include windows for libraries.

The variable part of the task header contains the window blocks. You must specify window size, address limits, etc. (see Window Definition Block). However, task window blocks are filled in by the Executive when it obtains the information that you have described in the Window Definition Block (WDB) and Region Definition Block (RDB). Note that the RSX-llM Executive Reference Manual contains all the information that you need to establish address windows, regions, and their respective blocks in your code. Also, the RSX-llM Task Builder Manual contains a description of the task header.

2.1.4.2 Window Definition Block (WDB) - The Window Definition Block is a coding structure that you must create by using the WDBDF\$ and WDBBK\$ macros if you are using MACRO-11. You can create this block with an 8-word integer array if you are using FORTRAN. The Window Definition Block defines all the parameters that your code, the

Executive, and the Task Builder need to use windows. The Window Definition Block contains the:

• Window's base APR:

APRO = Virtual base address 0 APR1 = Virtual base address 4K APR2 = Virtual base address 8K

APR7 = Virtual base address 28K

- Size of the window in 32-word blocks
- Region ID of the region to map
- Offset within region to be mapped in 32-word blocks
- Window status word bit definitions
- Send/Receive buffer virtual address

The window's base APR and the size of the window are information that the Executive needs. The region ID relates the window to the Region Definition Block (RDB) which is also created by you. The offset within the region determines where the mapped area starts within the region. You can change the offset to move the area that is mapped within the region. The RSX-llM Executive Reference Manual contains a complete description of creating and using the WDB and the RDB.

2.1.5 Regions

A task's current window-to-region mapping context determines the part of the task's logical address space that the task can access at one time. A task's logical address space can consist of various types of region:

- Task Region -- The task region is a continuous block of memory in which the task runs.
- Static Common Region -- A static common region is an area defined by an operator at run time or during system generation; for example, a global common area.
- Dynamic Region -- A dynamic region is a region created dynamically at run time by using the Create Region (CRRG\$) memory management directive in the task.

Tasks refer to a region by using a region ID, which the Executive returns to the task after the task creates the region. The Executive returns the region ID in the R.GID field of the Region Definition Block that the user must create before using the Create Region directive. Region ID 0 always refers to a task's task region. All other region IDs are actually addresses of the attachment descriptor maintained by the Executive in the system's dynamic storage region.

Figure 2-1 shows a sample collection of regions that could make up a task's logical address space. A task's logical address space can expand and contract dynamically as the task issues the appropriate memory management directives. The header and root segment are always part of the task region. Therefore, the task header and root segment always use window 0 (UAPR 0) and region 0. Because a region occupies a continuous area of memory, each region is shown as a separate block.

- 2.1.5.1 Shared Regions Address mapping not only extends a task's logical address space beyond 32K words, it also allows the space to extend to regions that have not been linked to the task at task-build time. One result is an increased potential for task interaction by means of shared regions. For example, a task can create a dynamic region to accomodate large amounts of data. Any number of tasks can then access that data by mapping to the region. Another result is the ability of tasks to use a greater number of common routines. Tasks can map to required routines at run time, rather than link to them at task-build time.
- 2.1.5.2 Attaching to Regions A task attaches to a region to make that region a part of the task's logical address space. A task can map only to a region that is part of the task's logical address space. There are three ways to attach a task to a region:
 - All regions that are linked to a task at task-build time are automatically attached.
 - A task can issue a directive to attach itself to a named static common region or a named dynamic region.
 - A task can request the Executive to attach any region within its own logical address space (other than its task region) to another specified task.

Attaching identifies a task as a user of a region, and prevents the system from deleting a region until all tasks have been detached from it. (It should be noted that fixed tasks do not automatically become detached from regions upon exiting.)

- 2.1.5.3 Region Protection A task cannot indiscriminately attach to any region. The following criteria determine how tasks can attach to regions outside their logical address space:
 - Each region has a protection mask to prevent unauthorized access. The mask indicates the types of access (read, write, extend, delete) allowed for each category of user (system, owner, group, world). The Executive checks that the requesting task's User Identification Code (UIC) allows it to make the attempted access. The attempt fails if the protection mask denies that task the access it wants.
 - When a task creates a dynamic region, it may or may not give that region a name. If the dynamic region is named, any task can map to it as long as it knows the name and there is no protection violation. If a dynamic region is unnamed, a task can map to the region only if the task that created the dynamic region issues a Send By Reference directive addressed to the requesting task.
 - Any task can issue a Send By Reference directive to attach any region (except the task region) to another specific task. The reference sent includes the access rights with which the receiving task attaches to the region. The sending task can only grant access rights that it has itself.
 - Any task can map to a named static common region as long as there is no protection violation.

2.1.5.4 Region Definition Block (RDB) - You must create the Region Definition Block for each dynamically created region with the RDBDF\$ and RDBBK\$ macros if you are using MACRO-11. You can create the RDB with an 8-word single-precision array if you are using FORTRAN.

The RDB contains the:

- Region ID
- Region size in 32-word blocks
- Region name (in RAD50)
- Name of the partition (in RAD50) in which to create the region
- Region status word
- Region default protection

The RSX-11M Executive Reference Manual contains a complete description of creating and using the RDB.

2.2 MEMORY ALLOCATION

This section contains a textual discussion of the major functions and units of memory allocation. These are: checkpointing, swapping, memory compaction (the Shuffler), and loading (the Loader task). Flow diagrams of the major routines that are involved in these processes are included at the end of the memory allocation section.

This section also includes flow diagrams of the Loader, Shuffler, \$NXTSK, and related routines called by \$NXTSK.

2.2.1 Checkpointing

RSX-llM supports checkpointing in both user- and system-controlled partitions. The objective of checkpointing is to prevent lower priority tasks from using main memory and thereby preventing its use by higher priority tasks.

- 2.2.1.1 Checkpointing in User-controlled Partitions Checkpointing in a user-controlled partition occurs under one of two conditions:
 - A task requires the user-controlled main partition and has a higher priority than any other task currently occupying it or any of its subpartitions. Furthermore, all the occupying tasks must be checkpointable and have checkpointing enabled. If all of these conditions are met, the Executive checkpoints all the tasks that occupy the partition and gives control of the partition to the higher priority task.
 - A task requires a subpartition of the user-controlled main partition and a lower priority task occupies the main partition or the subpartition into which the task is to be loaded. Furthermore, the occupying task must be checkpointable and have checkpointing enabled. If all these conditions are met, the Executive checkpoints the task that occupies the partition and gives control of the subpartition to the higher priority task.

2.2.1.2 Checkpointing in System-controlled Partitions - Checkpointing in a system-controlled partition occurs as the result of a memory allocation failure. That is, the Executive tries to allocate a continuous section of a system-controlled partition to a task and it cannot find an unoccupied memory area of sufficient size. In this case, the Executive re-examines the list of allocated areas in the partition to determine whether it can form a free space of sufficient size by checkpointing one or more neighboring tasks. As with user-controlled partitions, each task considered for checkpointing must be of a lower priority, it must be checkpointable, and it must have checkpointing enabled.

The Executive scans the list of allocated areas in the partition looking for a series of neighboring tasks, possibly separated by gaps of free space, where each task satisfies the checkpoint criteria. If the sum of the memory occupied by such a series of tasks and gaps satisfies the memory requirement for the higher priority task, the tasks are checkpointed and the higher priority task is allocated the released memory. If such a series of neighboring tasks cannot be found and memory compaction was generated for the system, the Executive calls the Shuffler task to try to bring in the highest priority waiting task. The Shuffler does this by compacting memory and checkpointing a sufficient number of lower priority tasks that are not necessarily neighbors in the partition.

The checkpointing algorithm does have a limitation, however. If a large task is checkpointed and memory becomes fragmented by some smaller higher priority tasks, the smaller tasks block the large task from executing. The larger task can continue to be blocked until memory becomes free again by tasks exiting or being shuffled.

2.2.1.3 Checkpointing During Terminal Input Wait - Checkpointing during terminal input wait, a SYSGEN option, allows checkpointable tasks to be checkpointed while they are waiting for terminal input. This feature allows more copies of terminal I/O-bound tasks (for example, text editors) to run than normally could be run in a given amount of memory. This option frees memory for the long time periods while a user is thinking or between keystrokes. This is important for text editors that normally run at a high priority.

When the terminal driver dequeues a terminal input request for a checkpointable task that has checkpointing enabled, is not at AST state, and has ASTs enabled, the task is stopped from further execution. Thus, even if the task has not entered a wait state for the terminal input, its execution immediately stops when the request is dequeued by the terminal driver.

When a task is stopped in this manner, its effective priority within its partition drops to zero. (Its actual priority never changes.) Therefore, lower priority tasks ready to run can cause a higher priority task that is waiting for terminal input to be checkpointed. When the terminal input to the checkpointed higher-priority task is completed, the Executive removes the stop condition and the task can be brought back into memory. If necessary, the Executive displaces lower priority tasks to make room for it.

Normally, a task that was checkpointed for terminal input is not brought back into memory until its terminal request is satisfied. This is true even if memory becomes available during the wait. The only way the task can execute further, prior to the completion of the terminal input, is to receive an AST.

2.2.2 Disk Swapping

Disk swapping allows more tasks of equal priority to alternate the use of memory into which they cannot be loaded simultaneously. Swapping is accomplished by varying task priorities so that tasks of the same priority checkpoint each other periodically. Checkpointing is the only Executive feature required for swapping to operate.

Swapping does not affect the basic checkpointing algorithm as described under Checkpointing. For example, a task can only checkpoint another task of lower priority, never one of equal or higher priority. However, when swapping is enabled, the priority of tasks resident in memory varies with time (the installed priority of tasks remains unchanged - the swapping priority is for swapping only). The task's priority with respect to all of the other system resources does not change.

Two SYSGEN parameters control the swapping algorithm:

- Swapping interval. This parameter (S\$\$WPC) determines how often the Executive scans the partition lists to modify the swapping priority of resident tasks. A typical swapping interval might be about one-half second and is entered during SYSGEN as 30 (for 30 ticks or one-half second).
- Swapping priority range. This parameter (S\$\$WPR) is the absolute value of the range through which a task's priority varies from its installed priority. A typical value is 5. This value would cause a task's memory priority to vary from P+5 to P-5, where P is the priority set for the task when it was installed. The installed priority is in the word, L\$BPRI, in the task image label block. The swapping priority is in the byte, H.SPRI, in the task header.

The key element of the swapping algorithm is the H.SPRI byte in the task's header, which is that task's swapping priority. The symbol, S\$\$WPR, is equated to the swapping priority range that is specified during SYSGEN. In a swapping system, each time a task is read into memory as the result of an initial task load or checkpoint read, the swapping priority byte in the task header is initialized to +S\$\$WPR (yielding a memory priority of the running priority plus the swapping priority). On the occurrence of each swapping interval, the swapping priority of each resident task is reduced by one until it reaches -S\$WPR (yielding a memory priority of the running priority minus the swapping priority). The Executive determines whether a nonresident task should checkpoint a resident task by comparing the running priority of the nonresident task with the sum of the running and swapping priorities of the resident task. If a possibility exists that checkpointing within a main partition might occur based on the new priorities, the Executive executes its partition allocation algorithm for that main partition.

The following points should be considered when specifying swapping parameters:

- The swapping interval should be approximately five times the round-robin scheduling interval. Round-robin scheduling is a SYSGEN option that periodically rotates the execution of tasks of equal priority that are in the System Task Directory (STD).
- From the time a task is loaded into memory, the average time (in clock ticks 1 tick=1/60 of a second for a line frequency clock (1/50 of a second for 50 cycle machines) it takes for a task of the same running priority to checkpoint it is roughly equal to the product of the two swapping parameters.

- Tasks of the same running priority tend to get the same amount of time in memory. Tasks whose running priorities differ by less than the swapping range tend to receive different amounts of time in memory with the higher priority tasks getting much more time. When many tasks compete for memory and they are of different priorities, excessive checkpointing can occur. Therefore, tasks that use the swapping algorithm should have the same priority.
- In a system that supports checkpointing during terminal input, terminal input is also a factor in causing checkpointing to occur. Editors and other interactive tasks normally should run at a higher priority than more compute-bound tasks. The higher priority increases the terminal response time. Otherwise, the editor would have to compete with other tasks (for example, utilities) most of which run at a priority of 50. However, when an editor is waiting for terminal input, any lower priority task can checkpoint it. As soon as its input is complete, the editor can come back into memory by checkpointing the lower priority task. It is possible in a highly interactive system for the naturally high checkpoint rate to eliminate the need for the Executive swapping code to service many tasks of equal priority.

2.2.3 Shuffler (Memory Compaction)

\$NXTSK, which is an Executive routine, attempts to find space in a partition for each waiting task. \$NXTSK requests the Shuffler task after an allocation failure within the system-controlled partition takes place. The Shuffler receives no information from the Executive when it begins execution; it merely begins examining the partitions in the system starting from the beginning each time it is run. When the Shuffler encounters a system-controlled partition, the Shuffler makes two passes through the PCB list of subpartitions in an attempt to make room for the task or tasks in the main partition wait gueue. In its first pass, the Shuffler attempts to remove all the holes in the partition. In addition, tasks that are stopped for terminal input are unconditionally checkpointed, if checkpointing during terminal input is included (a SYSGEN option).

Tasks that have been fixed in memory can be shuffled. However, the following occupants of a system-controlled partition cannot be shuffled. For this reason, these memory residents cause free space to be fragmented in the partition.

- Loaded device drivers
- Tasks that are connected to the ICS/ICR-11 or UDC-11 drivers
- A task whose partition was previously marked by the Shuffler as having a long outstanding I/O and whose I/O count has yet to drop to zero. Typical examples of this case are:
 - Tasks that issued terminal reads and cannot be checkpointed
 - LPAll or tasks that have synchronous functions being serviced
 - Tasks using the Connect to Interrupt Vector directive
- Tasks that have been aborted and fixed by the Executive because of a memory parity error
- Dynamically-created common regions

When such a partition is encountered, the Shuffler treats the start of the subpartition as the end of an area within the main system-controlled partition. It treats each area as though it were a separate main partition. The tasks that occupy an area are shuffled until only one hole remains in the area.

In its second pass, the Shuffler creates a list of all the tasks that occupy an area of the main partition. This list is in reverse priority order. The Shuffler then examines this list in an attempt to find tasks that the waiting task can checkpoint. The Executive routine (\$TSTCP) determines if the waiting task can checkpoint the task that owns the partition, which is the "owner task". If this scan of the list indicates that the sum of space available from holes and checkpointable tasks is sufficient for the waiting task, the Shuffler scans the list a second time to checkpoint (using \$ICHKP) as many owner tasks as necessary.

To shuffle a task, the Shuffler first "freezes" the task in memory to prevent it from being checkpointed. Then, using the Executive routine, \$BLXIO, it moves the task image in the partition. The Shuffler executes this move while in system state (thus preventing context switching) and it does the move in 256.-word blocks. Therefore, QIO speed optimizations with a large BLXIO transfer vector, a SYSGEN option, increases the response time for a very high priority real-time task.

The Shuffler's algorithm consists of two passes through the system-controlled partition; it executes the steps in each pass iteratively until the partition reaches a stable state.

2.2.3.1 The Shuffler's First Pass - In the first pass, the Shuffler starts at the beginning of the system-controlled partition and tries to move (shuffle) all tasks that are positioned above a gap of free space down to the base of the free space. When possible, it also checkpoints any tasks it encounters that are waiting for terminal input. Task shuffling occurs in the following steps:

- The Shuffler blocks the task from further execution and allocates the free space below the task.
- If necessary, the Shuffler waits for the task's outstanding I/O count to reach zero by checking it at intervals of approximately one-eighth of a second. If the task I/O count does not drop to zero in about one-half of a second, the Shuffler marks the task's partition as having long-outstanding I/O, deallocates the free space below the task, and restarts its first pass scan of the partition. The Executive clears the task's partition long-outstanding I/O indicator when it reduces the task's I/O count to zero.
- If the task's I/O count drops to zero within one-half of a second, the Shuffler moves the task down to the base of the free space. The speed of this move increases if the QIO speed optimizations were included during phase 1 of SYSGEN and a large BLXIO transfer vector was allocated.
- After the Shuffler completes the move, it unblocks the task to allow further execution and then it deallocates free space (now above the task).

When the Shuffler completes its first pass, all free space in the partition has been merged into one hole at the top of the partition. However, there may be additional holes below those tasks that cannot be shuffled.

2.2.3.2 The Shuffler's Second Pass - If the Shuffler completes its first pass and some tasks are still actively competing for memory in the partition, the Shuffler executes its second pass algorithm. In the second pass, the Shuffler creates an ascending, priority-ordered list of the tasks in the partition. It then uses this list to determine if the size of the waiting task is less than the sum of the free space in the partition and the size of one or more of the lower priority tasks that can be checkpointed. If the waiting task's size is less than this sum, the lower priority tasks are checkpointed. The Shuffler then restarts its first-pass algorithm to accumulate the freed-up space and allocate it to the waiting task. If tasks that cannot be shuffled fragment the system-controlled partition, the Shuffler executes the second-pass algorithm once for each fragment of the partition.

The RSX-llM philosophy of checkpointing in system-controlled partitions avoids preempting memory unless it can actually be used. When the Shuffler is active but not actually executing - for example, waiting for task I/O or a checkpointing operation to complete - it places itself in a state in which it may be checkpointed by any task. No lower priority task is checkpointed unless it is known beforehand that enough continuous space can be made available to load the higher priority task. The one exception is a checkpointable task waiting for terminal input. This task is swapped out unconditionally to make room for other tasks whenever the Shuffler is activated. It is not brought back in until the terminal input request is completed.

If the Shuffler completes its second pass without finding space for the waiting task, it searches for the next system-controlled partition in the system and exits if none exists.

2.2.4 The Loader (the System Loader Task)

The Loader, which is a resident RSX-llM system task, has three functions:

- Reading a task, which is either about to start executing or is being fixed, into memory
- Performing a checkpoint write of a task image from memory to disk
- Performing a checkpoint read of a task image from disk into memory (resuming checkpointed tasks)

The Loader has the single objective of emptying its receive gueue of tasks waiting for its attention.

The Loader's receive queue, which consists of a list of TCBs, is ordered by priority. When \$NXTSK or one of its associated routines determines that action by the Loader is required, the TCB of the task to be moved to or from the disk is placed in the Loader's receive queue and the Executive requests Loader execution. After it has begun

executing, the Loader examines two bits in the task status word of each TCB: the swap bit and the out-of-memory bit. These bits determine the Loader's action. The interpretation of these bits is as follows:

Swap Bit (TS.CKP)	Out-of-Memory Bit (TS.OUT)	Action
1	1	The task is read back into memory from its checkpoint area.
1	0	The task is written from memory into its checkpoint area.
0	1	The task is read into memory from its load image.
0	0	Illegal combination

When the Loader removes the next entry from its gueue, it assumes memory is available if the task is about to be read (it has been allocated by \$NXTSK). After the Loader writes a task into its swap area, it calls the release partition routine that in turn calls \$NXTSK to select the next task that will occupy the partition.

The Loader performs several other functions associated with moving tasks to and from disk. These tasks include:

Task Load and Checkpoint Read

- Copy the task header into the Dynamic Storage Region
- Initialize task swapping priority
- Declare receive and receive-by-reference ASTs for the task if the appropriate gueues are not empty

Checkpoint Read Only

 Release space held by the task within a dynamic checkpoint space file

Task Load Only

 Map the task's address windows to the task image and attach static commons

Checkpoint Write Only

- Deallocate the Dynamic Storage Region copy of the task's header
- Place the task's TCB in the partition wait queue
- Release the partition previously owned by the task. This
 results in a call to \$NXTSK to reallocate the partition.

2.2.5 The \$NXTSK Routine

\$NXTSK is a routine in the Executive module, REQSB. \$NXTSK works with both user- and system-controlled partitions and takes a single input: the PCB address of the partition to be reallocated. \$NXTSK examines all the TCBs in the partition wait queue of the specified PCB and attempts to find space in the partition for each waiting task. When all TCBs in the queue have been examined, a return to the caller is executed.

\$NXTSK is called by routines that need partitions; it assigns a partition to the highest priority task waiting to occupy the partition.

The inputs and functions of \$NXTSK are listed in the following text.

2.2.5.1 \$NXTSK Inputs - The only input to \$NXTSK is the address, which is in register 0, of the PCB of the partition to assign.

2.2.5.2 \$NXTSK Functions - \$NXTSK has five possible functions:

- The partition is not currently busy and a task is waiting to occupy the partition. \$NXTSK assigns the partition to the waiting task and places a request on the Loader queue to load the task.
- 2. The partition is currently occupied by a task that is either of higher priority than all the waiting tasks or is not checkpointable. In this situation, \$NXTSK cannot assign the partition to another task.
- 3. The partition is currently occupied by a lower priority checkpointable task. \$NXTSK places a request in the Loader queue to checkpoint the task that owns the partition.
- 4. The highest priority task waiting to occupy the partition needs the main partition that is currently occupied by one or more tasks that are either of higher priority or are not checkpointable. In this situation, \$NXTSK cannot assign the partition to another task.
- 5. The highest priority task waiting to occupy the partition requires the main partition that is currently occupied by one or more checkpointable tasks of lower priority. \$NXTSK places a request in the Loader gueue to checkpoint each task.
- 2.2.5.3 \$NXTSK Operation in a User-controlled Partition If the partition being reallocated is a task partition, \$NXTSK first determines if the requested space in the partition is unused. If it is, the task is assigned the space and a request to read the task into memory is issued to the Loader.

If the space is being used by another task, \$NXTSK calls \$TSTCP to determine if the task or tasks occupying the partition can be checkpointed by the requesting task. If the task or tasks can be checkpointed by the requesting task and if checkpointing will produce enough space for the requesting task, \$NXTSK calls \$ICHKP to initiate a checkpoint of the task or tasks that occupy the space.

When the Loader completes the checkpoint write of the tasks that occupy the partition, it calls \$NXTSK again to allow the requesting task to find the newly vacated space in the partition.

2.2.5.4 \$NXTSK Operation in a System-controlled Partition - If the partition being reallocated is a system-controlled partition, \$NXTSK calls \$FNDSP to find a hole in the partition large enough for the requesting task. If such a hole is found, \$NXTSK assigns to the requesting task as much of the space in the hole as it requires, and issues a request to the Loader to read the task into memory.

If \$NXTSK cannot find a satisfactory hole, it searches for a contiquous combination of holes and checkpointable tasks large enough to form a single hole large enough for the requesting task. \$NXTSK calls \$TSTCP to determine if the memory resident task or tasks can be checkpointed by the requesting task. If such a combination is found, \$NXTSK calls \$ICHKP to initiate a checkpoint of each task in the potential hole. \$NXTSK then returns to the caller, relying on the Loader to call it again when checkpointing is complete.

Finally, if no combination of contiguous holes and checkpointable tasks can be found, and if the Shuffler is installed, \$NXTSK requests execution of the Shuffler.

2.2.6 Routines That Call \$NXTSK

Examining the routines that call \$NXTSK yields information on the circumstances under which reallocation of a partition occurs. Figure 2-2 shows that such routines tend to fall into two groups. Routines in the first group call \$NXTSK directly (1 through 5 and A through G in Figure 2-2). Routines in the second group call routines A through G. The numbers and letters in Figure 2-2 are an index into a table of short routine descriptions that follow the Figure.

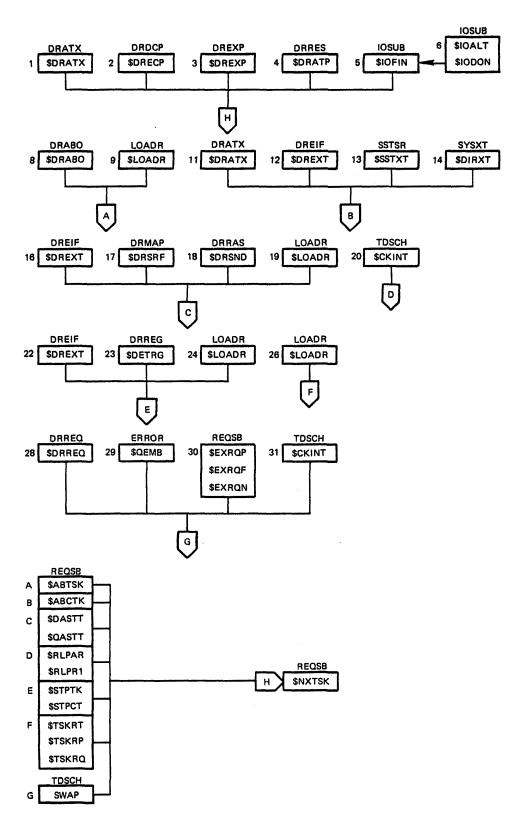


Figure 2-2 Routines That Call \$NXTSK

- 2.2.6.1 Routine Description The numbers and letters in the following text are keyed to the numbers and letters in Figure 2-2.
 - \$DRATX DRATX Module AST exit directive Calls \$NXTSK if task is stopped at task state.
 - 2. \$DRECP DRECP Module Enable Checkpointing directive Calls \$NXTSK when checkpointable task enables checkpointing
 - 3. \$DREXP DREXP Module Extend Task directive Returns to \$NXTSK to reallocate the partition after changing the P.SIZE word in the task's PCB.
 - 4. \$DRATP DRRES Module Alter Task Priority directive Calls \$NXTSK to reallocate the partition due to changed task priority.
 - 5. \$IOFIN IOSUB Module I/O finish
 Calls \$NXTSK after completion of what has previously been
 declared a long-outstanding I/O. An I/O operation is
 declared a long I/O by the Shuffler if the operation does not
 finish in 1/2 second.

Routine that calls \$IOFIN:

- \$IODON/\$IOALT IOSUB Module I/O done Calls \$IOFIN unconditionally. Most drivers call \$IOALT, \$IODON, or \$IOFIN.
- A. \$ABTSK REQSB Module Abort task by TCB address
 Calls \$NXTSK after the task has been marked for abort.

Routines that call \$ABTSK:

- 8. \$DRABO DRABO Module Abort Task directive Calls \$ABTSK to actually abort the task.
- \$LOADR LOADR Module Task Loader Calls \$ABTSK if a disk read error occurred while reading task.
- B. \$ABCTK REQSB Module Abort current task Calls \$ABTSK to abort task.

Routines that call \$ABCTK:

- 11. \$DRATX DRATX Module AST Exit directive
 Calls \$ABCTK when address check of task stack fails;
 \$ABCTK aborts the task and the next AST is not acted
 upon.
- 12. \$DREXT DREIF Module Exit directive Calls \$ABCTK if task is already marked for abort.
- 13. SSTXT SSTSR Module Common SST processing routine Calls \$ABCTK if task has no SST vector.
- C. \$DASTT/\$QASTT REQSB Module Declare or Queue (non-I/O) AST
 to task.
 \$QASTT calls \$NXTSK if task is not stopped; \$DASTT calls
 \$QASTT.

Routines that call SDASTT:

- 16. \$DREXT DREIF Module Exit directive
 Calls \$DASTT to act upon floating-point, powerfail, and
 receive ASTs on task exit.
- 17. \$DRSRF DRMAP Module Send-by-Reference directive Calls \$DASTT to act upon receive-by-reference AST for receiver.
- 18. \$DRSND DRRAS Module Send Data directive Calls \$DASTT to act upon receive AST for receiver.
- 19. \$LOADR LOADR Module Task loader Calls \$DASTT for receive and receive-by-reference ASTs if task queues are not empty when task is brought into memory.

Routine that calls \$QASTT:

- 20. \$CKINT TDSCH Module Clock interrupt service routine Calls \$QASTT when mark time request has expired.
- D. \$RLPAR/\$RLPRI REQSB Module Release partition Calls \$NXTSK to allow next highest priority task to occupy partition.

Routines that call \$RLPAR/\$RLPR1:

- 22. DREXT DREIF Module Exit directive Calls \$RLPAR when task exit is complete.
- 23. \$DETRG DRREG Module Detach Region directive Calls \$RLPRl when a dynamic common region with a "delete on last detach" attribute is detached by the last task and is deallocated from a system-controlled partition.
- 24. \$LOADR LOADR Module Task loader Calls \$RLPAR upon completion of a checkpoint write of a task.
- E. \$STPCT/\$STPTK REQSB Module Stop (current) task Calls \$NXTSK after setting task's stop bit.

Routine that calls \$STPCT/\$STPTK:

- 26. \$LOADR LOADR Module Task loader Calls \$STPCT to set its own stop bit when waiting for work. Note: Many privileged system tasks call \$STPCT.
- F. \$TSKRT/\$TSKRP/\$TSKRQ REGSB Module Request task execution Calls \$NXTSK to force reallocation of task's partition, if task is not fixed or active.

Routines that call \$TSKRT/\$TSKRP/\$TSKRQ

- 28. \$DRREQ DRREQ Module Task Request directive Calls \$TSKRP to request desired task.
- 29. \$QEMB ERROR Module Queue error message block Calls \$TSKRT to request error logger to run.

- 30. \$EXRQP/\$EXRQF/\$EXRQN REQSB Module Execute task request Calls \$TSKRT after clearing task's stop bit on internal executive request of task (TKTN, LOADR, etc).
- 31. \$CKINT TDSCH Module Clock interrupt service routines Calls \$TSKRT to carry out a schedule request after a clock gueue has expired.
- G. SWAP TDSCH Module Disk swapping algorithm Calls \$NXTSK during scan of all partitions in system. \$NXTSK is called:
 - Whenever a system-controlled partition is encountered
 - Whenever the swapping priority of a task is reduced

2.2.7 Routines That \$NXTSK Calls

2.2.7.1 \$CHKPT Routine - \$CHKPT checkpoints a task. When an Executive routine calls \$CHKPT, all the conditions necessary for a task to be checkpointable have been met. If dynamic allocation of checkpoint space has been selected as a SYSGEN option, \$CHKPT searches the checkpoint files for available space by using the \$FNDSP routine. If this search fails, or if dynamic allocation of checkpoint space was not a selected option, \$CHKPT determines if checkpoint space is allocated within the task's disk image file. If checkpoint space is found in either the dynamic checkpoint space or the task image file, \$CHKPT issues a checkpoint request to the Loader and requests execution of the Loader.

If no checkpoint space can be found, \$CHKPT requests the TKTN task to print a message that so informs the user.

The method used by the Executive to allocate space within the checkpoint file is identical to the method used to allocate space within a system-controlled partition. In both cases, a main PCB describes the overall area of allocation (main partition or entire disk file) and a sub-PCB describes a single fragment of the area (sub-partition for the task or portion of the checkpoint file reserved for one task image). In addition, both algorithms use \$FNDSP to find a hole of the required size within the area described by the main PCB.

2.2.8 \$FNDSP Routine

\$FNDSP tries to find space in a PCB list in a system-controlled partition for a PCB. It searches through the list until it finds a large enough hole. If it finds a large enough hole, \$FNDSP links the PCB into the list. If it does not find a hole, \$FNDSP sets the C-bit before returning to the calling routine.

2.2.9 \$ICHKP Routine

Other routines call \$ICHKP to begin the checkpointing process for a task that owns a partition. \$ICHKP has three possible functions:

- 1. If the task is already being checkpointed, \$ICHKP immediately executes a return to the calling routine.
- 2. If the task is being read into memory or has outstanding I/O, \$ICHKP marks the task for checkpointing. If the task is being read into memory, the Loader detects that the task is marked for checkpointing when the read is done and immediately checkpoints the task. If the task has I/O outstanding, \$IOFIN in the IOSUB module is entered when the I/O is complete. \$IOFIN detects the checkpoint request and checkpoints the task. However, terminal I/O that has been buffered is not included in the I/O count of a task.
- If neither 1. nor 2. above are true, \$ICHKP calls \$CHKPT to checkpoint the task.

2.2.10 \$TSTCP Routine

Other routines call \$TSTCP to determine if a task that owns space in a partition (owner task) can be checkpointed by a task that is requesting space in the same partition (requesting task). There are two conditions that must be met before the requesting task can checkpoint the owner task.

First, the owner task must be eligible for checkpointing. A task is eligible for checkpointing if:

- It is neither fixed nor being fixed
- It was taskbuilt or installed as checkpointable
- It does not have checkpointing disabled

The second condition for checkpointability is that the requesting task must have a default priority higher than the effective priority of the owner task. Two factors may make the effective priority of a memory-resident task different from its default priority:

- Tasks that are stopped, or that are stopped for terminal input and do not have outstanding ASTs, have an effective priority of zero.
- 2. In a system that includes the disk swapping of equal or nearly equal priority tasks, the effective priority of a task that is in memory is the sum of its default priority (from the TCB) and its swapping priority (from the task header).

If these two conditions are met, the calling routine is informed that the requesting task can checkpoint the owner task. Note that the presence of outstanding I/O belonging to the owner task is not detected by this routine.

2.3 MEMORY ALLOCATION FLOW DIAGRAMS

Memory allocation within partitions is managed by two types of routines in RSX-llM. Routines in the first group detect the presence of conditions that indicate reallocation of space within a partition is necessary.

Routines in the second group (headed by the \$NXTSK routine) find or create space for a task within a partition, and load the task into that space. In other words, the first group of routines determines when memory allocation should take place and the second group of routines does the reallocation.

This flow diagram section contains flow diagrams of \$NXTSK and the routines that it invokes. It also contains flow diagrams of the Loader, Shuffler, \$ALOCB, and \$DEACB.

2.3.1 \$ALCLK Logical Flow Diagram

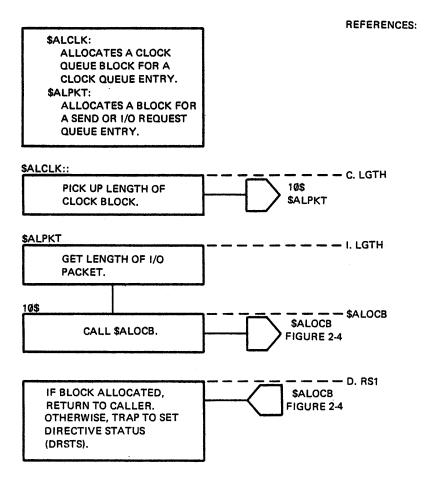


Figure 2-3 \$ALCLK Logical Flow Diagram

2.3.2 \$ALOCB Logical Flow Diagram

REFERENCES: ---- SYSCM, \$CRAVL, \$PKAVL \$ALOCB BEGINS WITH A REFERENCE TO \$CRAVL IN SYSCM, \$CRAVL-2 CONTAINS A 3 USED TO ROUND A REQUEST UP TO THE NEXT 4-BYTE BOUNDARY. (A REQUEST FOR 10. BYTES GETS 12. BYTES.) \$CRAVL IS THE LIST HEAD FOR THE LIST OF DYNAMIC FREE MEMORY BLOCKS. \$CRAVL + 2 IS ZERO BECAUSE IT IS THE LENGTH OF THE FREE BLOCK REPRE-SENTED BY \$CRAVL. THERE ARE TWO ENTRY POINTS: \$ALOCB AND \$ALOC1. \$ALOCB MAKES USE OF PRE-ALLOCATION OF I/O PACKETS, A SYSGEN OPTION. \$ALOC1 ALLOCATES BLOCKS FROM DYNAMIC MEMORY OTHER THAN THAT POINTED TO BY \$CRAVL \$ALOCB:: ---- \$CRAVL POINT TO ALLOCATION MASK WORD (\$CRAVL-2). **ROUND TO NEXT 4-BYTE** BOUNDARY. IS REQUEST Ø LENGTH? PART 2 PART 2

Figure 2-4 \$ALOCB Logical Flow Diagram (Part 1 of 2)

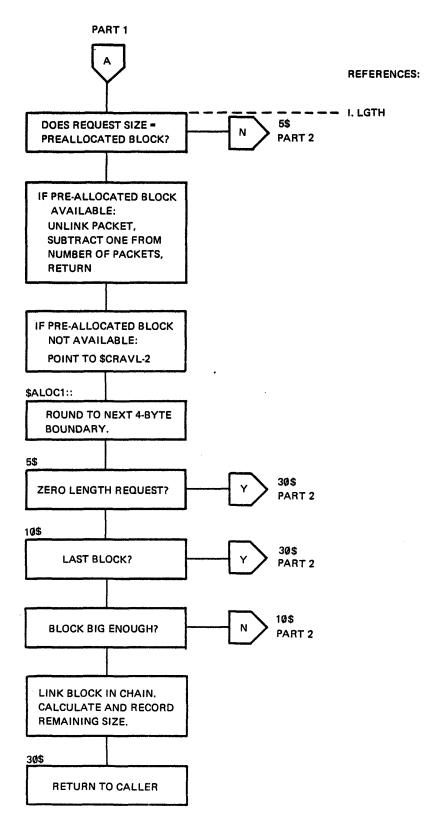


Figure 2-4 \$ALOCB Logical Flow Diagram (Part 2 of 2)

2.3.3 \$CHKPT Logical Flow Diagram

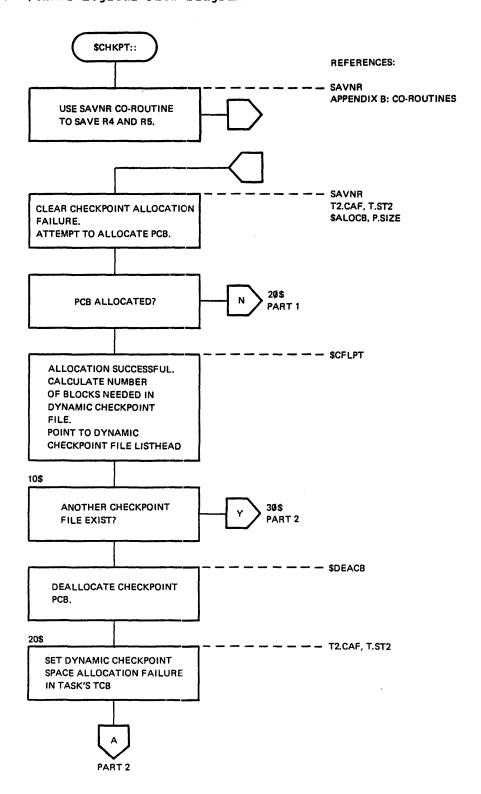


Figure 2-5 \$CHKPT Logical Flow Diagram (Part 1 of 2)

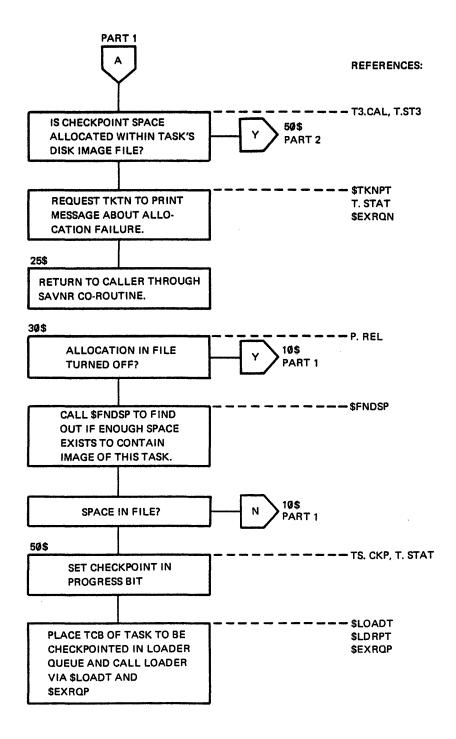


Figure 2-5 \$CHKPT Logical Flow Diagram (Part 2 of 2)

2.3.4 \$DECLK-\$DEPKT-\$DEACB Logical Flow Diagram

REFERENCES:

\$DECLK::
DEALLOCATES A CLOCK
QUEUE BLOCK.

\$DEPKT::
DEALLOCATES A SEND
OR I/O REQUEST
BLOCK.

\$DEACB::

DEALLOCATES A STORAGE BLOCK (PACKET)
FROM A LIST OF PREALLOCATED PACKETS
FROM POOL SPACE.
OPERATIONAL IF PREALLOCATED I/O PACKETS
ARE AVAILABLE (Q\$\$OPT
OPTION IN SYSGEN).
OTHERWISE, \$DEAC1::
IS USED.

\$DEAC1::

DEALLOCATES A STORAGE BLOCK FROM DYNAMIC MEMORY OTHER THAN POOL SPACE. IF A LOWER OR HIGHER ADJACENT BLOCK IS FREE, THE BLOCKS ARE MERGED TO PRODUCE ONE FREE BLOCK.

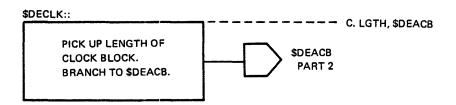


Figure 2-6 \$DECLK-\$DEPKT-\$DEACB Logical Flow Diagram (Part 1 of 5)

REFERENCES:

\$DEPKT:: PICK UP LENGTH OF I/O PACKET. \$DEACB:: ---- \$CRAVL (SEE \$CRAVL DISCUSSION IN POINT TO ALLOCATION \$ALOCB LOGICAL FLOW DIAGRAM) MASK WORD (\$CRAVL **ROUND LENGTH TO NEXT** 4-BYTE BOUNDARY. LENGTH = Ø? PART 5 NO BLOCK TO RELEASE. ---- I. LGTH 30\$ LENGTH = I/O PACKET LENGTH? PART 3 - - - SPKMAX MAXIMUM NUMBER OF 30\$ PACKETS ALLOCATED? PART 3 INCREMENT COUNT OF **AVAILABLE PACKETS BY 1.** LINK PACKET INTO LIST

Figure 2-6 \$DECLK-\$DEPKT-\$DEACB Logical Flow Diagram (Part 2 of 5)

RETURN TO CALLER.

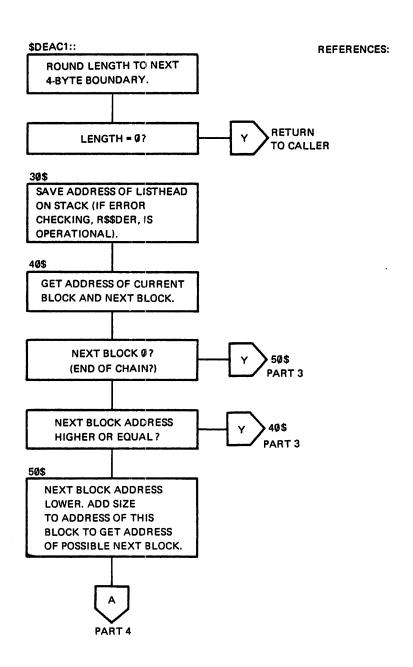


Figure 2-6 \$DECLK-\$DEPKT-\$DEACB Logical Flow Diagram (Part 3 of 5)

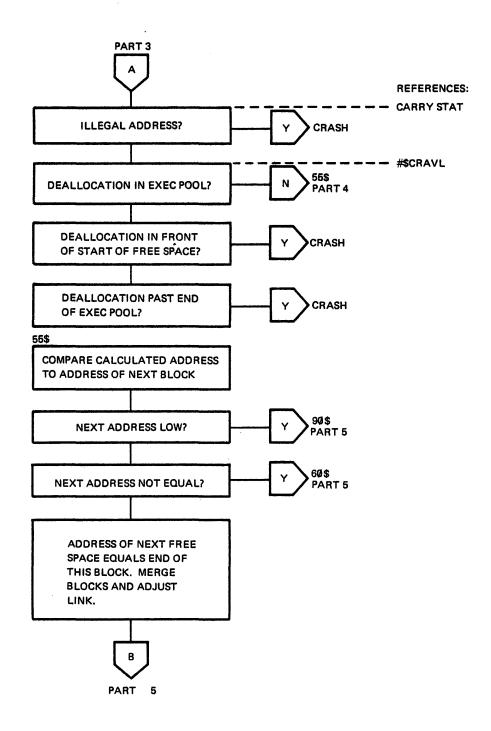


Figure 2-6 \$DECLK-\$DEPKT-\$DEACB Logical Flow Diagram (Part 4 of 5)

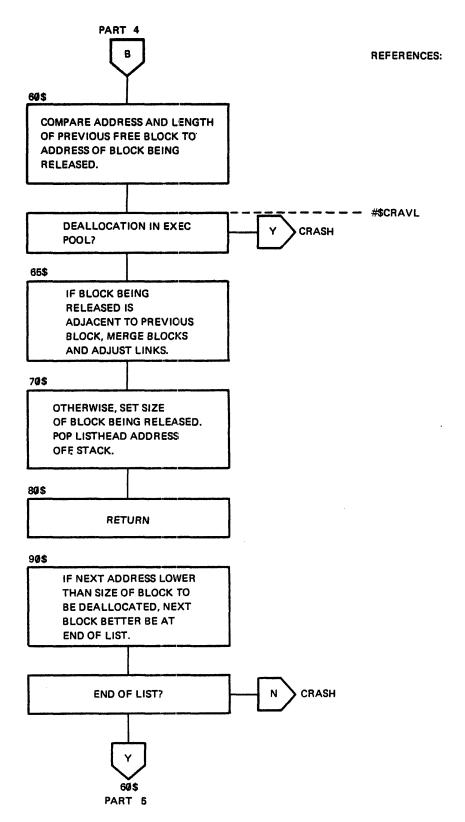


Figure 2-6 \$DECLK-\$DEPKT-\$DEACB Logical Flow Diagram (Part 5 of 5)

2.3.5 \$PNDSP Logical Flow Diagram

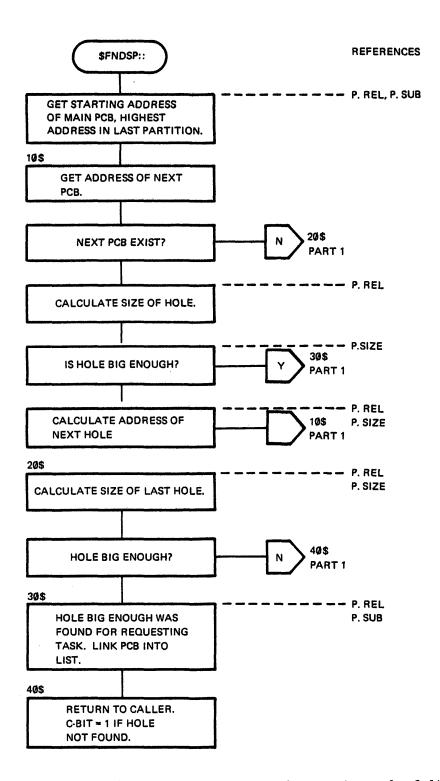


Figure 2-7 \$FNDSP Logical Flow Diagram (Part 1 of 1)

2.3.6 \$ICHKP Logical Flow Diagram

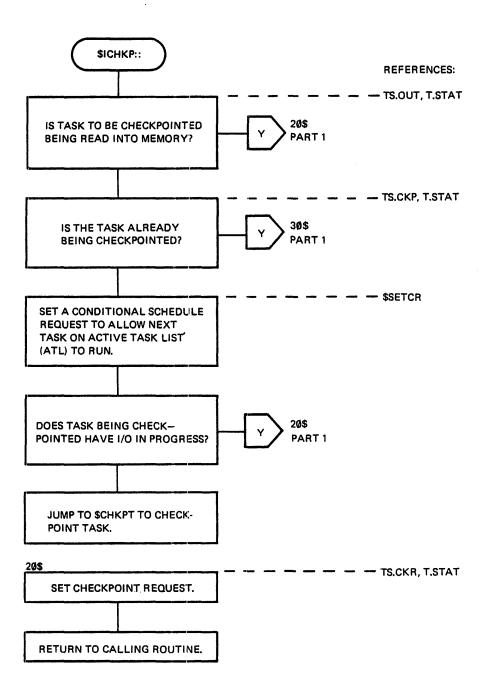


Figure 2-8 \$ICHKP Logical Flow Diagram (Part 1 of 1)

2.3.7 \$NXTSK Logical Flow Diagram

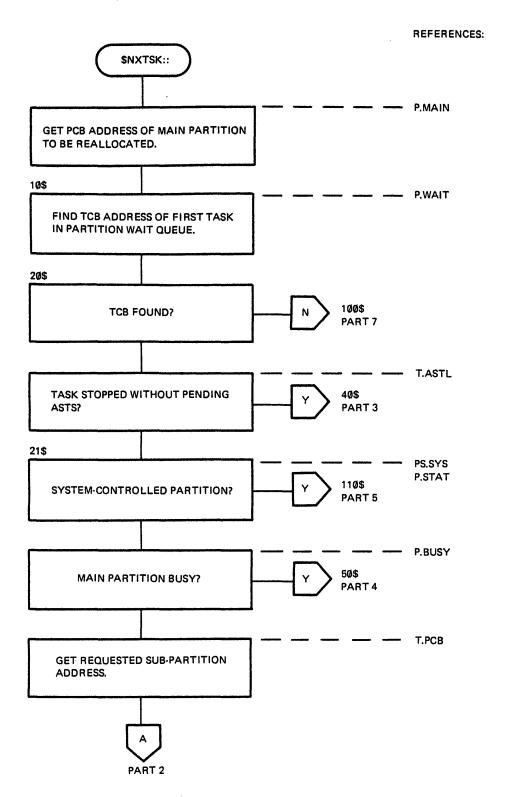


Figure 2-9 \$NXTSK Logical Flow Diagram (Part 1 of 7)

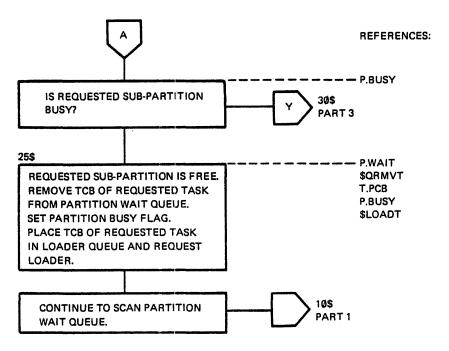


Figure 2-9 \$NXTSK Logical Flow Diagram (Part 2 of 7)

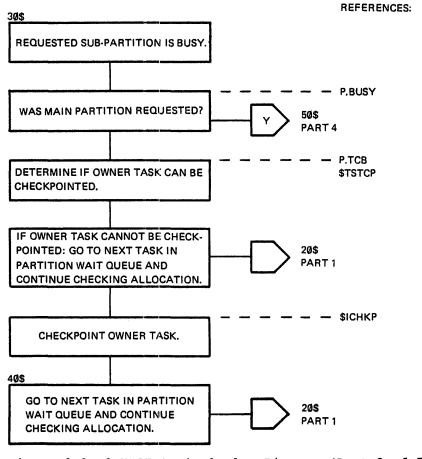


Figure 2-9 \$NXTSK Logical Flow Diagram (Part 3 of 7)

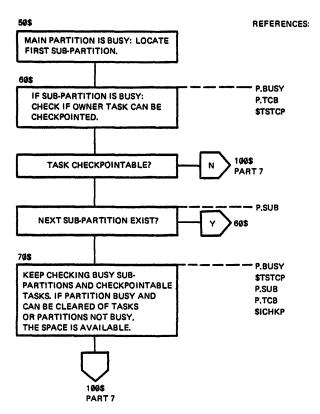


Figure 2-9 \$NXTSK Logical Flow Diagram (Part 4 of 7)

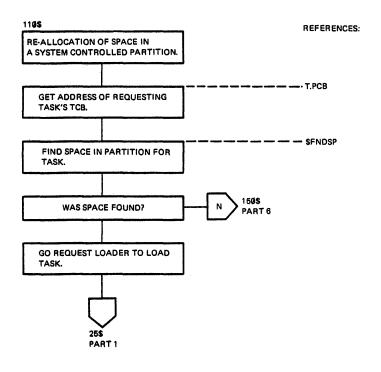


Figure 2-9 \$NXTSK Logical Flow Diagram (Part 5 of 7)

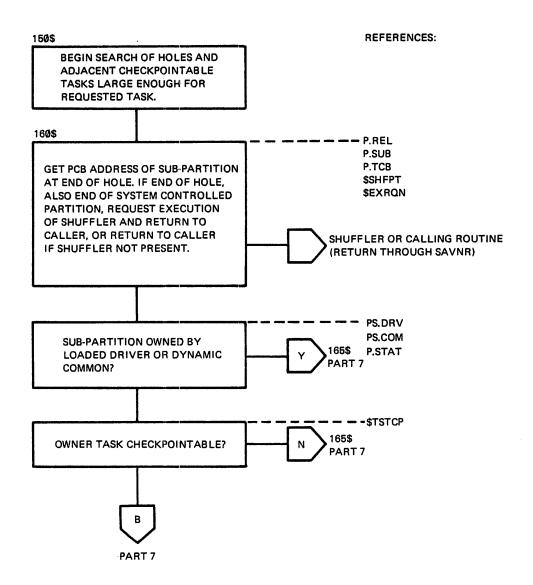


Figure 2-9 \$NXTSK Logical Flow Diagram (Part 6 of 7)

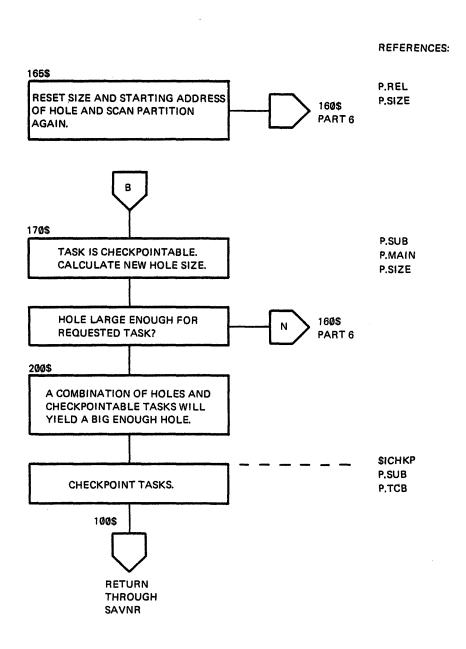


Figure 2-9 \$NXTSK Logical Flow Diagram (Part 7 of 7)

2.3.8 \$TSTCP Logical Flow Diagram

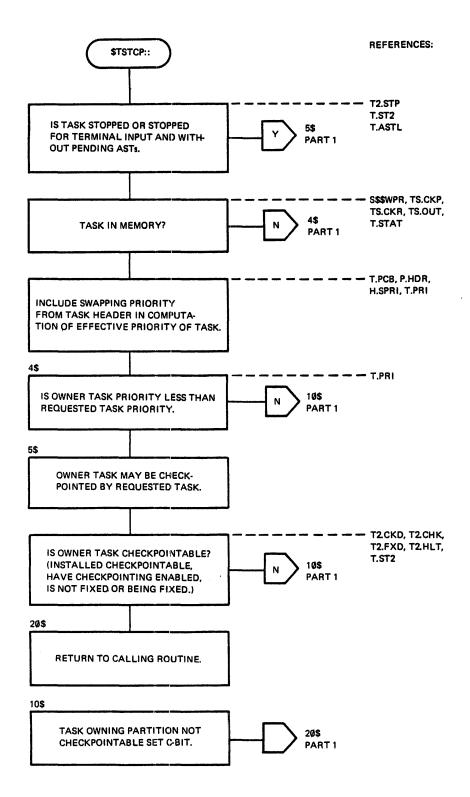


Figure 2-10 \$TSTCP Logical Flow Diagram (Part 1 of 1)

2.3.9 Loader Logical Flow Diagram

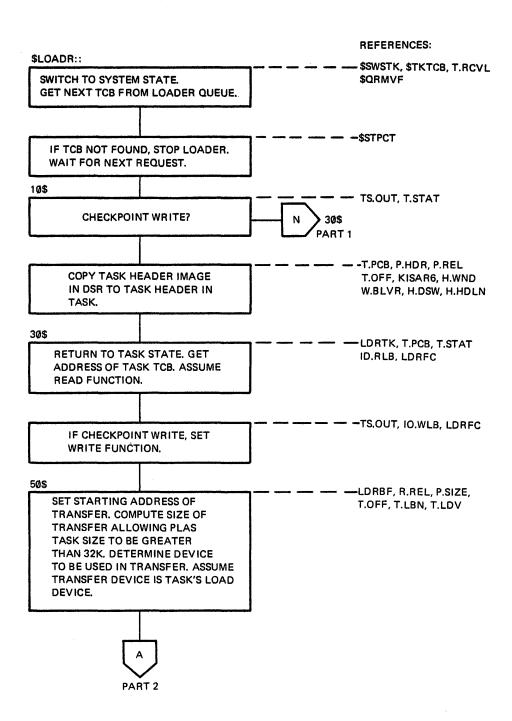


Figure 2-11 Loader Logical Flow Diagram (Part 1 of 8)

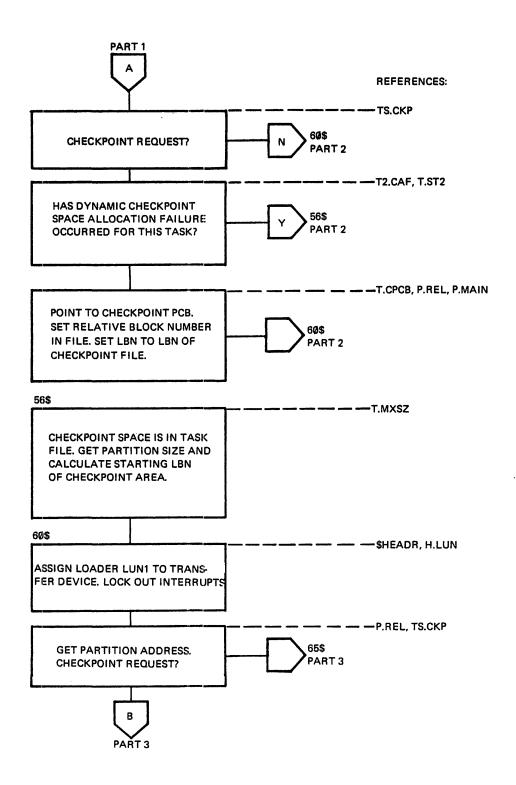


Figure 2-11 Loader Logical Flow Diagram (Part 2 of 8)

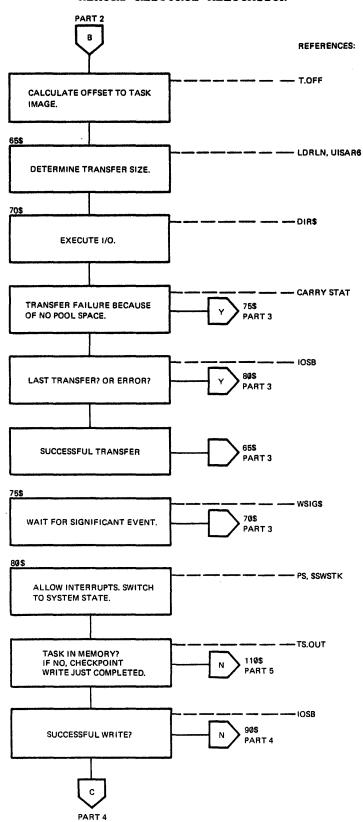


Figure 2-11 Loader Logical Flow Diagram (Part 3 of 8)

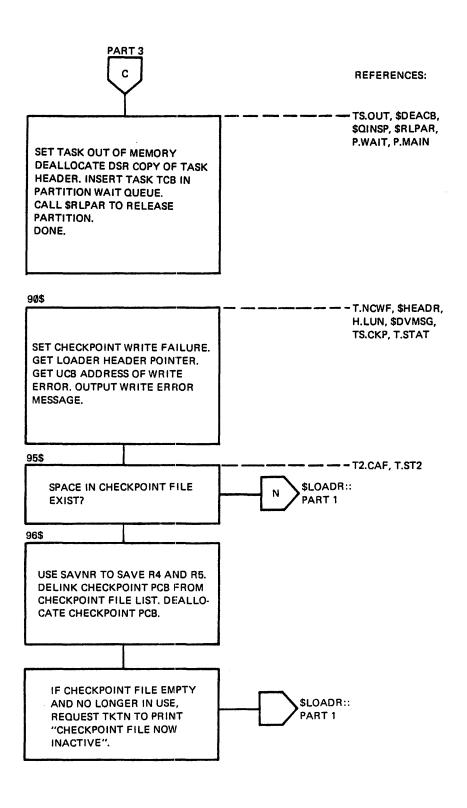


Figure 2-11 Loader Logical Flow Diagram (Part 4 of 8)

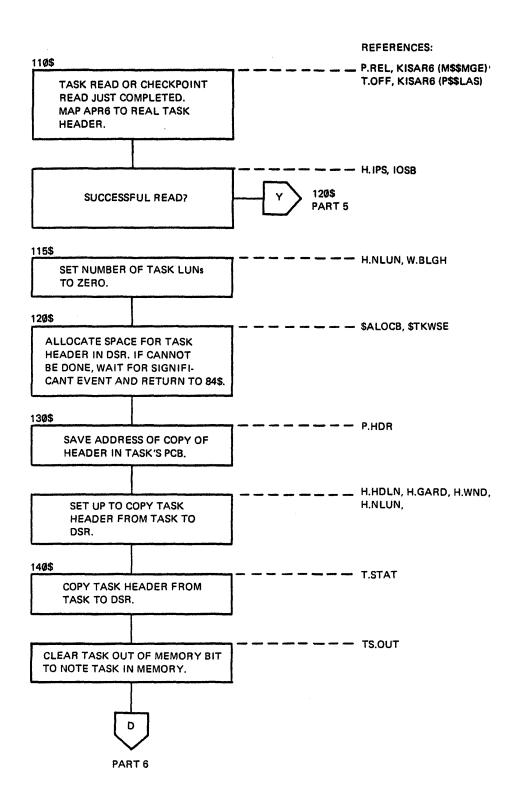


Figure 2-11 Loader Logical Flow Diagram (Part 5 of 8)

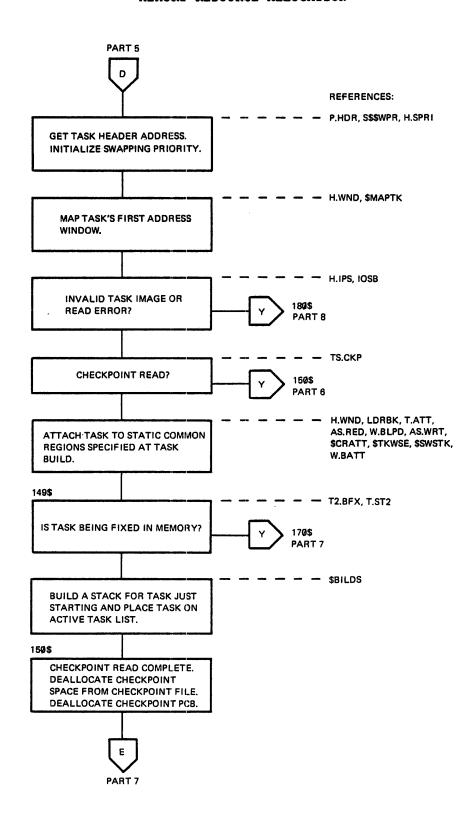


Figure 2-11 Loader Logical Flow Diagram (Part 6 of 8)

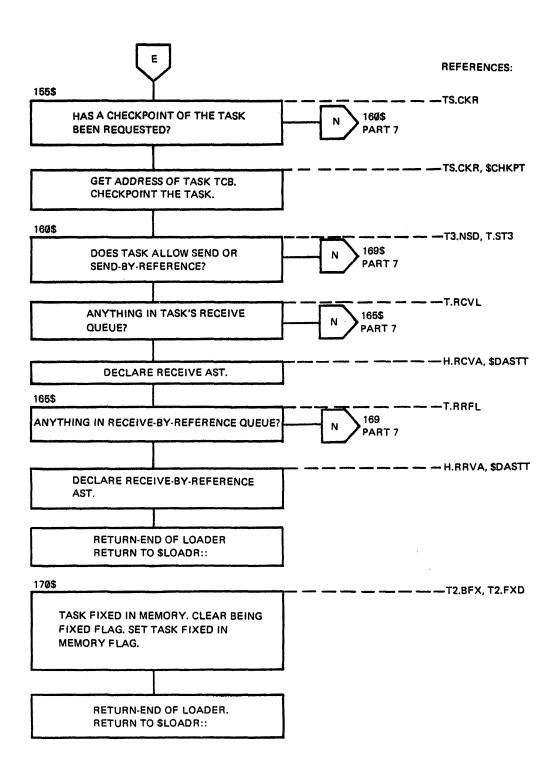


Figure 2-11 Loader Logical Flow Diagram (Part 7 of 8)

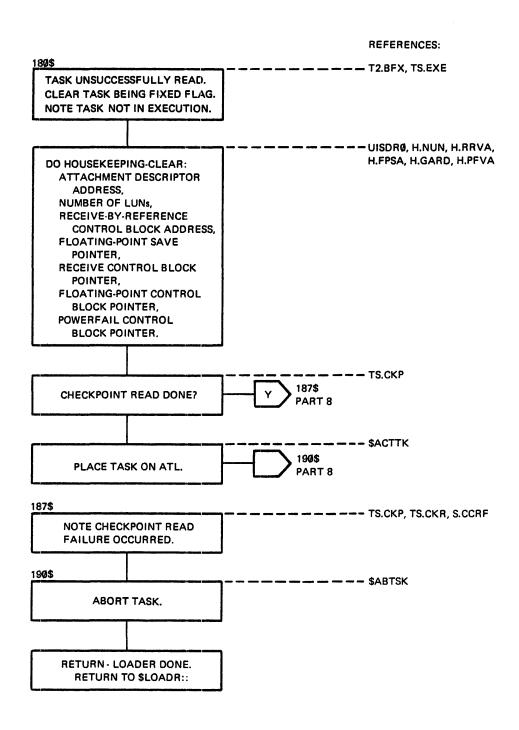


Figure 2-11 Loader Logical Flow Diagram (Part 8 of 8)

2.3.10 Shuffler Logical Flow Diagram

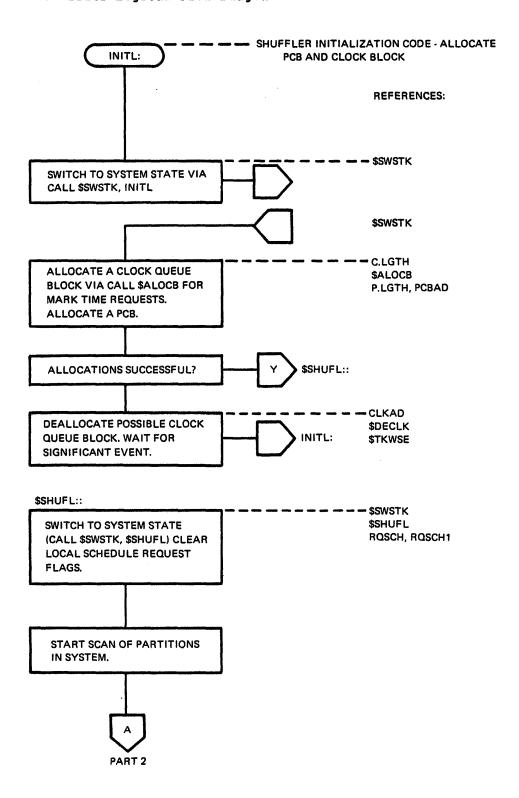


Figure 2-12 Shuffler Logical Flow Diagram (Part 1 of 11)

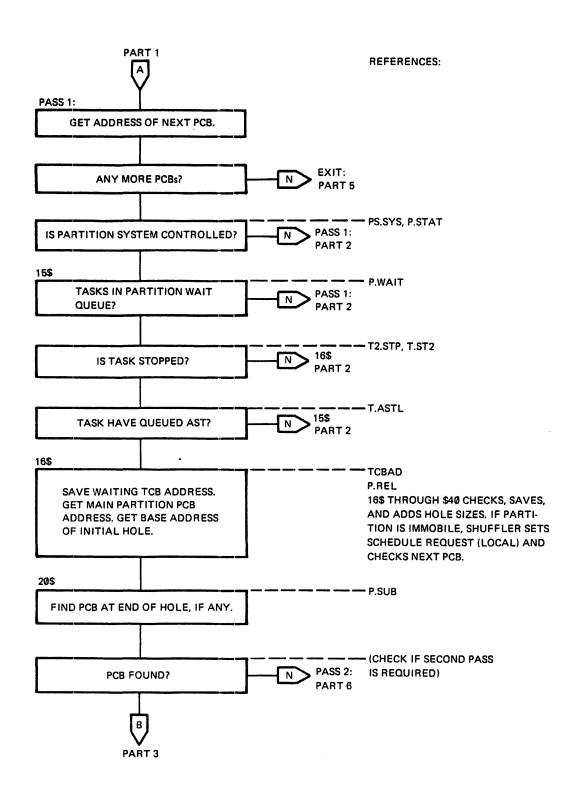


Figure 2-12 Shufller Logical Flow Diagram (Part 2 of 11)

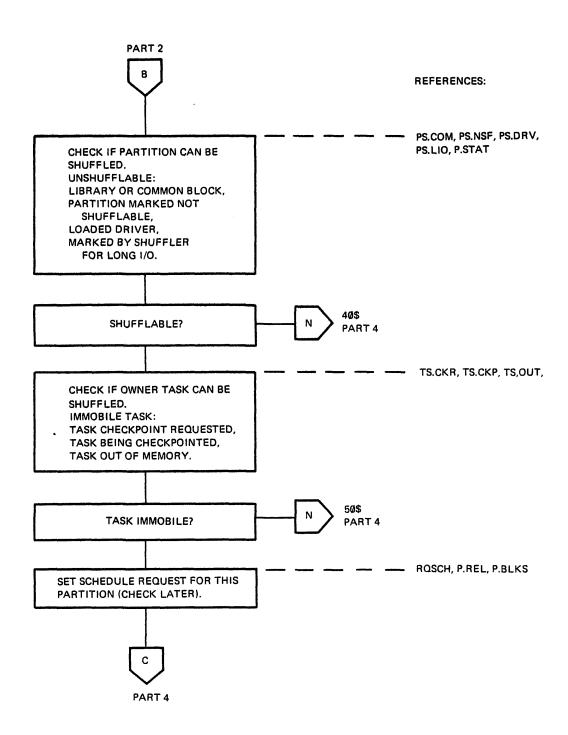


Figure 2-12 Shuffler Logical Flow Diagram (Part 3 of 11)

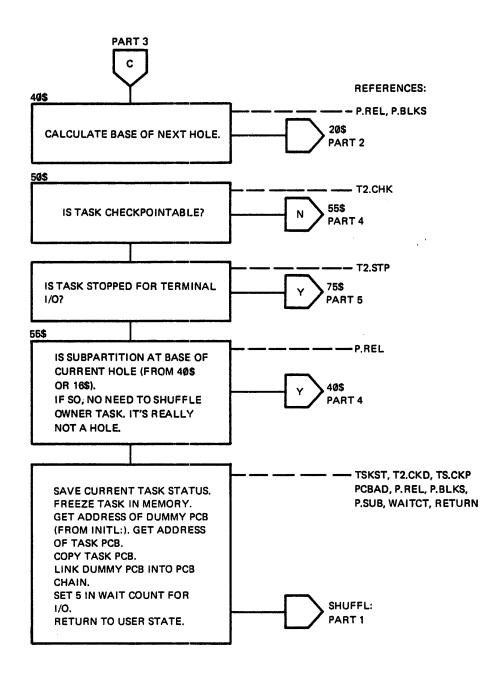


Figure 2-12 Shuffler Logical Flow Diagram (Part 4 of 11)

REFERENCES:

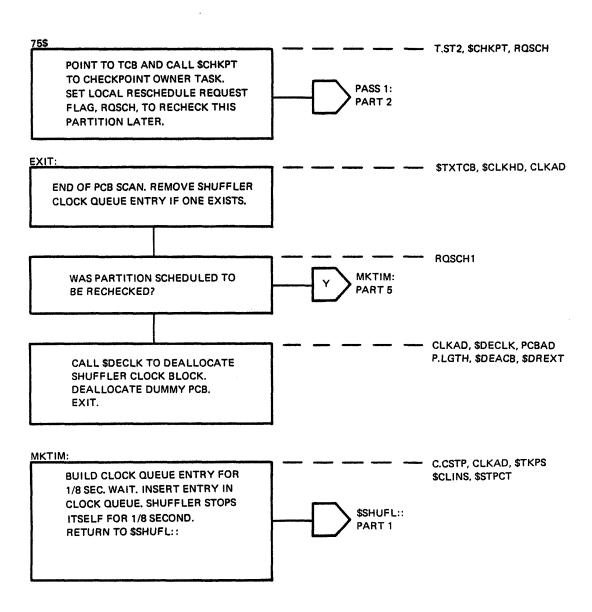


Figure 2-12 Shuffler Logical Flow Diagram (Part 5 of 11)

PASS 2:

At this point, if no reschedule request has been posted for this partition, the following conditions are valid:

There is at least one task in the wait queue. The Executive cannot fit the first one in by checkpointing neighboring tasks. The only place a hole can exist is before the end of a partition or before a partition that cannot be shuffled (hereinafter referred to as a driver partition).

No tasks in the partition are in the process of being checkpointed.

The following code gets in the next waiting task by checkpointing lower priority tasks and shuffling. No tasks are checkpointed unless it is absolutely certain that by doing so the next waiting task will fit. This code refers to an area of the main partition, preceded by the beginning of the main partition or a driver partition and followed by a driver partition or the end of the main partition, as a section.

The following code determines the number of lowest priority tasks in a section that can be checkpointed to allow the waiting task to fit. The Executive's task swapping algorithm is also included in this determination.

The key to the swapping algorithm is the swapping priority byte in the task header (H.SPRI). This byte is initialized to +S\$\$WPR each time a task is read into memory and TDSCH decrements it periodically as the task resides in memory. The Executive routine, \$TSTCP, adds the swapping priority to the priority byte in the TCB of the task in memory when determining if a nonresident task may checkpoint that task. In this pass, if there is a task that is not stopped in the wait queue of the current main system-controlled partition, the Shuffler forms a linked list, one section at a time, of all tasks in that section by increasing priority (weighted by the swapping priority). As soon as the Shuffler forms this linked list, the priority bytes in the TCBs are reset to their original values. Traversing this list, the Shuffler accumulates the sizes of all tasks checkpointable by the waiting task until sufficient size is found or the list is exhausted. The Shuffler adds the accumulated size to the size of the hole at the end of the section. If enough space is found the task(s) are checkpointed.

Figure 2-12 Shuffler Logical Flow Diagram (Part 6 of 11)

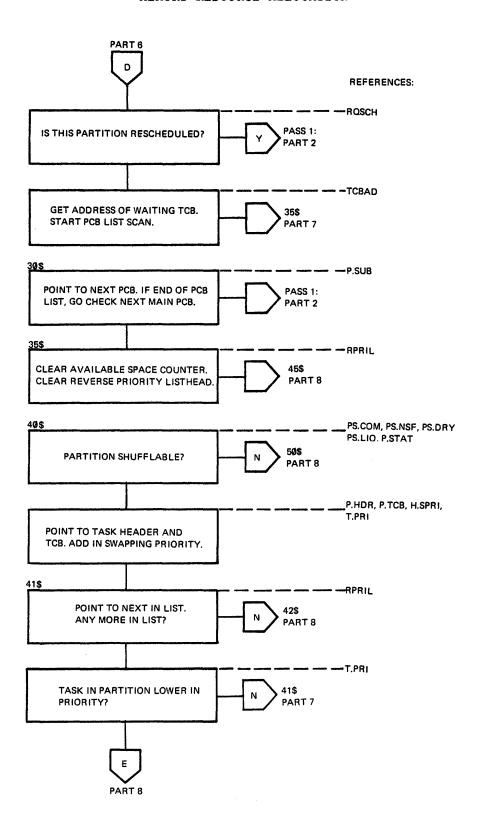


Figure 2-12 Shuffler Logical Flow Diagram (Part 7 of 11)

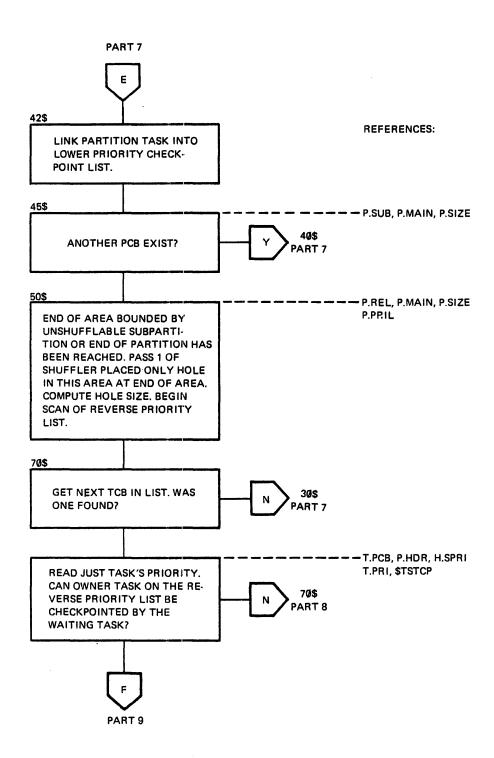


Figure 2-12 Shuffler Logical Flow Diagram (Part 8 of 11)

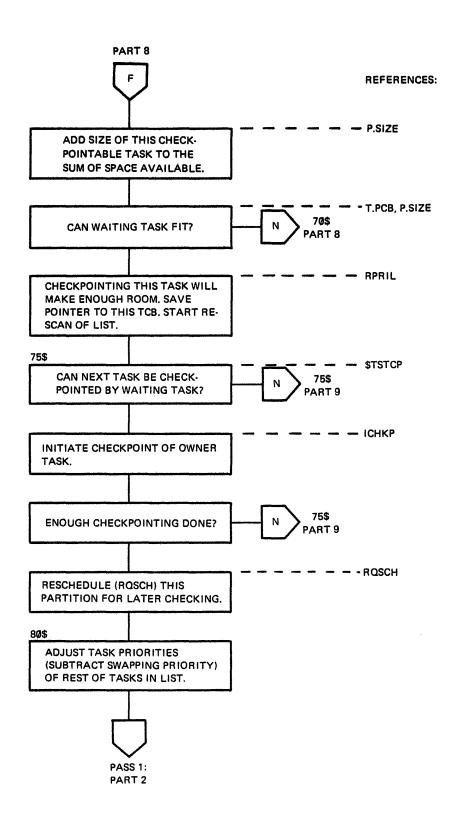


Figure 2-12 Shuffler Logical Flow Diagram (Part 9 of 11)

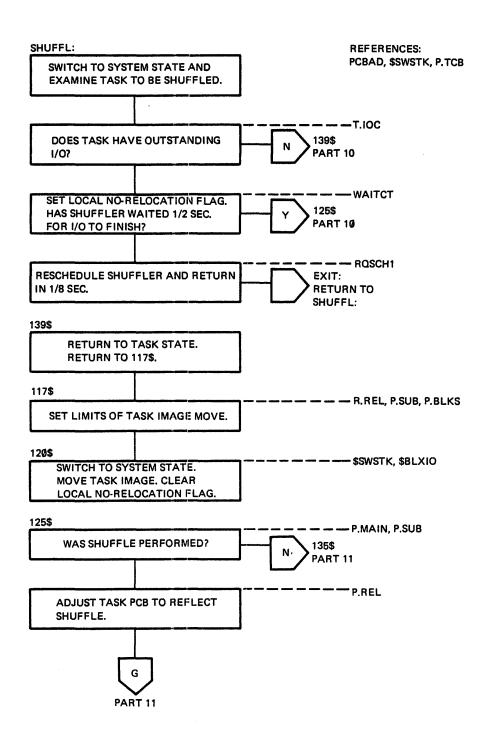


Figure 2-12 Shuffler Logical Flow Diagram (Part 10 of 11)

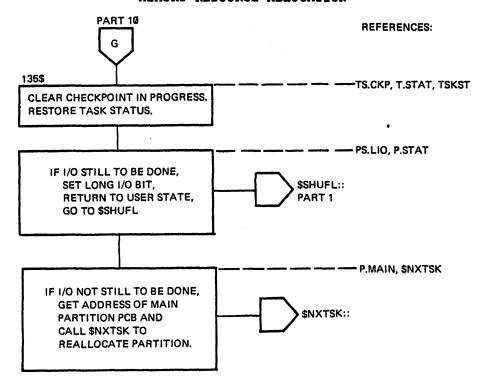


Figure 2-12 Shuffler Logical Flow Diagram (Part 11 of 11)

2.4 MEMORY ALLOCATION DATA STRUCTURES

The two fundamental data structures that are used by the Executive during memory allocation are the Partition Control Block (PCB) and the Task Control Block (TCB). They are both included here for your reference while you follow the operations of the flow diagrams.

2.4.1 Partition Control Block (PCB)

The PCB serves three major functions in the memory allocation routines:

- The PCB contains the starting address and length of the main or subpartition it represents.
- 2. The PCB of a main task partition or a system-controlled partition contains busy flags and is the listhead of a linked list of subpartition PCBs. This allows the Executive to determine the availability of space within a partition.
- 3. The main partition PCB serves as the listhead for a linked list called the partition wait queue. Tasks that are competing for space in the partition and are out of memory have their TCBs linked into this list.

A partition or subpartition may be created in three ways:

- 1. By a VMR or MCR Set command
- 2. By the Executive in a system-controlled partition
- By the Loader task when loading a device driver into a system-controlled partition

Whenever a partition is created, a PCB is allocated from the Dynamic Storage Region. The PCB is then filled with the starting address and length of the partition and is linked into the appropriate system lists.

Partition Control Block, Figure 2-13, describes the fields contained in the Partition Control Block.

PARTITION CONTROL BLOCK (PCB)

P.I	.NK	LINK TO NEXT PARTITION PCB.		
P.PRI	P.IOC	PRIORITY OF PARTITION; I/O AND I/O STATUS BLOCK COUNT.		
P.N	AM	PARTITION NAME IN RAD5Ø.		
P.S	SUB	POINTER TO NEXT SUBPARTITION.		
P.N	IAIN	POINTER TO MAIN PARTITION.		
P.H	IDR	POINTER TO HEADER CONTROL BLOCK (IF M\$\$MGE NOT DEFINED).		
P.R	EL	STARTING PHYSICAL ADDRESS OF PARTITION.		
P.BLKS	S/P.SIZE	SIZE OF PARTITION IN BYTES.		
P.W	AIT	PARTITION WAIT QUEUE LISTHEAD.		
P.S	wsz	PARTITION SWAP SIZE.		
P.BUSY	(2 BYTES)	PARTITION BUSY FLAGS.		
P.OWN	I/P.TCB	TCB ADDRESS OF OWNER TASK.		
P.S	TAT	PARTITION STATUS FLAGS.		
P.+	IDR	POINTER TO HEADER CONTROL BLOCK (IF M\$\$MGE IS DEFINED).		
P.F	PRO	PROTECTION WORD FOR P\$\$LAS (DEWR, DEWR, DEWR, DEWR, DEWR).		
P./	ATT	ATTACHMENT DESCRIPTOR LIST HEAD (FOR P\$\$LAS).		

Figure 2-13 Partition Control Block (Part 1 of 2)

Partition Status Word Bit Definit	ions
PS.OUT='B'100000	Partition is out of memory
PS.CKP='B'40000	Partition checkpoint in pro-
PS.CRP- B 40000	
1-10000	gress
PS.CKR='B'20000	Partition checkpoint is re-
	quested
PS.CHK='B'10000	Partition is not checkpoint-
	able
PS.FXD='B'4000	Partition is fixed
PS.PER='B'2000	Parity error in partition
PS.LIO='B'1000	Marked by shuffler for long
P3.LIO- B 1000	
	1/0
PS.NSF='B'400	Partition is not shufflable
PS.COM='B'200	Library or common block
PS.PIC='B'100	Position independent li-
	brary or common
PS.SYS='B'40	System controlled partition
PS.DRV='B'20	Driver is loaded in partition
PS.DEL='B'10	Partition should be deleted
10.000 0 10	when not attached
PS.APR='B'7	
PS.APK= B./	Starting PAR number mask
Attachment Descriptor Offsets	
A.PCBL:'L'.BLKW 1	PCB attachement gueue thread
	word
A.PRI:'L'.BLKB 1	Priority of attached task
A.IOC: 'L'.BLKB 1	I/O count through this des-
	criptor
a mon alti neggi 1	
A.TCB: 'L'.BLKW 1	TCB address of attached task
A.TCBL: 'L'.BLKW 1	TCB attachment gueue thread
	word
A.STAT: 'L'.BLKB 1	Status byte
A.MPCT: 'L'.BLKB 1	Mapping count of task through
	this descriptor
A.PCB: 'L'.BLKW 1	PCB address of attached task
A.LGTH: 'B'.	
Attachement Descriptor Status Byt	a Rit Definitions
Accachement Descriptor Status Byt	e bit belinitions
3.C DET - ID 110	mank has delake
AS.DEL='B'10	Task has delete access
AS.EXT='B'4	Task has extend access
AS.WRT='B'2	Task has write access
AS.RED='B'1	Task has read access

Figure 2-13 Partition Control Block (Part 2 of 2)

2.4.2 Task Control Block (TCB)

The TCB contains three major kinds of information:

- 1. Links and listheads to other control blocks or gueues
- 2. Pointers related to task execution and needed by the Executive
- 3. Three words of status information

Other information includes:

- Task priority
- I/O pending count
- Task name
- Task local event flags
- Task default priority
- Task image size

Figure 2-14, Task Control Block, describes the fields in the Task Control Block.

T.LNK		UTILITY LINK WORD.		
T.PRI	T.IOC	TASK PRIORITY: I/O PENDING COUNT		
T.CP(CB	POINTER TO CHECKPOINT PCB*		
T.NA	М	TASK NAME IN RAD5Ø.		
T.RCV	/L	RECEIVE QUEUE LISTHEAD.		
T.AS1	ΓL	AST QUEUE LISTHEAD.		
T.EFL	.G	TASK LOCAL EVENT FLAGS 1-32.		
T.UCI	В	UCB ADDRESS FOR PSEUDO DEVICE "TI"		
T.TCE	BL .	TASK LIST THREAD WORD.		
T.STA	Λ Τ	FIRST STATUS WORD (BLOCK- ING BITS).		
T.ST2	!	SECOND STATUS WORD (STATE BITS).		
T.ST:	3	THIRD STATUS WORD (ATTRIBUTE BITS).		
T.DPRI		TASK'S DEFAULT PRIORITY.		
T.LBI	N	LBN OF TASK LOAD IMAGE.		
T.LDV		UCB ADDRESS OF LOAD DEVICE.		
T.PC	В	PCB ADDRESS OF TASK PARTITION.		
T.M.	KSZ	MAXIMUM SIZE OF TASK IMAGE (MAPPED SYSTEM)		
T.A	CTL	ADDRESS OF NEXT TASK IN ACTIVE		
T.ATT		ATTACHMENT DESCRIPTOR LISTHEAD		
T.OFF		OFFSET TO TASK IMAGE IN PARTITION.		
RESERVED	T.SRCT	SREF WITH EFN COUNT IN ALL RECEIVE QUEUES.		
T.RRFL		RECEIVE BY REFERENCE LISTHEAD.		

*OR LINK TO ITBS FOR TASKS CONNECTED TO INTERRUPTS.

Figure 2-14 Task Control Block (Part 1 of 2)

Task Status Definitions (* = statement true when bit is on)
First Status Word (Blocking Bits)

```
TS.EXE='B'100000
                        Task not in execution *
TS.RDN='B'40000
                        I/O run down in progress *
TS.MSG='B'20000
                        Abort message being displayed *
TS.NRP='B'10000
                        Task mapped to nonresident partition *
TS.RUN='B'4000
                        Task is running on another processor *
TS.OUT='B'400
                        Task is out of memory *
TS.CKP='B'200
                        Task is being checkpointed *
TS.CKR='B'100
                        Task checkpoint requested *
```

Task Blocking Status Mask

TS.BLK='B'TS.CKP!TS.CKR!TS.EXE!TS.MSG!TS.NRP!TS.OUT!TS.RDN

Second Status Word (State Bits)

```
T2.AST='B'100000
                         AST in progress *
T2.DST='B'40000
                         AST recognition disabled *
T2.CHK='B'20000
                         Task not checkpointable *
T2.CKD='B'10000
                         Checkpointing disabled *
T2.BFX='B'4000
                         Task being fixed in memory *
Task fixed in memory *
T2.FXD='B'2000
T2.TIO='B'1000
                         Task is engaged in terminal I/O *
T2.CAF='B'400
                         Dynamic checkpoint space allocation
                           failure *
T2.HLT='B'200
                         Task is being halted *
T2.ABO='B'100
                         Task marked for abort *
T2.STP='B'40
                         Task stopped *
                         Task stopped *
T2.STP='B'20
T2.SPN='B'10
                         Saved TS.SPN on AST in progress
T2.SPN='B'4
                         Task suspended *
T2.WFR='B'2
                         Saved TS.WFR on AST in progress
T2.WFR='B'1
                         Task in waitfor state *
```

Third Status Word (Attribute Bits)

```
T3.ACP='B'100000
                        Ancillary control processor *
T3.PMD='B'40000
                        Dump task on synchronous abort
T3.REM='B'20000
                        Remove task on exit *
T3.RPV='B'10000
                        Task is privileged *
T3.MCR='B'4000
                        Task was requested as external MCR
                          function *
T3.SLV='B'2000
                        Task is a slave task *
T3.CLI='B'1000
                        Task is command line interpreter *
T3.RST='B'400
                        Task is restricted *
T3.NSD='B'200
                        Task does not allow send data
T3.CAL='B'100
                        Task has checkpoint space in task
                          image
T3.ROV='B'40
                        Task has resident overlays
T3.NET='B'20
                        Network protocol level
```

Figure 2-14 Task Control Blocks (Part 2 of 2)

CHAPTER 3

INTERRUPT PROCESSING

3.1 INTRODUCTION

This chapter discusses the internal operation of the RSX-llM interrupt mechanisms. Flow diagrams of important routines are included in this chapter.

3.2 INTERRUPT MECHANISMS

RSX-llM is a priority driven, multiprogramming, real-time operating system. As with any such system, its principle function is multiplexing the sharable resources among competing tasks. The multiplexing itself is made possible by the interrupt system of the hardware that causes control to be taken away from user tasks and given to the Executive. It is during this period of interrupt control that the Executive makes decisions about granting use of shared resources. Understanding the interrupt mechanism is fundamental to understanding the Executive. Once this is understood, the knowledge serves as a framework for describing the operation of Executive subsystems (drivers, I/O, etc.) and the system as a whole.

3.2.1 Hardware Interrupt Mechanisms - Review and Overview

The PDP-11 family of computers has two classes of interrupts:

- 1. Processor traps
- 2. External interrupts

Processor traps cannot be masked (blocked) in any way by altering the priority of the processor. When processor traps occur the processor enters the trap sequence of pushing the PS and PC onto the current stack (system or user) and retrieving the PS and PC from the proper hardware trap vector. If no other interrupts are pending when this occurs, the processor then begins at the location specified by the trap vector. A table of trap vectors starts at location 0 in low memory and extends to location 774(8). However, RSX-llM does not use locations 0 and 2 as vectors. Processor traps include the:

Breakpoint trap (BPT) instruction

Emulator trap (EMT) instruction

Input/Output Trap (IOT) instruction

TRAP instruction

11/40 floating-point exception fault

Odd address

Power fail

Illegal instruction

External interrupts are hardwired to one of the four bus request levels of the processor. These interrupts are generally associated with I/O devices and are maskable. They can only cause an interrupt when the priority in the Processor Status Word (PS) is less than the priority of the interrupting source. Thus, by setting the processor priority in a trap vector PS word to an appropriate level, interrupts equal to or below that priority are locked out.

Every device that causes an interrupt has an associated trap vector in the vector table located in lower memory. However, not all devices cause interrupts, therefore, those devices do not have associated trap vectors.

3.2.2 Executive and Stack Processing

All the vectors in the trap vector table must be initialized properly so that when a processor trap or interrupt occurs, an Executive interrupt routine obtains control of the processor.

On an unmapped PDP-11, only one stack exists. This stack must be multiplexed to service the user tasks and the Executive. Having only a single stack also implies a single processor state. The Executive must simulate a two state system. A single word, the stack depth indicator (\$STKDP) is used to control this simulation.

On a mapped system, there are two stacks - the user stack and the system stack.

When the word, \$STKDP, is equal to 1 the system is running in the user state; when it is zero or less, it is in the system state. All stack multiplexing is accomplished by testing the contents of this word. Note that the priority set in the PS word for user tasks (both privileged and unprivileged) is 0, and for Executive routines, when running interruptable, is either 0, 7 or the level at which the interrupt was taken. These priorities play an important part in the goal to operate the Executive and its associated routines non-interruptable for as short a duration as possible.

Describing the RSX-llM interrupt mechanism involves several interrelated routines, and it may be necessary for you to read the following section twice before the process becomes completely clear.

3.3 INTERRUPT PROCESSES

The RSX-llM interrupt machinery involves the following routines or routine types:

Interrupt processor (both external interrupts and traps);

The Interrupt Save Routine (\$INTSV);

The Directive Save Routine (\$DIRSV);

The Interrupt Exit Routine (\$INTXT);

The Directive Exit Routine (\$DIRXT); and

The Fork Processors (\$FORK, \$FORK0, \$FORK1).

For resident drivers only, the device interrupt vector must be initialized when defining data structures, and not dynamically. This practice makes the driver code independent of device register address assignments and of the actual location of the interrupt vector. The driver data structure must include a storage assignment and initialization for the interrupt vector with the priority set to PR7.

Writers of loadable drivers do not initialize the device interrupt vector. The vector is dynamically established by Load when the driver is loaded. When a driver is unloaded, Unload sets the vector to the system nonsense interrupt entry point.

Driver interrupt processing routines are entered directly from the vector and usually use the INTSV\$ macro for state switching services; at the completion of these services, the interrupt routines are again given control to complete the interrupt service. The exit routines \$INTXT and \$DIRXT restore the state prior to switching to the system state, control the unnesting of interrupts, and make checks on the state of the system (for example, is it necessary to redispatch the processor). The Fork processing routines linearize access to shared system data bases. The details of all these routines are discussed later in the text.

3.3.1 The INTSV\$ Macro

INTSV\$ is a system macro that minimizes coding differences between loadable and resident drivers. INTSV\$ contains conditionally assembled code to handle:

- 1. Single or multiple controllers
- 2. Loadable or resident drivers
- 3. Mapped or unmapped systems

This macro is required for loadable drivers on mapped systems, because interrupts from hardware devices must be processed in kernel address space. In particular, the decoding of the PS word and the call to \$INTSV must be done before entering the driver. Thus, a call to the Executive routine \$INTSV within a loadable driver is illegal, and the MCR Load function returns an error if loading is attempted.

When the INTSV\$ macro is used for a loadable driver in a mapped system, the Load function allocates a block of dynamic memory in kernel address space to contain the interrupt coding. This block, called the Interrupt Control Block (ICB), also contains coding to:

- 1. Save the kernel mapping (APR5)
- 2. Load APR5 to map the driver
- 3. Transfer to the driver
- 4. Restore the mapping after return

The Load function also sets up the controller's interrupt vector so that hardware interrupts point to the ICB.

Finally, the use of the INTSV\$ macro in a loadable driver on a mapped system requires that the symbol LD\$xx (where xx is the 2-character device mnemonic) be defined either in the driver source or the assembly prefix file RSXMC.MAC.

3.3.1.1 INTSV\$ Macro Format - The format of the INTSV\$ macro is:

INTSV\$ xx,pri,nctlr[,pssave,ucbsave]

where:

xx is the 2-character device mnemonic.

pri is the priority of the device (the priority that

would be used in a call to \$INTSV).

nctlr is the number of controllers the driver services.

pssave is an optional argument specifying a variable in

which to save the PS word. If omitted, a variable

named TEMP is used.

ucbsave is an optional argument specifying a block of contiguous words in which to retrieve the

interrupting device's UCB address. If omitted, a block of contiguous words named CNTBL is used.

Outputs: R4 is the controller index, only if nctlr is greater

than 1.

R5 is the UCB address.

Example:

INTSV\$ PP,PR4,P\$\$P11

3.3.2 External Interrupt from the Task State (\$STKDP=1)

The vectors in lower memory contain a PC unique to each interrupting source, and a PS set with a priority of PR7. Hence, when an external interrupt occurs, the hardware pushes the current PS and PC onto the current stack (in this case the task's stack) and loads the new PC and PS (set at PR7) from the appropriate interrupt vector. The interrupt routine then starts executing with interrupts locked out. Interrupt routines may, in fact, be executing in one of three states:

- At PR7 with interrupts locked out;
- 2. At the priority of the interrupting source; thus, interrupt levels greater than the source are permitted, or
- 3. At Fork level which is at PRO.

By internal convention, processing in the PR7 state is limited to 100us. If processing can be completed in this time, then the interrupt routine simply RTI's; the interrupt has been processed and dismissed with minimal overhead.

If the interrupt routine requires additional processing time (but does not intend to alter a shared system data base) it uses the INTSV\$ macro. The priority at which the caller is to run is included in the INTSV\$ macro or the call to \$INTSV. With loadable drivers the Interrupt Control Block calls \$INTSV. Therefore, the driver cannot use a CALL to \$INTSV; it must use the INTSV\$ macro.

The interrupt save routine, \$INTSV, uses the priority specified in the INTSV\$ macro line (the interrupting source priority) to set up the interrupt routine. At this point in the process, the interrupt routine is interruptable by devices with priorities higher than that of the interrupting source. The \$INTSV routine then conditionally switches to system state if the processor is not already in system state.

3.3.2.1 \$INTSV Routine - The \$INTSV algorithm is:

SINTSV: Push R5 and R4 onto the current stack.

Decrement stack depth indicator, \$STKDP.

Is the stack depth indicator =0? No; go to 1.

Save the current (a task's in this case) stack pointer.

Set up the System stack pointer (switch stacks if not M\$\$MGE).

Load the new processor priority as specified by the caller.
 Return to caller.

Note:

The stack depth indicator, \$STKDP, is zero only after the transition from the user state to the system state occurs.

The JSR R5,\$INTSV instruction pushes R5 on the stack prior to entering the \$INTSV routine. Pushing of R4 and R5 is done to free these registers for routines processing external interrupts. It is an internal programming convention that assumes these routines will not require more than two registers to accomplish their functions. If they do, they must save and restore any additional registers they use.

3.3.2.2 INTSV\$ Macro - The interrupt save macro, INTSV\$, expands as shown in Figure 3-1.

3.3.3 External Interrupts from the System State (\$STKDP <=0)

The code on this interrupt path is identical to that discussed in External Interrupt from the Task State. However, it is not necessary for the task to switch states when the INTSV\$ macro is used. The current stack is the system stack, and when \$INTSV tests the value of the stack depth indicator, \$INTSV bypasses saving the SP and switching the stacks. After \$INTSV saves R4 and R5 on the system stack, it returns to the driver interrupt routine.

```
.MACRO INTSV$ DEV,PRI,NCTRLR,PSWSV,UCBSV
       .IF NDF L$$DRV ! M$$MGE ! LD$'DEV
       .IF GT NCTRLR-1
        .IF B <PSWSV>
       MFPS TEMP
       .IFF
       MFPS PSWSV
       .ENDC
       .IFTF
       JSR R5,$INTSV
       .IF DF L$$SI1
        .WORD PRI
       .IFF
       .WORD ^C<PRI>&PR7
       .ENDC
       .IFT
       .IF B <PSWSV>
MOV TEMP,R4
       .IFF
       MOV PSWSV,R4
       .ENDC
       BIC #177760,R4
       ASL R4
       .ENDC
        . ENDC
       GTUCB$ UCBSV,NCTRLR
        . ENDM
                            Figure 3-1 INTSV$ Macro Expansion
 **-$PPINT-PC11 PAPER TAPE PUNCH CONTROLLER INTERRUPT ROUTINE
$PPINT::
                                                        ;;;REF LABEL
            INTSV$ PP,PR4,P$$P11
                                                       ;;;GENERATE INTERRUPT SAVE CODE
                        U.SCB(R5),R4
            VOM
                                                        ;;;GET ADDRESS OF SCB
                        S.ITM(R4),S.CTM(R4);;;RESET TIMEOUT COUNT
S.CSR(R4),R4;;;POINT R4 TO CSR
            MOVB
            VOM
            VOM
                         (R4) + U.CW3(R5)
                                                        ;;;SAVE STATUS
                         60$
                                                       ;;; IF MI, ERROR
            BMI
            SUB
                         #1,U.CNT(R5)
                                                      ;;;DECREMENT CHARACTER COUNT
                                                      ;;; IF CS, THEN DONE
            BCS
                         50$
                       ;;;CURRENTLY PUNCHING TRAILER?

30$
;;;IF PL NO
;;;LOAD NULL INTO OUTPUT REGISTER

40$
;;;BRANCH TO LOAD IT

$GTBYT
;;;GET NEXT BYTE FROM USER BUFFER
(SP)+,(R4)
;;;LOAD BYTE INTO OUTPUT REGISTER

$INTXT
;;;EXIT FROM INTERRUPT
U.CNT(R5)
;;RESET BYTE COUNT
-(R4)
;;;DISABLE PUNCH INTERRUPTS

$FORK
;;;CREATE SYSTEM PROCESS
U.SCB(R5),R4
;POINT R4 TO SCB
$.PKT(R4),R1
;POINT R1 TO I/O PACKET
I.PRM+4(R1),R1
;AND PICK UP CHARACTER COUNT
U.CNT(R5),R1

#IS.SUC&377,R0
;ASSUME SUCCESSFUL TRANSFERED

#IS.SUC&377,R0
;ASSUME SUCCESSFUL TRANSFERED
                                                      ;;;CURRENTLY PUNCHING TRAILER?
            TSTB
            BPL
            CLRB
            BR
30$:
            CALL
            MOVB
40$:
            JMP
50$
            INC
60$:
            CLR
            CALL
            VOM
            VOM
            MOV
            SUB
            MOV
            TST
                         U.CW3(R5)
                                                       ; DEVICE ERROR?
                                                        ; IF PL NO
            BPL
                         70$
65$:
            VOM
                         #IE.VER&377,R0
                                                       ;UNRECOVERABLE HARDWARE ERROR CODE
70$:
            CALL
                         $IODON
                                                        ; INITIATE I/O COMPLETION
```

Figure 3-2 Example of a Driver Using \$INTSV

BR

PPINI

; BRANCH BACK FOR NEXT REQUEST

3.3.4 Processor Traps from the Task State (\$STKDP<=1)

when a processor trap occurs from the task state, the hardware pushes PS, PC, and initiates the routine specified in the associated hardware trap vector. If an Executive directive causes the trap, EMT 377, the Directive Parameter Block (DPB) or its address was pushed onto the user task's stack prior to the issuance of the EMT.

Also, the task can cause a processor trap by issuing the SWSTK\$ macro. See Chapter 4 for an explanation of the SWSTK\$ macro.

The trap routine, running at PR7, immediately calls the routine \$DIRSV (Directive Save), which has the following algorithm:

\$DIRSV: Push R5 and R4 onto current stack

Decrement stack depth indicator.

Is the stack depth indicator <=0? No, go to 1.

Save current task's stack pointer.

Set up system stack pointer (switch stacks if not M\$\$MGE).

1. Push R3, R2, R1, R0 onto current (system) stack.

Load new processor priority as specified by the caller.

Return to caller.

The \$STKDP check is made to improve crash analysis; no other decisions are made in \$DIRSV because all processor traps, with the two exceptions of the Trap instruction or Powerfail, occur from the task state. The exceptions are handled on exit. All registers are saved; the need for only two registers, R5 and R4 is assumed only for routines processing external interrupts. As with \$INTSV, the priority at which the caller expects to run immediately follows the call. All processor trap routines, however, run interruptable.

Only one processor trap can be queued for processing in the system at any point in time (ignore, for the moment, the two exceptions we have noted). Because the processor trap occurred in task state, entrance to the Executive occurs only when the Executive is idle. While in the system state, only external interrupts can occur. If processor traps occur, then either they are valid exceptions, or the system itself has faulted and shuts down.

Once a valid processor trap is pending, it is processed to completion before any other system routine is given access to any shared system data base. This strict sequentiality is accomplished with the two exit routines \$INTXT, \$DIRXT and the fork processors (\$FORK, \$FORKO, and \$FORK1).

3.3.4.1 Example use of \$DIRSV - Figure 3-3 shows the code for the Emulator Trap (EMT) processing routine, \$EMTRP.

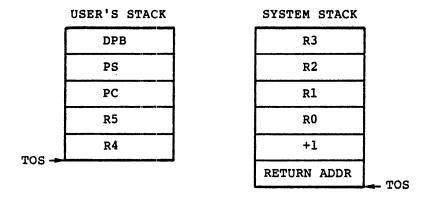
```
;+
   EMT TRAP PROCESSING ROUTINE
   THIS ROUTINE IS ENTERED VIA THE VECTOR AT LOCATION 30 WHEN AN EMT
   INSTRUCTION IS EXECUTED. THE ROUTINE IS ENTERED IN SYSTEM STATE.
   IF THE STACK DEPTH IS NOT 0 AFTER THE DIRSV$ MACRO EXECUTES,
   THE SYSTEM CRASHES.
$EMTRP::DIRSV$
                                     ;;; SAVE REGISTERS AND SET PRIORITY
             .MACRO DIRSV$
             JSR R5,$DIRSV
             .ENDM
                                    ; WERE WE AT STACK DEPTH +1
        TST
                   $STKDP
        BNE
                   70$
                                    ; IF NE 0 - NO - CRASH SYSTEM
        MOV
                   @$HEADR
                                     ;GET SAVED STACK POINTER
                    (R3) + , (R3) +
        CMP
                                     ; POINT TO USER PC WORD
        MOV
                    (R3) + R5
                                     GET ADDRESS OF EMT +2
        .IF DF M$$MGE
        MFPI
                   -(R5)
                                     ;GET DIRECTIVE WORD
                                     ;DIRECTIVE EMT 377?
                   #104377,(SP)
        CMP
                                     ; IF NE 0 -NO-
        BNE
                   80$
        VOM
                                     ;SET SUCCESSFUL DIRECTIVE STATUS
                   #1,(SP)
        .IFF
        CMP
                   #104377,--(R5)
                                     ;DIRECTIVE EMT 377
                                     ; IF NE 0 -NO-
        BNE
                   80$
        MOV
                   #1,-(SP)
                                     ;SET SUCCESSFUL DIRECTIVE STATUS
        .IFTF
        VOM
                                   ; POINT TO LOCAL DATA
                   #USRPS,R5
        VOM
                   R3, (R5) +
                                     ;SAVE ADDRESS OF USER PS
        BIC
                    (SP), (R3) +
                                     ;CLEAR CARRY IN USER PS WORD
                                     ; INDICATE NO BYTES
        CLR
                    (R5)
80$:
        .IF
                   DF M$$MGE
        VOM
                   $HEADR,R5
                                     ; POINT TO CURRENT TASK HEADER
        MOV
                   H.WND(R5),R5
                                    POINT TO NUMBER OF WINDOW BLOCKS
        TST
                   W.BLVR+2(R5)
                                     ; CURRENT TASK MAPPED TO EXEC
                   85$
        BEO
                                     ; IF EQ 0 -NO-
        CMP
                   (SP),#104376
                                     ; IS THIS A CALL TO $SWSTK
        .IFF
        CMP
                   (R5),#104376
                                     ; IS THIS A CALL TO $SWSTK
        .ENDC
                   85$
                                     ; IF NE 0 -NO-
        BNE
                   $SWSTK
                                     ; PROCESS CALL TO $SWSTK
        JMP
85$:
        JMP
                   $EMSST
                                     ; PROCESS SST FAULT
                                     ;
```

Figure 3-3 Example of Use of \$DIRSV by the \$EMTRP Routine

\$DIRSV	::MOV DEC BNE MOV	R4,-(SP) \$STKDP 10\$ SP,@\$HEADR	;;;SAVE R4 ;;;SET PROPER STACK DEPTH ;;;IF NE, DON'T SWITCH STACKS ;;;SAVE CURRENT SP
	.IF NDF	M\$\$MGE	
	MOV	#\$STACK,SP	;;;LOAD SYSTEM STACK POINTER
	.ENDC		
10\$:	MTPS MOV MOV MOV CALL BR	#0 R3,-(SP) R2,-(SP) R1,-(SP) R0,-(SP) (R5) \$DIRXT	;;;ALLOW INTERRUPTS ;SAVE REGISTERS R3-R0 ON STACK ; ; ; ;CALL SYNCHRONOUS TRAP ROUTINE ;EXIT FROM TRAP

Figure 3-3 (Cont.) Example of Use of \$DIRSV by the \$EMTRP Routine

3.3.5 Processor Traps from the System State (\$STKDP <=0)


Only two processor traps are valid from the system state: the Trap instruction and Powerfail. If any other processor trap occurs while in the system state, the system's operation is aborted or XDT, the Executive debug tool, is entered if it is present.

3.3.5.1 Processing for Trap Instructions Occurring in System State - The Executive uses the trap instruction as a core saving technique in returning status following the execution of an Executive directive. The EMT 377, which is the processor trap used to initiate directives, causes entry into the directive dispatcher (\$EMTRP) which in turn calls \$DIRSV. See Figure 3-3. On return from \$DIRSV, but before calling the directive processing routine, the directive dispatcher pushes a value of +1 onto the system stack, and clears the C bit in the PS word stored on the user's stack. It then calls the proper directive processing routine to execute the directive. Figure 3-4, Stack Stack Upon Entry into Directive Processing, shows the state of the user and system stacks for both the unmapped and mapped systems at the time entry is made to the routine that processes the issued directive.

The directive processing routine now carries out its function, and in so doing is free to alter any shared system data base, because no other routine can gain access to a shared data base until the directive processing routine is completed. This arrangement of the stack and interface between the directive dispatcher and the directive processors has two advantages:

- 1. The normal return for all but a few directives is a +1 status and carry clear. This means the directive routines can return to the dispatcher with an RTS; thus the return path is one word rather than the two needed if a JMP is employed; this scheme probably saves 100 words in the RSX-11M Executive.
- 2. Internal Executive routines can call the directive processing routines without using an EMT.

UNMAPPED SYSTEM

MAPPED SYSTEM

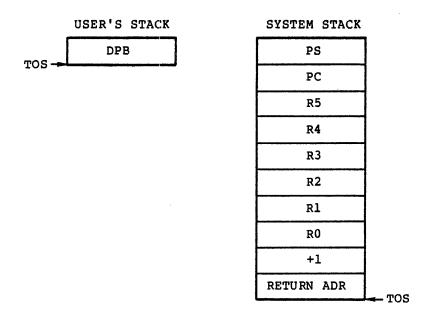


Figure 3-4 Stack State Upon Entry into Directive Processing

If a directive processing routine needs to return a status other than +1, and have the carry stat clear, the routine replaces the +1 on the stack with the value it intends to return and then executes an RTS.

Now to the use of the Trap instruction within the Executive. If a directive processing routine must return a status other than +1 and, in addition have the carry stat set, or cleared, based on the status value returned, it then uses the Trap instruction with the value of the status to be returned in the low order byte of the instruction. When the trap processing routine is entered, it immediately checks for stack depth=0, and if 0, proceeds to reset the stack for correct exiting from a directive processing routine. The low order byte of

the trap instruction itself overlays the +1 status currently on the stack; this value is tested and, if minus, the carry stat is set in the user task's PS word. If plus, the carry stat is left cleared. After this processing, the exiting code of the directive dispatcher is entered just as if the directive processing routine had executed an RTS.

If the initial test for a stack depth indicator of 0 fails, the trap processing routine calls \$DIRSV. This call is logically incorrect if the stack depth indicator was less than zero. This programming error is recognized on exit. On return from \$DIRSV, the trap processing routine checks the stack depth indicator, and if it is not zero, the system crashes.

Note that directives are legitimate only from the task state (stack depth indicator=1) so that during directive processing, the stack depth indicator is always 0. Interrupts that occur in system state disappear from the stack before the directive processing sequence resumes following an interrupt. Hence, even though the stack can grow while a directive processing routine is in control, this growth is transparent to the routines. Stating it from a different perspective, interrupts are permitted but the directive processing routine that is in control is unaware of them.

Thus, directive processing routines have three methods of returning status:

- For the normal return carry clear and status equal to +1, they use an RTS.
- For carry clear and status other than +1, they overlay the +1 status on the stack with the desired status value (status value is at 2(SP)) and RTS.
- 3. For carry clear or set, and status of one byte, they use the trap instruction. This requires more overhead than 1 and 2 above but saves memory, and, of course is the required return mechanism if carry is to be set.

Together, these return mechanisms from directive processing routines save between 200 and 300 words in the RSX-llM Executive as compared to returning via jump instructions.

3.3.6 Powerfail Processing

When a power failure occurs, the power failure trap processing routine, PDOWN: - in the POWER module, is entered. This routine saves the state of the system, sets up a new power failure trap-vector PC for use when power is restored, calls the user's powerfail routine if it's defined, then halts.

On restoration of power, the state of the system at the time the failure occurred is restored, the \$PWRFL flag is set indicating that a power failure has occurred, the reschedule pointer \$RQSCH is set, and the clock is re-enabled. Then, the restoration code issues an RTI, which results in the resumption of the processing that was in progress when the power failure occurred. The specific processing to reflect the occurrence of a power failure does not occur until either Directive Exit is entered or the clock interrupts. In any event, this processing is part of Directive Exit and is discussed under Directive Exit.

Note that power failure processing is not asynchronous. As much as 1/60 of a second could elapse following restoration before the power failure is acted upon. The records and logic needed to provide asynchronous power failure processing are simply too large for a system with the memory objectives of RSX-llM.

3.3.7 Processing Within Interrupt Routines

In this section, we detail the events that take place following interrupt entry up to the point where the Executive is ready to return control to the task state.

Once the Executive is entered via an interrupt (regardless of the state it is in when the interrupt occurs) it does not again return to the task state until all system related processing for that interrupt has been completed.

A single interrupt in the task state causes transfer into the system state where the system remains until the interrupt is processed. But while in the system state, repeated interrupts can occur. This implies a fixed interrupt depth of one for the task stack (reguiring a task to provide a stack of at least four words in an unmapped system), and implies a variable interrupt depth for the system stack.

Because multiple interrupts can occur in the system state, RSX-llM resolves both of these logical difficulties by strictly linearizing interrupt processing and access to internal data bases. The mechanisms employed to accomplish this linearization are the system stack, fork processes, and the associated fork list.

- 3.3.7.1 Queuing Interrupts on the System Stack In the system state, the system must operate interruptable as much of the time as possible. Three possible conditions can exist when the system itself runs non-interruptable:
 - The most recent interrupt is being processed at level PR7 and the driver interrupt routine has not yet returned to an interruptable state.
 - The interrupt routine has dropped from level PR7 to the level at which the interrupt occurred. Priority levels, equal to or less than the priority of the interrupting source are locked out.
 - The system is updating a critical list whose consistency can only be maintained by a non-interruptable instruction sequence. There are two such lists, and we will discuss them shortly.

In the sections External Interrupts from the Task State and Processor Traps from the Task State, we examined the code sequence for processing external interrupts and processor traps, as well as the stack additions that occurred during their processing. Interrupt stacking in the system state occurs based principally on hardware interrupt levels. Thus, if a level PR4 interrupt is being processed, a level PR5, PR6, or PR7 interrupt can potentially interrupt this processing and cause context to be stacked and control given to the higher level interrupt routine.

3.3.8 Fork Processing

Once a driver interrupt routine passes from a non-interruptable to an interruptable state by using a call to \$INTSV or the INTSV\$ macro, processing is at the same level as the priority of the interrupting source. However, along any given interrupt path, more processing is often required than the minimum non-interruptable code sequences in the Executive permit. Along this path the allowable maximum non-interruptable processing time is 500us. Thus, a scheme is required to split interrupt processing routines further, such that part of their execution runs interruptable to any interrupting source. The mechanism for achieving this split is called fork processing.

First, and most important, fork processing linearizes access to system data bases. Thus eliminating unwanted recursion and untimely updates of these data bases. A list associated with fork processing, the Fork List, is the method the system uses to linearize data base accessing.

Driver and system interrupt routines are required to adhere to the following internal conventions:

- Use of any registers except R4 and R5 requires that these registers be saved and restored.
- Non-interruptable processing must not exceed twenty instructions.
- All modifications to system data bases must be done via a fork process.

Along an interrupt path, control can be taken from a routine only due to a higher priority interrupt pending in the hardware. As discussed previously, these interrupts are kept track of on the system stack. When an interrupt routine needs to transfer from a non-interruptable to an interruptable state, or modify a system data base, it must call \$FORK. \$FORK, however, cannot be called directly from an interrupt routine; it must first switch to system state by calling \$INTSV and then calling \$FORK.

By virtue of calling \$FORK, the routine is now interruptable and its access to system data bases is strictly linear. The Fork List is a list of system routines, usually I/O drivers, waiting to complete their processing, in particular, waiting to access a shared system data base.

When the \$FORK routine returns to \$INTX1 after placing the fork block in the fork list, \$INTX1 and \$DIRXT remove the stacked items for the driver interrupt routine. In effect the fork list is a secondary interrupt queue (stack) whose members are processed FIFO, and obtain processing time only if the system stack is empty.

Note that the context saved for a caller of \$FORK depends on which entry point is called (\$FORK or \$FORK1), and the context saved is all that is needed to restart routines on the fork list.

Figure 3-5 Example Driver Interrupt Routine shows the expansion of the INTSV\$ macro and the call to \$FORK.

```
; $XXINT DISK CONTROLLER INTERRUPT ROUTINE
       INTSV$
                DK, PR5, R$$K11 ;; SAVE REGISTERS AND SET PRIORITY
               .MACRO INTSV$ DEV,PRI,NCTRLR,PSWSV,UCBSV
               .IF NDF L$$DRV ! M$$MGE ! LD$'DEV
               .IF GT NCTRLR-1
               .IF B <PSWSV>
               MFPS TEMP
               .IFF
               MFPS PSWSV
               .ENDC
               .IFTF
               JSR R5,$INTSV
               .IF DF L$$SI1
               .WORD PRI
               .IFF
               .WORD ^C<PRI>&PR7
               .ENDC
               .IFT
               .IF B <PSWSV>
               MOV TEMP, R4
               .IFF
               MOV PSWSV,R4
               .ENDC
               BIC #177760,R4
               ASL R4
               .ENDC
               .ENDC
               GTUCB$ UCBSV, NCTRLR
               .ENDM
                                ;;;DRIVE RESET IN PROGRESS?
       TSTB
                RTTBL+1(R4)
       BEQ
                50$
                                ;;; IF EQ NO
                R4,-(SP)
                                ;;; SAVE CONTROLLER INDEX
       MOV
                                ;;;GET ADDRESS OF SCB
                U.SCB(R5),R4
       VOM
                @S.CSR(R4),R4
                                ;;;GET CONTENTS OF CSR
       MOV
                                ;;; IF MI DRIVE RESET ERROR
       BMI
                40$
                                 ;;;DRIVE RESET COMPLETE?
                #20000,R4
       BIT
       BNE
                40$
                                 ;;; IF NE YES
       TST
                (SP)+
                                 ;;;CLEAN STACK
       RETURN
                                 ;;;
                                 ;;; RESTORE CONTROLLER INDEX
40$:
       MOV
                (SP) + R4
50$:
       CALL
                $FORK
                                 ;;; CREATE A SYSTEM PROCESS
;+
;
  CONTROL IS REGAINED AT THIS POINT WITH ALL INTERRUPTS ALLOWED
; –
       MOV
                R4,R3
                                ; COPY CONTROLLER INDEX
                               GET ADDRESS OF SCB
       VOM
                U.SCB(R5),R4
       VOM
                S.CSR(R4),R2
                #IS.SUC&377,R0 ; ASSUME SUCCESSFUL TRANSFER
       VOM
                S.PKT(R4),R1
       VOM
                                ;GET I/O PACKET ADDRESS
       BITB
                #IQ.UMD, I.FCN(R1); DIAGNOSTIC FUNCTION EXECUTED?
51$:
       BNE
                130$
                                 ; IF NE YES
```

Figure 3-5 Example Driver Interrupt Routine

3.3.8.1 **\$FORK** - \$FORK is in the file SYSXT. A driver calls \$FORK to switch from a partially interruptable level (its state following a call on \$INTSV) to a fully interruptable level.

Notes:

- \$FORK cannot be called unless \$INTSV has been previously called. The fork-processing routine assumes that \$INTSV has set up entry conditions.
- 2. A driver's current timeout count is cleared in calls to \$FORK. This protects the driver from synchronization problems that can occur when an I/O request and the timeout for that request happen at the same time. After a return from a call to \$FORK, a driver's timeout code will not be entered.

If the clearing of the timeout count is not desired, a driver has two alternatives:

- a. Perform timeout operations by directly inserting elements in the clock gueue (refer to the description of the \$CLINS routine).
- b. Perform necessary initialization, including clearing S.STS in the SCB to zero (establishing the controller as not busy), and call the \$FORK1 routine rather than \$FORK. Calling \$FORK1 bypasses the clearing of the current timeout count.
- 3. The driver must not have any information on the stack when \$FORK is called.
- 3.3.8.2 \$FORK1 \$FORK1 is the file SYSXT. A driver calls \$FORK1 to bypass the clearing of its timeout count when it switches from a partially interruptable level to a fully interruptable level (refer also to the description of the \$FORK routine).

Notes:

- 1. For mapped systems with loadable driver support, a 5-word fork block is required for calls to \$FORK1.
- When a 5-word fork block is used, the driver must initialize the fifth word with the base address (in 32-word blocks) of the driver partition. This address can be obtained from the fifth word of the standard fork block in the SCB.
- The driver must not have any information on the stack when \$FORK1 is called.

3.3.9 Exiting the System State

Two routines \$INTXT (Interrupt Exit) and \$DIRXT (Directive Exit) result in the sequential removal of all items on the system stack, followed by all items on the Fork List. The following text discusses these two routines.

The Executive's objective is to return to the idle state as fast and as efficiently as possible. It does this by servicing all routines on

the system stack first. These routines are usually running at some level of non-interruptability. When the system stack is cleared of pending requests, the Executive then services the pending requests on the Fork List. When both the Fork List and system stack are empty, the Executive either returns to the task state or if no task is active, waits for work to do (idles).

SINTXT is transferred to by external interrupt processing routines that are running on the system stack at the priority of the interrupting source.

\$DIRXT has the task of servicing the Fork List and, when the Executive has no more work to do, restoring the task state. \$DIRXT is entered by trap routines, fork routines, and by \$INTXT.

3.3.9.1 \$INTXT Routine - The \$INTXT algorithm is as follows:

\$INTXT:: Lock out interrupts.

Is \$STKDP=0? No, go to 1.

Is Fork List empty (check \$FRKHD)? No, reload user SP if memory management is not defined and go to 1.

Allow interrupts.

Store R3, R2, R1, R0 on the current (system in this case) stack.

Execute \$DIRXT (Directive Exit).

1. Increment stack depth indicator.

Restore R4 and R5 from current stack and RTI.

Notes:

Interrupts must be locked out to insure a consistent check of \$STKDP and the contents of the Fork List. The same type of lockout occurs in directive exit. There are two non-interruptable code spans used to check and update the Fork List. One is in \$FORK, and one in \$DIRXT. The saving of R3 thru R0 is preparatory to the jump to \$DIRXT, which expects these registers on the stack. Note that the path through the Executive that finds both the Fork List empty and the stack depth indicator equal to 0 is fairly common. This is the minimum overhead path.

3.3.9.2 Directive Exit - The \$DIRXT algorithm is as follows:

\$DIRXT:: Lock out interrupts.

Check \$FRKHD. Anything in Fork Queue? No, go to 1.

Remove entry from Fork Queue and update Fork Queue listhead pointers.

Allow interrupts.

If memory management and loadable drivers are defined, save APR5 and map the driver.

Restore fork context (registers R4 and R5).

Restore APR5 if memory management is defined.

Call routine whose fork context was restored (CALL @-(R3)).

Go to \$DIRXT.

 Is rescheduling required (\$RQSCH not=0)? No, restore registers R0-R3 and go to 2.

Allow interrupts.

Is the power failure flag (\$PWRFL) set? Yes, go to 3.

Clear \$RQSCH.

Save context of current task.

Locate a ready-to-run task.

Load and check context of new task.

Map windows of new task for correct mapping determined by task privilege.

Go to \$DIRXT.

2. Restore task stack pointer (from @\$HEADR to SP).

Increment stack depth indicator, \$STKDP.

Restore R4 and R5 from user stack and RTI.

3. Call power failure processing (CALL \$POWER).

Go to \$DIRXT.

Notes:

\$DIRXT calls both waiting fork processes and the powerfail routine. These routines terminate via an RTS instruction. On return \$DIRXT again cycles looking for work.

The task reschedule pointer, \$RQSCH, controls the redispatching of the processor. It points to the location in the STD list where \$DIRXT should begin its scan for a task ready to use the processor.

\$RQSCH is set when a change of state has occurred in the system that might cause a task other than the one currently in control to obtain processor time. Examples are I/O done, clock queue runout, or a task doing an EXIT. The word is reset by \$DIRXT just prior to its dispatching a new task.

3.3.10 Interrupt Processing Code

Figure 3-6 shows the driver and system interrupt code that is used in processing interrupts. The lines in Figure 3-6 shows the flow of control from routine to routine. The numbers associated with the lines indicate the sequence of events.

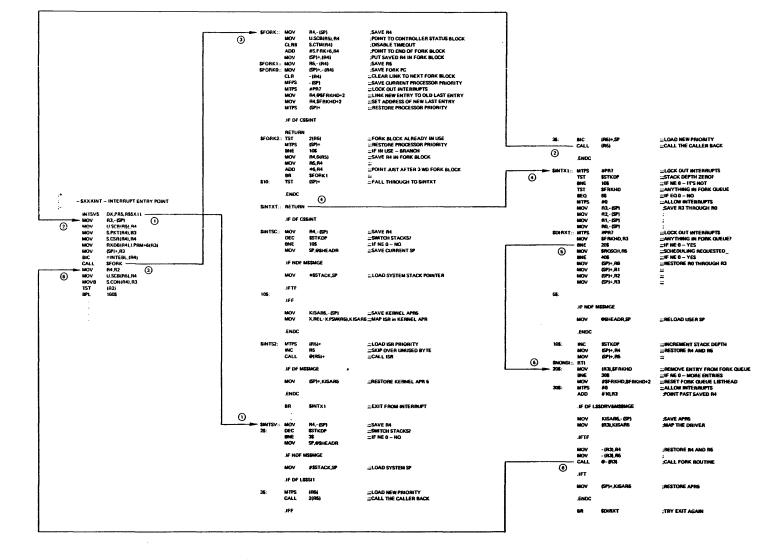


Figure 3-6 Interrupt Flow of Control

3.3.11 Interrupt Processing Summary

The following seven types of routines not only comprise the interrupt system, but practically comprise the entire Executive itself:

External Interrupt Routines

Trap Routines

Interrupt Save

Directive Save

Fork and Fork Processes

Interrupt Exit

Directive Exit

External interrupts cause traps to external interrupt processing routines which run in one of three states:

- Non-interruptable at PR7.
 They run here when initially entered.
- Interruptable by priorities higher than the interrupting source.

Both states 1 and 2 are linearized being queued and dequeued from the system stack.

3. Fully interruptable as fork processes.

Trap routines, of which only one may occupy the system stack during any given passage through the Executive, operate at priority level zero, need never call Fork, and operate entirely from the system stack.

Interrupt save is called by driver interrupt routines when they make a transition from non-interruptable to interruptable.

Directive save is called by trap routines.

Fork creates a fork process for external interrupt routines.

Interrupt Exit unstacks waiting routines from the system stack, and when the system stack is empty drops into Directive Exit.

Directive Exit gives control to waiting fork processes, processes power failure, and redispatches the processor.

The Executive structure has a sequentiality which obviates the need for any explicit synchronizing mechanisms. Privileged tasks that follow the internal conventions of the Executive are never concerned with multiple-update of shared system data bases. While progressing toward the idle state the Executive gives priority to routines on the system stack, then to fork processes.

CHAPTER 4

PRIVILEGED TASKS

4.1 INTRODUCTION

This chapter discusses privileged tasks: what they are, the hazards to the system that they present, and how they are mapped.

4.2 PRIVILEGED TASKS

A privileged task has a special access to memory locations and devices that a nonprivileged task does not have. Specifically, certain privileged tasks can examine and use the values in system control blocks. These tasks can also examine and use Executive code. Also, certain privileged tasks can directly access the device registers in the I/O page. A privileged task can read from or write to a volume whether or not that volume is mounted (via the Mount command) or allocated to another user. These abilities imply that a privileged task has every ability that the Executive has, and, in fact, it does. It may be helpful to conceive of the privileged task as part of the Executive because certain privileged tasks are mapped with the Executive and I/O page. See Task Mapping in this chapter. As the writer of a privileged task, you are obliged to take every precaution so as not to damage the Executive, system, or user code and data.

4.2.1 Privileged Task Hazards

Privileged tasks are potentially hazardous to a running system. A privileged task can corrupt the system and disable devices. Bugs in these tasks are obscure and difficult to find. For these reasons, you must be cautious when developing and running a privileged task.

Make certain that your privileged task has completed its operation when you log off the system (say "BYE"). BYE does not abort privileged tasks as it does nonprivileged tasks. BYE cannot abort a privileged task because the privileged task may be in the process of changing the system data base. Therefore, it must be allowed to complete its processing. Also, if the privileged task is in system-state, BYE or no other task can execute until the privileged task completes its processing while in system-state. However, when the privileged task leaves system-state, BYE runs and logs you off the system, leaving the privileged task still in operation.

If a processor trap occurs in a privileged task while the task is in user-state, the Executive aborts the task. However, if the processor trap occurs in the privileged task while the task is in system-state, the system crashes. However, even while in user state the privileged task that is mapped to the Executive can cause a system crash by

incorrectly changing system data. Please note that a privileged task in user-state should not be modifying system data.

Note that all tasks in an unmapped system can access all of memory. The privileged or nonprivileged designation has no particular meaning in an unmapped system. However, be just as careful about modifying Executive, device, or user data in an unmapped system.

4.2.2 Specifying a Task as Privileged

To specify a task as privileged, you must use the /PR switch in the Task Builder command line when you build your task. The RSX-11M Task Builder Reference Manual describes the use of this switch. You can use one of three numeric arguments with the /PR switch: 0, 4, or 5 (specifically as /PR:0, /PR:4, or /PR:5). The abilities and mapping of the privileged tasks designated by these switch values are described next.

4.2.2.1 /PR:0 Privileged Task

Using the /PR:0 switch causes the Task Builder to reserve user APAR 0 for mapping the task, which is the same as any other task. Virtual address space begins at virtual address 0 and extends upwards as far as 32K minus 32 words. This task cannot access the Executive routines, system data structures, or directly access the I/O page because the Task Builder has not reserved APRs for these purposes.

However, a task mapped into APR 0 can access the I/O page through a device common. The RSX-11M Task Builder Reference Manual discusses device commons. To do this, you must build a device common that occupies physical addresses on the I/O page. Then, when the task is built, you associate the common with the task by using the COMMON= or RESCOM= keyword.

There are four advantages to using a /PR:0 task and having it mapped into APR 0:

- The task has more virtual address space available. A task mapped through APR 0 that accesses the I/O page can be as large as 28K words.
- 2. A device common provides you with the means to associate symbolic names with physical addresses in the I/O page.
- 3. You can restrict the amount of space to which the task has access on the I/O page. When you specify an argument of either 4 or 5 on the /PR switch, the Task Builder always allocates the entire I/O page. However, a device common can be as small as 32 words expanding upwards (in 32-word blocks) to 4K words. Therefore, your task needs access to only the portion of the I/O page that it requires. Thus, there is less chance that the task will alter the wrong data and destroy the running system.
- 4. A /PR:0 task can write logical block I/O to a physically mounted volume, regardless of who issued the Mount or Allocate command. For example, the VMR task is a /PR:0 task and writes to mounted volumes during the SYSGEN process. However, this advantage can be hazardous for obvious reasons.

A /PR:0 task runs in user state and cannot switch to system state. Also, a /PR:0 task is not mapped to the Executive. If you want to write a privileged task that does I/O processing, it is to your advantage to use the /PR:0 switch for your task because there is less chance of corrupting the Executive or system code and data.

4.2.2.2 /PR:4 Privileged Task

If you want your privileged task to map to the Executive and I/O page, and your Executive is 16K or less, use the /PR:4 switch in the Task Builder command line. If you specify /PR:4 for your task, the Task Builder reserves APR 7 to map the I/O page and reserves APRs 0 through 3 to map the Executive as part of your task's virtual address space. The /PR:4 switch can be used only if your Executive size is 16K or less because the 16K Executive uses APRs 0 through 3 and your task is assigned mapping that starts with APR 4. Therefore, the Task Builder applies a bias of 100000 (16K decimal) to all virtual addresses within the task. This specific mapping of APRs 0 through 4 and 7 occurs whether the task is in user- or system-state.

There is up to 12K words of virtual address space possible in a /PR:4 task. The beginning of the task marks the end of the Executive code. If the task is 12K words in size, the end of the task marks the start of the I/O page. If the task is going to access the I/O page through APR 7, the task cannot exceed the 12K limit. If the task does exceed the limit, the Task Builder is forced to assign APR 7 to the task code. When building the task, the Task Builder does not give you an error message if your task exceeds the 12K limit. However, when you install the task, the system task, Install, sends you the following message:

"INS -- WARNING -- PRIVILEGED TASK OVERMAPS THE I/O PAGE"

This message is a warning that your task will most likely hang if it tries to access the I/O page.

A /PR:4 task can access all of the Executive, system control blocks, and I/O page. It can use Executive routines and do logical block I/O to a volume that is physically mounted on a device. Also, the /PR:4 task can issue a \$SWSTK macro to change from user- to system-state. This allows the task to access the Executive or system code without interruptions or fear of the data being changed while it is being accessed. See \$SWSTK in an Unmapped System or \$SWSTK in a Mapped System in this chapter.

4.2.2.3 /PR:5 Privileged Task

If you want your privileged task to map to the Executive and I/O page, and your Executive is between 16K and 20K, use the /PR:5 switch in the Task Builder command line. If you specify /PR:5 for your task, the Task Builder reserves APR 7 to map the I/O page and reserves APRs 0 through 4 to map the Executive as part of your task's virtual address space. The /PR:5 switch can be used only if your Executive size is between 16K and 20K because the 20K Executive uses APRs 0 through 4 and your task is assigned APR 5. (APR 5 may be used if the Executive is less than 16K, but this wastes virtual address space.) Therefore, the Task Builder applies a bias of 120000 (20K) to all virtual addresses within the task. This specific mapping of APRs 0 through 5 and 7 occurs whether the task is in user- or system-state.

There is up to 8K words of virtual address space (12K if the I/O page is overmapped) possible in a /PR:5 task. The beginning of the task marks the end of the Executive code. If the task is 8K words in size, the end of the task marks the start of the I/O page. If the task is going to access the I/O page through APR 7, the task cannot exceed the 8K limit. If the task does exceed the limit, the Task Builder is forced to assign APR 7 to the task code. When building the task, the Task Builder does not give you an error message if your task exceeds the 8K limit. However, when you install the task, the system task, Install, sends you the following message:

"INS -- WARNING -- PRIVILEGED TASK OVERMAPS THE I/O PAGE"

This message is a warning that your task will most likely hang if it tries to access the I/O page.

A /PR:5 task can access all of the Executive, system control blocks, and I/O page. It can use Executive routines and do logical block I/O to a volume that is physically mounted on a device. Also, the /PR:5 task can issue a \$SWSTK macro to change from user- to system-state. This allows the task to access the Executive or system code without interruptions or fear of the data being changed while it is being accessed. See \$SWSTK in an Unmapped System or \$SWSTK in a Mapped System in this chapter.

4.2.3 Writing a Privileged Task

In addition to the privileged task mapping and cautions mentioned previously, take note of the following points when writing a privileged task:

- Task size is limited to 8K if you have a 20K Executive and 12K if you have a 16K Executive. This limit occurs because only two APRs are available for mapping your task with a 20K Executive and three APRs with a 16K Executive.
- 2. Your privileged task is mapped with the Executive and I/O page. This mapping is done to allow your task to access the Executive and I/O page registers (APRs, device registers, etc.). You can refer to any area in the Executive or I/O page by label or label and offset because you task build your task with the Executive symbol table file and library. A typical Task Builder command file is, for example:

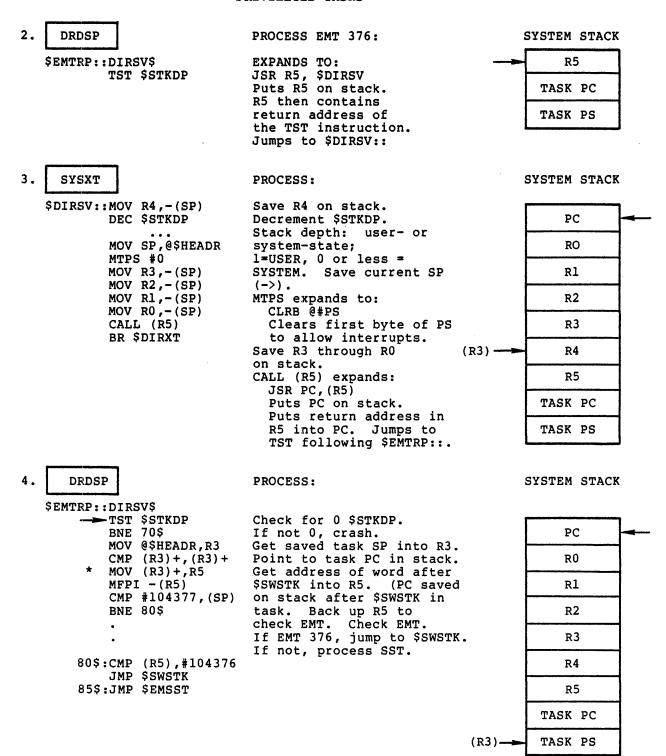
PRIV/PR:5,PRIV/-SP=PRIV
[1,54]RSX11M.STB,[1,1]EXELIB/LB

UNITS=1 ; DEFINE NUMBER OF LUNS
GBLDEF=OUTLUN:1 ; DEFINE LUN ON WHICH TO PRINT MESSAGES
ASG=TI0:1 ; ASSIGN LUN TO DEVICE

In this command file, the Task Builder is informed that the task has a privilege attribute of 5. Therefore, the task uses APR 5. It also uses APR 6 if it is over 4K in length.

3. When you use a privileged task, the Executive has dedicated almost all the APRs to the necessary mapping for the Executive, the I/O page, and your task. Your task can issue PLAS directives to remap any number of these APRs to regions. However, such remapping can cause obscure and difficult to find system bugs. Also, be aware that when a directive unmaps a window that formerly mapped the Executive or the I/O page, the Executive restores the former mapping.

- 4. A privileged task uses the \$SWSTK macro when going from userto system-state. (See \$SWSTK in a Mapped System.) While in system state your task can access the Executive and I/O page without being interrupted by other tasks or system processes. It would be prudent to limit the time that your task spends in system state for the sake of other system users. Remember that while in user-state your task can not only read, but change the Executive or I/O page, if necessary. However, if your task is interrupted while changing data in user state, it may not finish its processing properly, thereby causing obscure bugs. Allowing a task to manipulate the Executive data base while in user-state is not a goal of RSX-11M. Future releases of RSX-11M may prohibit this activity.
- 5. While in system-state, a privileged task can modify any mapping registers to make them point to any desired area of physical memory. For example, the system task, PMD, loads the starting address of the task being dumped into KISAR6 (Executive APR 6). It then biases the addresses by 140000 to force mapping through APR 6. The bias is 120000 for APR 5. Note that by modifying APR 5 or APR 6 registers, it is possible for a privileged task to unmap its task image. Therefore, you must take care to avoid this. However, PMD is only 4K words in size. Therefore, modifying KISAR6 cannot cause PMD to unmap itself.


4.2.4 The \$SWSTK Routine Described - Unmapped and Mapped Systems

4.2.4.1 SWSTK\$ in a Mapped System

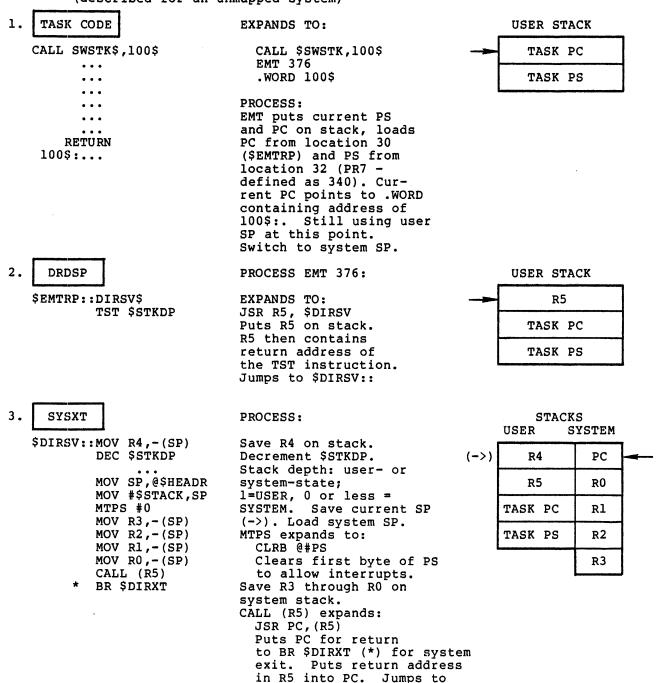
SWSTK\$ - Used by privileged tasks to switch from user- to system-state (described for a mapped system).

1. TASK CODE	EXPANDS TO:	SYSTEM STACK
CALL SWSTK\$,100\$	CALL \$SWSTK,100\$ EMT 376	TASK PC
•••	.WORD 100\$	TASK PS
•••	PROCESS:	
•••	EMT puts current PS and PC on stack, loads	
RETURN 100\$:	PC from location 30 (\$EMTRP) and PS from location 32 (PR7 -	
	<pre>defined as 340). Cur- rent PC points to .WORD containing address of</pre>	
	100\$:. EMT in a mapped system causes switch	

to system SP.

^{*} Task stack pointer (R3) shown at this point.

5. SYSXT PROCESS: SYSTEM STACK \$SWSTK:CLRB (R3) Clear byte 0 of task's PS word. Move user APRs to Executive TASK PC MOV #KISAR6,R5 APRs. Move user APR 4 if 16K MOV UISAR6, (R5) MOV UISAR5,-(R5) Executive. Get saved task SP PC for PC. Put PC for return (16K cond) MOV UISAR4,-(R5) MOV -(R3),R5 to user task in R3. Put task PC on system stack. R0 MOV (R5) + (R3)MOV R5, (SP) Restore R5. Restore R3. R1 MOV - (R3), R5CALLR expands: R2 MOV 12(SP),R3 JMP @(SP)+ CALLR @(SP)+ Return to task instruc-R3 tion after \$SWSTK to process system-state code. R4 R5 TASK PC TASK PS (R3)--6. TASK CODE TASK PROCESS: SYSTEM STACK CALL SWSTK\$,100\$ Do system-state processing. RETURN expands: R0 RTS PC RETURN Pops stack and gets 100\$: saved PC to go back to SYSXT at BR \$DIRXT R1 instruction. R2 R3 R4 R5 TASK PC TASK PS 7. SYSXT PROCESS: BR \$DIRXT Lock out interrupts. \$DIRXT::MTPS #PR7 MOV \$FRKHD,R3 Check forking. BNE Check rescheduling. MOV \$RQSCH, R5 Restore R0 - R3. Make STKDP = 1. BNE MOV (SP) + R0Restore R4, R5. RTI pops saved PC and PS. from stack.


MOV (SP)+,R3 INC \$STKDP MOV (SP)+,R4 MOV (SP)+,R5

RTI

4.2.4.2 SWSTK\$ in an Unmapped System

SWSTK\$ - Used by privileged tasks to switch from user- to system-state (described for an unmapped system)

TST following \$EMTRP::.

DRDSP PROCESS: STACKS USER SYSTEM \$EMTRP::DIRSV\$ TST \$STKDP Check for 0 \$STKDP. **BNE 70\$** If not 0, crash. R4 PC MOV @\$HEADR,R3 Get saved task SP into R3. CMP (R3)+,(R3)+R5 R0 Point to task PC in stack. Get address of word after MOV (R3) + R5CMP #104377,-(R5) \$SWSTK into R5. PC $(R3) \rightarrow$ TASK PC Rl BNE 80\$: saved on stack after \$SWSTK in task. Back up R5 to check EMT. Check EMT. TASK PS R2 80\$:CMP (R5),#104376 JMP \$SWSTK If EMT 376, jump to \$SWSTK. R3 85\$:JMP EMSST If not, process SST.

* User stack pointer (R3) shown at this point

5. SYSXT

PROCESS:

STACKS USER SYSTEM

\$SWSTK:CLRB (R3) MOV -(R3),R5 MOV (R5)+,(R3) MOV R5,-(SP) MOV -(R3),R5 * MOV 12(SP),R3 CALLR @(SP)+ Clear byte 0 of task's PS
word. Get saved task SP
for PC. Put PC for return
to user task in R3. Put task
PC on system stack. Restore
R5. Restore R3. CALLR
expands: JMP @(SP)+
Return to task to
instruction after
\$SWSTK to process
system-state code.

SYSTEM	_
TASK PC	-
PC	
RO	
Rl	
R2	
R3	
	PC RO R1 R2

* System stack pointer shown at this point

6. TASK CODE

TASK PROCESS:

STACKS

CALL SWSTK\$,100\$
...

* RETURN
100\$:

Do system-state processing RETURN expands:
 RTS PC
Pops stack and gets saved PC to go back to SYSXT at BR \$DIRXT instruction.

STEM	
PC	-
R0	
Rl	
R2	
R3	
	PC R0 R1 R2

^{*} System SP shown at this point

7. SYSXT PROCESS: BR \$DIRXT Lock out interrupts. \$DIRXT::MTPS #PR7 Check forking. Check rescheduling. MOV \$FRKHD,R3 Restore R0 - R3. BNE MOV \$RQSCH, R5 Restore R0 - R3. Reload user SP. BNE MOV (SP) + R0Make STKDP = 1. Restore R4, R5. RTI pops saved PC and PS. MOV (SP) + R3from stack. MOV @\$HEADR,SP INC \$STKDP MOV (SP) + R4MOV (SP) + R5RTI TASK CODE PROCESS: SAVED PC ---- .WORD 100\$ Process at 100\$ in 100\$: code user-state

4.2.5 Task Mapping

Figure 4-1 shows the mapping of a nonprivileged user task in an unmapped system.

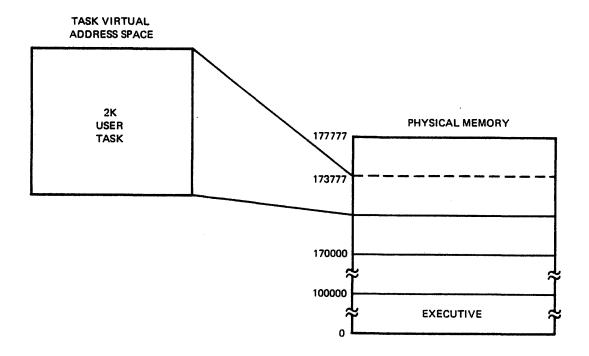
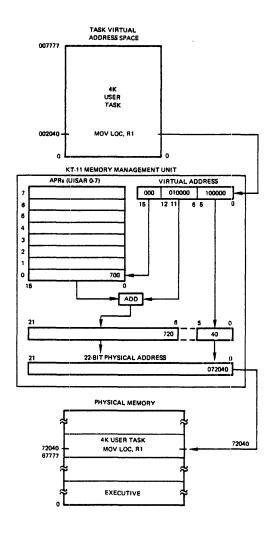

Figure 4-2 shows the mapping of a nonprivileged task in a mapped system.

Figure 4-3 shows the mapping of an 8K nonprivileged task in a mapped system.

Figure 4-4 shows the mapping of an 8K nonprivileged task that uses memory management (PLAS) directives in a mapped system.


Figure 4-5 shows an 8K privileged task mapped into APRs 5 and 6. The 20K Executive occupies 5 APRs, which leaves two APRs for the privileged task and one for the I/O page. All the APRs are used by the system in this example. The Executive copies what are normally the Executive's own APRs (KISARO through KISAR4, and KISAR7) into what is normally the user APRS (UISARO through UISAR4, and UISAR7). Thus, the privileged task has access to the Executive and I/O page in either user- or system-state.

These figures are presented in a sequential and logical way to allow an easier understanding of privileged task mapping in the system.

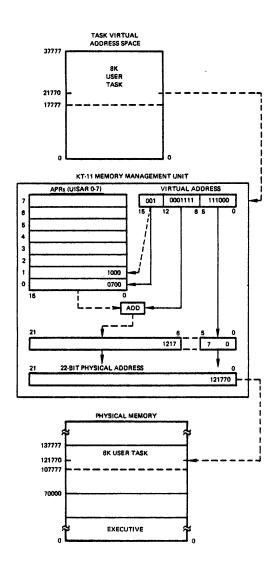

- Location of task depends on partition location in unmapped system (PAR option of TKB)
- Base of task on 32-word boundary; length is a multiple of 32 words; highest virtual address = 28K
- Non-runable task -- resident library or global common -- maximum size = 32K minus 32 words
- Unless you change parameters of task and task build again, task in unmapped system always loads into the same location
- INSTALL calls \$ALOCB to allocate TCB space. It then reads the first record of header label blocks, and sets up data in the task header. It verifies that the task fits in the specified partition
- INSTALL sets load device and LBN in TCB. UCB address of load device is put in header of INSTALL as a result of opening task image file. It then puts UCB address in TCB of task
- INSTALL: checks System Task Directory (STD) for task of same name; gets partition name from task Label Block Group; searches for task partition; checks if task fits in partition
- INSTALL: checks Label Block Group for PLAS support, resident overlays; puts task offset in TCB, checks
 if task is a common block, checkpoint file space, set priority in TCB, checks partition base address and
 task starting address
- INSTALL fills in TCB with information from Label Block Group. When everything is done, TCB is in STD
- When the task is executed, the Executive Loader loads task into correct partition and location. TCB is put on Active Task List

Figure 4-1 User Task in Unmapped System

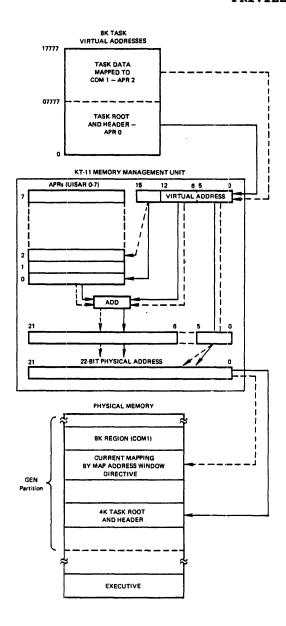

- Nonprivileged user task uses User Active Page Register 0 (APR 0), which is called UISAR0 in the I/O page.
- User is aware of virtual addresses 0 07777₈ only.
- INSTALL task maps this 4K task with APR 0 only, because task is only 4K. If it were bigger, INSTALL would select needed number of APRs (4K for each of 8 APRs 32K maximum). INSTALL determines into which partition task is to go in mapped system and virtual address for base of task (task may have a virtual section at beginning of task code, making its real virtual address different from its apparent virtual address). Executive determines physical address by information in task header and current system memory allocation. Executive puts this address in APRO. After task is loaded, mapping information is kept in Executive copy of task header in DSR.
- Contents of APR 0 relocates whole task (MOV instruction shown as part of task as an example).
- Bits 13-15 of task virtual address selects APR 0.
 If task were 8K, two APRs would be used.
 Virtual addresses in the task (bits 13-15) select dynamically the APR from those assigned.
- KT-11 adds value in APR 0 (16 bits) to bits 6-12 of virtual address. KT-11 appends sum to the low-order 6 bits of the virtual address to produce 22-bit physical address.

Figure 4-2 4K Nonprivileged User Task Mapping in a PDP-11/70

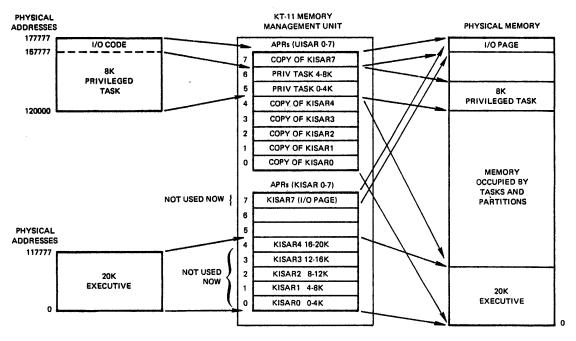

- User task shown has no memory management directives.
- User task is 8K in size. Because each APAR maps 4K of memory, user task must use two APARs.
- For example, APR 1 relocates address 21770 in the user task to physical address 121770. Because the virtual address being translated is over 4K and less than 8K, the high-order three bits of the address are 001. The three high-order bits select APR 1. If the task were between 8K and 12K in size, virtual addresses between 8K and 12K would contain 2 in the high-order digit and APAR 2 would be selected for these addresses. This relationship of virtual addressing to APRs continues up to 32K of virtual addresses. Each APAR can contain a 4K relocation factor; therefore, with 8 APARs, 32K of virtual addresses can be relocated.
- The virtual address limit of a user task in a mapped system is 32K.
- Without memory management directives, user task without commons or resident libraries occupies continuous physical address space in memory. The task can only access that physical memory to which the Executive maps it. This physical memory is continuous and has a direct one-to-one relationship to the tasks's virtual addresses until the task exits or the Executive checkpoints it. Of course, the Executive does not move fixed tasks once they are loaded, but they may be shuffled.
- Executive memory allocation routines determine the physical base address of the user task when the Executive Loader loads the task into memory. The base address is likely to change if checkpointing or shuffling occurs.

Figure 4-3 8K Nonprivileged User Task Mapping in a PDP-11/70

- The Task Builder built this task with WNDWS option = 1; the Task Builder reserves two window blocks in Task Header. Window blocks contain mapping information (see Chapter 2). Window block 0 is for APR 0 mapping. TKB always reserves one window block (window 0) for mapping task header and root (in this case 0 to 7777). Window block 1 is for address window (APR 2) that PLAS directives use in the task. However, a task may use more than one address window for mapping when using PLAS directives, but the number of windows to be used must be specified to TKB when building the task.
- Upper 4K of this task is defined as an address window to access a region in memory.
- Window size can be 32 to 32K minus 32 words and must start on a 4K virtual boundary.
- The Executive maps both the task root and the region into the GEN system-controlled partition. You must specify the APR that the Executive is to use for the region.
- The Executive may map the region to a numerically lower physical location than your task and the region and task root may or may not be contiguous in memory.
- You must create Window Definition Block (WDB) in your task (see Chapter 2 or RSX-11M Executive Reference Manual).
- You must create the Region Definition Block (RDB) in your task (see RSX-11M Executive Reference Manual).
- Your task must issue an Attach Region directive to attach the region (COM1) to your task.
- Your task must issue a Map Address Window directive to map your task's window to the region. In this directive, your task specifies the offset into the region in which mapping begins. This offset can be changed by issuing another Map Address Window with the offset changed. Doing this can move the window through the whole region.
- These directives in combination with the Send/ Receive and Detach Region directives make it possible for two tasks to transfer data to each other through a region that they can both access in common.

Figure 4-4 8K Nonprivileged Task Mapping in a PDP-11/70 Using PLAS Directives

MAPPING FOR 8K PRIVILEGED TASK IN USER STATE AND 20K EXECUTIVE

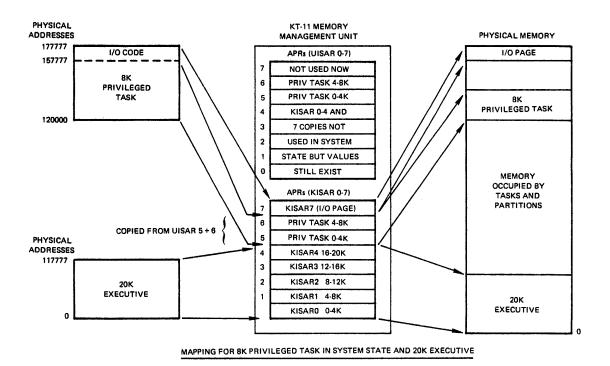


Figure 4-5 Privileged Task Mapping

CHAPTER 5

MCR INTERFACE

5.1 MCR - MONITOR CONSOLE ROUTINE

MCR is the collection of functions that make it possible to operate and control the RSX-11M system from a terminal device. As the link between the collection of services provided by RSX-11M and users who want to make use of these services, MCR provides a number of commands which you can execute by entering the command at your terminal.

The RSX-llm Operator's Procedures Manual describes all the MCR commands that you can use. They are listed as follows:

- 1. ABOrt
- 2. ACS
- 3. ACTive
- 4. ALLocate
- 5. ALTer
- 6. ASsigN
- 7. ATL
- 8. BRK
- 9. CANcel
- 10. CLQueue
- 11. DEAllocate
- 12. DEVices
- 13. FIX
- 14. HELP
- 15. LUN
- 16. OPEn register
- 17. PARtition definitions
- 18. REAssign
- 19. REDirect

- 20. REMove
- 21. RESume
- 22. RUN
- 23. SAVe
- 24. SET
- 25. TAsk List
- 26. TASk list
- 27. TIMe
- 28. UNFix

Services 29-39 run as tasks.

- 29. BOOt
- 30. BROadcast
- 31. BYE
- 32. DMOunt
- 33. HELlo
- 34. INTitvolume
- 35. INStall
- 36. LOAd
- 37. MOUnt
- 38. UFD
- 39. UNLoad

5.1.1 Structure and Operation Environment of MCR

MCR is an RSX-11 task that, typically, operates out of its own partition. MCR runs at a moderately high priority to be able to service terminal input requests. This priority value is typically 160. or, at least, higher than that of user tasks and utilities. MCR is privileged and is usually stopped, though active, while waiting for terminal input. MCR can be checkpointed and have checkpoint space in its own task image.

MCR is a tree structured task, and its structure is depicted schematically in Figure 5-1.

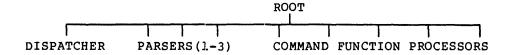


Figure 5-1 MCR Tree Structure

The command function processors are those that process the first 16 console services listed in Section X.X. The remaining console services run as tasks and not as integral parts of MCR. MCR, in fact, does not distinguish between these task functions and tasks that it initiates as a result of recognizing an MCR request for functions 17-22 listed in Section 5.1. The console language syntax is defined such that if the first three characters of an input line are not part of the defined command language, then MCR attempts to initiate the task named

...xxx

Thus, the task named ... JIM can be initiated by entering

JIM

to MCR, or by entering

RUN ...JIM

to MCR.

5.1.2 The Terminal Driver and MCR Initiation

The terminal driver is intimately integrated into the operation of MCR. Because RSX-llM accepts and acts upon unsolicited input from any operator terminal, it is the function of the terminal driver to know when it is receiving input destined for MCR.

When a character on an operator terminal is struck, the resulting interrupt initiates the terminal driver. (Remember the device is full duplex and the keyboard cannot be locked to prevent input when the device is, in fact, involved in an I/O operation.) The driver then acts on the input as follows:

[Check the device state]

Is the device busy. No, go to 3.

2. [The device is busy]

If the driver was sending output (in an output state) when the character was entered, an input request flag is set in the appropriate UCB and the driver continues sending the output stream. When the output request is finished, processing continues at 5.

If the terminal was in an input state the character is accepted. Go to 6.

[Device is not busy]

Note, if the device was not busy, the incoming character is the first character of an input line.

Was the input character a CTRL-C? (CTRL-C is an explicit request to communicate with MCR.) If the character was a CTRL-C, the terminal driver executes a \$FORK and execution continues at 4.

If the first character is not a CTRL-C, a check is made to see if the device is attached. If it is, MCR ignores the character (unsolicited input to MCR on an attached device is not permitted).

If the device is unattached then it is considered the beginning of unsolicited input to MCR. Go to 4.

(Fork level processing)

The driver has transferred to fork level because it needs a buffer, and it can only get a buffer at fork level (shared system tables must be altered to obtain a buffer). In addition to getting a buffer, the fork level terminal processing code must check for a rare race condition.

After the arrival of the CTRL-C (or a non CTRL-C character if the terminal is not attached) and between the time the fork is executed and control is regained in the driver, it is possible that the device may have returned to the busy state. This is because we may have just unbusied the device for a previous request when the input interrupt occurred. The interrupt code finds the device free and executes a fork. But before control is regained at fork level, execution is continued in the driver for the previous request. The driver jumps to the initiator entry to propagate its execution and thus may find another waiting I/O request which it begins processing because the device is free. Thus the fork routine must recheck the state of the device. If it is busy the input is ignored and the driver returns (exits) from fork level. Otherwise, an attempt is made to obtain a buffer for the unsolicited input.

[Buffer Acquisition]

If the buffer acquisition attempt is unsuccessful, the driver ignores the input and exits.

If a buffer is obtained, the driver sets up to start an unsolicited input reguest by initializing various pointers and setting the status of the controller and unit to busy.

If the initial input character was CTRL-C, then

MCR>

is echoed to signify an explicit request to input to MCR.

Otherwise, the input character is stored in the buffer and echoed on the initiating terminal.

The driver returns (exits) from fork level.

6. [Character processing]

Once the terminal driver determines that input coming from an operator terminal is destined for MCR, it transfers subsequent characters into the buffer acquired in Step 5. It also echoes the incoming characters. The acceptance of input ceases if:

a. The buffer is filled (the buffer has room for 80 characters) but the maximum accepted depends on the device:

72 for KSR

72 for VT05B

80 for LA30S

80 for LA30S

b. An end of line character is entered. The valid end of line characters are:

CTRL-Z

Carriage Return

ALT-Mode (codes 33, 175, and 176)

7. [Interrupt from a character echo]

Is the device in input mode? If it is not, another character is obtained from the user output buffer and it is echoed. If the device is in input mode, end-of-line must be checked. If it is not, the keyboard interrupt is re-enabled and exit from the interrupt occurs. If end-of-line is detected, then the fork process is called.

8. [End-of-line processing - fork level]

For unsolicited input, the UCB address and the terminating character are deposited into the input buffer and the buffer linked into MCR's input gueue. MCR is then requested to run. The driver itself clears control and unit busy and returns to its initiator entry point.

For solicited input, I/O Done is called. First, the number of characters entered is determined and the buffered input is moved to the soliciting task's input buffer. The driver input buffer is released and I/O Done is called with the second I/O status word equal to the number of bytes entered. The left byte of the first I/O status word is set equal to the terminating character and the right byte to +1. The driver them jumps to the initiator entry point to propagate its execution.

5.1.3 MCR Operation

After the request of MCR by the driver, the file system is swapped out and MCR is swapped in. Control is passed to the MCR root segment which calls the Dispatcher (DSPTCH) overlay. DSPTCH, via a privileged subroutine (\$SWSTK), switches to system state. The call to this

routine includes a parameter which is the address where the caller wants to return when it switches back to task state. The state switching routine performs the switch and resumes processing in the caller immediately following the call. When \$SWSTK is called, it sets up an interrupt entry to the system. Interrupts are locked out while it pushes the passed return address and the PS on the stack. \$SWSTK then calls interrupt save (\$INTSV). On return from interrupt save, R3, R2, R1, R0 are pushed onto the stack and now the stack state simulates that of an EMT. \$SWSTK now calls the caller who resumes execution one instruction past the call to \$SWSTK. When the calling routine finishes, it returns, which takes it back to \$SWSTK. \$SWSTK jumps to Directive Exit which redispatches the processor. The effect of this is to resume the caller in task state at the passed return address.

MCR now proceeds as follows:

[Request an unsolicited input gueue entry]

The Dispatcher calls the gueue removal routine (\$QRMVF). \$QRMVF attempts to remove a buffer and deliver it to the Dispatcher. If no buffer is available (carry set return from \$QRMVF) the Dispatcher exits. The buffer is formatted as shown in Figure 5-2.

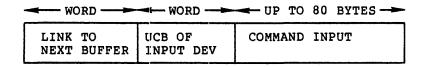


Figure 5-2 Input Buffer

The gueue empty condition never occurs on an initial call to MCR, because MCR is not requested unless something is in the gueue. MCR remains resident until it has processed all the entries in the unsolicited input gueue.

Note that the Dispatcher, during buffer requisition, is operating at system level and all queue entries are done at fork level. Thus the buffer removal process is linearized with buffer item entry.

If DSPTCH gets a buffer, it saves the buffer address in a memory location and does a return. This return takes DSPTCH back to task state where the processing of the buffer begins.

[Process a Buffer]

On return to task state, the Dispatcher scans through the buffer and

- Compresses out redundant spaces and/or tabs
- 2. Converts an Escape character to a Carriage Return
- 3. Truncates trailing spaces and/or tabs

If no line terminator is found in the buffer, the Dispatcher inserts a CR as the 80th character. Finally the actual line terminator (either CR or ESC) is saved so it can be restored in the message if the message must be routed to a task other than MCR itself.

The Dispatcher then converts the first three characters to RAD50 and begins to search two internal tables for an MCR function with a matching name.

[Searching the function tables - Table descriptions]

MCR has two function tables; one for privileged commands, and one for non-privileged commands.

Privileged commands are those whose unrestricted use could cause privacy violation or system failures and they can only be executed from a privileged terminal. Privileged terminals are identified by a bit in the UCB. These terminals are established at SYSGEN or by the SET command.

Both tables contain a 5-word packet for each command in the class (privileged or non-privileged). The packet appears in Figure 5-3.

RAD50 CMD NAME (3 CHARS)
INDEX INTO COMMAND OVERLAY
ADDRESS OF PARSER TABLE
RAD50 COMMON OVERLAY NAME
INDEX INTO COMMON OVERLAY

Figure 5-3 Function Table Entry

The table entries correspond to three overlay types:

- 1. Command overlay
- 2. Parser overlay
- 3. Common overlay

The use of these overlay types is noted next.

Typically, any command that can be processed in a single overlay and whose size is such that it requires all or nearly all of the max overlay size (600 wds) is classed as a command overlay.

Parsers for the commands are distinct entities and are grouped into overlays. Generally, a given parser services more than one command but three parsers currently service all the commands. The parser entry is a pointer to a parser table entry shown in Figure 5-4.

RAD50 PARSER NAME (3-CHARS)

INDEX INTO PARSER OVERLAY

Figure 5-4 Parser Table Entry

Because three parsers service all the commands it is more economical in storage space to point to the parser table than to include the name and the index in the main function table.

The index is used as the entry point into the parser where the parsing for a given command begins. This is required because a parser can, and generally does, contain parsers for more than one command.

The common overlay is used when the processing for a command is small enough to make it practical to group more than one command into a single overlay. This grouping saves space since ten words are required by the Overlay Runtime System for each overlay in a tree structure. The index serves the same purpose as the index in a parser overlay.

Note that a command overlay also contains an index. The value of the command overlay index is generally zero. But to maintain the coherence of the table processing commonality, and to allow for flexibility, the index is included.

3a. [Look up and start a function other than an MCR internal function]

The Dispatcher then looks in the privileged command table for a name which matches the first three characters in the input buffer. This table contains all the privileged MCR commands.

Internally, privileged terminals are identified by a bit in the UCB. The bit is set at SYSGEN or from a privileged terminal using the SET MCR command.

If the command is not found in the privileged command table, the non-privileged command table is searched.

MCR for multiuser-systems is called MCRMU. MCRMU is actually two tasks: ...MCR and ...SYS. The Dispatcher in MCRMU, which is part of the MCR task, looks in a table to see if it is to process the issued command. These commands are: LUN, REA, REM, FIX, UNFIX, CANCEL, RESUME, and ABORT. If the command is not in this table, the Dispatcher looks in another table to see if the task, ...SYS, processes the command.

If the name is not in either table, then the Dispatcher prefixes three periods to the three buffer characters, and using these six characters, searches the STD looking for a match on the name. If it does not find the name it displays an error message on the initiating terminal. If it finds the name, it requests the function to run, supplying as an argument to the requested task the UCB address that was in the input buffer. The UCB address is inserted into the TCB of the requested task as its TI (terminal input) pseudo

device. If the attempt to request the task fails, an error message is displayed, the buffer is released, and MCR exits. Having discovered a non-internal MCR function, MCR must prepare to pass the buffer, because the initiated task is going to issue a Get MCR Command Line directive. To pass the buffer, MCR uses three words in system common. These words are:

- The TCB address of the requested task
- 2. The address of the command buffer
- The byte count of the number of input characters in the buffer

MCR fills these words, making synchronizing checks that they are free, because only one triplet exists for passing buffers to a requested task. Thus, until the buffer is emptied, other completed buffers in the gueue are waiting.

Eventually, the requested task starts running, and issues a Get MCR Command Line directive. The directive processing then tests for a match on the TCB address in SYSCM and the TCB address of the requesting task. If they match the buffer is passed to the task by copying it into the DPB of the directive. The directive status is set to the byte count, the buffer is released and the TCB address in the SYSCM triplet is cleared. The TCB address being zero is an indication to MCR that the triplet is free.

3b. [Start an internal MCR function]

Once a name match has been found in the command table, the Dispatcher copies words 1, 2, 4 and 5 of the function table entry and both words of the parser table entry for this command into the MCR root segment. Now the Dispatcher scans the function table entry as follows:

- 3c. If a parser exists, go to 4. Otherwise, if a command overlay exists go to 3d. If a command overlay does not exist, go to 5. Otherwise, abort the system.
- 3d. The Dispatcher forms the overlay name, constructs the required overlay information packet, and enters the root at the point where overlay loading is performed.
- 4. [Parser functions]

The selected parser parses the buffer and, if the parse is successful, it jumps back to the root to load the desired function. If the parse fails, the parser deposits an error number in the root and jumps to the entry \$ERLD in the root which loads the error overlay.

Ultimately the root initiates another routine, either the error routine or the requested function.

5. [Function routines]

These routines may further check the input and find errors. If errors are found, the function sets up the error routine and jumps to the root to load an error overlay. If it succeeds, the function releases the buffer and enters the root as the point where the root reloads the dispatcher.

6. [Error Overlay]

The error overlay contains all error messages and the code needed to format the error message from the error number deposited in the root by the MCR component discovering the error.

7. [Final Exit]

The dispatcher calls the queue routine to obtain another buffer; if one is found, the cycle of name table scanning resumes (starting at Step 2). If no buffers are waiting, MCR exits.

CHAPTER 6

I/O PROCESSING

This chapter contains a description of QIO directive processing in the form of a Logical Flow Diagram.

6.1 IMPLEMENTATION

The user interface to the RSX-llM I/O system consists of logical unit numbers (LUNs) and a single active I/O directive, Queue I/O. (The directives Assign LUN, Get LUN Info, etc. do not initiate I/O transfers.)

In RSX-11M all the preliminary processing antecedent to actually gueuing an I/O request is performed by the QIO directive processing code that uses the I/O data structures. This code calls ancillary routines for centralized services. When a driver finally receives an I/O order, it generally has very little to do other than set up the status registers and issue the order.

Termination processing is equally modular and centralized. The driver is entered, performs some cleanup operations, and calls centralized routines for obtaining pending I/O orders, performing AST processing, etc. The driver is only concerned with the most intimate and specific details of the actual hardware interface in respect to the execution and completion of I/O transfers. Using this centralization philosophy, RSX-11M keeps both driver size and non-interruptible processing time small.

6.2 RSX-11M I/O DATA STRUCTURES

The static I/O data structures consist of three blocks:

- 1. A Device Control Block (DCB)
- 2. A Unit Control Block (UCB)
- 3. A Status Control Block (SCB)

Although each serves a specific function, and the components of each, in general, reflect these functions. The functional purpose of each data structure is reflected by the units of information which compose them. See Chapter 8, Data Areas and Control Blocks.

6.2.1 The Device Control Block (DCB)

One device control block exists for each device type attached to the system. Its function is to describe the static characteristics of both the controller and the units attached to the controller. All the DCBs in the system are singly linked. The DCB contains such information as:

- The device mnemonic (two ASCII characters)
- The lowest and highest unit numbers on the respective controller type
- The address of the first UCB
- The length of each UCB
- The next DCB pointer
- The Legal Function Mask
- The Control Function Mask
- The No-Op'd Function Mask
- The File Function Mask
- The pointer to the Driver Dispatch Table

For Loadable drivers, the pointer to the driver's driver dispatch table (D.DSP) and the pointer to the driver's PCB (D.PCB) are altered by Load and Unload.

The rest of these information fields are static and are used principally by the Queue I/O directive processing code to prepare a Queue I/O request for a device driver. The details of Queue I/O processing are shown in Figure 6-2, QIO Directive Processing.

6.2.2 The Unit Control Block (UCB)

One unit control block exists for each physical device unit attached to the system. Many of its information fields are static and very device dependent. The device independent parts of the UCB contain few dynamic parameters. For example, the redirect pointer reflects the result of a Redirect MCR command.

The UCB contains device unit specific data, such as unit status, physical unit number, and unit characteristics. See Chapter 8, Data Areas and Control Blocks.

6.2.3 The Status Control Block (SCB)

One status control block exists for each device controller in the system. This is true even if the controller handles more than one device unit (like the DK Controller). Line multiplexers such as the DH11 and DJ11 are considered to have a controller per line since all lines may transfer in parallel.

Some of the information in the SCB is dynamic. It contains the following information about the currently active unit:

- The interrupt vector address
- The controller bus request priority
- Timeout counts (initial and current)
- The address of the Control Status Register
- The address of the current I/O Packet
- Storage for a Fork Block
- The I/O queue listhead
- The controller status (busy/idle)
- The controller index

The dynamic data in the SCB makes it possible to maintain control of the current I/O in progress on the controller. The presence of Fork Block storage in the SCB implies that a driver cannot call \$FORK twice for the processing at fork level on a given controller. The driver for a specific device type never concerns itself with unwanted recursion or multiple updates. Once a driver is in a fork level process, further I/O processing, which may involve updating a shared data base, is automatically locked out by the Fork processing of the system itself.

6.3 QUEUE I/O DIRECTIVE PARAMETER BLOCK

The Queue I/O directive requires a 12-word Directive Parameter Block (DPB) as shown in Figure 6-1.

LENGTH	DIC	
FUNCT CODE	MODIFIER	
RESERVED	LUN	
PRIORITY	EFN	
I/O STATUS BLOCK ADDRESS		
ADDRESS OF AST	ROUTINE	
DEVICE		
DEPENDENT		
PARAMETERS		

Figure 6-1 Queue Directive Parameter Block

The parameters have the following interpretation.

DPB size (required):

The length of DPB in words. For QIO always equal to 12 words.

DIC (required):

Directive Identification Code. For QIO, the value is a 1.

Function Code and Modifier (required):

The code of the requested I/O function (0 through 31) and device dependent modifier bits. I/O function code definitions are in the RSX-11M I/O Drivers Reference Manual.

Reserved:

Reserved byte; must not be used.

LUN (required):

Logical Unit Number.

Priority:

Reguest priority. Ignored by RSX-11M, but space must be allocated for RSX-11D compatibility.

EFN (optional):

Event flag number.

I/O Status Block Address (optional):

This word contains a pointer to the I/O status block, which is a 4-byte device dependent I/O completion data packet formatted as:

Byte 0

I/O status byte

Byte 1

Augmented data supplied by the driver

Bytes 2 and 3

The contents of these bytes depend on the value of byte 0. See the RSX-llM I/O Drivers Reference Manual.

AST Address (optional):

Address of an AST service routine.

Device Dependent Parameters:

Up to six parameters specific to the device. These may be, for example:

Buffer address

Byte count

Carriage control type

Logical block number

Any optional parameters that are not specified must be filled with zeros.

Directive Parameter Blocks and their contents are fully described in the RSX-llM Executive Reference Manual and the RSX-llM I/O Drivers Reference Manual.

6.4 QIO DIRECTIVE LOGICAL FLOW

Figure 6-2 is a Logical Flow Diagram of QIO directive processing. The diagram shows the main stream of code flow through the DRQIO module of the Executive.

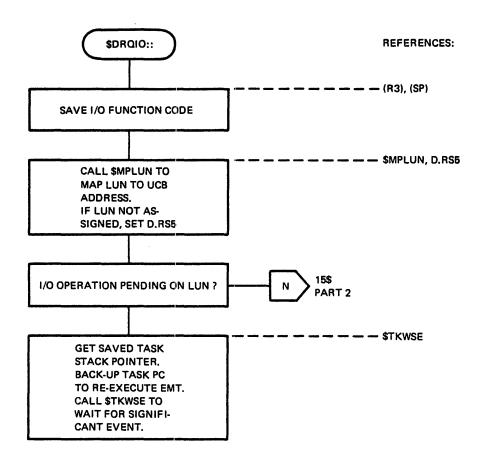


Figure 6-2 QIO Directive Processing (Part 1 of 24)

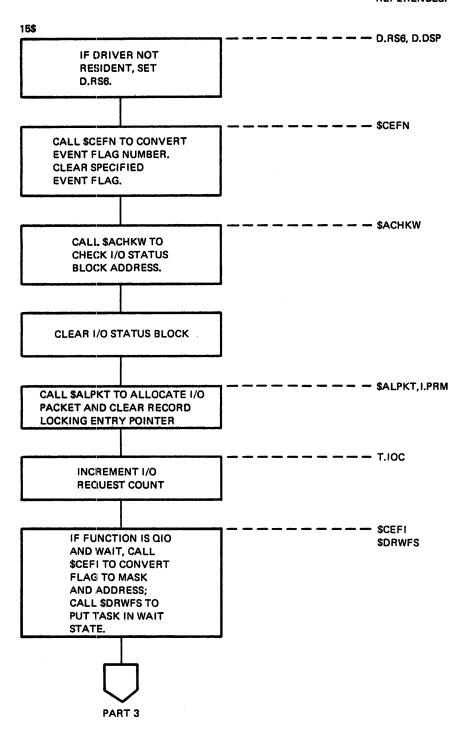


Figure 6-2 QIO Directive Processing (Part 2 of 24)

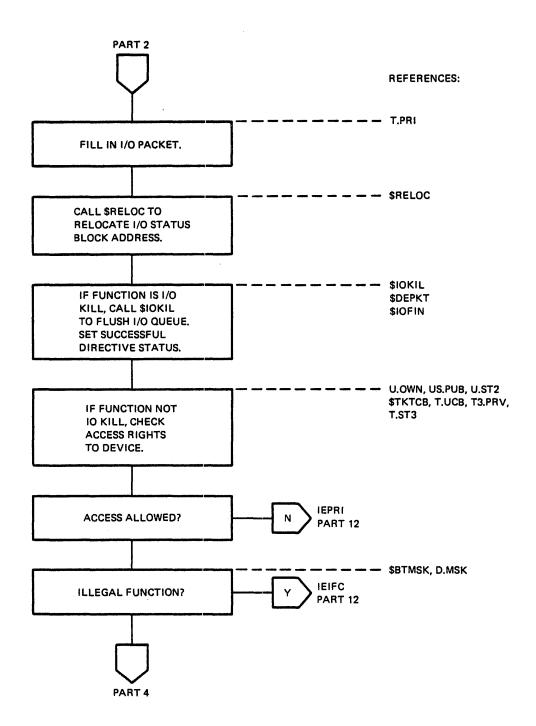


Figure 6-2 QIO Directive Processing (Part 3 of 24)

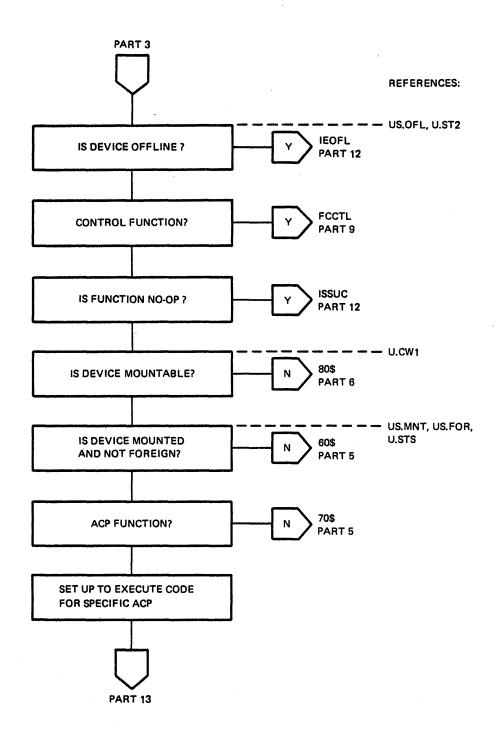
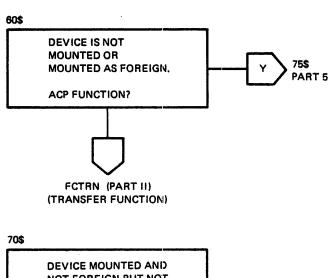



Figure 6-2 QIO Directive Processing (Part 4 of 24)

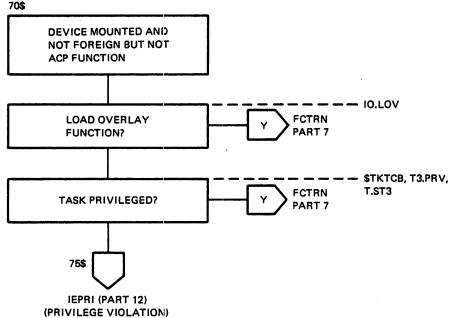


Figure 6-2 QIO Directive Processing (Part 5 of 24)

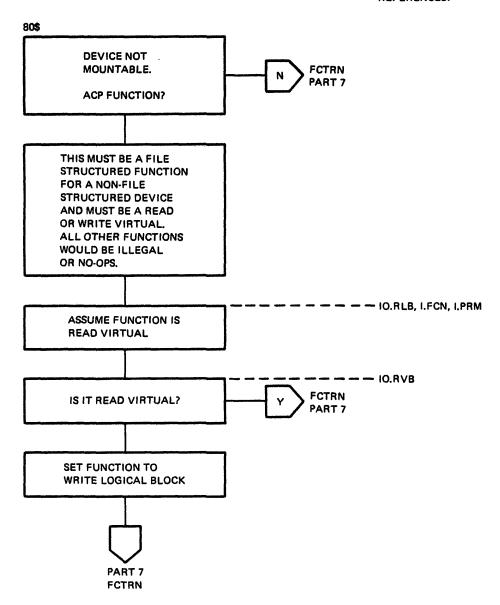


Figure 6-2 QIO Directive Processing (Part 6 of 24)

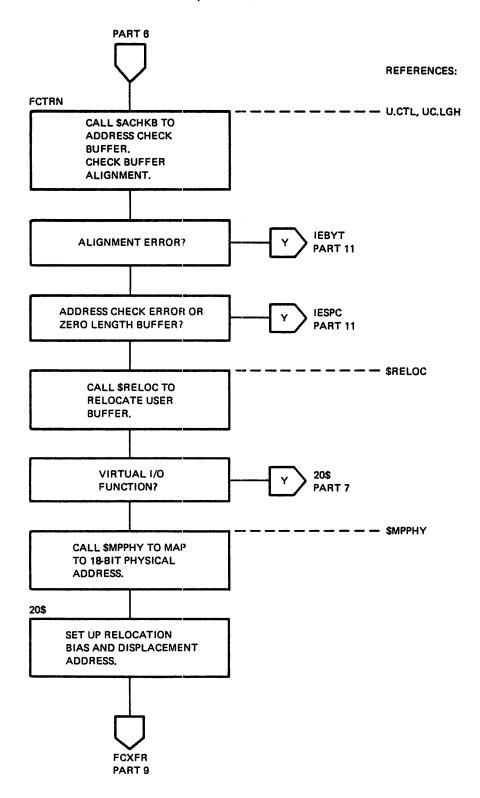


Figure 6-2 QIO Directive Processing (Part 7 of 24)

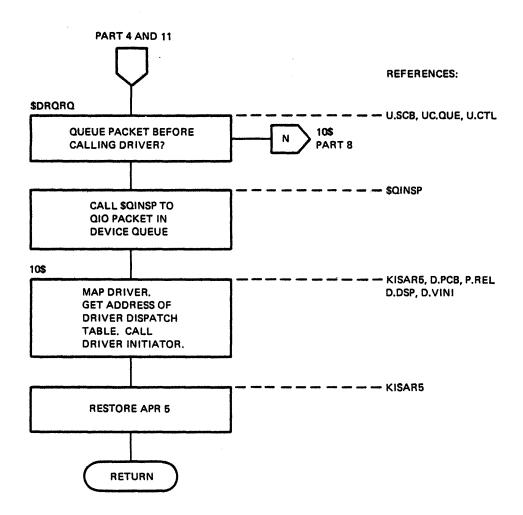


Figure 6-2 QIO Directive Processing (Part 8 of 24)

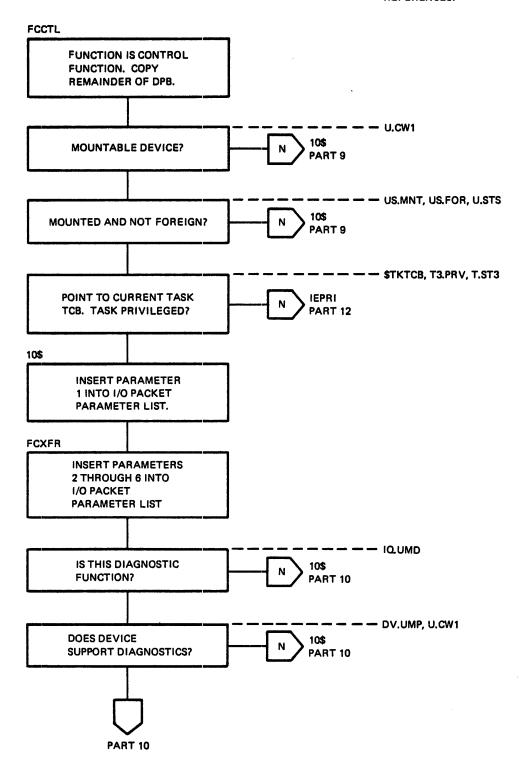


Figure 6-2 QIO Directive Processing (Part 9 of 24)

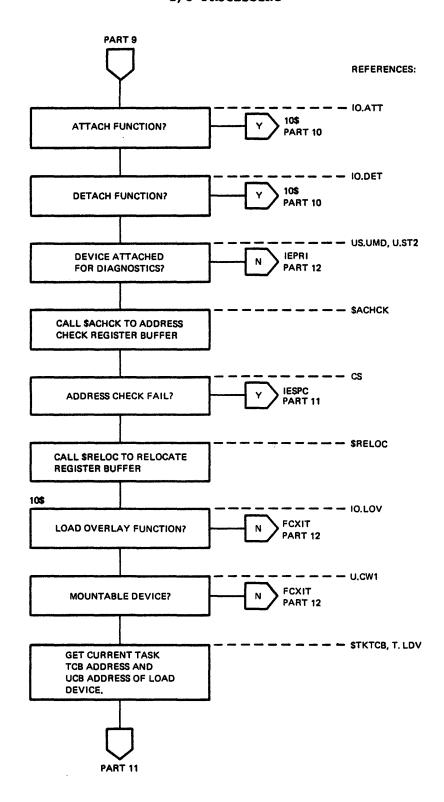


Figure 6-2 QIO Directive Processing (Part 10 of 24)

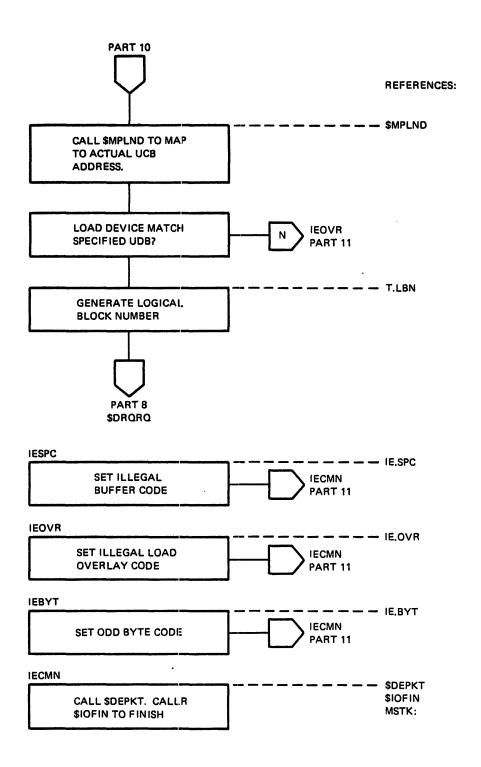


Figure 6-2 QIO Directive Processing (Part 11 of 24)

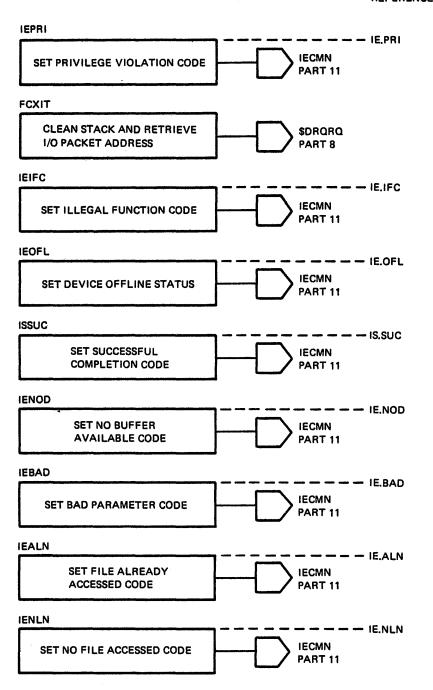


Figure 6-2 QIO Directive Processing (Part 12 of 24)

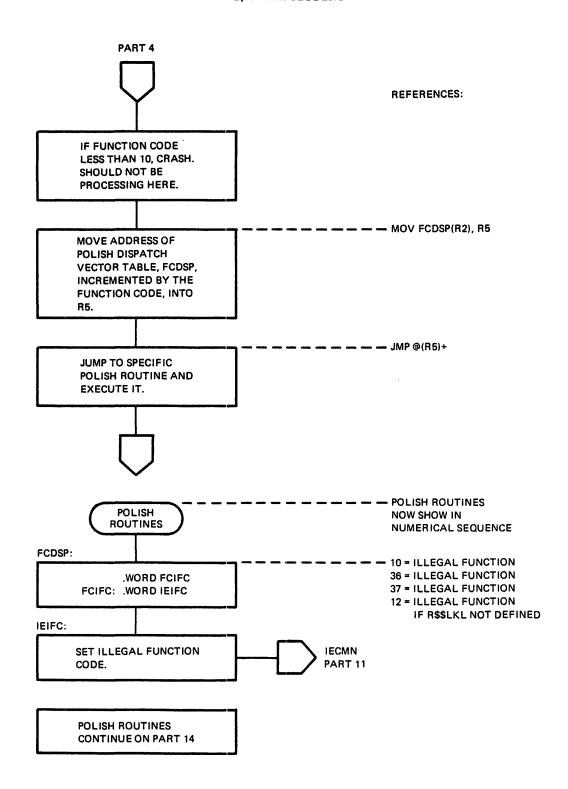


Figure 6-2 QIO Directive Processing (Part 13 of 24)

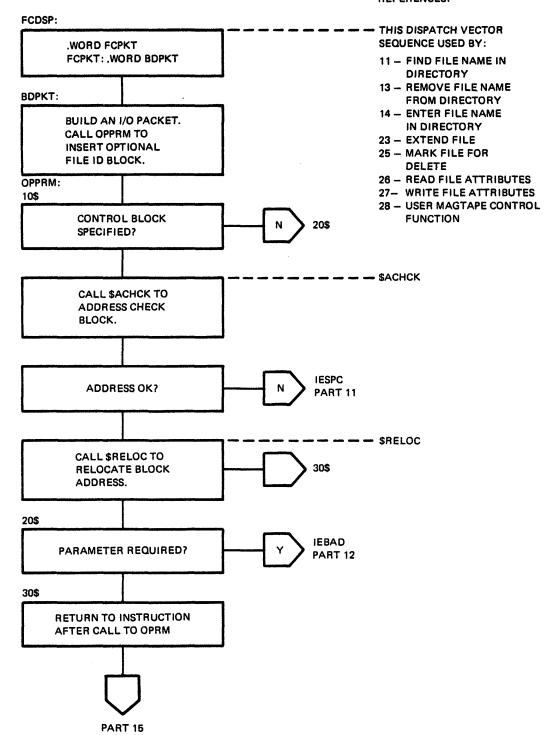


Figure 6-2 QIO Directive Processing (Part 14 of 24)

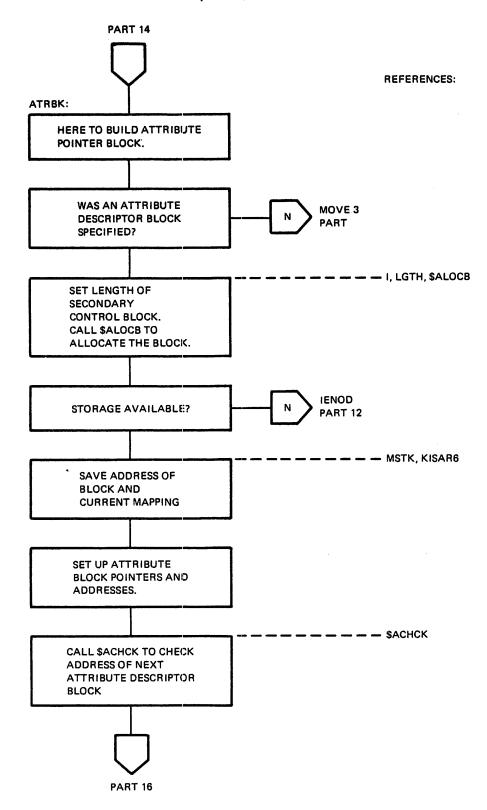


Figure 6-2 QIO Directive Processing (Part 15 of 24)

I/O PROCESSING

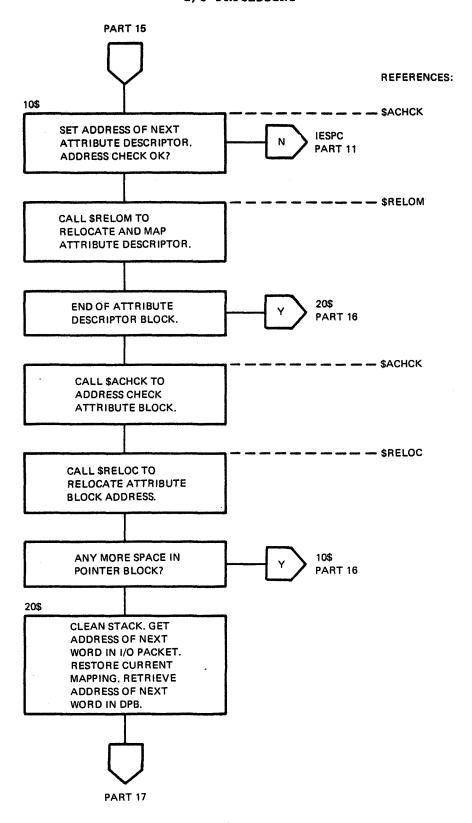


Figure 6-2 QIO Directive Processing (Part 16 of 24)

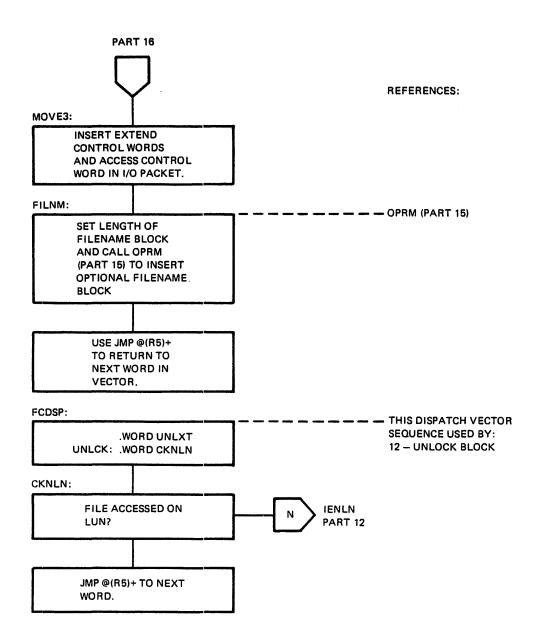


Figure 6-2 QIO Directive Processing (Part 17 of 24)

I/O PROCESSING

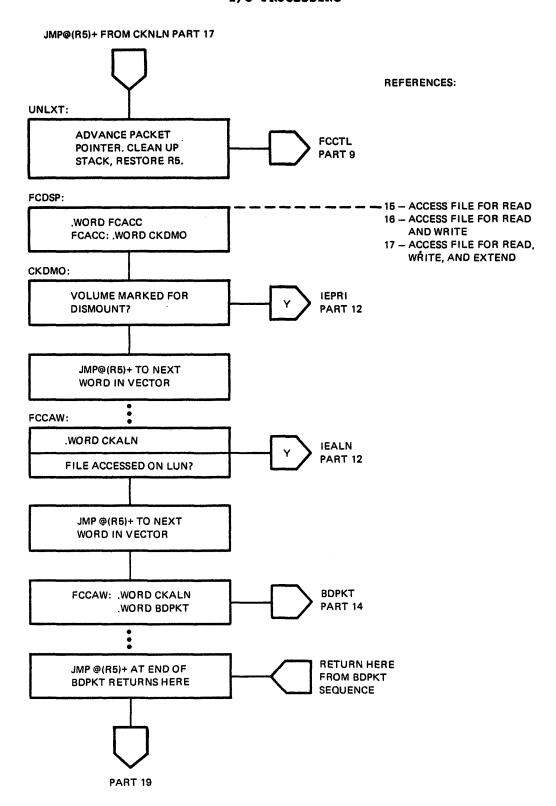


Figure 6-2 QIO Directive Processing (Part 18 of 24)

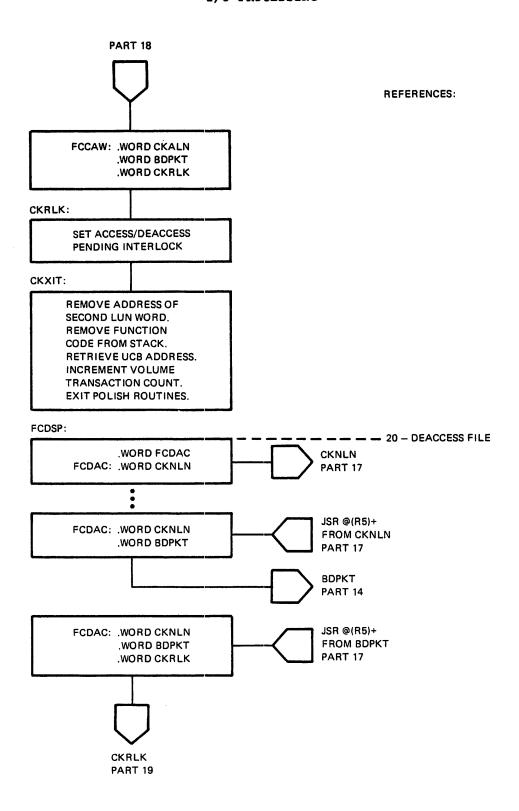


Figure 6-2 QIO Directive Processing (Part 19 of 24)

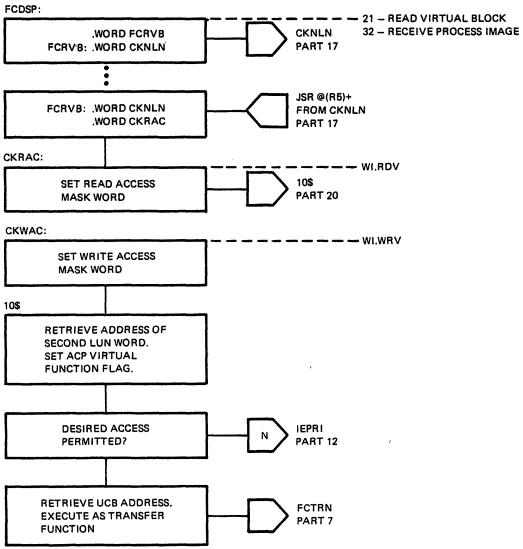


Figure 6-2 QIO Directive Processing (Part 20 of 24)

I/O PROCESSING

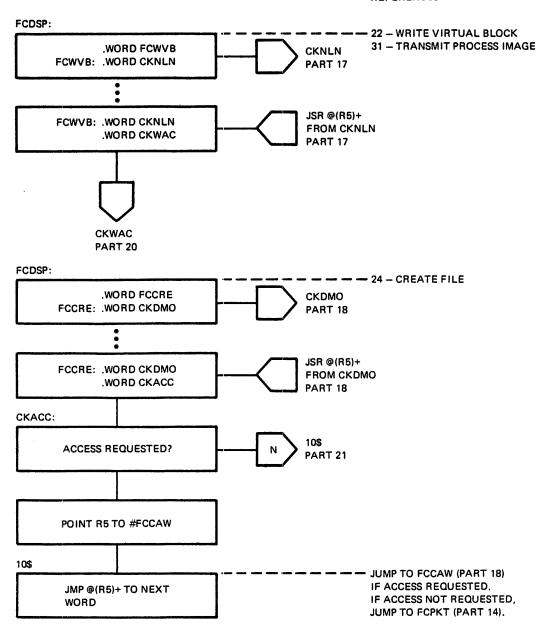


Figure 6-2 QIO Directive Processing (Part 21 of 24)

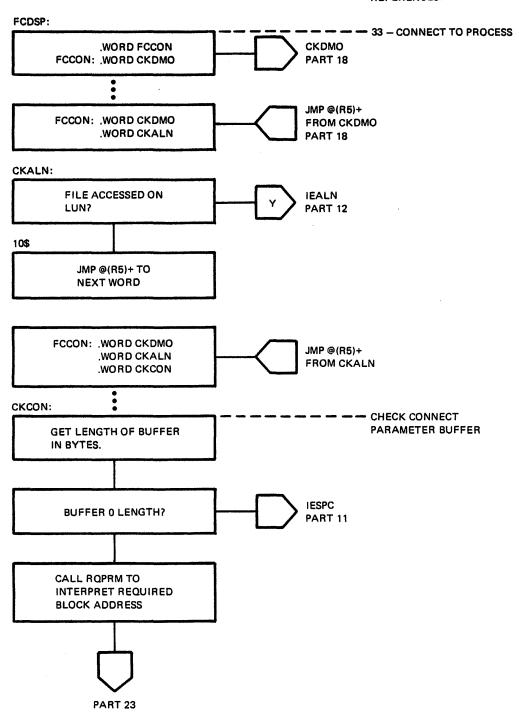


Figure 6-2 QIO Directive Processing (Part 22 of 24)

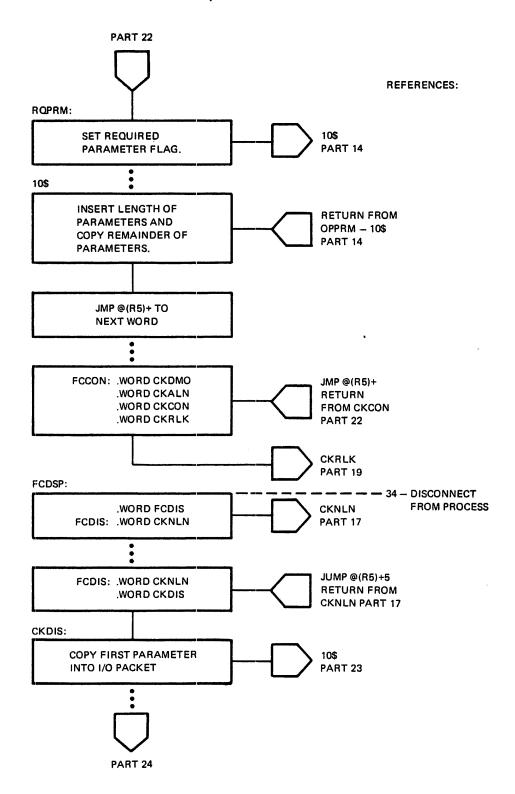


Figure 6-2 QIO Directive Processing (Part 23 of 24)

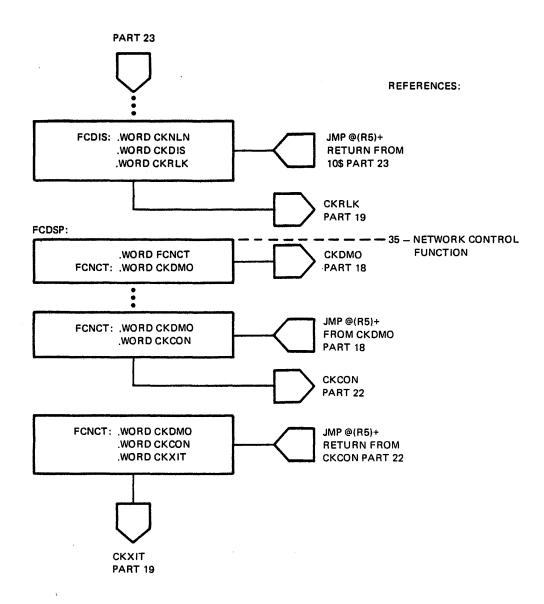


Figure 6-2 QIO Directive Processing (Part 24 of 24)

CHAPTER 7

MODULE DESCRIPTIONS

This chapter describes the modules, as individual units, that perform the RSX-11M Executive programming functions.

The modules are described in alphabetical order and the description of a new module always begins on a new page.

7.1 CHAPTER ORGANIZATION

The following information is presented in this chapter:

- Module name
- Macro Library Calls
- Entry points (routines)
- Function of this module or routines
- Modules this module calls
- Entry (input) conditions
- Exit (output) conditions

The modules appear alphabetically and are grouped by system component. Thus, this chapter describes the Executive modules, then the FCP modules, and finally, the MCR modules; all alphabetically.

7.1.1 Module Name

The module name starts the description of each module. The name always appears at the top of a new page following the description of the previous module. A brief statement of the function of the module is included here.

7.1.2 Macro Library Calls

These calls appear in the code listing after the copyright notice. They are included here to show the data areas or control blocks to which the module refers.

7.1.3 Entry Points

The entry point is the global label in the module to which program control is transfered by another part of the program. It can also be considered as the label of a routine within the module. Statements about the function of the routine are included here.

7.1.4 Calls

Included here are all the calls (using the CALL or CALLR macro) that this routine executes. They are listed in order of appearance in the code. However, they may appear more than once in the code.

7.1.5 Entry (input) Conditions

Entry conditions are those conditions set up by the routine that called this routine or are present when this routine starts processing. These parameters or conditions are in data areas or registers in the form of data or addresses. The contents of these registers or data areas may be altered by this routine.

7.1.6 Exit (output) Conditions

Exit conditions may be changed register contents, data area contents, stack contents, or status indicators. Usually, the output is needed by some other part of the system program. However, the routine or module may perform a function without producing anything that can be defined easily as "output". In many of these cases, the routine indicates that it completed its operation by altering the C-bit or returning a directive status (for directive processing routines).

7.2 EXECUTIVE MODULE DESCRIPTIONS

7.2.1 BFCTL Module

BFCTL The BFCTL module puts a byte or word into the user's buffer or gets a byte or a word out of the user's buffer. Also, moves data one byte at a time from place to place in the memory of a mapped system.

Macro Library Calls
HWDDF\$ Define hardware registers

Entry Point -

SGTBYT::

The GTBYT routine maps to the user buffer if Memory Management is defined. GTBYT gets the next byte from the user buffer and returns it to the caller on the stack. After the byte has been fetched, \$GTBYT increments the next byte address.

Calls None

Input R5 = Address of the UCB that contains the buffer pointers.

Output The stack contains the byte from the user buffer.

Note All registers are preserved across the call.

Entry Point -

\$PTBYT:: The PTBYT routine maps to the user buffer if Memory Management is defined. PTBYT puts a byte in the next

location in the user buffer and increments the next byte

address.

Calls None

Input R5 = Address of the UCB that contains the buffer pointers.

Stack = Byte to be stored in the next location in the user

buffer

Output \$PTBYT removes the byte from the stack and stores it in

the user buffer. \$PTBYT increments the next byte address.

Note All registers are preserved across the call.

Entry Point -

\$GTWRD:: Gets the next word from the user buffer and returns it to

the caller on the stack. After the word has been fetched,

\$GTWRD calculates the next word address.

Calls None

Input R5 = Address of the UCB that contains the buffer pointers.

Output \$GTWRD fetches the next word from the user buffer and

returns it to the caller on the stack.

Stack = Next word of user buffer

Note All registers are preserved across the call.

Entry Point -

\$PTWRD:: The PTWRD routine puts a word in the next location in the

user buffer. After storing the word, \$PTWRD calculates

the next word address.

Calls None

Input R5 = the address of the UCB that contains the buffer

pointers.

Stack = Word to be stored in the next location of the

buffer.

Output \$PTWRD removes the word from the stack and stores it in

the user buffer.

Note All registers are preserved across the call.

Entry Point -

\$GTCWD:: The GTCWD routine gets the next word from the user control

buffer and returns it to the caller on the stack.

Calls None

Input R5 = Address of the UCB that contains the buffer pointers.

Output \$GTCWD fetches the next word from the user control buffer

and returns it to the caller on the stack.

Stack = next word of user buffer

Note All registers are preserved across the call.

Entry Point -

\$BLXIO:: The BLXIO routine moves data within the memory of a mapped

system.

Calls None

Input R0 = Number of bytes to move

R1 = Source APR5 bias R2 = Source displacement R3 = Destination APR6 bias R4 = Destination displacement

Output After BLXIO finishes moving the data:

RO and R5 are altered Rl and R3 are preserved

R2 points to the last byte of the source +1

R4 points to the last byte of the destination +1

7.2.2 CORAL Module

CORAL This module contains the core allocation routines. The memory search algorithm looks for the first block of

memory search algorithm looks for the first block of memory that is available for allocation. The size is

rounded upward to a multiple of four bytes.

Macro Library Calls

CLKDF\$ Define clock gueue control block offsets

PKTDF\$ Define I/O packet offsets

Entry Point -

\$ALOCB:: The ALOCB routine allocates a core buffer

\$ALOC1:: The ALOC1 routine allocates a core buffer (alternate

entry)

Calls None

Input R0 = Address of core allocation listhead -2 if entry is at

\$ALOC1.

Rl = Size of the core buffer to allocate in bytes

Output C = 1 if insufficient core is available to allocate the

block

C = 0 if the block is allocated
R0 = Address of the allocated block

R1 = Length of the allocated block

Entry Point -

\$ALCLK:: The ALCLK routine allocates a core block for a clock queue This routine stores the length of the clock block entry.

in Rl.

Calls None

Input None

If core is not available to allocate the block, \$ALCLK returns a 'D.RS1' directive status. If enough core is Output available, \$ALCLK returns the address of the allocated

block to the caller in RO.

Note The ALCLK routine shares common code with the ALPKT

routine.

Entry Point -

\$ALPKT:: The ALPKT routine allocates a core block for a SEND or I/O

REQUEST gueue entry. \$ALPKT stores the length of the I/O Packet (I.LGTH) in Rl and calls \$ALOCB to allocate the

block.

Calls \$ALOCB

Input None

Output

If core is not available to allocate the block, \$ALPKT returns a directive status of 'D.RS1'. Otherwise, \$ALKPT returns the address of the allocated block to the caller

in RO.

Entry Point -

\$DEACB:: The DEACB routine deallocates the core buffer.

\$DEAC1:: The DEAC1 routine deallocates the core buffer (alternate

entry).

DEAC inserts the Executive core block to be deallocated into the free block chain by core address. If an adjacent block is currently free, DEAC merges the two blocks and

inserts them in the free block chain.

Calls None

Input RO = Address of the core buffer to be deallocated

R1 = Size of the core buffer to deallocate in bytes

R3 = Address of core allocation listhead -2 if entry is at

\$DEAC1

Output DEAC merges the core block into the free block chain by

core address and agglomerates it with adjacent free

blocks.

Error The system crashes if deallocation is attempted before the

front or past the end of the system pool.

Entry Point -

The DECLK routine deallocates a core block that was used SDECLK::

for a clock queue entry.

Calls None (branches to \$DEACB)

Input R0 = Address of the core block to be deallocated

DECLK deallocates the clock gueue entry core block and Output

agglomerates adjacent free core blocks.

Entry Point .

\$DEPKT:: The DEPKT routine deallocates a core block that was used

for a SEND or I/O REQUEST queue entry.

Calls None

R0 = Address of the core block to be deallocated. Input

Output The core block is deallocated.

Note This routine uses the code in the DEACB routine.

CRASH Module 7.2.3

CRASH

This module is entered via a JUMP whenever a fatal system error is detected. This routine dumps memory on a DECtape, RK05, TU10 or TU16. The first block of the dump contains information about the state of the system at the time of the crash. When the dump is finished, you may reboot the system or re-execute the dump.

This module uses the following local data and routines:

CRSMSG: Message; /CRASH -- CONT WITH SCRATCH MEDIA ON

xx0/

where: xx = DT, DK, MT, or MM

\$CRSBF:: Internal crash stack \$CRSST== Top of crash stack

\$CRSBN:: Starting device address \$CRSCS:: Checksum of device address

AGAIN: Type a message and wait for the user

\$CRSHT:: Wait for the user \$CRSUN:: Crash unit number Type an ASCIZ message TYPE:

CKSUM: Verify checksum of device address

DUMP: Dump the system image

Macro Library Calls -

HWDDF\$ Define hardware registers

Entry Point -

\$CRASH:: This is the system crash dump routine.

Calls TYPE, CKSUM

Input 02(SP) = PS word at crash. (SP) = PC word at crash.

Output The internal crash stack and a core image of the system

(up to 128K) are dumped onto the crash dump device.

7.2.4 CVRTM Module

CVRTM The CVRTM routine converts a pair of time interval-time units to a clock ticks count.

Macro Library Calls - None

Entry Point -

\$CVRTM:: Time interval-units pair to clock ticks count conversion

Calls \$MUL

Input R3 = Address of the time interval pair.

Output CVRTM returns the ticks count to the calling routine by placing the high order part in R0 and the low order part in R1. CVRTM advances R3 by 4, thus pointing past the time interval-time units pair. If the calling routine specified an illegal time interval (greater than 15 bits) or illegal time units (0 or greater than 4), CVRTM returns a directive status of 'D.RS93'.

7.2.5 DRABO Module

DRABO The directive processing module, DRABO, terminates (aborts) the execution of a specified task.

Macro Library Calls -

ABODF\$ Define task abort codes.

Entry Point -

\$DRABO:: The DRABO routine aborts a specified task.

Calls \$ABTSK

Input R0 = Address of the TCB of the task to be terminated.

Rl = Address of the task status word of the task to be

ended.

R2 = Address of the task status word of the current task.

R3 = Address of the last word in the DPB+2.

R4 = Address of the header of the current task.

R5 = Address of the TCB of the current task.

Output DRABO returns directive status (D.RS7) and PS to the task.

C = 0 if DRABO successfully completed execution. Also, DRABO returns a directive status of +1.

C = 1 if DRABO is rejected.

Directive status returned:

'D.RS7' if the specified task is not active

Note DPB format:

WD. 00 -- DIC(83.),DPB size(3.)
WD. 01 -- First half of task name
WD. 02 -- Second half of task name

Error Reason for abort (in S.CABO) is set into R0 before calling \$ABTSK.

7.2.6 DRASG Module

DRASG The directive processing module, DRASG, assigns a device unit to a logical unit number.

Macro Library Calls -

TCBDF\$ Define task control block offsets.

Entry Point -

\$DRASG:: Assigns logical unit number (LUN)

Calls \$MPLUN, \$MPLND, \$MUL

Input R2 = Address of the task status word of the current task.

R3 = Address of the logical unit number in the DPB.

R4 = Address of the header of the current task.

R5 = Address of the TCB of the current task.

Output DRASG returns directive status and PS to the calling routine.

C = 1 if the DRASG directive routine is rejected.

Directive status returned:

'D.RS90' if a file is open or a unit is attached on the

specified LUN.

'D.RS92' if a device or unit, or device and unit are

invalid.

Note The DPB format is:

WD. 00 -- DIC(7.), DPB size(4.)

WD. 01 -- LUN to be assigned

WD. 02 -- Name of device to be assigned

WD. 03 -- Unit number of device to be assigned

7.2.7 DRATX Module

DRATX The directive processing module DRATX instructs the system to end the execution of an asynchronous system trap (AST) service routine. If another AST is gueued and AST's are not disabled, the next gueued AST is immediately executed.

Macro Library Calls -

ABODF\$ Define task abort codes
HDRDF\$ Define task header offsets
HWDDF\$ Define hardware registers

Conditional Assembly Parameters -

A\$\$TRP AST support

C\$\$CKP Checkpointing support
D\$\$ISK Non-resident task support

M\$\$MGE Memory management A\$\$CHK Address checking

Entry Point -

\$DRATX:: The DRATX routine ends AST service.

Calls \$NXTSK, \$ACHCK, \$RELOM, \$SETRT, \$ABCTK

Input R2 = Address of the task status word of the current task

R3 = Address of the last word in the DPB +2
R4 = Address of the header of the current task

R5 = Address of the TCB of the current task

Output DRATX returns a directive status and PS word to the task.

C = 0 if the DRATX routine successfully completed execution. Also, the DRATX routine restores the status of the pre-AST state.

C = 1 if the DRATX routine is rejected.

Directive status returned:

'D.RS80' if an AST service routine did not execute the DRATX directive.

Note If an address check failure occurs while removing arguments from the task stack, the issuing task is aborted (S.CAST is placed in RO and \$ABCTK is called).

The DPB format is: WD. 00 -- DIC(115.), DPB size(1.)

At issuance, the task stack contains:

14(SP) = (Unused) 12(SP) = (Unused) 10(SP) = (Unused)

06(SP) = Event flag mask word.

04(SP) = Pre-AST task PS 02(SP) = Pre-AST task PC

00(SP) = Pre-AST task directive status word

Error Possible ABORT as described in above note.

7.2.8 DRCIN Module

DRCIN The DRCIN module either connects or disconnects a specified interrupt vector to an interrupt service routine (ISR) in the task's own space.

Macro Library Calls -

HWDDF\$ Define hardware registers

TCBDF\$ Define task control block offsets

PCBDF\$ Define partition control block offsets

ITBDF\$ Define interrupt transfer block (ITB) offsets

Entry Point -

\$DRCIN::

This routine connects a specified interrupt vector to an interrupt service routine (ISR) in the task's own space. DRCIN allocates a block of dynamic memory and sets up the block as an interrupt transfer block (ITB). The ITB is linked to the ITB list of the task with the listhead, a single word, in T.CPCB of the TCB. DRCIN disables shuffling and checkpointing for the task and sets up the vector to point to the offset X.JSR in the ITB that contains a subroutine call to the special interrupt save routine \$INTSC.

Input R2 = Address of the task status word of the current task

R3 = Pointer to WD. 01 in the DPB

R4 = Address of the header of the current task

R5 = Address of the TCB of the current task

Output DRCIN returns directive status and the PS to the task.

> C = 0 if DRCIN successfully completes execution with a directive status of +1.

C = 1 if execution is unsuccessful.

Directive status returned:

D.RS1 An ITB could not be allocated (no pool space)

D.RS8 The function requested is disconnect and the task is not the owner of the vector.

D.RS16

Issuing task is not privileged
The specified vector is already in use D.RS17

The specified vector is illegal (lower than 60 D.RS19 higher than the highest vector specified SYSGEN, or not a multiple of 4)

D.RS81 The ISR or disable-interrupt routine is not within 4K words from the specified base address

Note The DPB format is:

WD. 00 -- DIC(129.), DPB size(7.)

WD. 01 -- Interrupt vector address

WD. 02 -- Base address for mapping οf ISR and disable-interrupt routines. Ignored in an unmapped system.

WD. 03 -- Address of interrupt service routine. If zero, directive is "disconnect from interrupts" and remaining arguments are ignored.

WD. 04 -- Address of disable interrupt routine

WD. 05 -- (Low byte) low byte of PSW to be set before calling ISR

WD. 06 -- Address of AST routine

Entry Point -

\$DISIN::

This routine disconnects a specified interrupt vector from an interrupt service routine (ISR) in the task's own space and deallocates the associated block of memory.

When disconnecting the last or only vector, DISIN clears the checkpoint-disable bit (T2.CKD) and the no-shuffle bit (PS.NSF). DISIN does this regardless of what the state was before vectors were connected or any change in state while vectors were connected except if the task is marked for abort. In this case it is not made shufflable.

The routine DISIN:

- Removes the ITB from the ITB list starting in T.CPCB of the task's TCB
- Calls the user routine that disables interrupts and that was supplied to DRCIN and to which the vector was connected.
- 3. Restores the vector PC to point to the nonsense interrupt routine

- Removes the fork block of the ITB if it is in the fork queue
- 5. Removes the AST block of the ITB if it is in the AST queue for the task
- 6. Enables checkpointing for the task if this was the only vector connected to the task and makes the task shufflable if the task runs in a system controlled partition.
- 7. Deallocates the ITB

Input Rl = Pointer to the interrupt transfer block (ITB)

R5 = Pointer to task TCB

Output C = 0 if DISIN successfully completes execution

C = 1 if the task is not the owner of the vector

Note Registers R0, R1, R2, and R3 are altered by this routine

7.2.9 DRCMT Module

DRCMT DRCMT contains the following directive processing

routines:

SDRCMT Cancel all mark time requests for the issuing

task

\$DRCSR Cancel all schedule requests for a specified

task

Macro Library Calls -

CLKDF\$ Define clock queue control block offsets

Entry Point -

\$DRCMT:: The DRCMT routine cancels all mark time requests for the

issuing task.

Calls None

Input R2 = Address of the task status word of the current task

R3 = Address of the last word in the DPB +2

R4 = Address of the header of the current task

R5 = Address of the TCB of the current task

Output DRCMT returns directive status and the PS to the task.

C = 0 with a directive status of +1

Note This routine is also called from the EXIT directive and

requires only R5 to be loaded on entrance.

DRCMT shares common code with DRCSR.

The DPB format is:

WD. 00 -- DIC(27.), DPB size(1.)

Entry Point -

\$DRCSR:: The DRCSR routine cancels all schedule requests for a

specified task.

Calls \$CLRMV - to remove periodic single-shot requests,

Input R0 = Address of the TCB for which to cancel schedule requests

Rl = Address of the task status word of the task for which to cancel schedule requests

R2 = Address of the task status word of the current task

R3 = Address of the last word in the DPB +2
R4 = Address of the header of the current task
R5 = Address of the TCB of the current task

Output DRCSR returns directive status and PS to the task.

C = 0 with a directive status of +1

Note The DPB format is:

WD. 00 -- DIC(25.),DPB size (3.) WD. 01 -- First half of task name WD. 02 -- Second half of task name

7.2.10 DRDAR Module

DRDAR The directive processing module, DRDAR, disables recognition of asynchronous system traps for the issuing task.

DRDAR contains the following directive processing

routines:

\$DRDAR Disable AST recognition \$DREAR Enable AST recognition

Macro Library Calls -

TCBDF\$ Define task control block offsets

Entry Point -

\$DRDAR:: The DRDAR routine disables AST recognition.

Calls None

Input R2 = Address of the task status word of the current task

R3 = Address of the last word in the DPB +2
R4 = Address of the header of the current task
R5 = Address of the TCB of the current task

Output DRDAR returns directive status and PS to the calling task.

C = 0 if the DRDAR directive successfully completes. Also, DRDAR returns a directive status of +1.

C = 1 if the DRDAR routine is rejected.

Directive status returned:

'D.RS8' if AST recognition is already disabled.

Note The DPB format is:

WD. 00 -- DIC(99.), DPB size(1.)

Entry Point -

\$DREAR:: The DREAR routine causes the system to recognize asynchronous system traps for the issuing task. ASTs that have been gueued while AST recognition was disabled are

processed immediately.

Calls \$SETRT

Input R2 = Address of the task status word of the current task

> R3 = Address of the last word in the DPB +2R4 = Address of the header of the current task R5 = Address of the TCB of the current task

Output DREAR returns directive status and PS to the task.

> C = 0 if the DREAR routine successfully completes. DREAR returns a directive status of +1.

C = 1 if the DREAR routine is rejected.

Directive status returned:

'D.RS8' if AST recognition is not disabled.

Note The DPB format is:

WD. 00 -- DIC(101.), DPB size (1.)

7.2.11 DRDCP Module

DRDCP The directive processing module, DRDCP, causes the system to disable or enable checkpointing of the issuing task.

> DRDCP contains the following directive processing

routines:

\$DRDCP Disable checkpointing **\$DRECP** Enable checkpointing

Macro Library Calls -

TCBDF\$ Define task control block offsets

Entry Point -

\$DRDCP:: Disable checkpointing

Calls None

R2 = Address of the task status word of the current task
R3 = Address of the last word in the DPB +2
R4 = Address of the header of the current task Input

R5 = Address of the TCB of the current task

Output DRDCP returns directive status and PS to the task.

> C = 0 if the DRDCP routine successfully execution. Also, DRDCP returns a directive status of +1.

C = 1 if the DRDCP routine is rejected.

Directive status returned:

'D.RS8' if checkpointing is already disabled for the

issuing task.

'D.RS10' if the issuing task is not checkpointable.

Note The DPB format is:

WD. 00 -- DIC(95.), DPB size(1.)

Entry Point -

\$DRECP:: The DRECP routine enables checkpointing of the issuing

task.

Calls SNXTXK

Input

R2 = Address of the task status word of the current task
R3 = Address of the last word in the DPB +2
R4 = Address of the header of the current task

R5 = Address of the TCB of the current task

Output DRECP returns directive status and PS to the task.

> C = 0 if the DRECP routine successfully execution. Also, DRECP returns a directive status

of +1.

C = 1 if the DRECP routine is rejected.

Directive status returned:

'D.RS8' if checkpointing is already enabled.

Note The DPB format is:

WD. 00 -- DIC(97.), DPB size(1.)

7.2.12 DRDSP Module

DRDSP The DRDSP module is the directive dispatcher.

> DRDSP contains the following directive processing

routines:

\$TRTRP The TRAP instruction traps to this routine

\$EMTRP The EMT instruction traps to this routine

Macro Library Calls -

HDRDF\$ Define task header offsets HWDDF\$ Define hardware registers

Define task control block offsets TCBDF\$

WDBDF\$ Define user window definition block offsets

Entry Point -

\$TRTRP:: During execution, a TRAP instruction traps to this routine. TRTRP returns a directive status if the stack depth is zero. Otherwise, TRTRP transfers control to the

EMT/TRAP synchronous system trap handling routine.

Calls None

Input 2(SP) = PS word pushed by TRAP instruction

(SP) = PC word pushed by TRAP instruction

Output TRTRP returns directive status in the stack if stack depth

is zero.

Entry Point -

SEMTRP::

When an EMT instruction execution occurs, the trap occurs to this routine. EMTRP crashes the system if the stack depth is not +1. If the stack depth is +1, EMTRP checks the EMT instruction for the presence of code 377. If the code was other than 377, EMTRP transfers control to the EMT/TRAP SST handling routine. If 377 was present, EMTRP processes the coded directive.

The following processing occurs within EMTRP.

The EMTRP routine:

- Calls \$DIRSV (coroutine) to switch to system state and save registers R0 - R5.
- Checks directive validity (DIC odd, size of DPB valid).
- Maps to DPB using KAPR6 if a mapped system is being used.
- Processes common functions if required (for instance, masks).
- 5. Sets up the following registers prior to calling the directive processing routine:
 - R5 = Address of current task's TCB
 - R4 = Address of current task's header
 - R3 = Address of the next word in the directive DPB
 - R2 = Address of second task status word of the current task
 - Rl = Directive dependent
 - R0 = Directive dependent
- 6. Calls the Directive Processing routine
- Sets the DSW, gets correct stack pointers, and restores registers.
- 8. Enters \$DIRXT through \$DIRSV which restores R0 R5 and exits.

Calls \$ACHK2, \$ACHKP, \$CEFN, \$SRSTD, \$DIRSV, \$SWSTK, \$EMSST

Input 2(SP) = PS word pushed by the EMT instruction (SP) = PC word pushed by the EMT instruction

Output EMTRP crashes the system if the stack depth is not +1. Otherwise, EMTRP gives control to the EMT/TRAP SST routine or the specified directive routine. If the EMT had a code of 377, EMTRP gives control to the specified directive routine.

Note The stack depth (\$STKDP) is defined in SYSCM.

7.2.13 DREIF Module

DREIF This is the EXIT directive processing module.

DREIF contains the following directive processing routines:

SDREIF End execution of issuing task if specified event flag is clear

\$DREXT End execution of issuing task

Macro Library Calls -ABODF\$ Define task abort codes HDRDF\$ Define task header offsets PCBDF\$ Define partition control block offsets PKTDF\$ Define I/O packet offsets TCBCF\$ Define task control block offsets Entry Point -\$DREIF:: This routine causes the system to end the execution of the issuing task only if an indicated event flag is clear. Calls None R0 = Event flag mask word Input R1 = Event flag mask address R2 = Address of the task status word of the current task
R3 = Address of the last word in the DPB+2
R4 = Address of the header of the current task R5 = Address of the TCB of the current task Output DREIF returns directive status and the PS to the task. C = 0 if DREIF successfully completes processing. C = 1 if DREIF is rejected. Directive status returned: 'D.RS22' if the specified event flag is set. 'D.RS97' if an invalid or no event flag number was specified when DREIF was called. Note The DPB format is: WD. 00 -- DIC(53.), DPB size(2.) WD. 01 -- Event flag number of event flag that must be clear Entry Point -DREXT:: The DREXT routine causes the system to end the execution of the issuing task. Calls \$DRCMT, \$DRSIN, \$RLMCB, \$DASTT, \$ABCTK, \$IOKIL, \$ACTRM, \$EXRON, \$TKWSE, \$C5TA, \$QMCRL, \$RLPAR, \$DETRG, \$DEACB, \$DRDSE, \$QRMVF, \$FINBF, \$MPLNE, R2 = Address of the task status word of the current task R3 = Address of the last word in the DPB +2 Input R4 = Address of the header of the current task R5 = Address of the TCB of the current task The dispatcher also calls this routine. When this occurs, only R5 need be loaded on entrance. The DREXT routine returns directive status and the PS to Output the task. No other status is returned to the task because this routine ends the task's execution. Note The DPB format is: WD. 00 -- DIC(51.), DPB size(1.) The DREXT routine contains a subroutine to empty a queue (MTQUE:) and a coroutine to scan a logical unit table (SCNLN:).

7.2.14 DREXP Module

DREXP The DREXP module extends the partition by a positive or negative increment.

Macro Library Calls -

HWDDF\$ Define hardware offsets
HDRDF\$ Define task header offsets

PCBDF\$ Define partition control block offsets

TCBDF\$ Define task control block offsets

Entry Point -

SDREXP:: The DREXP routine causes the system to extend the partition of the issuing task by a positive or negative amount.

Calls \$SETRT, \$CHKPT, \$MAPTK

Input R2 = Address of the second task status word of the current

task

R3 = Address of the extend increment in the DPB R4 = Address of the header of the current task R5 = Address of the TCB of the current task

Output The DREXP routine returns directive status and the PS to the task.

C = 0 if the DREXP routine successfully completes processing. Also, DREXP returns a directive status of +1.

C = 1 if the DREXP routine is rejected.

Directive status returned: 'D.RS8' under the following conditions:

- The task is not checkpointable and specified a positive increment
- The task has a preallocated checkpoint space and is trying to extend its space greater than the installed size.
- The task is not in a system controlled partition.

'D.RS88' if the specified increment is invalid.

Note The DPB format is:

WD. 00 -- DIC(89.), DPB size(3.)

WD. 01 -- Extend increment

WD. 02 -- Reserved

7.2.15 DRGCL Module

DRGCL The directive processing module, DRGCL, gets the MCR command line or releases the MCR command buffer.

> DRGCL contains the following directive processing routines:

> \$DRGCL Transfer a 1 through 80 byte command line to MCR

function task

\$RLMCB Release MCR command buffer

Entry Point -

\$DRGCL:: The DRGCL routine causes the system to transfer a 1 through 80. byte command line to the last MCR function task requested by the dispatcher.

Calls Calls a subroutine to search for the command buffer for

the current task.

R2 = Address of the task status word of the current task
R3 = Address of the 80. byte buffer in the DPB.
R4 = Address of the header of the current task Input

R5 = Address of the TCB of the current task

DRGCL returns the directive status and the PS to the Output

current task.

of the command line in bytes.

C = 1 if DRGCL does not complete execution.

Directive status returned:

'D.RS80' if the issuing task is not the last task that was requested by the MCR dispatcher.

The DPB format is: Note

WD. 00 -- DIC(127.), DPB size(41.)

WD. 01 through WD. 50 -- First through last word of the 80. byte buffer

Entry Point -

\$RLMCB:: The RLMCB routine releases the MCR command buffer.

Calls \$DEACB, 30\$ (Subroutine to search for the command buffer for the current task)

Input R5 = Address of the TCB of the current task

Output If the command line currently in the MCR command buffer is for the current task, RLMCB releases the buffer and clears

SMCRTN.

7.2.16 DRGLI Module

DRGLI

The directive processing module, DRGLI, causes the system to fill a six word buffer with information about a device that is assigned to a specified LUN. If requests to the device have been redirected, the information returned by DRGLI pertains to the redirected device.

Macro Library Calls -

HWDDF\$ Define hardware registers

Entry Point -

\$DRGLI:: Puts logical unit number information into a six word buffer.

Calls \$MPLUN, \$ACHKP, \$DIV

Input R2 = Address of the task status word of the current task

R3 = Address of the LUN in the DPB

R4 = Address of the header of the current task
R5 = Address of the TCB of the current task

Output The DRGLI routine returns directive status and the PS to the task.

C = 0 if DRGLI successfully completes. Also, DRGLI
returns a directive status of +1.

C = 1 if DRGLI does not complete exection.

Directive status returned:

'D.RS5' if no device is assigned to the specified LUN.

Note The DPB format is:

WD. 00 -- DIC(5.), DPB size(3.)

WD. 01 -- LUN for which information is returned

WD. 02 -- Address of a six word buffer

The six-word buffer format is:

WD. 00 -- Name of assigned device

WD. 01 -- Unit number of assigned device and flags byte

WD. 02 -- First device characteristics word

WD. 03 -- Second device characterisitics word

WD. 04 -- Third device characteristics word WD. 05 -- Fourth device characteristics word

7.2.17 DRGPP Module

DRGPP The directive processing module, DRGPP, causes the system to fill a 3-word buffer with partition parameters.

Macro Library Calls -

PCBDF\$ Define partition control block offsets
TCBDF\$ Define task control block offsets

Entry Point -

\$DRGPP:: The directive processing routine, DRGPP, fills a 3-word
buffer with partition parameters.

Calls \$SRATT, \$SRNAM, \$ACHKP

R2 = Address of the task status word of the current task Input

R3 = Address of the partition name in the DPB
R4 = Address of the header of the current task
R5 = Address of the TCB of the current task

Output The DRGPP routine returns directive status and the PS to the task.

> C = 0 if DRGPP successfully completed execution. DRGPP returns a directive status equal to the starting virtual address of the specified partition.

C = 1 if DRGPP is rejected.

Directive status returned:

'D.RS2' if the specified partition is not in the system.

Note The DPB format is:

WD. 00 -- DIC(65.), DPB size(4.)

WD. 01 -- First half of optional partition name WD. 02 -- Second half of optional partition name

WD. 03 -- Address of a three word buffer

The buffer format is:

WD. 00 -- Base address of the partition in 32 word blocks WD. 01 -- Size of the partition in 32 word blocks WD. 02 -- Partition flags word

7.2.18 DRGSS Module

DRGSS The directive processing module, DRGSS, causes the system to store the contents of the console switch register in

the issuing task's directive status word.

Macro Library Calls -

HWDDF\$ Define hardware registers

Entry Point -

\$DRGSS:: This routine gets the sense switch information.

Calls None

R2 = Address of the task status word of the current task Input

R3 = Address of the last word in the DPB +2 R4 = Address of the header of the current task R5 = Address of the TCB of the current task

Output The DRGSS routine returns the directive status and the PS to the task.

> C = 0 with a directive status equal to the contents of the console switch register.

Note The DPB format is:

WD. 00 -- DIC(125.), DPB size(1.)

7.2.19 DRGTK Module

DRGTK The directive processing module, DRGTK, causes the system to fill a 16-word buffer with task parameters.

Macro Library Calls -

HDRDF\$ Define task header offsets

PCBDF\$ Define partition control block offsets

TCBDF\$ Define task control block offsets

Entry Point -

\$DRGTK:: This routine gets task parameters.

Calls None

Input R2 = Address of the task status word of the current task

R3 = Address of the sixteen word buffer in the DPB
R4 = Address of the header of the current task
R5 = Address of the TCB of the current task

DRGTK returns directive status and the PS to the task. Output

C = 0 with a directive status of +1.

Note The DPB format is:

WD. 00 -- DIC(63.), DPB size(2.)
WD. 01 -- Address of a sixteen word buffer

The buffer format is:

WD. 00 -- First half of the name of the issuing task

WD. 01 -- Second half of the name of the issuing task

WD. 02 -- First half of the name of the task's partition

WD. 03 -- Second half of the name of the task's partition WD. 04 -- First half of requesting task's name (not

supported)

WD. 05 -- Second half of requesting task's name (not

supported)

WD. 06 -- Task priority

WD. 07 -- Current task UIC

WD. 10 -- Number of logical units
WD. 11 -- Machine type indicator (not supported)
WD. 12 -- Standard flags word (not supported)

WD. 13 -- Address of task SST vector table

WD. 14 -- Size of task SST vector table in words

WD. 15 -- Size of task in bytes WD. 16 -- Reserved WD. 17 -- Reserved

7.2.20 DRGTP Module

DRGTP The directive processing module, DRGTP, causes the system to fill a specified 8-word buffer with the current time

parameters.

Entry Point -

\$DRGTP:: The DRGTP routine fills an 8-word buffer with the current

time parameters.

Macro Library Calls -

None

Calls \$ACHKP

Input R2 = Address of the task status word of the current task

R3 = Address of the second word in the DPB
R4 = Address of the header of the current task
R5 = Address of the TCB of the current task

Output The DRGTP routine returns directive status and the PS to the task.

C = 0 if the DRGTP routine successfully completes execution. Also, DRGTP returns a directive status of +1.

C = 1 if DRGTP does not complete execution.

Directive status returned:
'D.RS98' if the buffer is outside the issuing task's address space.

Note The DPB format is:

WD. 00 -- DIC(61.), DPB size(2.)

WD. 01 -- Address of an eight word buffer

The buffer format is:

WD. 00 -- Year since 1900 WD. 01 -- Month of year

WD. 02 -- Day of month WD. 03 -- Hour of day

WD. 03 -- Hour or day
WD. 04 -- Minute of hour

WD. 05 -- Second of minute

WD. 06 -- Tick of second

7.2.21 DRMAP Module

DRMAP The directive processing module, DRMAP, contains the following routines:

\$DRCRW:: Create an address window \$DRELW:: Eliminate address window \$DRMAP:: Map window to region \$DRUNM:: Unmap address window \$DRSRF:: Send by reference \$DRRRF:: Receive by reference

These directive processing routines receive, as input, pointers to a window definition block. The window definition block serves as a communication area between the issuing task and the Executive.

The format of the window definition block is:

W.NAPR

W.NID BASE APR

WINDOW ID

W.NBAS

VIRTUAL BASE ADDRESS (BYTES)

W.NSIZ

WINDOW SIZE (32W BLOCKS)

W.NRID

REGION ID

W.NOFF

OFFSET IN PARTITION (32W BLOCKS)

W.NLEN

LENGTH TO MAP (32W BLOCKS)

W.NSTS

STATUS WORD

W.NSRB SEND/RECEIVE BUFFER ADDRESS (BYTES)

Macro Library Calls -

HDRDF\$ Define header and window block offset Define PCB and attachment descriptor offsets

PCBDF\$

Define TCB offsets TCBDF\$

WDBDF\$

Define window definition block offsets

Entry Point -

\$DRCRW::

The DRCRW routine causes the system to allocate an address window in the header of the issuing task. The routine unmaps and eliminates overlapping address windows and,

optionally, maps the new window.

Calls ELAW (to eliminate address window)

R3 = Address of the window definition block
R4 = Address of the header of the current task
R5 = Address of the TCB of the current task

R2 = Address of the task status word of the current task

Input

Input fields of the window definition block are: W.NAPR = Base APR of region W.NSIZ = Desired size of address window W.NRID = ID of region to map or zero (0) for task region (if WS.MAP = 1)W.NOFF = Offset within region to map (if WS.MAP = 1) W.NLEN = Contains either length to map or zero (0). zero, W.NLEN defaults to the smaller of the following: window size or size left in partition
(if WS.MAP = 1) W.NSTS = Control information WS.MAP = 1 if mapping is to occur
WS.WRT = 1 if mapping is to occur with write access The DRCRW routine returns directive status and the PS to Output the task. C = 0 if DRCRW successfully completes execution. Also. DRCRW returns a directive status of +1. C = 1 if DRCRW does not complete execution. Directive status returned: 'D.RS16' if the specified access is denied in the mapping stage of execution. 'D.RS84' if an invalid APR and window size combination or an invalid region and offset-length combination was specified in the mapping stage of execution. 'D.RS85' if no window blocks are available for use. 'D.RS86' if an invalid region was specified in the mapping stage of execution. Output fields in the window definition block are: W.NID = Assigned window ID W.NBAS = Virtual base address of window W.NLEN = Length actually mapped W.NSTS = Indication of any changes in mapping status WS.CRW = 1 if address window is successfully established WS.ELW = 1 if any address windows were eliminated WS.UNM = 1 if any address windows were unmapped Note The DPB format is: WD. 00 -- DIC(117.), DPB size(2.) WD. 01 -- Address of window definition block Entry Point -The DRELW routine causes the system to eliminate the specified address window, unmapping it first if necessary. \$DRELW:: Calls \$SRWND, \$UNMAP

Input R2 = Address of the task status word of the current task

> R3 = Address of the window definition block R4 = Address of the header of the current task

R5 = Address of the TCB of the current task

Input fields in the window definition block are: W.NID = ID of address window to eliminate

Output

The DRELW routine returns directive status and the PS to the task.

C = 0 if DRELW successfully completed execution. Also, DRELW returns a directive status of +1 to the task.

C = 1 if DRELW is rejected.

Directive status returned: 'D.RS87' if an invalid address window was specified.

Output fields in the window definition block are: W.NSTS = Indication of any changes in mapping status WS.ELW = 1 if DRELW successfully eliminated the address window

WS.UNM = 1 if DRELW found the address window already unmapped

Note

The DPB format is:

WD. 00 -- DIC(119.), DPB size(2.)

WD. 01 -- Address of window definition block

Entry Point -

\$DRMAP::

The DRMAP directive processing routine causes the system to map the specified address window to an offset in the specified region. DRMAP unmaps the window if necessary. DRMAP first builds an image of a mapped window block on the stack. If DRMAP encounters no errors during this process, DRMAP unmaps the corresponding window, if necessary, and sets up the new window from the stack image.

Calls \$SRWND, \$SRATT, \$UNMAP

Input

R2 = Address of the task status word of the current block

R3 = Address of the window definition block
R4 = Address of the header of the current task
R5 = Address of the TCB of the current task

Input fields in the window definition block are:

W.NID = ID of window to be mapped

W.NRID = ID of region to which to map. If W.NRID is 0, mapping occurs to the task region.

W.NOFF = Offset within region to which to map

W.NLEN = Length to map. If 0, W.NLEN defaults to window size or the size left in the partition.

W.NSTS = Control information

WS.WRT = 1 if write access is desired

Output The DRMAP routine returns directive status and the PS to the task.

> C = 0 if DRMAP successfully completes execution. DRMAP returns a directive status of +1 to the task.

C = 1 if DRMAP is rejected.

Directive status returned:

'D.RS16' if the desired access to the region is denied. 'D.RS84' if an invalid region and offset size combination is specified.

'D.RS86' if an invalid region ID is specified.
'D.RS87' if an invalid address window is specified.

Output fields in the window definition block are:

W.NLEN = Length actually mapped

W.NSTS = Indication of any changes in mapping status. WS.UNM = 1 if the window was unmapped first

Note

The DPB format is:

WD. 00 -- DIC(121.), DPB size(2.)
WD. 01 -- Address of window definition block

Entry Point

\$DRUNM The DRUNM routine causes the system to unmap the specified address window.

Calls \$SRWND, \$UNMAP

Input R2 = Address of the task status word of the current task

R3 = Address of the window definition block

R4 = Address of the header of the current task

R5 = Address of the TCB of the current task

Input fields in the window definition block are:

W.NID = ID of the window to be unmapped

Output DRNUM returns directive status and the PS to the task.

> C = 0 if DRUNM successfully completes execution. DRUNM returns a directive status of +1 to the task.

C = 1 if DRUNM is rejected.

Directive status returned:

'D.RS8' if the specified address window was not mapped. 'D.RS87' if an invalid address window was specified by the task.

Output fields in the window definition block are: W.NSTS = Indicator of any changes in mapping status WS.UNM = 1 if DRUNM successfully unmapped the window

Note

The DPB format is:

WD. 00 -- DIC(123.), DPB size(2.)
WD. 01 -- Address of window definition block

Entry Point -\$DRSRF:: The DRSRF (Send by Reference) routine causes the system to create a formatted packet that includes a reference to a specified region and additional optional information which is supplied by the issuing task. The sender task must have the access specified in the reference. The referenced region is attached to the receiving task. Calls SCEFN, SACHKP, SSRATT, SALPKT, SCRATT, SQINSF, SDASTT, \$DRDSE, \$DEPKT Input R0 = Address of the TCB of the receiver task Rl = Address of the task status word of the receiver task R2 = Address of the task status word of the current task R3 = Address of the EFN number in the DPB R4 = Address of the header of the current task R5 = Address of the TCB of the current task Input fields in the window definition block are: W.NRID = ID of the region to be sent by reference W.NOFF = Offset word passed without checking W.NLEN = Length word passed without checking W.NSTS = Allowed access (defaults to access of sender task) WS.RED = 1 if read access is to be allowed WS.WRT = 1 if write access is to be allowed WS.EXT = 1 if extend access is to be allowed WS.DEL = 1 if delete access is to be allowed W.NSRB = Optional address of 8-word buffer of an additional information Output The DRSRF routine returns directive status and the PS the task. C = 0 if DRSRF successfully completes execution. Also, DRSRF returns a directive status of +1. C = 1 if the DRSRF routine did not complete execution. Directive status returned: 'D.RS1' if DRSRF could not allocate a send packet or attachment descriptor 'D.RS2' if an attempt is made to send to an ACP task 'D.RS16' if the desired access to the region is denied 'D.RS86' if an invalid region ID was specified 'D.RS97' if an invalid EFN number is specified 'D.RS98' if the address check of the window definition block or send buffer fails There are no output fields in the window definition block. The format of the send by reference packet is: WD. 00 -- Receive gueue thread WD. 01 -- TCB address if EFN was specified. Zero if the EFN was not specified. WD. 02 -- EFN mask; first word of sender task name WD. 03 -- EFN address; second word of sender task name WD. 04 -- Region ID (attachement descriptor address) WD. 05 -- Offset in region word WD. 06 -- Length of map word WD. 07 -- Status word

WD. 08 through WD. 017 -- Contents of the send buffer

MODULE DESCRIPTIONS Note The DPB format is: WD. 00 -- DIC(69.), DPB size(5.) WD. 01 -- First half of receiver task name WD. 02 -- Second half of receiver task name WD. 03 -- Optional event flag to set when receive occurs WD. 04 -- Address of the window definition block Entry Point -\$DRRRF:: The DRRRF directive processing routine causes the system to dequeue the next receive by reference packet in the receive queue. DRRRF exits if there are no packets in the receive queue and the sending task requested an exit. Calls \$DRDSE, \$SETM, \$ACHKP, \$QRMVF, \$DEPKT, \$DRMAP Input R2 = Address of the task status word of the current task R3 = Address of the window definition block R4 = Address of the header of the current task R5 = Address of the TCB of the current task Input fields in the window definition block are: W.NSTS = Control information. WS.MSP = 1 if received reference is to be mapped WS.RCX = 1 if task exit desired if DRRRF does not packet W.NSRB = Optional address of 10-word buffer for additional information Output The DRRRF routine returns directive status and the PS to the task. C = 0 if DRRRF successfully completes execution. C = 1 if DRRRF is rejected. Directive status returned: 'D.RS8' if receive by reference entry is not in the queue. 'D.RS98' if the address check of the receive buffer fails. Output fields in the window definition block are: W.NRID = Assigned region ID of the referenced region W.NOFF = Offset word specified by sender task
W.NLEN = Length word specified by sender task W.NSTS = Status word specified by sender task WS.RED = 1 if attached with read access WS.WRT = 1 if attached with write access WS.EXT = 1 if attached with extend access WS.DEL = 1 if attached with delete access
WS.RRF = 1 if receive was successful Note The DPB format is: WD. 00 -- DIC(81.), DPB size(2.) WD. 01 -- Address of 10-word for additional buffer

information

Entry Point -

\$DRGMX::

The DRGMX directive processing routine causes the system to return the mapping context of the task (to fill in a given number of window definition blocks). number of window blocks is in the task header. DRGMX does not return information on unused window blocks.

\$ACHKP Calls

Input R2 = Address of the task status word of the current task

R3 = Address of N window definition blocks

R4 = Address of the header of the current task

R5 = Address of the TCB of the current task

There are no input fields in the window definition blocks.

Output DRGMX returns directive status and the PS to the task.

> C = 0 if DRGMX successfully completes execution. DRGMX returns a directive status of +1.

C = 1 if DRGMX is rejected.

Directive status returned:

'D.RS98' if the address check of the window blocks plus terminator word fails.

Output fields in each window definition block are:

W.NID = Address window ID of next established address window.

W.NAPR = Base APR of the window

W.NBAS = Virtual base address of the window

W.NSIZ = Size of the address region
W.NRID = Region ID if mapped or unmodified

W.NOFF = Offset in region if mapped or unmodified

W.NLEN = Length of map if mapped or unmodified

W.NSTS = Necessary bits to restore mapping or 0 if not mapped

WS.MAP = 1 if window is mapped
WS.WRT = 1 if window is mapped with write access

Note The DPB format is:

WD. 00 -- DIC(113.), DPB size(2.)

WD. 01 -- Address of the N window definition blocks

7.2.22 DRMKT Module

DRMKT This module processes the MARK TIME and RUN directives.

> DRMKT contains the following directive processing routines:

> \$DRMKT Declare significant event at specified time interval

> SDRRUN Generate a clock queue entry to request a task at a specified time

Macro Library Calls -

CLKDF\$ Define clock queue control block offsets

Entry Point -

SDRMKT::

The directive processing routine, DRMKT, causes the system to declare a significant event at a specified time interval from issuing the directive. If an event flag is specified at the time the MARK TIME directive is issued, DRMKT clears the event flag immediately and then sets the event flag at the time of the significant event.

If the issuing task specified an AST entry point, an asynchronous trap occurs at the time of the significant event. The PS, PC, directive status word, and the specified event flag number are pushed onto the stack when the specified AST is processed.

Calls \$CVRTM

Input

RO = Event flag mask word Rl = Event flag mask address

R2 = Address of the task status word of the current task

R3 = Address of the third word in the DPB

R4 = Address of the header of the current task

R5 = Address of the TCB of the current task

Output

DRMKT returns directive status and the PS to the task.

C = 0 if DRMKT successfully completes execution. Also, DRMKT returns a directive status of +1.

C = 1 if DRMKT does not complete execution.

Directive status returned:

'D.RS1' if insufficient core is available to allocate the clock queue entry.

The DPB format is: Note

WD. 00 -- DIC(23.),DPB size(5.)

WD. 01 -- Event flag number of event flag to be set

WD. 02 -- Time interval magnitude

WD. 03 -- Time interval units

WD. 04 -- AST entry point address

Entry Point -

\$DRRUN::

The DRRUN directive processing routine causes the system to generate a clock queue entry to cause a task to be requested at a specified delta time from issuance of the directive and, optionally, to repeat the request periodically.

Calls SUISET, SCVRTM, SALCLK, SCLINS

Input

R0 = Address of the TCB of the task to be run

R1 = Address of the task status word of the task to be run

R2 = Address of the task status word of the current task

R3 = Address of the partition name in the DPB

R4 = Address of the header of the current task

R5 = Address of the TCB of the current task

Output The routine DRRUN returns directive status and the PS to the task.

- Also,
- C = 1 if DRRUN does not complete execution.

Directive status returned:

'D.RS1' if insufficient core is available to allocate the clock queue entry.

Note The DPB format is:

WD. 00 -- DIC(17.), DPB size (11.)

WD. 01 -- First half of task name

WD. 02 -- Second half of task name

WD. 03 -- Partition name (not supported but must be present)

WD. 04 -- Partition name (not supported but must be present)

WD. 05 -- Reguest priority (not supported but must be present)

WD. 06 -- Request UIC

WD. 07 -- Delta time magnitude

WD. 10 -- Delta time units

WD. 11 -- Reschedule interval magnitude

WD. 12 -- Reschedule interval units

7.2.23 DRPUT Module

DRPUT DRPUT contains the following directive processing

routines:

\$DRRCV

\$DRFEX Enable or disable floating-point ASTs for task \$DRPUT Enable or disable power recovery ASTs for task **\$DRRRA** Enable or disable receive-by-reference ASTs for task

Enable or disable receive ASTs for task

Macro Library Calls -

HDRDF\$ Define task header offsets

Define task control block offsets TCBDF\$

Entry Point -

\$DRFEX:: The directive processing routine, DRFEX, causes the system

to record that floating-point ASTs are either desired or not desired for the issuing task.

Calls None

R2 = Address of the task status word of the current task Input

R3 = Address of the AST address in the DPB

R4 = Address of the header of the current task R5 = Address of the TCB of the current task

DRFEX returns directive status and the PS to the task. Output

> C = 0 if DRFEX successfully completed execution. Also, DRFEX returns a directive status of +1 to the task.

C = 1 if DRFEX does not complete execution.

Directive status returned:

'D.RS8' if ASTs are already not desired

'D.RS80' if an AST routine issued this directive

Note The DPB format is:

WD. 00 -- DIC(111.), DPB size(2.)
WD. 01 -- AST entry point address or zero

DRFEX shares common code with DRRCV.

Entry Point -

SDRPUT:: The directive processing routine, DRPUT, causes the system to record that power recovery ASTs either are desired or

are not desired for the issuing task.

Input R2 = Address of the task status word of the current task

R3 = Address of the AST address in the DPB

R4 = Address of the header of the current task

R5 = Address of the TCB of the current task

Output DRPUT returns directive status and the PS to the task.

> C = 0 if DRPUT successfully completes execution. DRPUT returns a directive status of +1 to the task.

C = 1 if DRPUT does not complete execution.

Directive status returned:

'D.RS8' if ASTs are already not desired

'D.RS80' if an AST routine issued the DRPUT directive.

Note The DPB format is:

WD. 00 -- DIC(109.),DPB size(2.)
WD. 01 -- AST entry point address or zero

DRPUT shares common code with DRRCV.

Entry Point .

The directive processing routine, DRRRA, causes the system to record that receive-by-reference ASTs either are desired or are not desired for the issuing task. \$DRRRA::

Calls None

R2 = Address of the task status word of the current task
R3 = Address of the AST address in the DPB
R4 = Address of the header of the current task Input

R5 = Address of the TCB of the current task

Output DRRRA returns directive status and the PS to the task.

C = 0 if DRRRA successfully completes execution. Also, DRRRA returns a directive status of +1 to the task.

C = 1 if DRRRA does not complete execution.

Directive status returned:

'D.RS8' if ASTs are already not desired.

'D.RS80' if an AST routine issued the DRRRA directive

Note The DPB format is:

WD. 00 -- DIC(21.), DPB size(2.)

WD. 01 -- AST entry point address or zero

Entry Point -

\$DRRCV:: The directive processing routine, DRRCV, causes the system

to record that receive ASTs either are desired or are not

desired for the issuing task.

Calls \$ALCLK, \$DECLK

Input R2 = Address of the task status word of the current task

R3 = Address of the AST address in the DPB

R4 = Address of the header of the current task

R5 = Address of the TCB of the current task

Output DRRCV returns directive status and the PS to the task.

C = 0 if DRRCV successfully completed. Also, DRRCV

returns a directive status of +1 to the task.

C = 1 if DRRCV does not complete execution.

Note The DPB format is:

WD. 00 -- DIC(107.), DPB size(2.)

WD. 01 -- AST entry point address or zero

7.2.24 DRQIO Module

DRQIO DRQIO contains the following directive processing

routines:

\$DRQIO Place I/O request in a queue of priority ordered

requests

\$DRGRG Place I/O packet in a controller queue

Macro Library Calls -

F11DF\$ Define Files-11 control block offsets

HWDDF\$ Define hardware registers PKTDF\$ Define I/O packet offsets

TCBDF\$ Define task control block offsets

PCBDF\$ Define partition control block offsets

Entry Point -

\$DRQÎO:: The directive processing routine, DRQIO, places an I/O request in a queue of priority ordered requests for a device or unit specified by a logical unit number. If the task specifies an event flag with a QIO and WAIT (QIOW) directive, the task is put into a wait state to wait for

the specified event flag to be set upon the occurrence of

the significant event.

\$MPLUN, \$TKWSE, \$CEFN, \$ACHKW, \$ALPKT, \$CEFI, \$DRWFS, \$RELOC, \$ACHKB, \$MPPHY, \$IOKIL, \$ACHCK, \$MPLND Calls

Input R2 = Address of the task status word of the current task

R3 = Address of the I/O function code in the DPB

R4 = Address of the header of the current task

R5 = Address of the TCB of the current task

Output DRQIO returns directive status and the PS to the task.

> C = 0 if DRQIO successfully completes execution. DRQIO returns a directive status of +1 to the task.

C = 1 if DRQIO is rejected.

Directive status returned:

'D.RS5' if the specified LUN is not assigned.

Note The DPB format is:

WD. 00 -- DIC(1./3.), DPB size(12.)

WD. 01 -- I/O function code

WD. 02 -- LUN and unused byte

WD. 03 -- Event flag number and priority (priority is ignored)

WD. 04 -- Address of I/O status block

WD. 05 -- Address of AST service routine

WD. 06 -- Parameter 1

WD. 07 -- Parameter 2

WD. 10 -- Parameter 3 WD. 11 -- Parameter 4

WD. 12 -- Parameter 5 WD. 13 -- Parameter 6

Entry Point -

\$DRQRQ:: The DRQRQ routine is called to insert an I/O packet in a controller gueue and call the driver to start activity on the device.

Calls \$QINSP, @D.VINI(R5) call to driver initiator or device initiator, \$DEPKT, \$IOFIN, PPRM, \$ALOCB, \$ACHCK, \$RELOM, RQPRM

Input

Rl = Address of the I/O packet R5 = Address of the unit control block

Output DRQRQ places the I/O packet in the controller gueue and starts activity on the device.

Note This routine destroys the contents of R4.

7.2.25 DRRAS Module

DRRAS DRRAS contains the following directive processing routines:

\$DRREC Process RECEIVE DATA and RECEIVE DATA OR EXIT directives.

\$DRSND Process SEND DATA directive.

Macro Library Calls -

HDRDF\$ Define task header offsets

TCBDF\$ Define task control block offsets

Entry Point -\$DRREC:: This routine causes the system to dequeue a data block from the issuing task's receive queue. If the issued directive was RECEIVE DATA OR EXIT, the task exits if no data is queued. Calls \$ACHKP, \$QRMVF, \$DEPKT R2 = Address of the task status word of the current task R3 = Address of the second word in the DPB Input R4 = Address of the header of the current task R5 = Address of the TCB of the current task Output The DRREC routine returns directive status and the PS to the task. C = 0 if DRREC successfully completes execution. Also, DRREC returns a directive status of +1 to the task. C = 1 if DRREC does not complete execution. Directive status returned: 'D.RS8' if no data is gueued in the task's receive gueue. The DPB format is: WD. 00 -- DIC(75. or 77.), DPB size(4.) Note WD. 01 -- First half of the task name - Not supported but must be present WD. 02 -- Second half of the task name - Not supported but must be present WD. 03 -- Address of a fifteen word receive buffer Entry Point -SDRSND:: This directive processing routine causes the system to queue a thirteen word data block in a specified task's receive gueue. Calls \$ACHKP, \$SETF, \$ALPKT, \$QINSF, \$DASTT, \$DRDSE RO = Address of the TCB of the receiver task Input Rl = Address of the task status word of the receiver task R3 = Address of the data block address in the DPB R4 = Address of the header of the current task
R5 = Address of the TCB of the current task Output DRSND returns directive status and the PS to the task. C = 0 if DRSND successfully completes execution. DRSND returns a directive status of +1 to the task. C = 1 if DRSND does not complete execution. Directive status returned: 'D.RS1' if insufficient core is available to queue the data block. 'D.RS2' if the receiver task is an ancillary control processor. Note The DPB format is: WD. 00 -- DIC(71.), DPB size(5.) WD. 01 -- First half of receiver task name WD. 02 -- Second half of receiver task name WD. 03 -- Address of thirteen word data block

WD. 04 -- Event flag number (optional)

7.2.26 DRREG Module

DRREG The directive processing module, DRREG, contains the following routines:

> Create a region \$DRCRR:: SDRATR:: Attach a region \$DRDTR:: Detach a region

\$DETRG:: Detach a region by attachment descriptor

address

These directive processing routines receive, as input, a pointer to a region definition block that is a communication area between the issuing task and the Executive.

The format of the region definition block is:

R.GID REGION ID

SIZE OF REGION (32W BLOCKS) R.GSIZ

R.GNAM NAME OF REGION (RAD50)

R.GPAR REGION'S MAIN PARTITION NAME (RAD50)

R.GSTS REGION STATUS WORD

R.GPRO PROTECTION CODE OF REGION

Macro Library Calls -

HDRDFS Define header and window block offsets

PCBDF\$ Define PCB and attachment descriptor offsets

RDBDF\$ Define region definition block offsets

TCBDF\$ Define TCB offsets

Entry Point -

This directive processing routine causes the system to \$DRCRR::

create a region and optionally to attach it.

Calls \$SRNAM, ATT, \$ALOCB, \$FNDSP

Input R2 = Address of the task status word of the current task R3 = Address of the region definition block R4 = Address of the header of the current task R5 = Address of the TCB of the current task Input fields in the region definition block are: R.GSIZ = Size of region to create R.GNAM = Name of region to create or 0 for no name R.GPAR = Name of system partition in which to allocate region or zero (0) for main system partition of task R.GSTS = Control information RS.NDL = 1 if region should not be deleted on last detach RS.ATT = 1 if created region should be attached RS.RED = 1 if read access is desired on attach RS.WRT = 1 if write access is desired on attach RS.EXT = 1 if extend access is desired on attach RS.DEL = 1 if delete access is desired on attach R.GPRO = Protection code for region (DEWR, DEWR, DEWR, DEWR) Output DRCRR returns directive status and the PS to the task. C = 0 if DRCRR successfully completed execution. DRCRR returns a directive status of +1 to the task. C = 1 if DRCRR does not complete execution. Directive status returned: 'D.RS1' if a PCB or attachement descriptor could not be allocated 'D.RS16' if the desired access is denied the in attachement stage 'D.RS84' if the specified partition in which the region is to be allocated does not exist, or if no partition name has been specified and RS.ATT is zero. Output fields in the region definition block are: R.GID = Assigned region ID (RS.ATT = 1) R.GSTS = Directive completion information RS.CRR = 1 if region was created Note The DPB format is:

WD. 00 -- DIC(55.), DPB size(2.)

WD. 01 -- Address of region definition block

Entry Point \$DRATR:: The directive processing routine, DRATR, causes the system to attach the specified region to the current task. \$SRNAM, \$CKACC, \$CRATT Calls Input R2 = Address of the task status word of the current task R3 = Address of the region definition block
R4 = Address of the header of the current task R5 = Address of the TCB of the current task Input fields in the region definition block are: R.GNAM = Name of the region to which to attach or zero (0) for task region R.GSTS = Desired access to region RS.RED = 1 if read access is desired RS.WRT = 1 if write access is desired RS.EXT = 1 if extend access is desired RS.DEL = 1 if delete access is desired DRATR returns directive status and the PS to the task. Output C = 0 if DRATR successfully completes execution. DRATR returns a directive status of +1 to the task. C = 1 if DRATR does not complete execution. Directive status returned: 'D.RS1' if an attachment descriptor cannot be allocated. 'D.RS84' if the specified region name does not exist. Output fields in the region definition block are: R.GID = Assigned region ID R.GSIZ = Size of attached region Note The DPB format is: WD. 00 -- DIC(57.), DPB size(2.)
WD. 01 -- Address of region definition block Entry Point -DRDTR:: The directive processing routine, DRDTR, causes the system to detach the specified region, unmapping it if necessary. \$SRATT, \$UNMAP Calls Input R2 = Address of the task status word of the current task R3 = Address of the region definition block R4 = Address of the headee of the current task R5 = Address of the TCB of the current task Input fields in the region definition block are:

Output DRDTR returns directive status and the PS to the task.

- C = 0 if DRDTR successfully completes execution. Also, DRDTR returns a directive status of +1 to the task.
- C = 1 if DRDTR does not complete execution.

Directive status returned:

'D.RS16'if an attempt is made to mark the region for delete without delete access

'D.RS86' if an invalid region ID is specified or if an attempt is made to detach region zero (0).

Output fields in the region definition block are:

R.GSTS = Indication of any changes in mapping context

RS.UNM = 1 if any windows were unmapped

Entry Point -

\$DETRG:: The directive processing routine, DETRG, detaches a task

from a region and deallocates the attachment descriptor. The last time DETRG detaches the region it checks it for

deletion and calls \$NXTSK if needed.

Calls \$QRMVT, \$RLPR1, \$DEACB

Input R5 = Address of attachment descriptor

Output DETRG modifies RO, Rl, R2, and R3.

All other output is the same as the DRDTR routine.

7.2.27 DRREQ Module

DRREQ The directive processing module, DRREQ, causes the system to request the execution of a specified task.

Macro Library Calls -

TCBDF\$ Define task control block offsets

Entry Point -

\$DRREQ:: Request the execution of a specified task.

Calls \$TSKRP, \$UISET

Input R0 = Address of the TCB of the task to be requested

R1 = Address of the task status word of the task to be

requested

R2 = Address of the task status word of the current task

R3 = Address of the partition name in the DPB

R4 = Address of the header of the current task

R5 = Address of the TCB of the current task

Output DRREO returns directive status and the PS to the task.

C = 0 if DRREQ successfully completes execution. Al DRREQ returns directive status of +1 to the task.

C = 1 if DRREQ does not complete execution.

Directive status returned:

'D.RS1' if partition control block cannot be allocated 'D.RS7' if specified task is already active

Note The DPB format is:

WD. 00 -- DIC(11.), DPB size(7.)

WD. 01 -- First half of task name

WD. 02 -- Second half of task name

WD. 03 -- Partition name (not supported, but must be present)

WD. 04 -- Partition name (not supported, but must be present)

WD. 05 -- Request priority (not supported, but must be

present) WD. 06 -- Request UIC

7.2.28 DRRES Module

DRRES The directive processing module, DRRES, contains

following directive processing routines:

\$DRRES Resume execution of a task that has issued a

suspend directive

Suspend the execution of the task that issued **\$DRSPN**

this directive

\$DRATP Change the task priority of the specified task

Macro Library Calls -

HDRDF\$ Define task header offsets PKTDF\$ Define I/O packet offsets

Define partition control block offsets PCBDF\$

Define task control block offsets TCBDF\$

Entry Point -

The directive processing routine, DRRES, causes the system to resume the execution of a task that issued the suspend \$DRRES::

directive.

Calls \$SETCR

R0 = Address of the TCB of the task to be resumed Input

R1 = Address of the task status word of the task to be

resumed

R2 = Address of the task status word of the current task

R3 = Address of the last word in the DPB+2

R4 = Address of the header of the current task

R5 = Address of the TCB of the current task

DRRES returns directive status and the PS to the task.

Output

C = 0 if DRRES successfully completes execution. DRRES returns a directive status of +1 to the task. C = 1 if DRRES is rejected. Directive status returned: 'D.RS7' if the specified task is not active 'D.RS8' if the specified task is not suspended Note The DPB format is: WD. 00 -- DIC(47.), DPB size(3.) WD. 01 -- First half of task name WD. 02 -- Second half of task name Entry Point -\$DRSPN:: The directive processing routine, DRSPN, causes the system to suspend the execution of the issuing task. Calls \$SETRT R2 = Address of the task status word of the current task Input R3 = Address of the last word in the DPB+2 R4 = Address of the header of the current task R5 = Address of the TCB of the current task Output DRSPN returns directive status and the PS to the task. C = 0 with a directive status of 'D.RS22' Note WD. 00 -- DIC(45.), DPB size(1.) Entry Point -\$DRATP:: The directive processing routine, DRATP, causes the system to change the task priority of the specified task. Calls \$MPLNE, \$ACTRM, \$ACTTK, \$QRMVT, \$NXTSK, \$DRDSE, \$QINSF, **\$QRMVF, \$QINSP** R0 = Address of the TCB of the task to be altered Input Rl = Address of the task status word of the task to be altered R2 = Address of the task status word of the current task R3 = Address of the last word in the DPB R4 = Address of the header of the current task R5 = Address of the TCB of the current task Output DRSPN returns directive status and the PS to the task. C = 0 if DRSPN successfully completes execution. Also, DRSPN returns directive status of +1 to the task. C = 1 if DRSPN does not complete execution. Directive status returned: 'D.RS7' if the task is not active 'D.RS95' if the new specified priority is invalid Note The DPB format is: WD. 00 -- DIC(9.),DPB size(4.)
WD. 01 -- First half of task name WD. 02 -- Second half of task name WD. 03 -- New priority

7.2.29 DRSED Module

DRSED The directive processing module, DRSED, contains the

following directive processing routines:

\$DRCEF Clear event flag

\$DRDSE Declare a significant event

Read all event flags SDRRAF

\$DRSEF

Set event flag Task wait for significant event \$TKWSE

Wait for significant event \$DRWSE

\$DRWFL Wait for LOGICAL OR of event flags

\$DRWFS Wait for single event flag

Macro Library Calls -

HDRDF\$ Define task header offsets

Define task control block offsets TCBDF\$

Entry Point -

\$DRCEF:: The directive processing routine, DRCEF, causes the system

to report the polarity of an event flag and then clear the

event flag.

Calls None

Input R0 = Event flag mask word

R1 = Event flag mask address

R2 = Address of the task status word of the current task

R3 = Address of the last word in the DPB+2

R4 = Address of the header of the current task

R5 = Address of the TCB of the current task

Output DRCEF returns directive status and the PS to the task.

C = 0 with a directive status of 'D.RS00' if the flag was

clear or 'D.RS22' if the flag was set.

The DPB format is: Note

WD. 00 -- DIC(31.), DPB size(2.)

WD. 01 -- Event flag number of flag to be cleared

Entry Point -

\$DRDSE:: The directive processing routine, DRDSE, causes the system

to declare a significant event.

This directive is also called as a subroutine.

Calls None

Input R2 = Address of the task status word of the current task

R3 = Address of the last word in the DPB+2

R4 = Address of the header of the current task

R5 = Address of the TCB of the current task

Output DRDSE returns directive status and the PS to the task.

C = 0 with a directive status of +1

Note The DPB format is:

WD. 00 -- DIC(35.), DPB size(1.)

Entry Point -

The directive processing routine, DRRAF, causes the system to fill a 4-word buffer with the task's local and the global event flags. \$DRRAF::

Calls **\$ACHKP**

Input

R2 = Address of the task status word of the current task
R3 = Address of the buffer address in the DPB
R4 = Address of the header of the current task R5 = Address of the TCB of the current task

Output DRRAF returns directive status and the PS to the task.

> C = 0 if DRRAF successfully completes execution. Also. DRRAF returns a directive status of +1 to the task.

C = 1 if DRRAF does not complete execution.

Directive status returned:

'D.RS98' if the buffer is outside of the issuing task's address space

Note The DPB format is:

WD. 00 -- DIC(39.),DPB size(2.)
WD. 01 -- Address of a 4-word buffer

Entry Point -

\$DRSEF:: The directive processing routine, DRSEF, causes the system

to report on the polarity of an event flag and then set

the event flag.

Calls None

R0 = Event flag mask word Input

Rl = Event flag mask address

R2 = Address of the task status word of the current task
R3 = Address of the last word in the DPB+2
R4 = Address of the header of the current task R5 = Address of the TCB of the current task

DRSEF returns directive status and the PS to the task. Output

C = 0 with a directive status of 'D.RS00' if the flag was clear or 'D.RS22' if the flag was set

Note The DPB format is:

WD. 00 -- DIC(33.), DPB size(2.)

WD. 01 -- Event flag number of flag to be set

Entry Point -

This routine is called from within the Executive to execute a wait for significant event directive for the \$TKWSE::

current task. This routine shares code that is common

with the \$DRWSE routine.

Calls None

Input None

Output This routine executes the wait for significant event

directive and returns to the calling routine.

Entry Point -\$DRWSE:: The directive processing routine, DRWSE, causes the system to suspend the execution of the issuing task until the next significant event occurs. Calls \$SETRQ Input R2 = Address of the task status word of the current task R3 = Address of the last word in the DPB+2
R4 = Address of the header of the current task R5 = Address of the TCB of the current task Output DRWSE returns directive status and the PS to the task. C = 0 with a directive status of +1 Note The DPB format is: WD. 00 -- DIC(49.), DPB size(1.) Entry Point -\$DRWFL:: The directive processing routine, DRWFL, causes the system to suspend the execution of the task that issued the directive until any of the specified event flags become set. Calls None Input R2 = Address of the task status word of the current task R3 = Address of the second word in the DPB R4 = Address of the header of the current task R5 = Address of the TCB of the current task Output DRWFL returns directive status and the PS to the task. C = 0 if DRWFL successfully completes execution. DRWFL returns a directive status of +1 to the task. C = 1 if DRWFL does not complete execution. Directive status returned: 'D.RS97' if an illegal event flag set or a zero (0) event flag mask is specified by the task. The DPB format is: WD. 00 -- DIC(43.),DPB size(3.) Note WD. 01 -- Event flag set indicator WD. 02 -- Event flag mask word The event flag sets are: Set 0 -- Event flags 1. - 16. Set 1 -- Event flags 17. - 32. Set 2 -- Event flags 33. - 48. Set 3 -- Event flags 49. - 64.

Entry Point -

The directive processing routine, DFWFS, causes the system to suspend the execution of the issuing task until ${\tt a}$ \$DRWFS:: specified event flag is set.

Calls \$SETRT

Input R0 = Event flag mask word

Rl = Event flag mask address

R2 = Address of the task status word of the current task

R3 = Address of the last word in the DPB+2
R4 = Address of the header of the current task
R5 = Address of the TCB of the current task

Output The DRWFS routine returns directive status and the PS to the task.

C = 0 with a directive status of +1.

Note The DPB format is:

WD. 00 -- DIC(41.), DPB size(2.)

WD. 01 -- Event flag number of flag to wait for

7.2.30 DRSST Module

DRSST The directive processing module, DRSST, specifies SST vectors of service routine entry points for use by intra-task debugging aids or the issuing task.

DRSST contains the following directive processing routines:

SDRSDV Record address and length of a vector of SST service routine entry points for debugging aid.

SDRSTV Record address and length of a vector of SST service routine entry points for issuing task.

Macro Library Calls -HDRDF\$ Define task header offsets

Entry Point -

\$DRSDV:: The directive processing routine, DRSDV, records the address and length of a vector of SST service routine entry points for use by an intra-task debugging aid (ODT).

Calls None

Input R2 = Address of the task status word of the current task

R3 = Address of the second word in the DPB
R4 = Address of the header of the current task
R5 = Address of the TCB of the current task

Output DRSDV returns directive status and the PS to the task.

C = 0 if DRSDV successfully completes execution. Also, DRSDV returns a directive status of +1 to the task.

C = 1 if DRSDV does not complete execution.

Directive status returned:

'D.RS98' if part of the vector is outside of the issuing task's address space, a vector address of zero is specified, or the vector size is greater than 31. words.

The DPB format is: Note WD. 00 -- DIC(103.), DPB size(3.) WD. 01 -- Address of the SST vector WD. 02 -- Number of entries in the SST vector The SST vector format is: WD. 00 -- Traps to 4 (odd address, non-existent memory, etc.) WD. 01 -- Segment fault (T-bit) BPT WD. 02 -- Trace trap or execution of instruction WD. 03,-- Execution of an IOT instruction WD. 04 -- Execution of an illegal or reserved instruction WD. 05 -- Execution of a non-RSX EMT instruction WD. 06 -- Execution of a TRAP instruction WD. 07 -- PDP 11/40 floating point exception fault Entry Point -\$DRSTV:: The directive processing routine, DRSTV, causes the system to record tha address and length of a vector of SST service routine entry points for use by the issuing task. Calls **\$ACHKW** Input R2 = Address of the task status word of the current task R3 = Address of the second word in the DPB R4 = Address of the header of the current task R5 = Address of the TCB of the current task Output DRSTV returns directive status and the PS to the task. C = 0 if DRSTV successfully completes execution. DRSTV returns a directive status of +1 to the task. C = 1 if DRSTV does not complete execution. Directive status returned: 'D.RS98' if part of the vector is outside of the issuing task's address space, a vector address of zero is specified, or the vector size is greater than 31. words. Note The DPB format is: WD. 00 -- DIC(105.), DPB size(3.) WD. 01 -- Address of the SST vector WD. 02 -- Number of entries in the SST vector The SST vector format is: WD. 00 -- Traps to 4 (odd address, non-existent memory, etc.) WD. 01 -- Segment fault WD. 02 -- Trace trap (T-bit) or exectution of a BPT instruction WD. 03 -- Execution of an IOT instruction WD. 04 -- Execution of an illegal or reserved instruction WD. 05 -- Execution of a non-RSX EMT instruction

WD. 06 -- Execution of a TRAP instruction

WD. 07 -- PDP 11/40 floating-point exception fault

7.2.31 ERROR Module

ERROR This is the error logging module. This module contains the following routines:

\$ALEMB - Allocate an error message block

\$ALEB1 - Allocate an error message block (alternate entry)

\$BMSET - Set a driver's bit in the I/O active bit map

\$DTOER - Device timeouts

\$DVCER - Device error bit set

\$DVERR - Device error bit set (temporary label)

NSIER: - Nonsense interrupt error processing

\$QEMB - Queue an error message block (EMB)

Macro Library Calls -

HWDDF\$ Define CPU registers

CLKDF\$ Define clock offsets and codes HDRDF\$ Define task header offsets PCBDF\$ Define partition offsets PKTDF\$ Define I/O packet offsets

TCBDF\$ Define task control block offsets and codes

Entry Point -

\$ALEMB:: Error servicing routines call this routine. It

\$ALEB1:: counts the occurrence of the error and tries to allocate a core block from the pool. If the core block is allocated, it fills in the error code, the time, and the error sequence number. Otherwise, it sets the C-bit = 1.

Calls \$ALOCB

Input 2(SP) = Error code

0(SP) = Return

Rl = Size of the EMB to allocate

Output If the C-bit is 0:

(R0) = Address of the first unfilled byte

(R1) = Address of the EMB

If the C-bit = 1, \$ALEMB did not complete execution.

Note \$ALEMB destroys R2 and R3 when it calls \$ALOCB.

Entry Point -

\$BMSET:: This co-routine raises the processor priority to seven and sets the mask in the SCB in \$IOABM. It lets the calling routine start the function, then allows interruptions.

Calls @(SP)+ -- to call the calling routine

Input R4 = Address of the SCB

Output \$IOABM is modified and priority 7 established.

Entry Point -

SDTOER:: This is the error message block (EMB) formatting routine. The driver recognizes timeout errors. On the first occurrence of an error, \$DTOER attempts to log it. If errors occur on retries, they are not logged.

> \$DTOER pushes the error code EC.DTO on the stack, sets the error in progress bit in the SCB, calculates the length of the required EMB, and calls \$ALEMB. If \$ALEMB fails to allocate a packet for any reason, \$DTOER exits and \$DVCER clears the pointer in the SCB to the EMB.

> Otherwise, \$DVCER copies the saved \$IOABM from the SCB to the EMB and saves a pointer to the EMB in the SCB. \$DVCER puts the error information, including device registers, into the EMB and executes a RETURN. The contents of the CSR that is saved is unchanged from the time of timeout. After the CSR is saved, device interrupts are disabled and CPU priority is lowered to PRO.

Calls None

Input (R2) = Address of the CSR

(R4) = Address of the SCB

C = 0 if the function was not a user-mode diagnostic function. The EMB is filled and the SCB contains a Output pointer to it. The error in progress flag is set in the SCB.

> C = 1 if the function was a user-mode diagnostic function. Only interrupt enable is cleared and the priority is lowered to 0.

Note If the system supports diagnostics, Rl will be set to the I/O packet address. If diagnostics are not supported, all registers are cleared.

Entry Point -

This is the EMB formatting routine and it is used when the device driver recognizes device error bit errors. On the first occurence of an error, \$DVCER attempts to log it. If errors occur on retries, they are not logged.

> \$DVCER pushes the error code, EC.DVC, on the stack, sets the error in progress bit in the SCB, calculates the length of the required EMB, and calls \$ALEMB. If \$ALEMB fails to allocate a packet for any reason, \$DVCER clears the pointer in the SCB to the EMB and exits.

> Otherwise, \$DVCER copies the saved \$IOABM from the SCB to the EMB and saves a pointer to the EMB in the SCB. \$DVCER puts the error information, including the device registers, into the EMB and executes a RETURN.

Calls SALEMB

7-48

SDVCER::

(R4) = Address of the SCB Input

After \$DVCER fills the stack, the stack contains:

0(SP) = Error code

2(SP) = CSR address or 0

4(SP) = Saved R06(SP) = Saved R110(SP) = Saved R212(SP) = Saved R314(SP) = Return

Output

If successful, the EMB is filled and the SCB contains a pointer to it. An error in progress bit is set in the SCB.

Otherwise, the occurrence of the error is counted only.

Entry Point -

\$NS0::through\$NS7::

These are the nonsense interrupt identifier routines. One of a group of 16 unused vectors points to each of these routines. The vectors are sub-coded in the PS condition codes. Each routine consists of a CALL to NSIER: and a word containing an indentifying number.

Entry Point -

\$QEMB::

This is the common entry point for all EMBs. \$QEMB queues the EMB FIFO in the error gueue. \$QEMB awakens the ERROR logger task if there are enough bytes of EMBs in the pool. If the gueue is empty, \$QEMB makes a schedule request to write a gueued EMB within a time limit. Otherwise, \$QEMB executes a RETURN.

(R1) = Address of the EMB Input

Output None

Note \$QEMB destroys registers R0 through R3

7.2.32 INITL Module

INITL

The INITL module contains the transfer point of the resident executive. When the system is initially booted, control transfers to this routine to initialize and start up the system.

The INITL module contains the following labels:

\$POOL::

Start of the system pool space
The log on message "RSX-11M V3.1 BL", SYSMG:

SYSID: The system identification (4 bytes)

DEVMG: The message: /DEVICE dduu: NOT IN

CONFIGURATION/

OPMSG: Subroutine to write a message to the system

console terminal

Non-existent memory - trap routine TRPRT: \$SYBEG:: Beginning of dynamic storage region \$SYTOP:: Last address in the Executive

The INITL routine resets the processor and saves the following information about the loading device:

- Unit number
- Logical block number (LBN) of load image
- Device name
- Length of load file

The INITL module sets up the basic operating parameters of the system using conditional assemblies for Memory Management, 11/70 Extended Memory Support, 11/70 Cache Parity Support, and Real Time Clock for LSI-11.

Macro Library Calls -HWDDF\$ Define hardware registers

Entry Point -

\$INITL:: This is the system start up and initialization routine.

Calls \$DIV, \$DEACB

Input None - Processor reset

Output None - System operating parameters initialized

7.2.33 IOSUB Module

IOSUB The IOSUB module contains the following routines: \$ACHKP Address check parameter block Address check parameter block; word aligned Address check 2-byte directive parameter block **SACHKW** \$ACHK2 Address check; byte aligned Address check; word aligned **\$ACHKB** \$ACHCK Assign UNIBUS mapping registers \$ASUMR Convert event flag number for directive \$CEFN \$CEFI Convert event flag number for I/O \$DEUMR Deassign UNIBUS mapping registers \$DOUMR Dequeue from UMR wait Device message output Get I/O packet from request block \$DVMSG \$GTPKT Check logical block \$BLKCK \$BLKC1 Check logical block (alternate entry) \$IODON I/O done I/O done (alternate entry) \$IOALT I/O finish
I/O kill SIOFIN \$IOKIL Lock and unlock processing routine \$LCKPR SMPLNE Map logical unit number for exit Map logical unit number \$MPLUN \$MPPHY Map to physical address Map I/O packet function \$MPPKT SMPUBM Map UNIBUS to memory \$MPVBN Map virtual block number Relocate user virtual address \$RELOC \$RELOM Relocate and map address \$RLCH Release channel \$RQCH Request channel \$SCDVT Scan device tables \$SCDV1 Scan device tables (alternate entry) \$STMAP Set up UNIBUS mapping address Common ECC correction code for RP04/RK06 \$ECCOR \$RELOP Relocate UNIBUS phisical address

\$CRPAS Common register pass routine
\$MUL Integer multiply magnitude numbers
\$WTUMR Wait for change in UMR state
\$DIV Integer divide magnitude numbers

Macro Library Calls -

FllDFS Define window and lock block offsets

HDRDF\$ Define task header offsets HWDDF\$ Define hardware registers

PCBDF\$ Define partition control block offsets

PKTDF\$ Define I/O packet offsets

TCBDF\$ Define task control block offsets

Entry Points -

\$ACHKP:: Executive code calls these routines to check the address \$ACHKW:: of a task specified parameter block to ensure that the block is within the task's address space and is correctly aligned. If either check fails, the routines return a

directive status of 'D.RS98'.

Calls \$ACHCK, \$RELOC

Input R0 = Starting address of the block to be checked R1 = Length of the block to be checked in bytes

Output These routines return a directive status of 'D.RS98' to

the calling routine if either check fails.

Note Registers RO and R3 are preserved across the call.

Entry Points -

\$ACHKB:: Executive code calls these routines to check the address \$ACHCK:: of a block of memory to be sure it lies within the address

space of the current task.

Input R0 = Starting address of the block to be checked R1 = Length of the block (in bytes) to be checked

Output C = 0 if address check succeeded. C = 1 if address check failed.

Note Registers R0 and R3 are preserved across the call

Entry Point -

SASUMR

This routine assigns UNIBUS mapping registers (UMRs). It assigns a contiguous set of UMRs. For the sake of speed, the link word of each mapping assignment block points to the UMR address (2nd) word of the block, not the first word. A linked list of mapping assignment blocks represents the current state of UMR assignment. Each block contains the address of the first UMR assigned and the number of UMRs assigned times 4. The blocks are linked in the order of increasing first UMR address.

Calls None

Input R0 = Address of a mapping register assignment block M.UMRN(R0) = Number of UMRs required times 4

Output C = 0 if \$ASUMR successfully assigned the UMRs. All fields of the mapping register assignment block are initialized and the block is linked into the assignment list.

C = 1 if \$ASUMR could not assign the UMRs.

Note All registers are preserved.

Entry Points -

\$CEFN:: Executive code calls these routines to convert an \$CEFI:: event flag number to an event flag mask word and event flag mask address.

Calls None

Input R0 = Event flag number to be converted

R5 = TCB address of the task to which the event flag applies

Output C = 0 if an event flag number was specified.

R0 = Event flag mask word
R1 = Event flag mask address

C = 1 if no event flag number was specified.

R0 = Zero R1 = Zero

Directive status returned:

'D.RS97' if an incorrect event flag number is specified.

Note If the \$CEFI routine is called, R3 is preserved; otherwise, \$CEFN adds two to R3.

Entry Point -

\$DVMSG:: This routine queues a message to the task termination notification task. The messages are related to a device failure or a checkpoint write failure occurring from the loader.

Calls \$ALOCB, \$EXRGF

Input R0 = Message number

R5 = Address of the UCB or TCB to which the message applies

Output \$DVMSG calls \$ALOCB to allocate a four-word packet and stores the message number (R0) in the second word and the UCB or TCB address (R5) in the third word. \$DVMSG threads the packet in the task termination notification task message queue.

Note If the task termination notification task (SYSGEN option) is not installed, or no storage can be obtained, \$DVMSG performs no function and returns to the calling routine.

Entry Point -

\$GTPKT:: Device drivers call this routine to dequeue the next I/O request to be processed. If the device controller is busy, GTPKT sets the carry bit and returns to the caller. If the device controller is not busy, GTPKT tries to dequeue the next request from the controller queue. If \$GTPKT cannot dequeue a request, it sets the carry bit and returns to the caller. If the \$GTPKT process succeeds,

\$GTPKT sets the controller to busy and clears the carry bit before returning to the caller.

Calls SIOALT, SMPPKT, SEXROP

R5 = Address of the UCB of the controller for which \$GTPKT Input will get a packet.

C = 0 if \$GTPKT successfully dequeued a packet. Output \$GTPKT returns the following contents of Rl through R5:

R1 = Address of the I/O packet

R2 = Physical unit number

R3 = Controller index

R4 = Address of the status control block

R5 = Address of the unit control block

C = 1 if the controller is busy or no request can be dequeued

Note The contents of R4 and R5 are changed by this routine.

Entry Points -

I/O device drivers call these routines to check the \$BLKCK:: starting and ending logical block numbers of an I/O transfer to a file structured device. If the range of \$BLKCl:: blocks is not correct, \$BLKCK enters \$IODON with a final status of 'IE.BLK' and then a return to the calling driver occurs at the driver's initiator entry point. If the range of blocks is correct, \$BLKCK returns to the calling

driver.

Input

R1 = Address of the I/O packet
R5 = Address of the unit control block (UCB)

If the check fails, \$BLKCK enters \$IODON with a final status of 'IE.BLK' and \$IODON returns to the calling Output driver at the initiator entry point.

If the check succeeds, \$BLKCK returns the following contents of registers RO through R3 to the calling driver:

R0 = Low part of logical block number

R1 = Points to I.PRM+12 (low part of user logical block number)

R2 = High part of logical block number

R3 = Address of I/O packet

Entry Point -

\$DEUMR:: This routine deassigns a contiquous block of UMRs. If the mapping assignment block is not in the list, no action is taken. For the sake of assignment speed, the link word points to the UMR address (2nd) word of the assignment block.

Calls None

Input R2 = Pointer to assignment block

Output None

Note RO and Rl are preserved.

Entry Point -

\$DQUMR:: Control is transfered here to see if a driver is waiting

for UMR assignemnt. \$DQUMR calls the calling driver back as a co-routine. When the calling driver issues a return back to this routine, \$DQUMR checks to see if any drivers are waiting for UMRs. If so, \$DQUMR restores the waiting driver's context without actually de-gueueing the mapping assignment block and passes control back to the original

UMR assignment routine.

Input (SP) = Return address to the driver's caller

Output None

Entry Points

I/O device drivers call this routine at the end of an I/O SIODON:: \$IOALT:: request to do final processing. \$IODON sets the unit and

controller to idle and enters \$IOFIN to finish processing.

Calls SQEMB, SDEUMR, SFORKO

Input R0 = First I/O status word

Rl = Second I/O status word. If the entry to this routine
is at \$IOALT, \$IOALT clears Rl to signify that the

second status word is zero (0).

R2 = Starting and final error retry counts if this process

is the end of I/O on an error logging device

R5 = Address of the unit control block of the unit being

completed

(SP) = Address of the driver's caller (for return)

Output The unit and controller are set idle.

R3 = Address of the current I/O packet

Entry Point -

This routine is called to finish I/O processing in cases where the unit and controller are not to be declared idle. SIOFIN::

Calls \$SETF, \$CHKPT, \$NXTSK, \$QINSF, \$DEPKT

Input R0 = First I/O status word

R1 - Second I/O status word

R3 = Address of the I/O request packet

Output

\$IOFIN:

- Stores the final I/O status values in the I/O status block if one was specified
- Decrements the I/O count and clears TS.RDN in case the task was blocked for I/O rundown.
- Clears TS.CKR if it is set and initiates checkpointing of the task.
- Queues an AST for the task if an AST service routine was specified. Otherwise, \$IOFIN deallocates the I/O packet.
- Sets the event flag.

Note

\$IOFIN destroys the contents of R4.

Entry Point -

\$IOKIL::

This routine flushes all I/O requests for the current task from a device queue and cancels the I/O operation in progress for the current task.

\$IOFIN, @D.VCAN(R2) - where R2 is the address of the Calls driver dispatch table

Input R5 = Address of the device UCB of the device for which to flush requests

Output \$IOKIL calls the driver at the cancel I/O operation entry point with the arguments:

RO = Address of the current I/O packet

R1 = Address of the TCB of the current task
R3 = Controller index
R4 = Address of the status control block
R5 = Address of the unit control block

Note \$IOKIL destroys the contents of R4.

Entry Point -

\$LCKPR::

This is the lock/unlock processing routine. This routine first determines if a file I/O request is to a shared file. If it is, \$LCKPR determines if the request is an UNLOCK QIO or a virtual block I/O request. It then either performs the unlock QIO lock processing, or the respectively.

Calls \$ALOCB

Input

The inputs for the main entry point, \$LCKPR, are: R1 = I/O packet address of the request

Unlock processing: The section of \$LCKPR that performs the unlock processing contains the following relevant register contents:

R0 = Unlock error status Rl = I/O packet address

R2 = Address of the first lock block in the lock list

R3 = Pointer to current window

R4 = Byte count of current unlock request

Lock processing: The section of \$LCKPR that performs the lock processing checks for attempted lock overlaps, tries to set the new lock, and performs the implied unlock. Ιf a new lock request for an explicit unlocker is detected that exactly matches an existing lock for that window in both starting VBN and size, the lock block is reused. The relevant registers contents for this part of \$LCKPR are:

R1 = I/O packet address
R2 = Address of first lock block in lock list
R3 = Address of file window

R4 = Block count for current request

\$LCKPR contains an internal routine to check for exact VBN and block count match. The inputs to this routine are:

Rl = I/O packet address R2 = Lock block address

R4 = Byte count:

The outputs of this routine are:

Z = 1 if there is an exact match

Z = 0 if there is no match All registers are preserved.

Output

The outputs of \$LCKPR are:

C = 0 if no lock processing was required

C = 1 if an unlock was performed or an error condition occured during the lock processing.

R0 = I/Ostatus

Note

Rl is preserved.

Entry Point -

\$MPLNE::

\$MPLUN::

These routines validate a logical unit number (LUN) and map the LUN into a UCB pointer. If the calling routine specified an incorrect LUN, \$MPLNE returns a directive status of 'D.RS96'. If the LUN is correct, \$MPLNE maps it and returns the pointer, which points to the LUN and the UCB, to the calling routine.

Input

R3 = Address of the LUN

R4 = Address of the header of the current task R5 = Address of the TCB of the current task

Output

R1 contains the address of the second LUN word in the task header.

R3 is advanced by two (2).

C = 0 if a device is assigned to the specified LUN. RO = Address of the UCB of the assigned device

C = 1 if no device is assigned to a specified LUN. R0 contains zero (0).

Entry Point -

\$MPPHY::

This routine maps a relocation bias and displacement address to an 18-bit physical address. If the indicated device is not a non-processor request (NPR) device, \$MPPHY returns the relocation bias and displacement address to the caller. Otherwise, SMPPHY converts the relocation bias and displacement address to an 18-bit physical address and returns this address to the calling routine.

Calls

Rl = Relocation bias Input

R2 = Displacement address

R5 = Address of the unit control block

Output

If the device is an NPR device:
Rl = High order 2 bits of physical address in bits 4 and 5
R2 = Low order 16 bits of physical address

If the device is an NPR device on an 11/70:

R1 = High order 6 bits of physical address in high byte

R2 = Low order 16 bits of physical address

If the device is not an NPR device:

Rl = Relocation bias

R2 = Displacement address

Note RO and R3 are preserved across the call.

Entry Point -

SMPPKT::

This routine maps a read or write virtual function in an I/O packet to a read or write logical function. If the current window does not map the virtual function, MPPKT sets the C-bit and returns the partial mappping results to the calling routine. If the window completely maps the virtual function, \$MPPKT stores the logical block number in the I/O packet and converts the read or write virtual function to its logical counterpart.

Calls \$MPVBN, \$MPPHY

Input R1 = Address of the I/O packet

Output C = 0 if mapping was successful.

R0 = Zero (0)

I.FCN+1(R1) = IO.WLB or IO.RLB

I.PRM+10(R1) = High part of mapped LBN I.PRM+12(R1) = Low part of mapped LBN

C = 1 if mapping failed.

R0 = Number of blocks not mapped

R2 = High part of mapped LBN

R3 = Low part of mapped LBN

Note Rl is preserved across call

Entry Point -

\$MPUBM::

UNIBUS NPR device drivers call this routine to load the necessary UNIBUS map registers to enable a transfer to main memory on an 11/70 processor with extended memory.

Calls None

Input R4 = Address of device SCB R5 = Address of device UCB

Output \$MPUBM loads the necessary UNIBUS map registers to enable

a transfer.

Note Register R3 is preserved across the call.

Entry Point -

\$MPVBN:: This routine maps a virtual block number (VBN) to a logical block number (LBN) by using a window block that

contains a set of mapping pointers.

Calls None

Input R0 = The number of consecutive bytes that must be mapped

Rl = Address of the window block

R2 = High part of VBN R3 = Low part of VBN

Output C = 0 if \$MPVBN successfully maps the VBN to the LBN.

Also:

R0 = The number of unmapped blocks

R2 = High part of LBN R3 = Low part of LBN

C = 1 if \$MPVBN could not map the VBN by using the window block

Entry Point -

\$RELOC:: This routine relocates a user's virtual address. \$RELOC transforms a 16-bit user virtual address into a relocation

bias and displacement-in-block relative to APR6.

Calls None

Input R0 = User's virtual address to be relocated

Output Rl = Relocation bias to be loaded into PAR6

R2 = Displacement-in-block plus 140000 (PAR6 bias)

Note RO and R3 are preserved across the call.

Entry Point -

\$RELOM:: This routine transforms a 16-bit user virtual address into a relocation bias and displacement-in-block relative to

APR6 and loads these values for access by the caller.

Calls \$RELOC

Input R0 = User's virtual address to be relocated

Output R0 = Displacement-in-block

\$RELOM loads KISAR6 with the relocation bias

Note R3 is preserved across the call.

Entry Point -

\$RLCH:: This routine releases a channel. It sets the channel status to idle and tries to dequeue the next driver waiting to use the channel. If no driver is waiting, \$RLCH returns to the calling routine. Otherwise, \$RLCH dequeues the driver, sets the channel status to busy, calls the driver, and returns to the calling routine.

Calls \$QRMVF

Input R5 = Address of the unit control block

Output \$RLCH sets the channel status to idle and tries to dequeue the next driver waiting to use the channel.

RO, Rl, and R2 are preserved across the call.

Note \$RLCH destroys the contents of R4.

Entry Point -

\$RQCH:: This routine requests exclusive use of a channel. If the channel is busy, \$RQCH threads the calling driver into the channel wait queue and returns to the routine that called the driver. If the channel is not busy, \$RQCH sets the channel status to busy and returns to the calling driver.

Calls \$QINSF

Input R4 = Address of status control block
R5 = Address of unit control block

(SP) = Return address of calling routine

2(SP) = Return address of the routine that called the calling routine

Output The calling driver is threaded into the channel wait queue.

Entry Point -

\$SCDVT:: This co-routine scans device tables for a calling routine. \$SCDV1:: For each UCB found, this co-routine calls the calling routine and returns the UCB, DCB, and SCB addresses to it.

Calls @(SP)+ (the calling routine)

Input R3 = List pointer (if entry is at \$SCDV1)

Output C = 0 if the next device table entry is being returned

R3 = Address of the device control block (DCB)
R4 = Address of the status control block (SCB)
R5 = Address of the unit control block (UCB)

C = 1 if no more entries exist in the device tables

Entry Point .

SSTMAP::

UNIBUS NPR device drivers call this routine to set up the UNIBUS mapping address. \$STMAP first assigns the UNIBUS mapping registers (UMRs). cannot If the UMRs places the driver's mapping assignment allocated, \$STMAP block in a wait queue and returns to the driver's caller. The assignment block will be dequeued eventually when the UMRs are available and the driver will be remapped and returned to with Rl through R5 preserved and the normal outputs of this routine. \$STMAP stores the driver's context in the assignment block and the fork block while it is blocked and in the wait gueue. Once \$STMAP places the driver's mapping assignment block in the UMR wait queue, it is not removed from the queue until the UMRs are successfully assigned. This strategy assures that waiting drivers are serviced FIFO and that drivers with large requests for UMRs will not wait indefinitely.

Calls \$ASUMR, \$WTUMR

Input R4 = Address of the device SCB

R5 = Address of the device UCB (SP) = Return to driver's caller

Output \$STMAP sets up UNIBUS map addresses in the device UCB and

moves the actual physical address to the SCB.

Note Registers Rl, R2, and R3 are preserved across the call.

Entry Point -

\$ECCOR::

This routine contains common error correction code (ECC) for the RP04 and RK06. SECCOR applies the ECC correction algorithm and determines if offset recovery is required (if supported).

Calls \$RELOP

Input Rl = Contents of error register

R2 = Control status register (CSR) address

R3 = Address of first ECC register

R5 = UCB address

Output R3 = Controller index

C = 0 if offset recovery is not required

R0 = IS.SUC&377

R1 = bytes actually transfered R2, R4, and R5 are unmodified

U.BUF and U.BUF+2 are updated by a call to \$RELOP

C = 1 if offset recovery is required R0 = Number of good bytes transfered

Rl - R5 are unmodified

Entry Point -

\$RELOP:: This routine relocates a UNIBUS physical address to a

KISAR6 bias and displacement.

Calls None

Input R0 = byte offset from address in U.BUF+1 and U.BUF+2

R5 = UCB address

U.BUF+1(R5) = High order bits of physical addressU.BUF+2(R5) = Low order bits of physical address

Output KISAR6 = Calculated bias (mapped system)

Rl = Real address or displacement

Entry Point

\$CRPAS:: This is the common register pass routine. \$CRPAS passes the contents of the device registers back to the diagnostic task. This routine passes all registers in the

order in which they appear on the UNIBUS. \$CRPAS uses the error logging entries, S.ROFF and S.RCNT, in the status control block. To use this routine, error logging must be

enabled.

Calls None

Input Rl = I/O packet address

R2 = Control status register address R4 = Status control block address

Output None

RO and R2 are preserved. Note

Entry Point -

\$MUL: This is the integer multiply routine.

Calls None

Input R0 = Multiplier

Rl = Multiplicand

Output \$MUL returns a doubleword result in RO and Rl. The high

part is in RO and the low part is in Rl.

Note Registers R2, R3, R4, and R5 are preserved across the

call.

Entry Point -

\$DIV:: This is the integer divide routine.

Calls None

Input R0 = Dividend

Rl = Divisor

Output \$DIV returns the quotient in RO and the remainder in R1.

Note Registers R2, R3, R4, and R5 are preserved across the

call.

Entry Point -

\$WTUMR:: This routine waits for a change in the UMR state. It stores RI through R4 and the return PC in the mapping assignment block and queues the block in the UMR wait queue for a subsequent recall to the caller when the state

of the UMRs changes. It is possible for the mapping assignment block to already be in the wait queue. If it

is, it can be at the head of the queue only.

Calls None

Input R0 = Pointer to UMR assignment block

Output \$WTUMR gueues the assignment block in the UMR wait gueue.

\$WTUMR returns to the caller at system state with Rl

through R4 preserved.

7.2.34 LOADR Module

LOADR The LOADR module is a task that loads and checkpoints all nonresident tasks.

Macro Library Calls -

ABODF\$ Define task abort codes
HDRDF\$ Define task header offsets
HWDDF\$ Define hardware registers

PCBDF\$ Define partition control block offsets

TCBDF\$ Define task control block offsets

Entry Point -

\$LOADR::

This task:

- Reads a nonresident task into memory and initializes it for execution.
- Reads a previously checkpointed task back into memory and restarts its execution.
- Writes a checkpoint image of a running task and frees its partition.

\$LOADR gets its input from a loader gueue by a call to \$QRMVF. The loader gueue contains a priority ordered list of task TCBs. \$LOADR removes the highest priority (the first) TCB from the gueue and processes it. \$LOADR processes the TCBs in the gueue in priority sequence.

Calls \$QRMVF, \$STPCT, \$DEACB, \$QINSP, \$RLPAR, \$DVMSG, \$ALOCB, \$TKWSE, \$MAPTK, \$CRATT, \$SWSTK, \$BILDS, \$CHKPT, \$DASTT, \$ACTTK, \$ABTSK

7.2.35 LOWCR Module

LOWCR The LOWCR module contains low core pointers, trap and interrupt vectors, and the Executive stack area. This module contains one executable statement - a JUMP to the panic dump routine (\$PANIC). The other statements define the addresses of trap processing modules and low core pointers.

This file must be the first in the task builder command file because it occupies locations starting at real location zero.

The following low core pointers are contained in this module:

- Address of directive status
- Directive status word
- FCS impure area pointer
- FORTRAN impure area pointer
- Overlay run time system impure area pointer

The system stack area contains a minimum of 40. words.

Calls None

Input None

Output None

7.2.36 PARTY Module

PARTY

Execution of this module occurs because of a memory parity error interrupt. Any error that occurs on the system stack or in the Executive is a fatal error. A fatal error halts the system and the message "***EXEC PARITY ERROR***" is printed. Otherwise, the task occupying the memory in which the error occurred is aborted and locked into memory to prevent that portion of memory from being used again. A message is printed to indicate that the task was aborted.

Macro Library Calls -

ABODF\$ Define task abort codes
HWDDF\$ Define hardware registers

PCBDF\$ Define partition control block offsets

TCBDF\$ Define task control block offsets

Entry Point -

PARER: Memory parity error interrupt processing module

Calls \$ALEMB, \$QEMB, \$ABTSK

Input None

Output None

Note The error message block (EMB) format (for error logging) for cache parity is: WD. 00 - Link word WD. 01 - Size = 37.*2 WD. 02 - Processor type/entry code = 002 WD. 03 - Minute/second WD. 04 - Day/hour WD. 05 - Year/month WD. 06 - Error sequence number WD. 07 - Trap PC WD. 08 - Trap PS WD. 09 - First word of task name WD. 10 - Second word of task name WD. 11 - First word of partition name WD. 12 - Second word of partition name WD. 13 - Partition base address WD. 14 - Partition size WD. 15 to WD. 30 - Memory parity control status registers (CSRs) WD. 31 to WD. 36 - Cache parity CSRs 7.2.37 PLSUB Module PLSUB The PLSUB module contains the following program logical address space subroutines: \$SRNAM Search for a named partition \$CKACC Check desired access \$CRATT Create attachment descriptor Search for attachment descriptor \$SRATT \$SRWND Search for specified address window **\$UNMAP** Unmap address window Macro Library Calls -HDRDFS Define task header offsets HWDDF\$ Define hardware registers PCBDF\$ Define partition control block offsets TCBDF\$ Define task control block offsets Entry Point -This routine searches for a named partition and returns \$SRNAM:: success or failure indication and a pointer to the PCB if it finds the partition. Calls None Input R3 = Pointer to the double-word RAD50 name Output C = 0 if SRNAM finds the named partition.

C = 1 if SRNAM does not find the name

R2 = The PCB address

Entry Point -

\$CKACC:: This routine checks if the desired access of a task to a region is allowed. The bits in the protection word are

arranged in the following order:

WORLD, GROUP, OWNER, SYSTEM

The bits within each category in the protection word are arranged in the follwing order:

> DELETE EXTEND WRITE READ 3 2 1 O

If a bit is set, the corresponding access is not allowed.

Calls None

Input R0 = Desired access mask in the low four bits

> R1 = Current UIC of the task R2 = PCB address of the region

Output CKACC changes the contents of RO and R1.

> CKACC returns a directive status of 'D.RS16' to the calling routine if access to the region is not possible.

Entry Point -

SCRATT:: This routine creates an attachment descriptor block and inserts it in the necessary queues.

Calls \$ALOCB, \$QINSF, \$QINSP

Input R2 = PCB address of the region being attached to

R4 = Access code

R5 = TCB address of attaching task

C = 0 if CRATT successfully completes execution. Output Rl = Address of the attachment descriptor block

CRATT changes the contents of RO

C = 1 if an attachment descriptor could not be allocated.

CRATT modifies R0 and R1.

Entry Point -

SSRATT:: This routine verifies that a valid region ID was passed in a PLAS directive by searching for the corresponding attachment descriptor in the task control block's

attachment queue.

Calls None

Input R3 = Address of the region ID to be verified (or 0 for

task region)

R5 = TCB address of the current task

Output R5 = Address of the attachment descriptor

> SRATT returns a directive status of D.RS86 if the

attachment descriptor cannot be found.

Entry Point -

\$SRWND:: This routine verifies that the specified address window ID

corresponds to a valid established address window.

Calls None

R3 = Address of the address window ID Input

R4 = Address of the current task header

R4 = Pointer to the specified window block Output

SRWND chages the contents of RO

SRWND returns a directive status of D.RS87 if the

specified address window is invalid.

Entry Point -

This routine searches for and conditionally unmaps the **\$UNMAP::**

specified address window.

Calls None

Input R4 = Address of the window to be unmapped

UNMAP modifies RO Output

C = 1 if UNMAP sucessfully unmapped the address window

7.2.38 POWER Module

POWER

This is the powerfail recovery module. If power fails, the POWER module saves the stack pointer, hardware registers RO - R5, UNIBUS mapping registers, memory management registers, floating point status, mode, and registers, and the program interrupt request.

When power comes back on, POWER restores all the registers, forces a schedule request for the null task, increments the powerfail indicator, and executes an RTI instruction.

The dispatcher then calls the \$POWER routine in this module to restart the system.

The POWER module contains the following labels and routines:

PWBTM:

This is the label of register storage area This is the label of the stack pointer storage PWSTK:

area

PWVCT: Defines the powerfail vector

PDOWN: This routine is entered when a power failure interrupt occurs. This routine saves all volatile machine registers, switches the power fail vector to the power up routine (PUP:), and halts the processor to await the power up interruption.

PUP: This routine is entered when a power up interrupt It restores all volatile occurs. machine registers, forces a schedule request for the NULL task, increments the powerfail indicator, and executes an RTI instruction. The dispatcher then calls the power recovery routine (\$POWER::), which is in this module. to re-instate processing.

\$POWER::Restart system processing

Macro Library Calls -

EMBDF\$ Define error message block offsets

HDRDF\$ Define task header offsets
HWDDF\$ Define hardware registers

PCBDF\$ Define partition control block offsets

TCBDF\$ Define task control block offsets

Entry Point -

SPOWER::

The dispatcher calls the POWER routine after the PUP routine restores the volatile registers. The POWER routine clears the power failure indicator and declares a significant event. If the KW11-Y is supported, POWER clears the clock error flags and energizes the output relay. POWER then enables parity error interrupts, clears the 11/70 parity control register, clears the memory error register, declares power failure ASTs for task that are active and in core, and performs a power failure recovery for all active devices.

Calls \$DRDSE, \$ALEMB, \$QEMB, \$DASTT, @D.VPWF(R2)-where R2 is the address of the device dispatch table

Input \$POWER calls the driver at the powerfail entry point with the following arguments:

R3 = Controller index

R4 = Address of the status control block R5 = Address of the unit control block

Output None

7.2.39 QUEUE Module

QUEUE The QUEUE module contains the following queue manipulation

routines:

\$CLINS:: Clock queue insertion \$CLRMV:: Clock queue removal

\$QINSF:: Queue insertion at end of list \$QINSP:: Queue insertion by priority \$QMCRL:: Queue MCR command line

\$QRMVF:: Queue removal from front of list \$QRMVT:: Queue removal by TCB address

Macro Library Calls -

CLKDF\$ Define clock queue control block offsets

TCBDF\$ Define task control block offsets

Entry Point -

\$CLINS:: This routine makes an entry in the clock gueue. routine inserts the entry in a way that allows the clock queue to be ordered in ascending time sequence. Thus, the entries at the top (or front) of the queue are the most

immminent.

Calls None

R0 = Address of the clock gueue entry core block Input

Rl = High order half of delta time R2 = Low order half of delta time

R4 = Request type

R5 = Address of requesting TCB or request identifier

Output The clock queue entry is inserted in the clock queue

according to the time that it will become due.

Entry Point

\$CLRMV:: This routine removes all entries for a specified TCB

address and request type from the clock gueue.

Calls \$DECLK

R4 = Request type Input

R5 = Address of requesting TCB or system subroutine

CLRMV removes all entries for the specified TCB address Output

and request type from the clock queue. If the request type is not 'C.SYST', CLRMV releases the clock queue entry core

block.

Entry Point -

This routine makes an entry in a first-in first-out list. It links the entry to the end of the list. This routine \$QINSF::

shares common code with the \$QINSP routine.

Calls None

Input R0 = Address of the two-word listhead

R1 = Address of the entry to be inserted

Output The entry is linked to the end of the gueue.

RO and RI are preserved across the call.

Entry Point -

SOINSP:: This routine inserts an entry in a priority ordered list.

QINSP searches the list until it finds an entry that has a lower priority or it finds the end of the list. The new entry is linked into the list at whichever of these two

points is appropriate.

Calls None

R0 = Address of the two-word listhead Input

Rl = Address of the entry to be inserted

Output QINSP links the entry into the list in priority order.

RO and RI are preserved across the call.

Entry Point -

\$QMCRL:: This routine queues a command line for MCR.

Calls \$EXRQF

Input Rl = Address of the command line control block

Via the call to EXRQF, the command line is inserted into the MCR command line list and MCR is requested to run. Output

Entry Point -

SORMVF:: This routine removes the next (front) entry from a list.

The list organization may be either FIFO or by priority.

Calls None

Input R0 = Address of the two-word listhead

C = 0 if QRMVF removes the next entry from the list Rl = Output

Address of the entry removed

C = 1 if there are no entries in the list RO is preserved

across the call

Entry Point -

This routine removes the next entry from a list that matches a specified TCB address. The list organization may \$QRMVT::

be either in FIFO or in priority order.

Calls None

`Input R0 = Address of the two-word listhead

R1 = Address of the TCB for which QRMVT searches

Output C = 0 if QRMVT removes a matching entry from the list

R1 = Address of the entry removed

C = 1 if there is no entry in the list that matches the

TCB address

RO is preserved across the call

7.2.40 REQSB Module

REOSB This module contains the following task control routines:

\$ABCTK Abort current task

SABTSK Abort task

Build stack and initialize header \$BILDS

\$ACTTK Put task in active task list Set conditional schedule request \$SETCR

\$SETRO Set schedule request

Set schedule request for current task \$SETRT

Set event flag Set event flag \$SETF \$SETM \$DASTT Declare AST trap

Degueue AST block gueued by \$QASTC (called \$DQAC

from SYSXT only)

\$QASTC Queue AST to task \$OASTT Queue AST to task

\$SRSTD Search system task directory

\$ACTRM \$STPCT	Remove task from the active task list Stop current task
\$STPTK	Stop task
\$RLPAR	Release task partition
\$RLPR1	Release partition
\$NXTSK	Assign next task to partition
\$FNDSP	Find space in partition control block (PCB) list
\$TSTCP	Test if checkpoint should be initiated
\$ICHKP	Initiate checkpoint
\$CHKPT	Checkpoint task
\$LOADT	Put task in loader gueue
\$EXRQP	Executive request with queue insert by priority
\$EXRQF	Executive request with gueue insert FIFO
\$EXRQN	Executive request with no queue insertion
\$TSKRT	Task execution request (default UCB)
\$TSKRQ	Task execution request (UCB specified)
\$TSKRP	Task execution request (default UIC specified)
\$UISET	Establish default UIC and current UIC
\$MAPTK	Map task address window

Macro Library Calls -

HDRDF\$ Define task header offsets

ITBDF\$ Define interrupt transfer block offsets PCBDF\$ Define partition control block offsets TCBDF\$ Define task control block offsets

Entry Point -

\$ABCTK:: Abort current task

\$ABTSK:: Abort task

These routines mark a task to be aborted and they force a task's exit. They store the abort reason and the current outstanding I/O count in the first task event flag word. If the entry occurs at \$ABTSK, R1 contains the address of the TCB of the task to be aborted. If the entry occurs at \$ABCTK, the TCB address of the task to be aborted is moved into R1. Otherwise, the remainder of the two routines have common code.

Calls \$SETCR, \$NXTSK

Input R0 = Reason for the abort

R1 = Address of the TCB of the task to be aborted when entry occurs at \$ABTSK only.

Output These routines mark the task to be aborted and set a conditional schedule request.

Entry Point -

\$BILDS:: This routine sets up the task stack and initializes the header. This routine is called prior to placing a task into contention for the processor. This occurs when an execution request is made for a task that is fixed in memory or when a disk resident task has finished loading.

Calls None

Input R0 = Address of the TCB of the task to initialize

Output SBILDS::

1 - Clears the task local event flags 1. through 32.

2 - Sets up the current UIC in the header
3 - Sets up task context (PC, PS, stack pointer) to cause

the task to start execution at its entry

4 - Conditionally requests redispatching of the processor

Entry Point -

\$ACTTK:: This routine puts an active task in the active task list.

Calls None

Input R0 = Address of the TCB of the task to be put in the active task list.

Output ACTTK merges the specified task into the active task list by priority.

R3 is preserved across the call.

Entry Point -

\$SETCR Set conditional schedule request

\$SETRQ Set schedule request

Set schedule request for current task \$SETRT

These routines force redispatching of the processor from a specified position in the active task list. If a previous request was set, redispatching starts at whichever request has the highest priority.

These routines share common code.

Calls \$DRDSE

Input If entry occurs at \$SETRT:

R5 = Address of the TCB of the current task

If entry occurs at \$SETRQ or \$SETCR:

RO = Address of the TCB at which dispatching is to start

These routines set a schedule request that forces a redispatching of the processor when a system exit is Output

executed.

R2 and R3 are preserved across the call.

RO is preserved across the call if entry occurs at \$SETRQ

or \$SETCR.

Entry Point -

\$SETF \$SETM These routines set an event flag and do the required rescheduling.

CEFI, \$DRDSE Calls

Input R0 = Event flag number (\$SETF) or event flag mask (\$SETM)

R1 = Event flag word address (\$SETM only) set

R5 = TCB address for which flag is being set

Output RO = TCB address of the task whose flag was set

Note R3 is preserved

Entry Point -

\$DASTT:: This routine declares a non-I/O related ast trap. It examines the header of the specified task to determine if the specified AST is enabled. If it is enabled, the AST is declared.

Calls None

Input R4 = Offset into the task header to the AST control block address

R5 = Address of the TCB of the task for which the AST is to be declared

Output C = 0 if DASTT succeeded in setting up the task for the AST and declaring the AST

Rl = Address of the AST control block

C = 1 if the task is not setup for the specified AST

Note DASTT alters the contents of R4 during execution

Entry Point -

\$DQAC This routine degueues an AST block that was gueued by \$QASTC

Calls None

Input R0 = Pointer to AST block

Output A.CBL is set to one (1) to indicate that the AST block is free (not in AST gueue)

Entry Point -

\$QASTC Queues an AST to a task. This routine is a variant of \$QASTT used by a task ISR which was specified in a CINT\$ directive.

Calls None

Input R5 = Pointer to fork block in ITB

Output C = 0 if the AST is gueued.

C = 1 if the AST address was not specified in the CINT\$ call.

Note If the AST block is already gueued for the task, \$QASTC takes no action and returns C = 0.

\$QASTC alters RO, R1, R2, and R3.

Entry Point -

\$QASTT:: This routine gueues an AST to a task and ensures that the task will be scheduled and reconsidered for eligibility in the partition.

Calls \$QINSF, \$SETCR, \$NXTSK

Input R0 = TCB address of the task to receive the AST R1 = Address of the AST control block to be used

Output C = 0 if QASTT successfully completed execution

Rl is preserved across the call

Entry Point -

\$SRSTD:: This routine searches the task directory for a task of the

specified name.

Calls None

Input R3 = Address of the task name for which to search

Output C = 0 if SRSTD finds the task.

R0 = Address of the TCB

C = 1 if SRSTD did not find the specified task

R1, R2, and R3 are preserved across the call

Entry Point -

\$ACTRM:: This routine removes a task (its TCB) from the active task

list.

Calls None

Input R0 = Address of the TCB to be removed

Output C = 0 if ACTRM succeeds in removing a matching entry from

the list

C = 1 if there is no entry in the list that matches the

TCB address

RO is preserved across the call

Entry Point -

\$STPCT:: Stop the current task

\$STPTK:: Stop the task

These routines stop a task and reallocate the task's

partition.

Calls \$SETCR

Input R0 = The TCB of the task to be stopped (if entry occurs at

\$STPTK)

Output None

Entry Point -

\$RLPAR:: Release task partition

\$RLPRl:: Release partition

This routine releases a partition owned by a task and

assigns the partition to the next highest priority task

waiting to occupy the partition.

Calls None

Input R0 = Address of the TCB of the owner task (if entry occurs at \$RLPAR)

R3 = Address of main partition PCB (if entry occurs at \$RLPR1)

Output The partition is released and assigned to the next highest priority task waiting to occupy the partition.

Entry Point -

\$NXTSK:: This routine assigns a partition to the highest priority task waiting to occupy the partition.

Calls \$QRMVT, \$LOADT, \$TSTCP, \$ICHKP, \$FNDSP

Input R0 = Address of the PCB of the partition to be assigned

Output Five outputs are possible:

1 - The partition is not currently busy and a task is waiting to occupy the partition. NXTSK assigns the partition to the waiting task and places a reguest in the loader gueue to load the task.

2 - The partition is currently occupied by a task that is either of higher priority than all waiting tasks or is not checkpointable. In this case, the partition cannot be assigned to another task.

3 - The partition is currently occupied by a lower priority checkpointable task. NXTSK places a request in the loader gueue to checkpoint the owner task.

4 - The highest priority task waiting to occupy the partition requires the main partition while the main partition is occupied by one or more tasks that are either of higher priority or are not checkpointable. In this case the partition cannot be assigned.

5 - The highest priority task that is waiting to occupy the partition requires the main partition. One or more tasks of lower priority that are checkpointable currently occupy the main partition. NXTSK places a request in the loader gueue to checkpoint each task.

Entry Point -

\$FNDSP:: This routine finds space within a dynamically allocated PCB list. The list represents the allocation state of a system controlled partition or dynamic checkpoint file.

Calls None

Input R4 = Address of the PCB for which to find space

R5 = Address of the main PCB in the list where space is to be found

Output C = 0 if FNDSP successfully allocated space and linked the sub-PCB into the allocation list.

C = 1 if FNDSP was unsuccessful

Note FNDSP changes the contents of R0, R1, and R2.

Entry Point -

\$TSTCP:: This routine checks the priority of the requested task to

determine if the owner task should be checkpointed.

Calls None

Input R1 = Address of the TCB of the owner task

R4 = Address of the TCB of the requested task

Output C = 0 if checkpoint should occur

C = 1 if checkpoint should not occur

Entry Point -

\$ICHKP:: This routine starts the process of checkpointing a task.

The \$CHKPT routine does the actual checkpointing.

Calls \$SETCR

Input R1 = Address of the TCB of the task to be checkpointed

Output None

Entry Point -

\$CHKPT:: This routine checkpoints a task.

Calls \$ALOCB, \$DEACB, \$FNDSP

Input R1 = Address of the TCB of the task to be checkpointed.

Output SCHKPT:

1 - Sets the checkpoint flag in the task status word

2 - Places the task in the loader gueue

3 - Requests the loader to checkpoint the task

Entry Point -

\$LOADT::

This routine puts a task in the loader gueue for an initial load or a checkpoint operation. This routine contains one instruction only, which moves the address of

the TCB of the loader into RO.

Calls None

Input Rl = Address of the task control block

Output None

Note This routine shares code with the \$EXRQP, \$EXRQF,

\$EXRQN routines.

Entry Point -

\$EXRQP:: Executive request with gueue insert by priority

Executive request with gueue insert FIFO \$EXRQF::

\$EXRQN:: Executive request with no queue insertion

The Executive uses these routines when requesting all

tasks.

Calls \$SETCR

Input RO = TCB address of the task to be requested R1 = Address of the packet to be gueued to the task (if

entry occurs at \$EXRQP or \$EXRQF)

Output C = 0 if the request successfully completed execution.

C = 1 if the task was not requested and, Z = 0 if the PCB could not be allocated

Z = 1 if the task is active, being removed, or being fixed

Entry Point -

\$TSKRT:: Task request (default UCB) Task request (specify UCB) \$TSKRO::

STSKRP:: Task request (specify default UIC)

These routines request the execution of a task.

Calls \$ALOCB, \$QINSP, \$NXTSK, \$BILDS

RO = Address of the TCB of the task to be requested Input

Rl = Request UIC

R2 = UCB address if entry at \$TSKRQ R3 = Default UIC if entry at \$TSKRP

Output C = 0 if these routines successfully request the execution

of the task

C = 1 if the task was not requested

Z = 1 if the task is active or is being fixed in memory

Z = 0 if the PCB could not be allocated

Note These routines share common code.

Entry Point -

SUISET:: This routine establishes the default and current UIC for

requested tasks in multi-user systems.

Calls None

Input R1 = Request UIC

R2 = Address of second status word of the current task

R4 = Address of the header of the current task

Output C = 0 if UISET establishes the UIC

R1 = Current UIC R3 = Default UIC

C = 1 if a nonprivileged task is trying to change the UIC

Entry Point -

SMAPTK:: This routine maps the first window block in a task's

header in a mapped system from the task's TCB and PCB.

Calls None

R1 = Pointer to the number of window blocks in the task Input

header

R5 = Address of the task control block (TCB) for the task

R1 = Address of the last PDR image in the task header Output

Note MAPTK modifies the contents of R2.

7.2.41 SSTSR Module

SSTSR The SSTSR module contains the following synchronous system

trap service routines:

SEMSST:: Non-RSX EMT/TRAP instruction processing SFLTRP:: Floating-point exception processing (11/40) \$FLTRP:: Floating-point exception processing (11/45) SFPINT:: Programmed interrupt request entry point Illegal or reserved instruction processing \$ILINS::

\$IOTRP:: IOT instruction processing Segment fault processing \$SGFLT::

Trace (T-bit) or break point instruction (BPT) **\$TRACE::**

trap processing

\$TRP04:: Trap at 4 (odd address, non-existent memory,

etc.) processing

Common SST exit routine SSSTXT::

The SSTSR module contains the following local data:

1 - Floating point exception vector -

.WORD \$FLTRP .WORD PR7 .WORD \$FPINT .WORD PR7

2 - Floating point status and fork block

FLSTS: .BLKW 2 FLFRK: .BLKW 2

3 - Segment fault vector -

.WORD \$SGFLT .WORD PR7

Macro Library Calls -

ABODES Define task abort codes HDRDF\$ Define task header offsets HWDDF\$ Define harware registers PKTDF\$ Define I/O packet offsets

Entry Point -

The directive dispatcher (DRDSP) transfers control to this SEMSST::

routine when the system executes a non-RSX EMT or TRAP instruction. The machine state was saved before entry into this routine occurs. EMSST sets up the EMT/TRAP code (low byte of the instruction) to be passed to the user and transfers control to the SST exit routine.

Calls None

R5 = Address of the EMT/TRAP instruction Input

04(SP) = EMT/TRAP code multiplied by 2 02(SP) = SST code (SCEMT=EMT, SCTRP=TRAP) Output

00(SP) = Number of bytes to be transfered to the user

stack (6)

Entry Point -

The system traps to this routine when an 11/40 floating point exception occurs. FLTRP saves the current machine \$FLTRP::

state and transfers control to the SST exit routine.

Calls None

Input None

Output 02(SP) = SST code (SCFLT)

00(SP) = number of bytes to be transfered to user stack

(4)

Entry Points -

The system traps to this entry point when an 11/45 floating point exception occurs. FLTRP saves the floating \$FLTRP::

point exception and address registers and posts a programmed interrupt request at priority level 1.

Control returns to this entry point when the programmed interrupt request, which was issued by FLTRP, is processed SFPINT::

by the system.

\$INTSV, \$FORKO, \$DASTT Calls

Input The floating point exception register contains the reason for the fault and the floating point address register

contains the address of the instruction that caused the

fault.

The outputs are the saved floating point exception and address registers and the posted programmed interrupt Output

reguest.

Entry Point -

\$ILINS:: A trap occurs to this routine when the system tries to

execute an illegal or reserved instruction. This routine saves the current machine state and transfers control to

the SST exit routine.

Calls None

Input None

Output 02(SP) = SST code (SCILI)

00(SP) = number of bytes to be transferred to the user

stack (4)

Note This routine shares common code with the \$TRP04 routine.

Entry Point -

\$IOTRP::

The system traps to this routine when it executes an IOT instruction. If the stack depth is not +1, this routine crashes the system via a jump to \$CRASH. If the stack depth is +1, this routine saves the current machine state

and transfers control to the SST exit routine.

Calls None

Input None

Output The following arguments are set up on the current stack:

02(SP) = SST code (SCIOT)

00(SP) = Number of bytes to be transfered to the user

stack (4)

Note This routine shares common code with the \$TRP04 routine.

Entry Point -

\$SGFLT:: The system traps to this routine when a segment fault occurs. SGFLT saves the current machine state, sets up SR0 through SR2 to be passed to the user, and transfers

control to the SST exit routine.

Calls None

Input None

Output 10(SP) = Contents of SR0

06(SP) = Contents of SR2 04(SP) = Contents of SR1 02(SP) = SST code (SCSGF)

02(SP) = SST code (SCSGF) 00(SP) = Number of bytes to be transferred to the user

stack (10)

Entry Point -

STRACE:: The system traps to this routine when a trace trap bit (T-bit) occurs or when the system executes a breakpoint trap instruction. This routine saves the current machine

state and transfers control to the SST exit routine.

Call's None

Input None

Output 02(SP) = SST code (SCBPT)

00(SP) = Number of bytes to be transfered to the user

stack (4)

Note This routine shares common code with the \$TRP04 routine.

Entry Point -

\$TRP04:: The system traps to this routine when a trap at 4 occurs.

If a stack violation occurred (stack pointer=<400), this routine crashes the system. Otherwise, this routine saves the current system state and transfers control to the sst

exit routine (SSTXT).

Calls None

Input None

Output 02(SP) = SST code (SCOAD)

00(SP) = Number of bytes to be transferred to the user

stack (4)

Note This routine shares common code with the exit routine

(SSTXT).

Entry Point -

\$SSTXT:: This routine gets control to affect a synchronous system

trap (SST). If the current system stack depth is not zero, this routine crashes the system. If the stack depth is zero, the routine tries to execute an SST for the current task. If the task does not have the appropriate SST vector entry or this routine cannot push the SST parameters onto the stack, this routine aborts the task. Otherwise, this routine sets up the SST and executes a directive exit.

Calls \$ACHCK, \$RELOM, \$ABCTK

Input For a mapped system: 24(SP) = PS word saved by SST trap 22(SP) = PC word saved by SST trap 20(SP) = Saved R516(SP) = Saved R414(SP) = Saved R312(SP) = Saved R210(SP) = Saved R106(SP) = Saved R004(SP) = SST parameter (zero or more parameters may be specified) 02(SP) = SST code00(SP) = Number of bytes to be transferred to the the user stack For a real memory system: 14(SP) = Saved R312(SP) = Saved R210(SP) = Saved Rl06(SP) = Saved R004(SP) = SST parameter (zero or more parameters may be specified) 02(SP) = SST code00(SP) = Number of bytes to be transfered to the stack Output The routine executes the specified SST for the current task. 7.2.42 SYSCM Module SYSCM The SYSCM module defines common data areas that are used by the system for storage of system data and pointers. The module does not contain executable code; it only defines system data areas. The global areas defined in this module are shown below. The null task control block areas in SYSCM are unique for this TCB. Remaining areas, as noted, are in the true system common area For the null task control block: (This TCB terminates the system and active task lists. It must have a priority of zero and always be blocked.) SHEADR:: T.LNK - Pointer to current task header \$CURPR:: T.IOC - Current task priority \$COMEF:: T.TCB, T.NAM - Common event flags T.NAM+2, T.RCVL - System identification T.RCVL+2 - Pointer to TKTN TCB \$SYSID:: \$TKNPT:: T.ASTL - Pointer to shuffler TCB \$SHFPT:: T.ASTL+2 - Address of clock count register \$CKCNT:: \$CKCSR:: T.EFLG - Address of clock control status register T.EFLG+2 - Clock load count SCKLDC:: T.UCB - System UIC (54,1 for mapped system, 50,1 for unmapped system) \$SYUIC:: \$EXSIZ:: T.STAT - Address of last byte in Executive T.ST2 - Powerfail recovery request flag \$PWRFL:: \$SIGFL:: T.ST3 - Task waiting for significant event T.NRPC - Logical device assignment list

T.LBN+1 - MCR command block address

T.MXSZ - Active task list listhead

T.LDV - Lock word (TCB address of owner)

\$LOGHD::

\$MCRCB::

\$LSTLK::

\$CRAVL::

(The labels that follow are in the system common area.)

Pointers:

\$ACTHD:: Active task list listhead \$ABTIM:: Absolute time counter

\$TKTCB:: Current task TCB

\$ROSCH:: Schedule request TCB address

\$STKPD:: Stack depth indicator

\$DEVHD:: First device control block

\$MCRPT:: MCR TCB

SERRPT:: Error logger TCB

\$CFLPT:: First checkpoint file PCB Clock interrupt ticks count \$INTCT::

\$FRKHD:: Fork gueue listhead System feature mask SFMASK::

\$PARPT:: Parity address vector table

\$CLKHD:: Clock gueue

\$COPT:: Command output UCB SPARHD:: Partition list

\$LDRPT:: Loader TCB

System task directory \$TSKHD::

Idle pattern:

Idle pattern count byte \$IDLCT:: Idle pattern flag byte Idle pattern word SIDLFL::

\$IDLPT::

Days per month table:

\$DYPMN:: February....January

Bit mask table:

SBTMSK:: Bit mask table

Online error logging data base:

\$ERRHD:: Error logging message queue listhead Limit on resident error logging data SERRLM::

\$ERRSQ:: Universal error sequence number

SERRSV:: Pointer to error file indentification SERRSZ:: Resident bytes of error logging data

\$IOABM:: Devive I/O active bitmap

System bootstrap and save configuration vector:

\$SYSIZ:: Size of memory in 32W blocks

Time Limit Parameters:

\$TKPS:: Ticks per second

Current time vector:

STTNS:: Tick of second

LIFO send and I/O preallocation list pointer and

parameters:

\$PKAVL:: Pointer to first packet in list SPKNUM:: Number of packets currently in list

Maximum number allowed in list SPKMAX::

Global task size limit for extend task directive:

Initialize to no limit (or reference label)

UMR allocation listhead and wait queue listhead:

Mapping assignment block listhead

UMR wait queue listhead SUMRWT::

Macro Library Calls -

Define task header offsets HDRDFS HWDDF\$ Define hardware registers

TCBDF\$ Define task control block offsets

Entry Point - None

Input - None

7.2.43 SYSDF Module

SYSDF The SYSDF module globally defines the following:

V\$\$CTR, defining the highest vector address

S\$\$YDF, causing offset definitions from prefix files to be listed

ITBDF\$, defining ITB offsets and length

PCBDF\$, defining PCB offsets and length SCBDF\$, defining SCB offsets

TCBDF\$, defining TCB length

The following directive status codes:

D.RS1==-1. Insufficient dynamic core available to satisfy request

D.RS2==-2. Specified task not installed in the system

D.RS5==-5. Unassigned LUN

D.RS6==-6. Driver not loaded

D.RS7==-7. Task not active

D.RS8==-8. Task not suspended, no data gueued, task checkpointing already enabled or disabled, AST recognition already enabled or disabled, AST entry already unspecified

D.RS10==-10. Issuing task not checkpointable

D.RS16==-16. Privilege violation

D.RS17==-17. Vector already in use (CINTS)
D.RS19==-19. Illegal vector (CINTS)

D.RS80==-80. Directive issued from AST routine, directive not issued from AST routine

D.RS81==-81. Cannot map ISR or disable-interrupt routine (CINTS)

D.RS84==-84. Alignment error

D.RS85==-85. Address window overflow

D.RS86==-86. Invalid region ID
D.RS87==-87. Invalid window ID
D.RS90==-90. Specified LUN is locked in use
D.RS92==-92. Invalid device or unit specified

D.RS93==-93. Invalid time parameter

D.RS94==-94. Partition or region not in system

D.RS95==-95. Invalid priority D.RS96==-96. Invalid LUN

D.RS97==-97. Invalid EFN or required EFN not specified D.RS98==-98. Part of DPB is outside of issuing task's address space

D.RS99==-99. Invalid DIC or DPB size

D.RS22==2. EFN was set D.RS00==0. EFN was clear

Global conditional assembly definitions: D\$\$YNM==0 Globally define D\$\$YNM if dynamic memory

allocation is present

M\$\$EXT==0 Globally define M\$\$EXT if 11/70 extended memory

is present

M\$\$MGE==0 Globally define M\$\$MGE if memory management is present

Macro Library Calls -

ITBDF\$ Define ITB offsets and length

PCBDF\$ Define partition control block offsets and length

SCBDF\$ Define status control block offsets Define task control block offsets TCBDF\$

Entry Point - None

Calls None

Input None

Output None

7.2.44 SYSTB Module

SYSTB This module defines the system tables.

Macro Library Calls -

HWDDF\$ Define hardware registers

SCBDF\$ Define SCB offsets UCBDF\$ Define UCB offsets

Entry Point -

This is the main entry point for the SYSTB module. It indicates the start of the device tables. \$DEVTB::

Calls None

Input None

Output None

Note SYSTB is generated by SYSGEN

7.2.45 SYSXT Module

SYSXT SYSXT performs system entrance, exit and processor

dispatching. SYSXT contains the following routines:

Directive save routine \$DIRSV::

\$FORK:: Fork and create system process \$FORK1:: Fork and create system process SFORK0:: Fork and create system process

Fork routine to use with the CINT\$ directive \$FORK2::

SINTXT:: Interrupt exit processing

Interrupt save (interrupt connected to via a SINTSC::

CINTS directive)

\$INTSE:: Interrupt save (error logging devices)

\$INTSV:: Interrupt save Interrupt exit \$INTXT:: \$DIRXT:: Directive exit

unused vectors point to the nonsense interrupt

address).

\$NONSI:: Nonsense interrupt exit

Fork routines are entered via a CALL with the arguments:

R3 = Address of the beginning of the fork block+2
R4 = Restored from fork block

R5 = Restored from fork block

Execute fork routine: (20\$:) Removes entry form fork gueue, resets fork queue listhead, and allows interrupts, restores registers R4 and R5, calls the fork routine, and branches to \$DIRXT to try to exit again.

Rescheduling or powerfail routine: (40\$:) Allows interrupts, tests for power failure. If power failure, executes a CALL to SPOWER for power recovery and then branches to \$DIRXT to try to exit again. If not power failure, goes to rescheduling routine.

Rescheduling routine RESCH:

SFINBF:: Finish terminal input buffered I/O

\$SAVNR:: Save non-volatile registers

\$SWSTK:: Switch stacks

Macro Library Calls -

ABODF\$ Define task abort codes Define task header offsets HDRDF\$ HWDDF\$ Define hardware registers

PCBDF\$ Define partition control block offsets Define task control block offsets TCBDF\$

ITBDF\$ Define interrupt transfer block offsets

Entry Point -

\$DIRSV:: Directive level trap service routines call \$DIRSV. The stack depth is +1, thus a switch to the system stack is always necessary. At the end of trap processing, a RETURN is executed to exit from system code.

Calls (R5) to call synchronous trap routine

Input 4(SP) = PS word pushed by trap 2(SP) = PC word pushed by trap

O(SP) = Saved R5 pushed by "JSR R5, \$DIRSV"

\$DIRSV pushes R4 onto the current stack and executes a switch to the system stack. \$DIRSV pushes R3 through R0 on Output the system stack, sets the new processor priority and calls the calling routine.

Entry Point -

\$FORK:: An I/O driver calls this routine to create a system process that returns to the driver at stack depth zero (0) to finish processing. \$FORK saves R4 in the controller fork block. It points to the controller block, disables

timeout, and points to the end of the fork block.

Calls None

Input R5 = Address of the UCB for the unit being processed

Output None

Entry Point -

\$FORK1:: This routine is an alternate entry to \$FORK to create a system process and save R5. This routine consists of one

instruction "MOV R5,-(R4)" that follows in line with the

\$FORK routine code.

Calls None

Input R4 = Address of the last word of a 3-word fork block plus

2

R5 = Data to be saved in the fork block

Output None

Entry Point -

\$FORKO:: The \$FORKO entry point is a continuation of \$FORK1 code.

\$FORKO sets the fork PC, saves current processor priority, locks out interrupts, and links the system process to the fork queue. \$FORKO then restores processor priority and executes a RETURN if C\$\$INT is defined. If C\$\$INT is not defined, the return is not executed and the code falls

into the \$FORK2 routine.

Input R4 = Address of the last word of a 2-word fork block plus

2

Output None

Entry Point -

\$FORK2:: \$FORK2 is the fork routine for use with the CINT\$ directive. \$FORK2 tests to see if the fork block is

already in use (fork PC non-zero). If it is, \$FORK2 clears the stack and falls through to \$INTXT, which executes a return. Otherwise, \$FORK2 saves R4 in the fork block, points to the location just after the three word fork block and branches to \$FORK1. The combination of \$FORK1, \$FORK0, and \$FORK2 create a system process, link the new fork entry in the fork gueue, restore processor priority,

and end up at \$INTXT for the RETURN.

Calls None

Input R5 = Address of fork block in ITB

Output If the fork block is not in use, \$FORK2 saves R4 in the fork block, puts a pointer in R4 to point just after the

3-word fork block, and clears the stack.

Entry Point -

This is the interrupt exit routine. It contains only a RETURN instruction. A JUMP to this entry point causes an \$INTXT::

exit from an interrupt.

Calls None

Input 0(SP) = Interrupt save return address

Output None

Entry Point -

SINTSC::

Interrupt save routine (for interrupt from vector connected to via a CINT\$ directive). \$INTSC saves R4 on the stack and checks for \$STKDP=0. If \$STKDP=0, \$INTSC loads ISR priority, calls ISR, and branches to \$INTX1 to exit from interrupt. If \$STKDP not = 0, \$INTSC saves stack pointer in header, loads the system stack pointer, loads ISR priority, calls ISR, and branches to \$INTX1 for

interrupt exit.

Calls @(R5) + to call ISR

Input None

Output None

Entry Point -

This is the interrupt save routine for error logging devices. An interrupt service routine calls \$INTSE when an \$INTSE::

interrupt is not to be immediately serviced. \$INTSE saves R4 and thens loads R4 with the address of the SCB of the controller that caused the interrupt. \$INTSE then checks if an error is already in progress. If not, \$INTSE saves the current I/O active bitmap and loads R4 with the controller index. \$INTSE code finishes in the \$INTSV code

to execute an interrupt save.

Calls None

Input 4(SP) = PS word pushed by interrupt

2(SP) = PC word pushed by interrupt 0(SP) = Saved R5 pushed by "JSR R5,\$INTSE" R5 = Address of the SCB of interrupting controller

2(R5) = New processor priority

Output R4 = Controller index

The bit is cleared in the bitmap.

Entry Point .

SINTSV:: This is the interrupt save routine. An interrupt service routine calls this routine when an interrupt is not to be

immediately dismissed. \$INTSV switches to the system stack if the current stack depth is +1. When the interrupt service routine is finished processing, it forks, jumps to

\$INTXT, or executes a return.

Calls 2(R5) to call the caller back

(R5) to call the caller back if L\$\$SIl is not defined

Input 4(SP) = PS word pushed by interrupt

2(SP) = PC word pushed by interrupt

0(SP) = Saved R5 pushed by "JSR R5,\$INTSV" New processor priority

Output

Switch to system stack if stack depth is +1

New processor priority is loaded

Entry Point

SINTX1::

This is the interrupt exit routine. This routine is entered from a return to exit from an interrupt. \$INTXl locks out interrupts and if the stack depth is not = 0, \$INTX1 branches to \$DIRXT to increment the stack depth and restore registers R4 and R5; then, \$DIRXT executes an RTI instruction. If the stack depth is zero, \$INTX1 checks for entries in the fork gueue. If the fork gueue is empty, \$INTXl branches to \$DIRXT to increment the stack depth, restore registers R4 and R5, and execute an RTI instruction. If the fork gueue is not empty, \$INTXl allows interrupts, saves registers RO-R3 on the current stack, and proceeds to \$DIRXT directive exit code.

Calls

None

Input

06(SP) = PS word pushed by interrupt 04(sp) = pc word pushed by interrupt 02(SP) = Saved R5

00(SP) = Saved R4

Output

None

Entry Point -SDIRXT::

This is the directive exit processing routine. A directive processing routine or a trap service routine use a JUMP to enter this routine for exit. If there are any entries in the fork queue, \$DIRXT removes the first entry and executes the fork routine. If there are no entries in the fork queue, \$DIRXT checks to see if redispatching of the processor is necessary. If not, \$DIRXT restores RO-R5 and executes an RTI instrution. If processor redispatching is necessary, the processor is redispatched and executes the exit sequence again.

Calls

@-(R3) to call fork routine \$POWER to call power recovery routine SABCTK to abort current task

\$QRMVF to remove ast entry from gueue \$ACHCK to address check stack space

\$RELOM to relocate and map stack address @(R0)+ or @-2(R0) to call dequeue subroutine

\$DEACB to deallocate control block \$DREXT to force task exit

Input

Inputs for mapped system:

16(SP) = PS word pushed by interrupt or trap 14(SP) = PC word pushed by interrupt or trap

12(SP) = Saved R510(SP) = Saved R406(SP) = Saved R304(SP) = Saved R2

02(SP) = Saved Rl00(SP) = Saved R0

Inputs for unmapped system:

06(SP) = Saved R3

04(SP) = Saved R2

02(SP) = Saved R1

00(SP) = Saved R0

Output For outputs of the \$DIRXT routine, consult the interrupt

processing logic diagrams in this manual.

Entry Point -

\$FINBF:: This routine finishes terminal input buffered I/O. It is

called to finish a buffered terminal input request that

has been placed in the AST gueue.

Calls \$RELOC to relocate I/O status block

\$IOFIN to finish I/O operation \$DEACB to deallocate input buffer

Input R0 = Address of I/O packet

Output \$FINBF transfers the buffered I/O to the user task and

calls \$IOFIN to finish the I/O request.

Entry Point -

\$SAVNR:: This is a co-routine that saves registers R4 and R5.

Calls @(SP) + to call the caller

Input R4 and R5, which are the registers to be saved.

\$SAVNR saves R4 and R5 on the stack. Output

Entry Point -

\$SWSTK:: A task calls this routine to switch to the system stack,

thus inhibiting task switching. The calling task must be privileged if running in a mapped system and mapped to the exec. Control is passed here from \$DRDSP after the trap has occured and \$DIRSV has been called.

The calling sequence is:

EMT 376 Trap to \$EMSST in DRDSP

.WORD ADDR Address for return to user state

Calls @(SP) + to call the calling routine

R3 = Address of PC word of trap on stack +2 Input

Inputs for a mapped system:

22(SP) = PS pushed by trap 20(SP) = PC pushed by trap

16(SP) = Saved R5

14(SP) = Saved R4

12(SP) = Saved R3

10(SP) = Saved R2

06(SP) = Saved Rl

04(SP) = Saved R0

02(SP) = Return address for system exit

00(SP) = 104376

Inputs for an unmapped system:

10(SP) = Saved R3

06(SP) = Saved R2

04(SP) = Saved R1

02(SP) = Saved R0

00(SP) = Return address for system exit

Output \$SWSTK calls the user back on the system stack with all registers preserved. To return to task level the user

executes a return.

7.2.46 TDSCH Module

TDSCH This module processes time dependent scheduling and device time-outs.

Macro Library Calls -

CLKDF\$ Define clock queue control block offsets

HDRDF\$ Define task header offsets HWDDF\$ Define hardware registers

TCBDF\$ Define task control block offsets

Define partition control block offsets PCBDF\$

Entry Point -

SCKINT:: A clock interrupt causes the system to enter this routine. \$CKINT calls \$INTSV to save R4 and R5 and increments the interrupt count. If the result is non-zero, \$CKINT executes a JUMP to \$INTXT. If the count is zero, \$CKINT calls \$FORK0 to execute fork and process clock interrupts.

Calls \$INTSV to save registers and set priority

\$FORKO to execute fork and process clock interrupts

UPTIM: - Update absolute and real time of day and date: None

TDS: - Time dependent scheduling: \$EXRQN to clear stop bit and reallocate partition

Single-shot internal system subroutine (type 6 or 8): QC.SUB(R4) to call system subroutine

Mark time request: \$SETM to set event flag \$QASTT to queue AST to task

Schedule request:

\$TSKRT to request task execution \$DECLK to deallocate control block

\$CLINS to reinsert entry in clock queue

@(SP) + to get next UCB address

@D.VOUT(R1): - Call driver at timeout entry point with the arguments:

R0 = Device timeout status "IE.DNR"

R2 = Address of device CSR

R3 = Controller index

R4 = Address of the status control block R5 = Address of the unit control block

ROBIN: - Executive level round robin scheduling \$DRDSE cause a redispatch of processor

SWAP: - Disk swapping algorithm; reduce sapping priority of resident tasks

\$NXTSK Reallocate partition

TIMXT: - Exit time dependent scheduling if no unprocessed clock ticks remain

Input

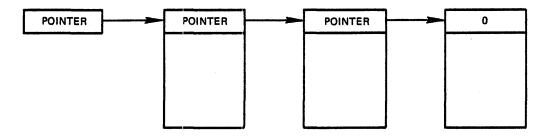
None

Output

none

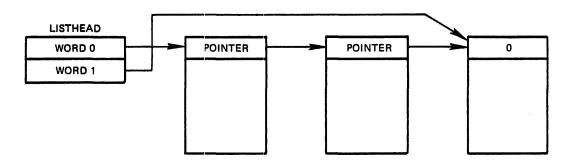
CHAPTER 8

DATA AREAS AND CONTROL BLOCKS


8.1 INTRODUCTION

This chapter describes the system control block linkages and data structures. The control blocks were taken from system code. However, while transposing the system code into this manual, editorial changes were made for the sake of appearance and clarity. The beginning of the chapter describes system pointers and typical system linkages followed by a discussion of I/O linkages as related to I/O drivers. The remainder of the chapter contains the system control block offset descriptions and describes the system control blocks and data areas in alphabetical order.

8.2 SYSTEM POINTERS AND LINKAGES


Figure 8-1, Linked Lists on RSX-11M, describes the typical way that control block lists are linked in RSX-11M. Figure 8-2, Overview of RSX-11M System Control Blocks, contains an overview of the way that RSX-11M system control blocks are linked together. This figure shows the major system lists, list pointers, and linkages only. More detailed linkages and control block configurations are shown in Figures 8-3 through 8-24.

LISTS HEADED BY POINTER

• For an Empty List the Initial Pointer is 0. In any Case, the Last Pointer Is 0

LISTS HEADED BY LISTHEADS

• For an Empty List the First Word of the Listhead is 0 and the Second Contains the Address of the First

Figure 8-1 Linked Lists on RSX-11M

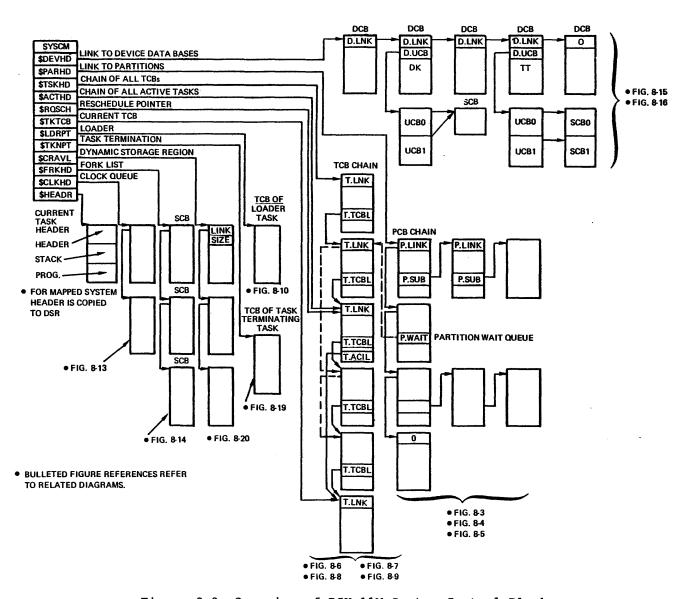


Figure 8-2 Overview of RSX-11M System Control Blocks

DATA AREAS AND CONTROL BLOCKS

8.2.1 Device Control Block Pointer (\$DEVHD)

The location, \$DEVHD, which is in SYSCM, contains the address of the label, \$DEVTB. \$DEVTB is the label of the first DCB of a list of DCBs in the system.

SYSGEN produces SYSTB, which contains the DCBs, UCBs, and SCBs for the system as well as the label, \$DEVTB::. The Task Builder resolves the references to the first DCB (\$DEVTB) when it links SYSTB into the Executive.

The DCBs are linked by the first word in each DCB, D.LNK. D.LNK contains the address of the next DCB in the chain. Typically, when the Executive works with the DCB, R3 contains the address of the DCB. To access the next DCB, the Executive executes a MOV @R3,R3 instruction.

The DCBs and UCBs in SYSTB contain the logical name, logical unit number, and device characteristics of the devices in the system. In general, the DCB contains device-unit information common to all device-units of the same type on a controller. This kind of structure saves space because, otherwise, this common information would have to appear in the UCB for each device-unit.

The DCB contains the device name; for example, the DCB for DK0: contains "DK" in ASCII. With one exception, there is only one DCB with the name of a given device in it. The exception occurs when there is a DCB for every kind of terminal device controller in the system (DL, DJ, DH, or DZ); however, they all contain the device name "TT".

There are two types of DCB; one for real devices and one for pseudo devices. Nothing in the DCB denotes its use for a real or pseudo device. However, the UCB associated with the DCB contains the bit, DV.PSE, which identifies the associated device as a pseudo device.

An Executive co-routine, \$SCNDT, is used to scan all the addresses of the DCBs and UCBs in the system up to but not including the first pseudo device. For example, the address of the DCB for TI: cannot be found by using this co-routine.

8.2.2 Unit Control Blocks

A UCB exists for each device-unit on the system. D.UCB, which is a word in the DCB, contains a pointer to the first UCB for that DCB. There is at least one UCB for each DCB; however, there can be more than one UCB for each DCB.

For an example of a DCB-UCB relationship, a system has four identical disk drives on one controller. The disk device-units would have physical unit numbers from 0 through 3 and logical unit numbers from 0 through 3. In this configuration, there is one DCB (all device-units are the same), four UCBs (one for each device-unit), and one Status Control Block (SCB) for the controller. In this example, only one drive can be operated at a time.

For another example, a system has four identical disk drives; two connected to controller 0 and two connected to controller 1. The two drives on controller 0 have physical unit numbers 0 and 1, and logical unit numbers 0 and 1. The two drives on controller 1 have physical unit numbers 0 and 1, and logical unit numbers 3 and 4. In this configuration, there is one DCB (all device units are the same), four UCBs (one for each device-unit), and 'two SCBs (one for each

DATA AREAS AND CONTROL BLOCKS

controller). In this example, two drives can operate in parallel as long as they are on different controllers: that is, the drives with logical unit numbers 0 and 2 or 0 and 3, or the drives with logical unit numbers 1 and 2 or 1 and 3.

The UCB contains pointers and device status information.

8.2.3 Status Control Block (SCB)

There is one Status Control Block for each controller on the system and it contains controller status information. The UCB points to the related SCB. See the discussion that precedes the word and bit definitions for the Status Control Block.

8.2.4 Partition Control Block (PCB) Pointer

\$PARHD is the pointer to the first PCB in the chain of system PCBs.

System- and user-controlled partitions can be differentiated by examining the form of their PCB linkage.

In a user-controlled partition PCB, P.LNK of this PCB points to the first word, P.LNK, of the next subpartition PCB. P.SUB in the first PCB also points to P.LNK of the next PCB. P.MAIN, which is in user-controlled partition and subpartition PCBs, points back to the main partition PCB that heads the list of subpartition PCBs. In a user-controlled main partition PCB without subpartitions, P.SUB is 0. However, if the main partition has subpartitions, P.SUB in the last subpartition PCB is zero.

This linkage is slightly different in system-controlled partitions. The dynamically created subpartition PCBs are not linked by P.LNK; only P.SUB points to the first word, P.LNK, of the next PCB in the chain of PCBs. P.MAIN in each system-controlled partition or subpartition points back to the main PCB. In a PCB for a system-controlled partition without dynamically created subpartitions. P.LNK is 0. If the partition has subpartitions, P.SUB in the last subpartition PCB is 0.

See Figure 8-3 for an example of a system- and user-controlled partition list.

8.2.5 Task Control Block (TCB) Pointers (\$TSKHD And \$ACTHD)

Task Control Blocks (TCBs) are listed in several lists. One is the System Task Directory (STD), a list (ordered by priority) of all installed tasks. Another is the Active Task List (ATL), a list of tasks that are currently active. The ATL is a subset of the STD; therefore, TCBs that are linked into the ATL are also linked into the STD.

\$TSKHD points to the first TCB in the STD. The remaining TCBs in the STD are linked by the word, T.TCBL. \$TSKHD points to T.LNK in the first TCB, T.TCBL in the first TCB points to T.LNK in the next TCB, and so on.

\$ACTHD points to the first TCB in the ATL. The word, T.ACTL, links the remaining active task TCBs. T.ACTL in the last TCB word is 0; this indicates the TCB of the Null task.

The Partition Wait Queue is a list of TCBs of those tasks waiting to use a given partition. The word, P.WAIT, in the PCB points to the first TCB in the Partition Wait Queue. T.LNK in the first TCB points to the T.LNK word in the second TCB, T.LNK in the second TCB points to the T.LNK word in the third TCB, and so on.

8.2.6 Reschedule Pointer (\$ROSCH)

The reschedule pointer, \$RQSCH, contains the address of the TCB of the task to be rescheduled.

8.2.7 Current Task Pointer (\$TKTCB)

The current task pointer, \$TKTCB, contains the address of the TCB of the currently running task.

8.2.8 Loader Pointer (\$LDRPT)

Normally, \$LDRPT is the pointer to the TCB of the Loader task.

8.2.9 Task Termination Task Pointer (\$TKNPT)

\$TKNPT points to the TCB of the Task Termination Task.

8.2.10 Free Storage Block Pointer (\$CRAVL)

\$CRAVL points to the first free block in a list of free storage blocks in the Dynamic Storage Region. \$CRAVL-2 is a word that contains a 3 and should never contain less than a 3. This number is one less than the number of bytes in the smallest possible block obtainable from the Dynamic Storage Region. This number 3 is a rounding factor. In other words, the size of the smallest allocatable memory block is 4 bytes and memory must be allocated in multiples of 4 bytes. Four bytes are needed because every free memory block must contain a pointer to the next block, followed by its own size in bytes. This information uses up 2 words of the block.

Initially, the Dynamic Storage Region is a continuous memory area. However, it becomes somewhat fragmented after the system begins execution.

8.2.11 Fork Queue List Pointer (\$FRKHD)

\$FRKHD is a pointer to a list of SCBs in the fork queue.

8.2.12 Clock Queue Pointer (\$CLKHD)

\$CLKHD is a pointer to a list of 8-word clock queue control blocks.

8.2.13 Current Task Header Pointer (\$HEADR)

\$HEADR points to the current task header. In a mapped system, the Executive copies the task header into the DSR. Only privileged tasks can access this copy; the Executive refers to and modifies this copy as execution proceeds. Therefore, the original header of the current task may not contain valid information because the valid header is in the DSR space. Before the task is checkpointed, the Executive replaces the original header with the copy in the DSR.

8.2.14 Examples Of System Linkages

Figure 8-3 contains an example of a PCB linkage for user- and system-controlled partitions.

Figure 8-4 shows TCB wait gueues in user- and system-controlled partitions.

Figure 8-5 shows checkpoint file PCBs with and without checkpointed task TCBs.

Figure 8-6 shows an example of TCBs linked into a System Task Directory with some of the TCBs in the Active Task List.

Figure 8-7 shows a simplified linkage of the PCB, TCBs, and task header in a task partition.

Figure 8-8 shows a linkage of TCBs for resident and non-resident tasks with their respective PCBs.

Figure 8-9 shows AST control blocks in the AST queue.

Figure 8-10 shows TCBs of tasks in the Loader gueue.

Figure 8-11 shows Send/Receive data blocks queued to the receiver task TCB.

Figure 8-12 shows Send/Receive-by-Reference blocks gueued to the receiver task TCB.

Figure 8-13 shows the linkage of Clock Queue Control Blocks.

Figure 8-14 shows the linkage of the Fork Control Blocks.

Figure 8-15 shows an example of DCBs, SCBs, UCBs, and LCBs in system. It also shows the linkage caused by redirected and reassigned devices.

Figure 8-16 Shows the Logical Assignment Control Block linkage.

Figure 8-17 shows the linkage of MCR gueue entries.

Figure 8-18 shows the linkage of pre-allocated I/O packets.

Figure 8-19 shows Message Blocks in the Task Termination Notification (TKTN) gueue.

Figure 8-20 shows the linkage of the free blocks in the Dynamic Storage Region.

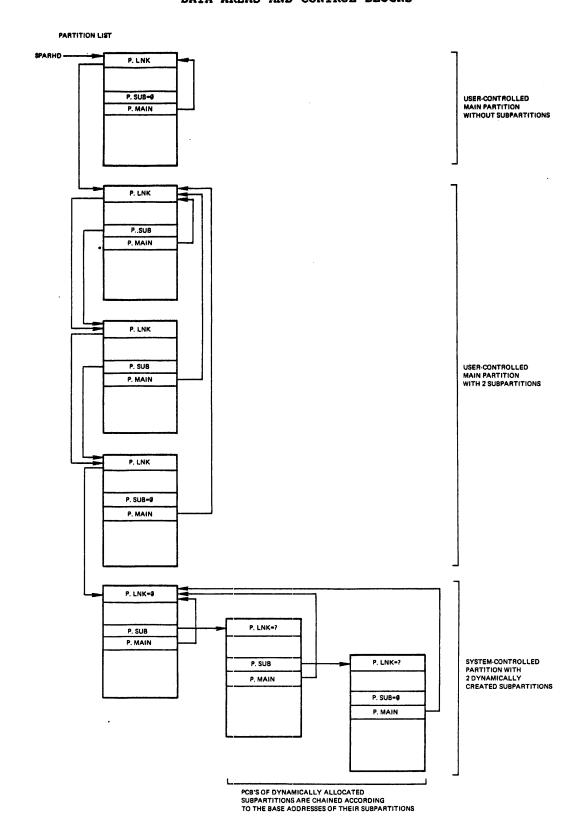
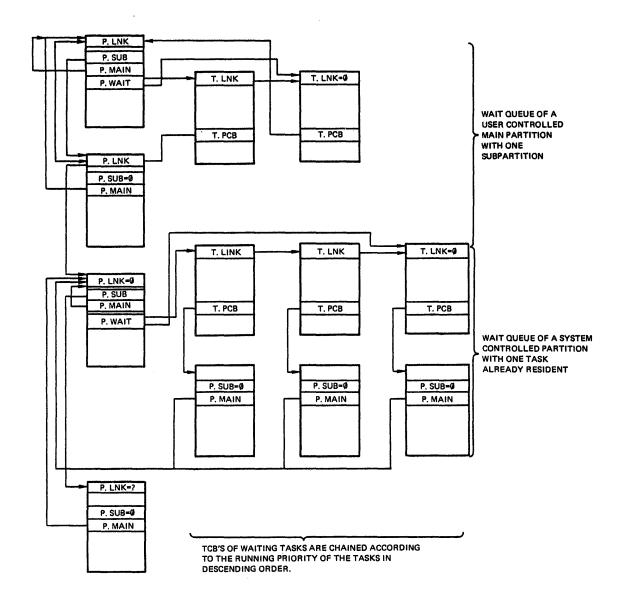
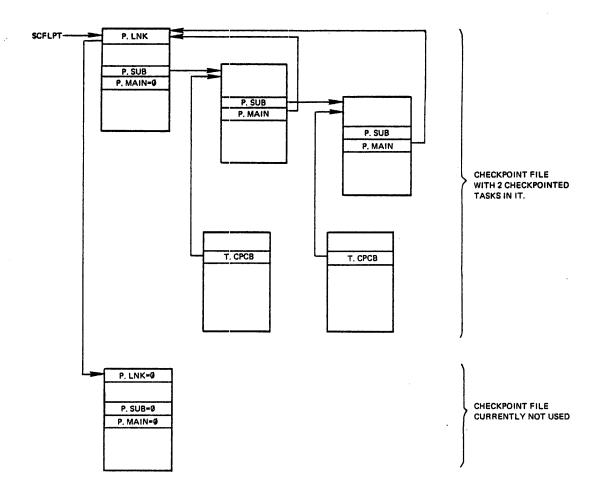




Figure 8-3 Example of PCB Listings

 The main PCB always heads the Partition Wait Queue. The Partition Wait Queue contains TCBs both of tasks to be loaded for the first time and of checkpointed tasks.

Figure 8-4 Example of a Partition Wait Queue

PCBs for checkpoint files are allocated by the MCR command:

ACS devunit: /BLKS=no. of blocks

The PCBs are chained in the order of their allocation.

 PCBs for checkpointed tasks are dynamically allocated whenever the Executive checkpoints a task and are chained in ascending order according to base disk address.

Figure 8-5 Example of a PCB List for Checkpoint Files

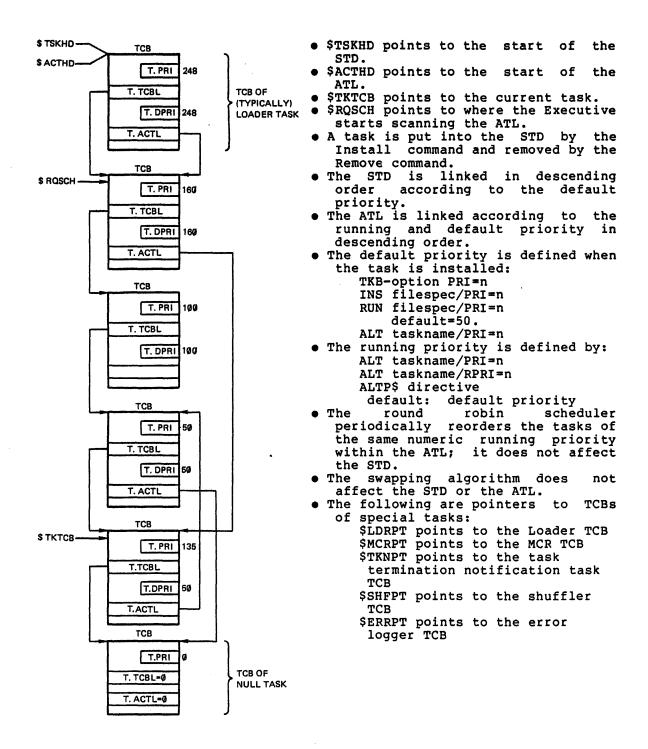


Figure 8-6 Example of a System Task Directory (STD) and Active Task List

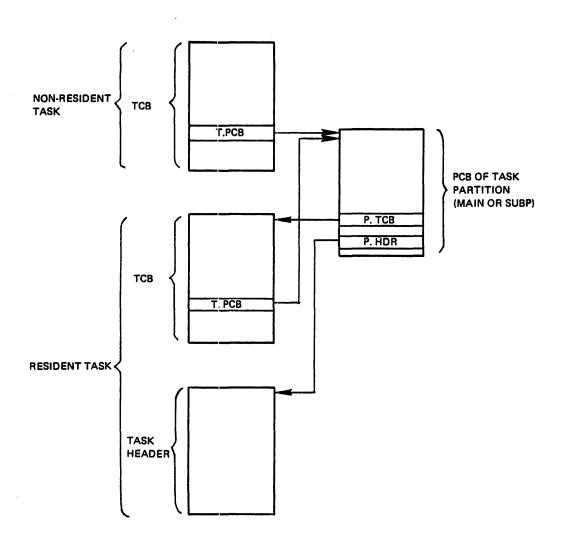


Figure 8-7 Simplified User-Controlled Partition TCB, Task Header, and PCB Relationship

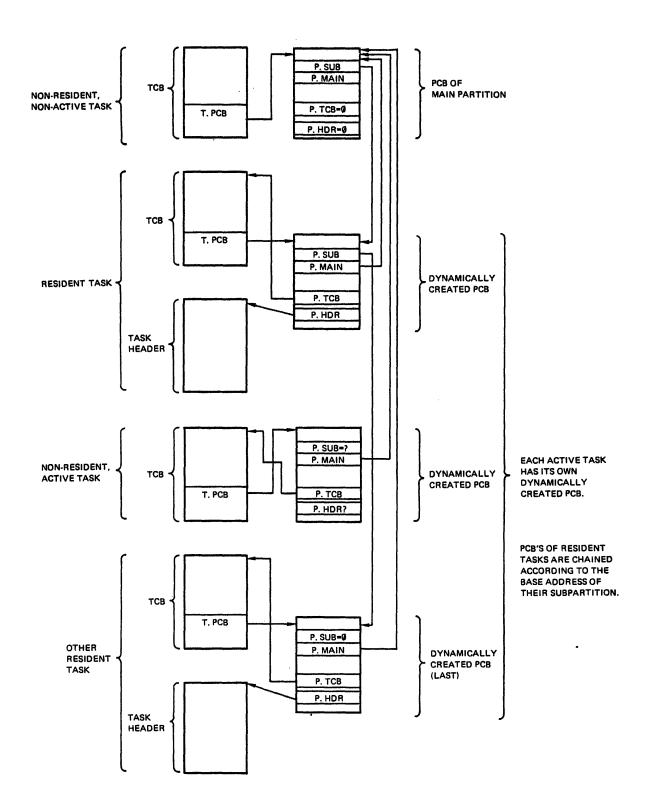
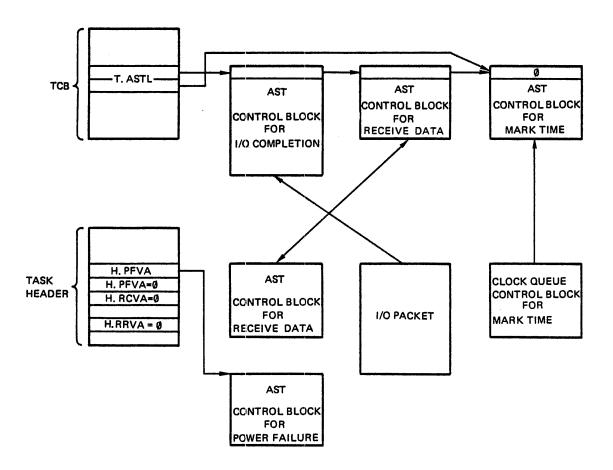
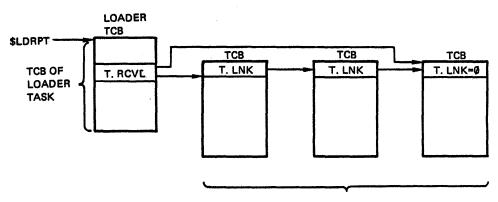
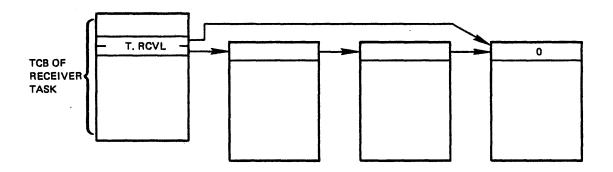




Figure 8-8 TCB, Task Header, and PCB Relationships in a System-Controlled Partition

- AST control blocks are gueued FIFO.
- AST control blocks for power failure, floating-point exception, Receive Data, and Receive-by-Reference are allocated a length of C.LGTH=16. bytes. They are deallocated by the STRA\$, SFPA\$, SRDA\$, and SRRA\$ directives. Their addresses are kept in the task header. When an AST is executed, the AST control block is inserted into the AST queue. After the AST has been set up, the AST control block address is again put into the task header.
- The AST control block for Mark Time is allocated a length of C.LGTH=16. bytes by the MRKT\$ directive and inserted into the clock gueue. When the mark time becomes due, the AST control block is removed from the clock gueue and inserted into the AST gueue. After the AST has been set up, the AST control block is deallocated.
- For the I/O completion AST, the I/O packet is taken and inserted into the AST gueue. After the AST has been set up, the AST control block (I/O packet) is deallocated.


Figure 8-9 Example of an AST gueue

TCBs OF TASKS TO BE LOADED OR ROLLED OUT/IN ARE CHAINED ACCORDING TO THE RUNNING PRIORITY OF THE TASKS IN DESCENDING ORDER.

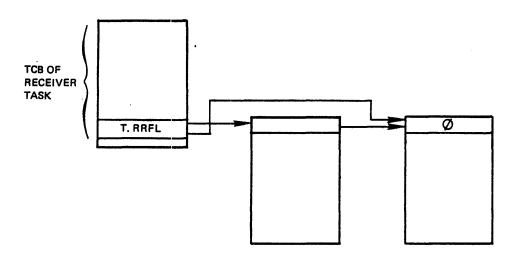

• The Loader queue is headed by the TCB of the loader task and contains TCBs of both tasks to be loaded the first time and the task to be checkpointed.

Figure 8-10 The Loader Queue

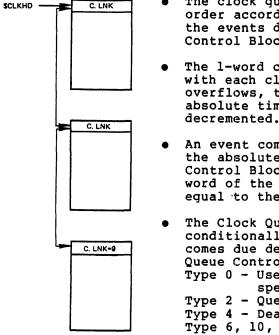
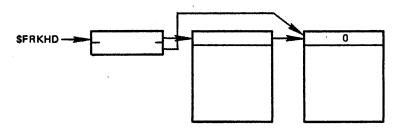

- Send/Receive data blocks are gueued FIFO.
- Send/Receive data blocks are gueued by issuing the SDAT\$ directive and degueued when the RCVD\$ or RCVX\$ directives are issued.

Figure 8-11 Send/Receive Data Queue

- Send/Receive-by-Reference blocks are gueued FIFO.
- Send/Receive-by-Reference blocks are gueued by issuing the SREF\$ directive and dequeued when the RREF\$ directive is issued.

Figure 8-12 Send/Receive by Reference Queue

- The clock queue is linked in ascending order according to the absolute time when the events described by the Clock Queue Control Block come due.
- The 1-word counter, \$ABTIM, is incremented with each clock tick. Whenever it overflows, the high-order word of the absolute time in each clock gueue is
- An event comes due when the high-order of the absolute time in its Clock Queue Control Block is 0 and the low-order word of the absolute time is less than or equal to the counter, \$ABTIM.
- The Clock Queue Control Block is conditionally deallocated when the event comes due dependent on the type of Clock Queue Control Block:


Type 0 - Used as AST control block (if specified), otherwise deallocated

Type 2 - Queued again

Type 4 - Deallocated

Type 6, 10, or 12 - Not deallocated

Figure 8-13 The Clock Queue

- Fork control blocks are queued FIFO
- Fork control blocks are queued by issuing a \$FORK, \$FORK1 or \$FORK0 call; the control goes back to the next higher subroutine level
- Fork processes (instructions following the CALL \$FORKn instruction
 up to the next RETURN instruction) are executed before the system
 goes back to user level the next time (\$STKDP is changed from
 Ø to 1)

FORK CONTROL BLOCK

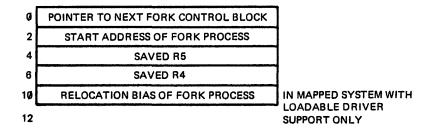
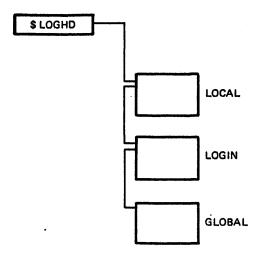
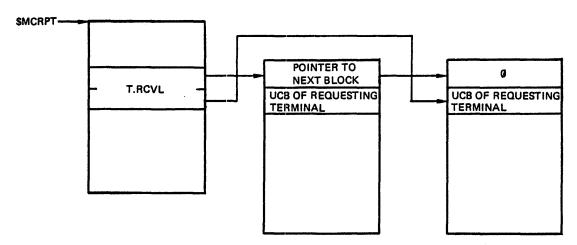
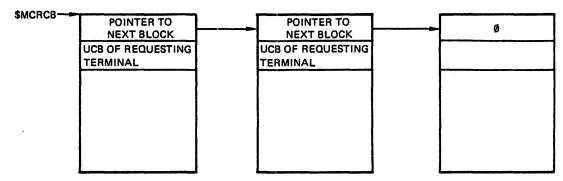



Figure 8-14 The Fork Queue

Figure 8-15 Example of DCB, SCB, UCB, LCB Relationship

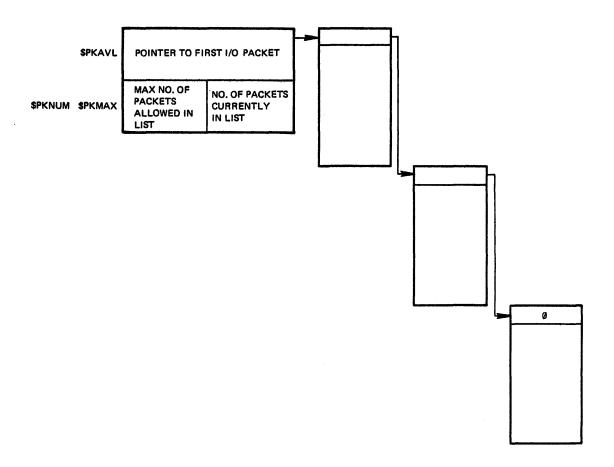

LOGICAL ASSIGNMENT CONTROL BLOCK (LCB)

	LINK TO NEXT LCB	L. LNK
	CHAK TO MEXT EOD	
	LOGICAL NAME OF DEVICE	L. NAM
L. TYPE	TYPE OF ENTRY (Ø=GLBL) LOGICAL UNIT NUMBER	L. UNIT
	TI UCB ADDRESS	L. UCB
	ASSIGNMENT UCB ADDRESS	L. ASG
		L. LGTH


- An LCB is allocated by issuing an
 ASN target device = logical device { /LOGIN [/TERM = terminal] } command

 and deallocated by issuing an
 ASN = [logical device] { /LOGIN [/TERM = terminal] } command
- There are three groups of logical assignments:
 - 1. local assignments applying to one specific terminal only
 - login assignments applying to one specific terminal only where a user is logged in, they are established either at login time or when a login logical assignment command is issued
 - 3. global assignments valid for all terminals in the system
- LCBs are linked local assignments first, then login assignments and global assignments at the end; within each group they are linked according to the time the logical assignment was established
- Logical assignments are resolved by scanning the linked list of LCB's when a logical unit number is assigned to a physical device (at install time or at run time when a ALUN\$ directive is issued)
- Symbolic offset definitions in LCBDF\$ in [1,1] EXEMC.MLB

Figure 8-16 Logical Assignment Control Block (LCB) List



- MCR queue entries are allocated in a length of 84. bytes (M\$\$CRB)
- MCR queue entries are linked FIFO
- Entries are inserted by the terminal driver whenever an unsolicited input is completed or when a line is finished being typed in after an MCR> prompt that follows a control-C.
- Entries are dequeued by the MCR root; internal MCR commands are processed by the corresponding overlay segment; MCR queue entries for external MCR commands are inserted into the following dueue

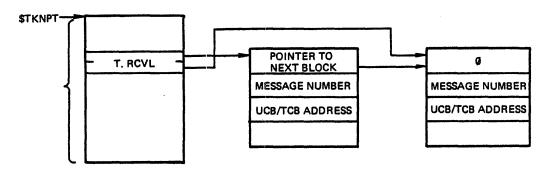

 MCR queue entries in this list are dequeued when an external MCR command (a task with a taskname... XYZ) issues a GMCR\$ directive; the contents of the entry is copied into the DPB of the GMCR\$ directive and the MCR queue entry is deallocated

Figure 8-17 MCR Queues

- Each preallocated I/O packet has a length of 44 bytes.
- Preallocated I/O packets are provided as long as available - whenever \$ALOCB is called and a core block with a length of 44 bytes is requested.
- Preallocated I/O packets can and will be used for other purposes also.

Figure 8-18 Pre-allocated I/O Packet Queue

- The queue is linked FIFO
- An entry is made when the routine \$DYMSG is called

As a second TKTN queue the active task list (ATL) is used.

There are two types of ATL entries significant for the TKTN:

• TCBs (with the TS.MSG bit in T. STAT and the T2. ABO bit in T. ST2 set) of aborted tasks or an exited task with outstanding I/O in which case

T. EFLG current I/O count abort message

 TCBs (with the T2. CAF bit in T. ST2 set and the T3. CAL bit in T. ST3 clear) of tasks with a checkpoint allocation failure

Figure 8-19 Task Termination Notification (TKTN) Queues

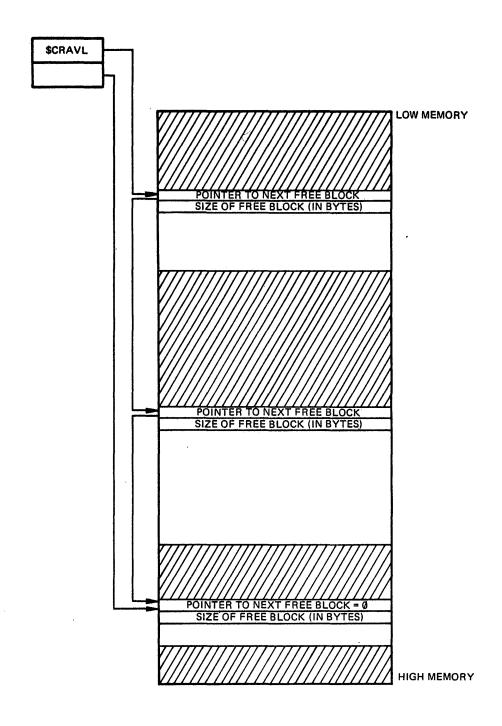


Figure 8-20 Dynamic Storage Region Free Block Queue

8.2.15 Interrelationship Of The DCB, UCB, And SCB

This section discusses the relationships existing among the DCB, UCB, and SCB.

Figure 8-21 shows the data structure resulting from three LA36 DECwriters interfaced by means of a DH11 multiplexer. The structure requires one DCB, three UCBs, and three SCBs, because activity on all three units can proceed in parallel.

Figure 8-22 shows the internal data structure for an RKI1 disk controller with three units attached. Note that only one SCB exists because only one of the three units can be active at any given time.

Figure 8-23 shows the data structure for two RK11 disk controllers, each of which has two drives attached. Here, there are two SCBs, because both of the disk controllers can operate in parellel.

Taken together, Figures 8-21, 8-22, and 8-23 illustrate the strategy underlying the existence of three basic I/O control block types. There need be only one DCB for each device type. There may be one or more SCBs, depending on the degree of parallelism that is desired or possible: one for each device-unit, or one for each controller servicing several device-units. The number of UCBs and SCBs, and their interrelationships, are uniquely determined by the hardware that these data structures describe.

This data structure provides considerable flexibility in configuring I/O devices, and, because of the control and status in the structures themselves, substantially reduces the code requirements of the associated drivers.

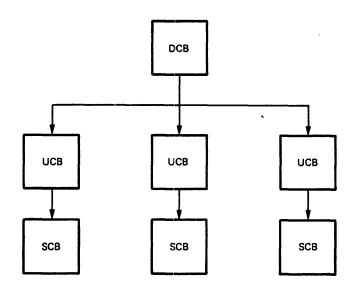


Figure 8-21 DH11 Terminal I/O Data Structure

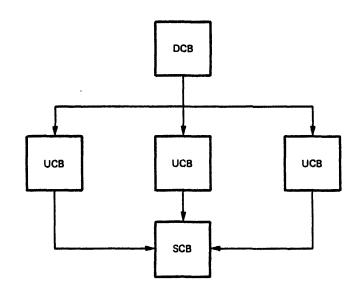


Figure 8-22 RKll Disk I/O Data Structure

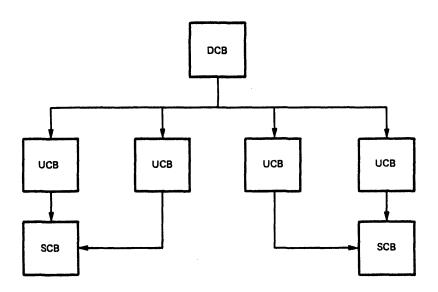


Figure 8-23 I/O Data Structure for Two RKll Disk Controllers

8.3 I/O CONTROL BLOCK LINKAGES

This section discusses all the I/O control blocks, in terms of their linkage and use within the system. The following data structures make up the complete set for I/O processing:

- 1. Task Header
- 2. Window Block (WB)
- 3. File Control Block (FCB)
- \$DEVHD word, the Device Control Block (DCB), and the Driver Dispatch Table (DDT)
- Unit Control Block (UCB)
- 6. Status Control Block (SCB)
- 7. I/O Queue
- 8. Volume Control Block (VCB)

Figure 8-24, which provides the structure for the following discussion, shows all the individual data structures and the important link fields within them. The numbers on the figure are keyed to the text to simplify the discussion and to quide the reader through the data structures.

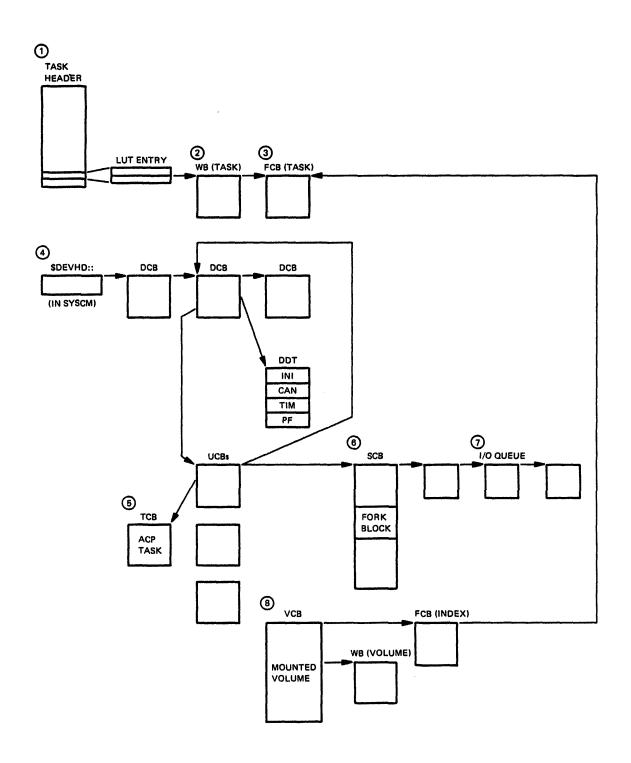


Figure 8-24 I/O Data Structure

The task header is constructed during the task-build process. In mapped systems, a copy of the task header (located in the task's partition) is made in the Executive's Dynamic Storage Region. The Executive then uses this copy. To access the current information in this copy, a task must be privileged and mapped to the Executive.

The task header entry of interest, the Logical Unit Table (LUT), is allocated by the Task Builder and filled in at task installation. The number of LUT entries is established by the UNITS= keyword option; this number is an upper limit on the number of device units a task may have active simultaneously.

Each LUT entry contains two words: a pointer to an associated UCB, and a pointer to a Window Block. The first word contains the address of the device UCB in the Executive system tables that contains drive-dependent information. The UCB address is set during task installation if a corresponding ASG= option is specified at task build time. The UCB address can also be set at run-time with the Assign LUN directive to the Executive.

The second word is a pointer to the Window Block if the device is file structured. The Window Block pointer is set when a file is opened on the device whose UCB address is specified by the first word. The Window Block pointer is cleared when the file is closed.

- 2. A Window Block (WB) exists for each active access to files on a mounted volume. It helps to speed up the retrieval of data items in the file; entries in a WB consist mainly of pointers to contiguous areas on the device on which the file resides. The driver is not concerned with the WB.
- 3. Each uniquely opened file on a mounted volume has an associated File Control Block (FCB). The file system uses the FCB to control access to the file.
- 4. \$DEVHD is a word located in system common (SYSCM) and points to a singly linked, unidirectional list of Device Control Blocks (DCBs). Each device type in a system has at least one associated DCB. The DCB list is terminated by a 0 in the link word.

Linked to each DCB is a Driver Dispatch Table (DDT), which is part of the driver. The DDT contains the addresses of the driver's four entry points that the Executive can call.

5. A key data structure is the Unit Control Block (UCB). All the UCBs associated with a DCB appear in consecutive memory locations. During internal processing of a I/O request, most drivers set R5 to the address of the related UCB; it is by means of pointers in the UCB that the driver can access other control blocks in the data structure. In particular, the UCB contains pointers to the DCB, SCB, VCB, and to the UCB to which it may have been redirected. If a Redirect command has not been issued for the device-unit, the UCB redirect pointer points to the UCB itself. When servicing a request for one of its UCBs, the driver is unaware of whether I/O was issued directly to its own UCB or to a UCB that had been redirected to its UCB.

- 6. One Status Control Block (SCB) exists for each controller in the system. A unique SCB must exist for each controller/device-unit capable of performing parallel I/O. The SCB contains the fork-block storage required when a driver calls \$FORK to transfer itself to the fork processing level. The I/O request gueue listhead is also contained in the SCB. Generally, register R4 contains the address of the SCB during processing of an I/O request.
- 7. The I/O queue is a list of control blocks called I/O packets that QIO processing creates dynamically. Each time a task makes an I/O request, the Executive performs a series of validity checks on the DPB parameters. If these checks prove successful, the Executive generates a data structure called an I/O packet. The Executive then inserts the packet into a device-specific, priority-ordered list of packets called the I/O queue. Each I/O gueue's listhead is in the SCB to which the I/O requests apply.

When a device driver needs work, it requests the Executive to dequeue the next I/O packet and deliver it to the requesting driver. Normally, the driver does not directly manipulate the I/O queue. However, an exception is the case where a driver examines an I/O packet before it is queued, or in place of having it queued. For the driver to accomplish this examination, it must set the UC.QUE bit in the control byte, U.CTL, of the UCB.

The most common reason for a driver to examine a packet before queuing is that the driver employs a special user buffer, other than the normal buffer used in a transfer request. Within the context of the requesting task, the driver must address-check and relocate such a special buffer.

8. One Volume Control Block (VCB) exists for each mounted volume in the system. The VCB maintains volume-dependent control information. It contains pointers to the File Control Block (FCB) and Window Block (WB), which control access to the volume's index file. (The index file is a file of file headers.) The WB for the index file serves the same function as the WB for a user file. All unique FCBs for a volume form a linked list emanating from the index file FCB. This linkage helps to keep file access times short. Further, because the window that contains the mapping pointers is variable in length, you can increase file access speed by adding more access pointers to whatever extent the application requires. However, greater speed requires more main memory.

8.4 CONTROL BLOCK OFFSET DEFINITIONS

8.4.1 Asynchronous System Trap Control Block (ASTCB)

Defined by: .MACRO PKTDF\$, L, B, SYSDEF

Some positional dependencies between the DCB and the AST control block are relied upon in the routine \$FINXT in the module SYSXT.

```
.ASECT
.=177774
A.KSR5:'L'
              .BLKW 1
                           ;Subroutine KISAR5 bias (A.CBL=0)
A.DQSR: 'L'
              .BLKW 1
                           ;Dequeue subroutine address (A.CBL=0)
              .BLKW 1
                           ;AST gueue thread word
                           ;Length of control block in bytes
;Number of bytes to allocate on task stack
A.CBL: 'L'
              .BLKW 1
A.BYT: 'L'
              .BLKW 1
A.AST: 'L'
              .BLKW 1
                           ;AST trap address
A.NPR: 'L'
              .BLKW 1
                           ; Number of AST parameters
A.PRM: 'L'
              .BLKW 1
                           ; First AST parameter
```

8.4.1.1 I/O Packet Offset Definitions - QIO directive processing constructs the 18-word I/O packet and places it in the driver I/O queue. A call to \$GTPKT subsequently delivers the packet to the driver.

.ASECT .=0 I.LNK:'L' .BLKW 1 ;I/O gueue thread word Links I/O packets queued for a driver. A O ends the chain. The listhead is in the SCB (S.LHD). I.PRI:'L' .BLKB 1 ;Reguest priority Priority copied from the TCB of the reguesting task. I.EFN:'L' .BLKB 1 ;Event flag number Contains the event flag number as copied by QIO directive processing from the requestor's DPB. I.TCB:'L' .BLKW 1 ;TCB address of the requesting task I.LN2:'L' .BLKW 1 ;Pointer to second LUN word Contains the address of the second word of the LUT entry in the task header to which the I/O request is directed. For open files on file-structured devices, this word contains the address of the window block, otherwise it is 0. I.UCB: 'L' .BLKW 1 ;Pointer to unit control block that contains the address of the redirect UCB if the starting UCB has been subject to a Redirect command. I.FCN: 'L' .BLKW l :I/O function code Contains the function code for the I/O request. I.IOSB:'L' .BLKW 1 ;Virtual address of I/O status block ;I/O status block relocaton bias .BLKW 1 ; I/O status block address .BLKW 1 I.IOSB contains the virtual address of the I/O status block (IOSB) if one is specified or 0 if one is not. I.IOSB+2 and I.IOSB+4 contain the address doubleword for the IOSB. In an unmapped system, the first word is 0 and the second word is the real address of the IOSB. In a mapped system, the first word contains the relocation bias of the IOSB; the bias is the 32-word block number in which the IOSB starts. This block number is derived by viewing available real memory as a collection of 32-word blocks numbered consecu-

tively, starting with 0. Thus, if the IOSB starts at physical location 3210(8), its block number is 32(8). See the RSX-11M Guide to Writing an I/O Driver for more details. I.AST: 'L' .BLKW 1 ;AST service routine address Contains the virtual address of the AST service routine to be executed at I/O completion. If no address is specified, the field contains 0. I.PRM: 'L' .BLKW 1 ; Reserved for mapping parameter #1 .BLKW 6 ; Parameters 1 to 6 constructed from the last 6 words of the DPB. Note that if the I/O function is a transfer, the buffer address (the first DPB device-dependent paramenter) is translated to an equivalent address doubleword. Therefore, device-dependent paramenter "n" is copied to I.PRM+(2*n)+2. .BLKW 1 ;User mode diagnostic parameter word I.ATTL='B'. ; Minimum length of I/O packet (used by file system to calculate maximum number of attributes) I.LGTH='B'. ;Length of I/O request control block

8.4.2 Clock Queue Control Block (CQCB)

Defined by: .MACRO CLKDF\$, L, B

There are five types of clock gueue control blocks. Each control block has the same format in the first five words and differs in the remaining three.

The following control block types are defined:

8.4.2.1 Clock Queue Control Block Independent Offsets

.ASECT .=0 C.LNK:'L' .BLKW 1 ;Clock queue thread word C.RQT: 'L' .BLKB 1 ; Reguest type C.EFN:'L' .BLKB 1 ; Event flag number (mark time only) C.TCB: 'L' .BLKW l ;TCB address or system subroutine ; identification C.TIM: 'L' .BLKW 2 ; Absolute time when request comes due

8.4.2.2 Clock Queue Control Block - Mark Time Dependent Offsets

```
.=C.TIM+4 ;Start of dependent area
C.AST:'L' .BLKW 1 ;AST address
C.SRC:'L' .BLKW 1 ;Flag mask word for 'BIS' source
C.DST:'L' .BLKW 1 ;Address of 'BIS' destination
```

8.4.2.3 Clock Queue Control Block - Periodic Rescheduling Dependent Offsets

```
.=C.TIM+4 ;Start of dependent area
C.RSI:'L' .BLKW 2 ;Reschedule interval in clock ticks
C.UIC:'L' .BLKW 1 ;Scheduling UIC
```

8.4.2.4 Clock Queue Control Block - Single-Shot Dependent Offsets

```
.=C.TIM+4 ;Start of dependent area
.BLKW 2 ;Two unused words
.BLKW 1 ;Scheduling UIC
```

8.4.2.5 Clock Queue Control Block - Single-Shot Internal Subroutine Offsets

There are two type codes for this type of request:

Type 6: single shot internal subroutine with a 16-bit value as an identifier.

Type 8: single shot internal subroutine with a TCB address as an identifier.

```
.=C.TIM+4
C.SUB:'L'
C.AR5:'L'
BLKW 1
BLKW 1
BLKW 1
C.LGTH='B'.

;Start of dependent area
;Subroutine address
;Relocation base (for loadable drivers)
;One unused word
;Length of clock queue control block
```

8.4.3 Communications Control Block (CCB)

Defined by: .MACRO CUCDF\$ X,Y

```
.ASECT
.=U.CW2+2
                         ;Position ACU at U.CW3 position
U.ACUR: 'X
              .BLKW 1
                         ;ACU register address (at U.CW3)
U.NSYN:'X
              .BLKB 1
                         ; Number of syncs to issue
U.NSYC: 'X
              .BLKB 1
                         ; Number of syncs issued
.=U.VCB+2
                         ;Extend after VCB address
U.PHDR: 'X
              .BLKW 1
                         ;End-of-transmit header check routine
U.RCHK: 'X
              .BLKW 1
                         ; Address of redundancy check routine
U.QSYN:'X
                         ;DQ sync buffer
U.RCAC:'X
              .BLKW 1
                         ; Redundancy check accumulator
                         ; Receive buffer address
U.RBUF: 'X
              .BLKW 2
U.RCNT: 'X
              .BLKW 1
                         ;Receive buffer count
U.SVC:'X
              .BLKW 1
                         ;External receive interrupt service
                         ;DQ transmit buffer count
U.TXCT: 'X
U.INTP:'X
              .BLKW 1
                         ;Internal receive interrupt service
U.SYNC:'X
              .BLKB 1
                         ;Current sync character
U.MPN:'X
              .BLKB 1
                         ;Multipoint node number
```

```
U.RFRK: 'X
               .BLKW 1
                         ; Receive fork block
U.RFPC: 'X
               .BLKW 1
                         :Fork PC
U.RFR5:'X
               .BLKW 1
                         ; Fork save R5
U.RFR4: 'X
               .BLKW 1
                         ; Fork save R4
U.RFCT='Y
              U.TXCT+1
                         ;DQ receive fork count
     .PSECT
U2.HDX='Y
               100000
                         ;Set if running half duplex
U2.LIN='Y
                40000
                       ;Set if physical link half duplex
U2.CTS='Y
                20000
                         ;Set if clear to send expected
                         ;Set if switched circuit
U2.SWC='Y
                10000
U2.ONL='Y
                         ;Set if unit on line
                 4000
U2.HPT='Y
                 1000
                         ;Set if DQ has protocol option
U2.HRC='Y
                  400
                         ;Set if controller does CRC
U2.RCV='Y
                  200
                         ;Set if receiver active, half duplex
U2.ACU='Y
                  100
                         ;Set if unit has ACU
                         ;Set if operating multipoint ;Set if just initiated receive
U2.MPT='Y
                   40
U2.FTM='Y
                   20
U2.SFL='Y
                         ;Sent final on last message
                   10
                         ;Clear when primary fork free (DQ)
U2.RFK='Y
U2.SYC='Y
                    3
                        ;Bits used for receiver sync count
U2.TXA='Y
                    2
                       ;Set if TX code active (DQ)
U2.SNC='Y
                    1
                         ;Set if sending syncs (DQ)
US.SYN='Y
                    1
                         ;Set if device always sends sync
               100000
U3.LOK='Y
                         ;Software interrupt lockout (DA)
U3.RPD='Y
                  400
                         ;Set when receive pending (DA)
U3.RAC='Y
                  200
                         ;Set when receive in progress (DA)
U3.SND='Y
                   1
                         ;Set when in transmit mode (DA)
               .MACRO CUCDF$ A,B
               .ENDM
               .ENDM
```

8.4.3.1 Communications Vector

Defined by: .MACRO CVCDF\$ X,Y

```
.ASECT
.=V.IFWI
                          ;Overlay from here on
V.CPRT: 'X
               .BLKW 1
                          ;Protocol descriptor vector address
V.CLUN:'X
               .BLKB 1
                          ;CCP'S current LUN for this node
V.CMPN: 'X
               .BLKB 1
                          ;Multipoint node designator
V.CSTS: 'X
               .BLKW 1
                          ;Protocol-oriented status
V.CST1:'X
               .BLKB 1
                          ;Status extension
V.CNID:'X
               .BLKB 1
                          ; Node ID number for next node over
V.CUCB: 'X
              .BLKW 1
                          ;Current UCB for this VCB
V.CMPL:'X
               .BLKW l
                          ;Multipoint table link word
V.CNPN:'X
               .BLKW 1
                          ;Next multipoint node in chain
               .BLKW 1
V.CMBC: 'X
                          ;Multipoint half duplex count of bytes
V.CRED: 'X
               .BLKW 1
                          ;Redundancy check keyword
;Address of (new) header block
V.CNHD: 'X
               .BLKW 1
V.CTBL: 'X
                          ; Address of current AST block
               .BLKW 1
V.CRBL: 'X
               .BLKW 1
                          ; Address of current data block
V.NXHD: 'X
               .BLKW 1
                          ;Next header buffer address
V.CDBC: 'X
               .BLKW 1
                          ; Receiver data count, bytes
V.CIAD: 'X
               .BLKW 1
                          ; Receive buffer address, enter transparency
V.CICT: 'X
               .BLKW 1
                          ; Receive data count, enter T.
               .BLKW 1
V.CSAD: 'X
                          ; Receive buffer address, exit T.
V.CSCT: 'X
               .BLKW 1
                          ; Receive buffer count, exit T.
V.CMXI:'X
               .BLKW 1
                          ;Max record size accepted, bytes
V.CMXO:'X
               .BLKW 1
                          ;Max record size can transmit
               .BLKW 1
V.CTDH: 'X
                          ;Transmit data packet list head
```

```
V.CTDT: 'X
               .BLKW 1
                         ;Transmit data packet list tail
V.CSTQ: 'X
               .BLKW 2
                         ;Start mode pre-transmission queue
V.CLMT: 'X
               .BLKB 1
                         ;Last message number transmitted
V.CTMA: 'X
               .BLKB 1
                         ;Last transmitted message ACKed
V.CLMR: 'X
               .BLKB 1
                         ;Last message number received
V.CRMA: 'X
               .BLKB 1
                         ;Last received message ACKed
V.CMCT: 'X
               .BLKW 2
                         ;Count of messages sent
V.CRPC: 'X
               .BLKB 1
                         ;Consecutive rep count
V.CRPL:'X
               .BLKB 1
                        ;Consecutive rep limit
V.CRTM: 'X
               .BLKW 1
                         ; Rep timeout value, ticks
V.CREP:'X
               .BLKW 1
                         ; Rep count accumulator
V.CBCC: 'X
               .BLKW 1
                         ;Header block check error count
V.CDCC: 'X
               .BLKW 1
                         ;Data block check error count
V.CURH: 'X
               .BLKW 1
                         ;Unrecognized header error count
V.CDLE: 'X
               .BLKW 1
                         ;Data late error count
V.COVR:'X
               .BLKW 1
                         :Transmitter overrun count
V.CRST: 'X
               .BLKW 1
                         ; Number of starts or restarts
V.CALF: 'X
               .BLKW 1
                          ; Number of system buffer allocation failures
V.CREA: 'X
               .BLKB 1
                         ; Contains NAK reason
               .BLKB 1
                          ;Unused
               .IF DF C$$ACU
V.CTPN: 'X
               .BLKB 12. ; Telephone number, this unit (ASCII)
               . ENDC
V.CLEN: 'X
               .BLKW 1 ; Communications VCB length
      .PSECT
               100000
VS.SEL='Y
                          ;Set if select other unit
VS.FIN='Y
                          ;Set if final transmission
                40000
VS.REP='Y
                20000
                         ;Unit in REP mode
VS.RTR='Y
                10000
                         ;Transmitter in retry mode
VS.STK='Y
                 4000
                         ;Set if start ACK expected
                         ;Start mode if set
                 2000
VS.STR='Y
VS.ACK='Y
                 1000
                         ;Set if should send ACK
VS.NAK='Y
                         ;Set if should send NAK
                  400
VS.MPT='Y
                         ;Set if link is multipoint
                  200
VS.DIS='Y
                  200
                         ; (V.CST1) Set link in dismount mode
VS.CTL='Y
                  100
                         ;Set if have mastership, multipoint
                         ;Set if data message
;Set if sync train required
VS.DAT='Y
                   40
VS.SYN='Y
                   20
VS.POL='Y
                   10
                         ;Poll next multipoint if set
VS.ONL='Y
                         ; Related node is active
VS.BOO='Y
                    2
                         ; Marked as boot channel
                          ; Marked as DDCMP-only channel
VS.TRN='Y
                    1
               .MACRO CVCDF$ A,B
               .ENDM
               .ENDM
```

8.4.4 Device Control Block (DCB)

Defined by: .MACRO DCBDF\$, L, B

The Device Control Block (DCB) describes the static characteristics (rather than execution-time information) of both the device controller and the units attached to the controller. Most of the data in the DCB is established in the assembly source for the I/O driver data structure. The DCB is used by the QIO directive processing code in the Executive, rather than by the driver. All the DCBs in a system form a forward-linked list, with the last DCB having a link of 0. The link word is D.LNK.

At least one DCB exists for each type of device appearing in a system (device type should not be equated with device-unit). Therefore, a DCB has the device name in it; for example, the DCB for DKO: has ".ASCII /DK/" in it. In general, there is only one DCB containing the name of a given device. However, in the case of the terminal driver, a separate DCB exists for every kind of terminal device controller in the system (DL, DJ, DH, and DZ), and each DCB contains ".ASCII /TT/". For example, if there are terminals in a system, then there is at least one controller and one DCB containing the device name "TT". If some of the terminals were interfaced via DL11-As and the rest via a DH11, then there would be two DCBs; one for all DL11-A-interfaced terminals, and one for all DH11-interfaced terminals. They both would contain the device name, "TT".

.=0	.ASECT	•
D.LNK:'L'	.BLKW 1	;Link to next DCB. A 0 in this field in- dicates the last (or only) DCB in the chain. The driver links its DCB into the system DCBs via the global label \$USRTB on its first DCB.
D.UCB:'L'	.BLKW 1	;Pointer to first Unit Control Block. All UCBs, for a given DCB, are in contiquous memory locations and must all be the same length.
D.NAM:'L'	.BLKW 1	Generic device name in ASCII by which device units are referenced mnemonically.
D.UNIT:'L'	.BLKB 1	;Lowest unit number covered by this DCB. ;Highest unit number covered by this DCB. These two bytes represent the range of logical units available to the user for assignment. Typically, the lowest number is 0 and the highest is n-1, where n is the number of device-units described by the DCB.
D.UCBL:'L'	.BLKW 1	;Length of each unit control block in bytes. The UCB can have any length to meet the needs of the driver for variable storage. However, all UCBs for a given DCB must have the same length. The specified length must include prefix words (U.LUIC and U.OWN) if present.
D.DSP:'1'	.BLKW 1	;Pointer to driver dispatch table. When the Executive must enter the driver at any of the four entry points contained in the driver dispatch table, it accesses D.DSP, locates the address in the table, and calls the driver at that address. A 0 table address indicates that the (loadable) driver is not in memory. If a driver does not process a given function, it supplies a return address. For more details see the RSX-llM Guide to Writing an I/O Driver.
D.MSK:'1'	BLKW 1	;Legal function mask codes 0-15. ;Control function mask codes 0-15. ;NOP'ed function mask codes 0-15. ;ACP function mask codes 0-15. ;Legal function mask codes 1631. ;Control function mask codes 1631. ;NOP'ed function mask codes 1631. ;ACP function mask codes 1631. The Executive uses these words to validate and dispatch the I/O request specified by a QIO directive.

D.PCB: 'L' .BLKW 1 ; Address of the driver's Partition Control Block (PCB). This word is present in the DCB only if the loadable-driver SYSGEN option has been selected. It must be initialized to 0. The DCB can be extended by adding words after D.PCB. A PCB exists for every partition in a system. MCR creates a PCB when the SET /MAIN or SET /SUB commands are given. If a driver is loadable, its PCB describes the partition in which it resides. The Executive uses D.PCB together with D.DSP (the address of the driver dispatch table) to determine whether a driver is loadable or resident, and, if loadable, whether or not it is in memory. For more details see the RSX-llM Guide to Writing an I/O Driver.

8.4.4.1 Driver Dispatch Table Offsets

D.VINI='B'0	;Device initiator
D.VCAN='B'2	;Cancel current I/O function
D.VOUT='B'4	;Device timeout
D.VPWF='B'6	;Powerfail recovery

8.4.5 Error Message Block (EMB)

Defined by: .MACRO EMBDF\$,L,B

The following error codes are defined:

```
EC.INI='B'40
EC.DVC='B'1 ;Device error bit set
EC.DTO='B'140 ;Device interrupt timeout
EC.NSI='B'141 ;Undefined interrupts
EC.LOA='B'4 ;Driver load
EC.UNL='B'10 ;Driver unload
EC.MPE='B'2 ;Memory parity error
EC.PWR='B'42 ;Power fail
```

8.4.5.1 Error Message Block Independent Offsets

```
.ASECT
.=0
E.SIZE: 'L'
              .BLKW 1
                         ;Size of the EMB in bytes
E.CODE: 'L'
               .BLKB 1
                         ;Error code
              .BLKB 1
                         ;Reserved
E.TIME: 'L'
              .BLKB 6
                         ;Time of error-s,m,h,d,m,y
E.SEQ: 'L'
              .BLKW 1
                        ;Sequence number
E.ABM: 'L'
              .BLKW 1
                        ;Saved I/O active bitmap
```

8.4.5.2 Error Message Block - Undefined Interrupt Offsets

8.4.5.3 Error Message Block - Device Errors and Device Interrupt Timeout Offsets

```
.=E.ABM+2
E.RTRY: 'L'
               .BLKB 2
                         ;Low byte=left, hi byte=start
               .BLKB 1
                         ;Task priority
E.IOC: 'L'
               .BLKB 1
                         ; I/O in progress count
               .BLKW 2
E.TASK:'L'
                         ;Task name
E.PAR:'L'
               .BLKW 1
                         ;Partition address
E.UIC: 'L'
               .BLKW 1
                         :Task UIC
E.UCB: 'L'
               .BLKW 1
                         ;Device UCB address
E.FCN:'L'
               .BLKB 2
                         ;QIO function code
E.PRM: 'L'
               .BLKW 1
                         ;Buffer mapping
               .BLKW 6
                         ;Parameters 1-6
               .BLKB 1
E.RCNT: 'L'
                         ; Number of device registers
               .BLKB 1
                         ;Reserved
E.REGS='B'.
E.LGTH='B'.
```

8.4.5.4 Error Message Block - Driver Load and Unload

```
.=E.TIME+<9.*2>
E.WHY:'L'    .BLKW 1  ;Action code (load/unload)
.=.+2
E.NAME:'L'    .BLKW 1  ;Device name (ASCII)
```

8.4.6 File Control Block (FCB)

```
.ASECT
.=0
F.LINK:
               .BLKW 1
                         ;FCB chain pointer
               .BLKW 1
F.FNUM:
                         ; File number
F.FSEQ:
               .BLKW 1
                         ; File sequence number
               .BLKB 1
                         ;Not used
F.FSQN:
               .BLKB 1
                         ; File segment number
F. FOWN:
               .BLKW 1
                         ; File owner's UIC
F.FPRO:
               .BLKW 1
                         ;File protection code
               .BLKB 1
F.UCHA:
                         ;User controlled characteristics
               .BLKB 1
F.SCHA:
                         ;System controlled characteristics
F.HDLB:
               .BLKW 2
                         ; File header logical block number
F.LBN:
               .BLKW 2
                         ;LBN of virtual block l if contiguous
                         ;0 if non contiguous
               .BLKW 2 .BLKB 1
                         ;Size of file in blocks
F.SIZE:
F.NACS:
                         ; No. of accesses
                         ; No. of locks
F.NLCK:
               .BLKB 1
                         ;FCB status word
F.STAT:
F.NWAC:
               .BLKB 1
                         ; Number of write accessors
               .BLKB 1
                         ;Status bits for FCB consisting of
     FC.WAC=100000
                         ;Set if file accessed for write
     FC.DIR=40000
                         ;Set if FCB is in directory LRU
```

```
FC.CEF=20000
                          ;Set: if directory EOF needs updating
                          ;Set if trying to force directory contig
     FC.FCO=10000
F.DREF:
              .BLKW 1
                          ;Directory EOF block number
              .BLKW 1
F.DRNM:
                        ;1st word of directory name
                        ;Pointer to extension FCB
F.FEXT:
               .BLKW 1
               .BLKW 2
F.FVBN:
                          ;Starting VBN of this file segment
               .BLKW 1
                          ;Pointer to locked block list for file
F.LKL:
F.LGTH:
                         ;Size in bytes of FCB
8.4.6.1 Window
     .ASECT
.=0
W.CTL:
               .BLKW 1 ;Low byte = # of map entries active
                          ; High byte consists of the following bits
     WI.RDV=400
                         ; Read virtual block allowed if set
     WI.WRV=1000
                         ; Write virtual block allowed if set
                        ; Extend allowed if set
; Set if locked against shared access
; Set if deaccess lock enabled
; Set if manual unlock desired
     WI.EXT=2000
     WI.LCK=4000
     WI.DLK=10000
     WI.EXL=40000
     WI.BPS=100000
                          ; Bypass access interlock if set
               .BLKB 1
                        High byte of 1st VBN mapped by window
W. VBN:
               .BLKB 1
                        ;Size in rtrv ptrs of window (7 bits)
W.WISZ:
                        ;Low order word of 1st VBN mapped
               .BLKW 1
                        ;File control block address ;Pointer to list of users locked blocks
               .BLKW 1
W.FCB:
W.LKL:
               .BLKW 1
W.RTRV:
                          ;Offset to 1st retrieval pointer in window
8.4.6.2 Locked Block List Node
     .ASECT
.=0
L.LNK:
               .BLKW 1
                          ;Link to next node in list
L.WIl:
               .BLKW 1
                         ;Pointer to window for first entry
L.VB1:
               .BLKB 1
                        ;High order VBN byte
                          ;Count for entry
L.CNT:
               .BLKB 1
               .BLKW 1
L.LGTH:
8.4.7 Get Command Line Control Block (GCML)
Defined by: .MACRO GCML$D GBL
G.ERR = S.FDB
                                   ;Error return code byte
G.MODE = G.ERR+1
                                   ;Status and mode control byte
G.PSDS = G.ERR+2
                                 ;Prompt string descriptor
G.CMLD = G.ERR+6
                                 ;Command line descriptor
G.ISIZ = 16.
                                 ;Size of impure area (PTRS, FLAGS,
                                 ; COUNTS, etc.)
;Default prompt string
;Buffer size
G.DPRM = G.ERR+G.ISIZ
```

G.SIZE = G.DPRM+6+S.FNB

G.MODE BIT DEFINITIONS

```
GE.COM = 1
                              ;Comment recognition
GE.IND = 2
                                ;Indirect file recognition
GE.CLO = 4
                                ;Close command file before return
GE.LC = 10
                               ; Pass lower case characters
GE.CON = 20
                                ;Continuation lines allowed
GE.SIZ = 40
                                Buffer size
G.ERR VALUES
GE.IOR = -1
                               ;I/O error
GE.OPR = -2
                               ;Unable to open indirect file
GE.BIF = -3
                               ;Bad indirect file name
                               ;Maximum indirect file depth exceeded
GE.MDE = -4
GE.EOF = -10.
                               ;End of file
GE.RBG = -40.
                                ;Buffer size error (overflow)
```

8.4.8 Hardware Definitions

Defined by: .MACRO HWDDF\$, L, B

8.4.8.1 Hardware Register Addresses and Status Codes

```
;Address of PDP-11/70 memory parity register
  MPCSR='B'177746
  MPAR='B'172100
                            ; Address of first memory parity register
  PIRQ='B'177772
                            ;Programmed interrupt request register
  PR0='B'0
                            ;Processor priority 0
  PR1='B'40
                            ;Processor priority 1
· PR4='B'200
                           ;Processor priority 4
  PR5='B'240
                           ;Processor priority 5
                           ;Processor priority 6
;Processor priority 7
;Processor status word
  PR6='B'300
  PR7='B'340
  PS='B'177776
  SWR='B'177570
                            ;Console switch and display register
  TPS= 'B'177564
                            ; Console terminal printer and status register
```

8.4.8.2 Extended Arithmetic Element Registers

```
.IF DF E$$EAE

AC='B'177302 ;Accumulator
MQ='B'177304 ;Multiplier-quotient
SC='B'177310 ;Shift count
.ENDC
```

8.4.8.3 Memory Management Hardware Register and Status Codes

```
.IF DF M$$MGE
KDSAR0='B'172360
                        ;Kernel D PAR 0
KDSDR0='B'172320
                        ;Kernel D PDR 0
KISAR0='B'172340
                        ;Kernel I PAR 0
KISAR5='B'172352
                       ;Kernel I PAR 5
KISAR6='B'172354
                        ;Kernel I PAR 6
KISAR7='B'172356
                        ;Kernel I PAR 7
KISDR0='B'172300
                        ;Kernel I PDR 0
                        ;Kernel I PDR 6
KISDR6='B'172314
```

```
KISDR7='B'172316
                         ;Kernel I PAR 7
SISDR0='B'172200
                         ;Supervisor I PDR 0
UDSAR0='B'177660
                         ;User D PAR 0
UDSDR0='B'177620
                         ;User D PDR 0
UISAR0='B'177640
                         ;User I PAR 0
UISAR4='B'177650
                         ;User I PAR 4
                         ;User I PAR 5
UISAR5='B'177652
UISAR6='B'177654
                      ;User I PAR 6
UISAR7='B'177656
                         ;User I PAR 7
UISDR0='B'177600
                         :User I PDR 0
UISDR4='B'177610
                         :User I PDR 4
UISDR5='B'177612
                         ;User I PDR 5
UISDR6='B'177614
                         ;User I PDR 6
UISDR7='B'177616
                         ;User I PDR 7
UBMPR='B'170200
                         ;UNIBUS mapping register 0
CMODE='B'140000
                         ;Current mode field of PS word
PMODE='B'30000
                         ;Previous mode field of PS word
SR0='B'177572
                         ;Segment status register 0
SR3='B'172516
                         ;Segment status register 3
              . ENDC
8.4.8.4 Feature Symbol Definitions
FE.EXT='B'1
                         ;11/70 extended memory support
                         ;Multi-user protection support
;Executive is supported to 20K
FE.MUP='B'2
FE.EXV='B'4
FE.DRV='B'10
                       ;Loadable driver support
FE.PLA='B'20
                         ;PLAS support
FE.CAL='B'40
                        ;Dynamic checkpoint space allocation
FE.PKT='B'100
                       ;Preallocation of I/O packets
FE.EXP='B'200
                        ;Extend Task directive supported
FE.LSI='B'400
                        ;Processor is an LSI-11
FE.CEX='B'20000
                        ;COM exec is loaded
FE.MXT='B'40000
                         ;MCR exit after each command mode
                         ;Logins disabled - multi-user support
FE.NLG='B'100000
              .ENDM
               . ENDM
8.4.9 Interrupt Transfer Block (ITB)
Defined by: .MACRO ITBDF$ L,B,SYSDEF
     .IF DF A$$TRP
     .MCALL PKTDF$
     PKTDF$
                         ;Define AST block offsets
     .ENDC
     .ASECT
.=0
X.LNK:'L'
              .BLKW 1
                         ;Link word for ITB lists starting in TCB
X.JSR:'L'
              JSR R5,0#0 ; Call $INTSC
X.PSW: 'L'
              .BLKB 1
                        ;Low byte of PSW for ISR
               .BLKB 1
                         ;Unused
X.ISR: 'L'
               .BLKW 1
                         ;ISR entry point (APR5 mapping)
X.FORK: 'L'
                         ; Fork block
               .BLKW 1
                        ;Thread word
               .BLKW 1
                        ;Fork PC
```

;Saved R5

.BLKW 1

```
;Saved R4
               .BLKW 1
               .IF DF M$$MGE
X.REL: 'L'
              .BLKW 1
                         ; Relocation base for APR5
              .ENDC
X.DSI:'L'
                         ; Address of DIS.INT. routine
X.TCB:'L'
              .BLKW 1
                         ;TCB address of owning task
              .IF NB SYSDEF
               .IF DF A$$TRP
                         ; A.DQSR for AST block
               .BLKW 1
               .BLKB A.PRM ; AST block
X.AST:'1'
              .ENDC
X.VEC:'L'
               .BLKW 1
                         ; Vector address (if AST support,
                         ; this is first and only AST parameter)
X.VPC:'L'
               .BLKW 1
                         ;Saved vector PC
X.LEN:'L'
                         ;Length in bytes of ITB
               .ENDC
              .PSECT
```

8.4.10 Logical Assignment Control Block

Defined by: .MACRO LCBDF\$, L, B

The logical assignment control block (LCB) associates a logical name with a physical device-unit. LCBs are linked together to form the logical assignments of a system. Assignments may be on a system-wide or local (terminal) basis.

```
.ASECT
```

```
.=0
L.LNK:'L'
              .BLKW 1
                         ;Link to next LCB
L.NAM: 'L'
              .BLKW 1
                         ;Logical name of device
L.UNIT: 'L'
              .BLKB 1
                         ;Logical unit number
L.TYPE: 'L'
              .BLKB 1
                         ;Type of entry (0=system wide)
                         ;TI UCB address
L.UCB: 'L'
              .BLKW 1
L.ASG:'L'
              .BLKW 1
                         ;Assignment UCB address
L.LGTH='B'.-L.LNK
                         ;Length of LCB
     .PSECT
```

8.4.11 Partition Control Block (PCB)

Defined by: .MACRO PCBDF\$ L,B,SYSDEF

```
.ASECT
```

.=0 ;Link to next PCB. The PCBs are linked in P.LNK:'L' .BLKW 1 physical address order, highest to lowest. If a main partition has subpartitions, they are linked in the PCB chain off the main partition in highest to lowest address order. The last subpartition of a main partition either ends the PCB chain or links to the next main partition. A main partition with no subpartition either links to the next main partition or ends the chain. .BLKB 1 P.PRI:'L' ;Priority of partition

P.PRI:'L' .BLKB 1 ;Priority of partition
P.IOC:'L' .BLKB 1 ;I/O + I/O status block count
P.NAM:'L' .BLKW 2 ;Partition name in RAD50

```
P.SUB: 'L'
              .BLKW 1
                         ;Pointer to next subpartition. Structured and
                           used similarly to P.LNK when manipulating a
                           chain of subpartition PCBs.
                         ;Pointer to main partition. The backpointer
P.MAIN: 'L'
              .BLKW 1
                           from a subpartition to its parent main par-
                           tition.
              .IF NB SYSDEF
              .IF NDF M$$MGE
P.HDR: 'L'
                         ; Pointer to task header (unmapped system)
              .ENDC
              .IFTF
P.REL: 'L'
               .BLKW 1
                         ;Starting physical address of the partition.
                           The partition base relocation bias. In a
                           mapped system, P.REL is the bias; in an un-
                           mapped system, P.REL is the actual parti-
                           tion address.
P.BLKS: 'L'
P.SIZE: 'L'
              .BLKW 1
                         ;Size of partition in bytes
P.WAIT: 'L'
              .BLKW 2
                         ;Partition wait gueue listhead (2 words). A
                           pointer to a list of tasks awaiting the use
                           of the partition. The list is ordered by
                           priority and is searched to determine which
                           task should be in control of the partition.
P.SWSZ:'L'
              .BLKW 1
                         ;Partition swap size (system-controlled
                           partitions only)
                         ;Partition busy flags. The first byte, the
P.BUSY: 'L'
               .BLKB 2
                           busy status, is the inclusive OR of the
                           state for the main partition and all its
                           subpartitions. The second byte, the busy
                           mask, contains a busy (1) or not busy (0)
                           setting for the main partition and its
                           seven subpartitions.
P.OWN:'L'
P.TCB: 'L'
              .BLKW 1
                         ;TCB address of the task that owns the par-
                           tition (owner task).
P.STAT: 'L'
               .BLKW 1
                         ;Partition status flags
               .IFT
               .IF DF M$$MGE
P.HDR: 'L'
              .BLKW 1
                         ;Pointer to task header (mapped system)
               .ENDC
P.PRO: 'L'
               .BLKW 1
                         ;Protection word [DEWR,DEWR,DEWR,DEWR]
P.ATT: 'L'
              .BLKW 2
                         ;Attachment descriptor listhead
               .IF NDF P$$LAS
P.LGTH= 'B'P.PRO
                         ;Length of partition control block
               .IFF
P.LGTH='B'.
                         ;Length of partition control block
               .ENDC
               .IFF
     .PSECT
```

8.4.11.1 Partition Status Word Bit Definitions

```
PS.OUT='B'100000 ;Partition is out of memory (l=yes)
PS.CKP='B'40000 ;Partition checkpoint in progress (l=yes)
PS.CKR='B'20000 ;Partition checkpoint is requested
; (l=yes)
PS.CHK='B'10000 ;Partition is not checkpointable (l=yes)
PS.FXD='B'4000 ;Partition is fixed (l=yes)
PS.PER='B'2000 ;Partition is fixed (l=yes)
PS.LIO='B'1000 ;Marked by shuffler for long I/O (l=yes)
```

```
PS.NSF='B'400 ;Partition is not shuffleable (1=yes)
PS.COM='B'200 ;Library or common block (1=yes)
PS.PIC='B'100 ;Position independent library or common
; (1=yes)
PS.SYS='B'40 ;System controlled partition (1=yes)
PS.DRV='B'20 ;Driver is loaded in partition (1=yes)
PS.DEL='B'10 ;Partition should be deleted when not
; attached (1=yes)
PS.APR='B'7 ;Starting APR number mask
```

8.4.11.2 Attachment Descriptor Offsets

```
.ASECT
.=0
A.PCBL: 'L'
              .BLKW 1
                        ;PCB attachment queue thread word
A.PRI:'L'
              .BLKB 1
                        ;Priority of attached task
A.IOC:'L'
              .BLKB 1
                        ;I/O count through this descriptor
A.TCB:'L'
              .BLKW 1
                        ;TCB address of attached task
              .BLKW 1
A.TCBL: 'L'
                        ;TCB attachment gueue thread word
A.STAT: 'L'
              .BLKB 1
                        :Status byte
A.MPCT: 'L'
              .BLKB 1
                        ; Mapping count of task thru this
                        ; descriptor
A.PCB:'L'
              .BLKW 1
                        ; PCB address of attached task
A.LGTH='B'.
                        ;Length of attachment descriptor
```

8.4.11.3 Attachment Descriptor Status Byte Bit Definitions

```
PSECT
AS.DEL='B'10 ; Task has delete access (l=yes)
AS.EXT='B'4 ; Task has extend access (l=yes)
AS.WRT='B'2 ; Task has write access (l=yes)
AS.RED='B'1 ; Task has read access (l=yes)
ENDC
```

8.4.12 Region Definition Block (RDB)

```
Defined by: .MACRO RDBDF$ GBL
```

```
.MCALL .BLKW.,.BLK.
.BLK.
.BLKW. 1,R.GID,GBL ;Region ID
.BLKW. 1,R.GSIZ,GBL ;Size of region (32W blocks)
.BLKW. 2,R.GNAM,GBL ;Name of region (RAD50)
.BLKW. 2,R.GPAR,GBL ;Region's main partition name (RAD50)
.BLKW. 1,R.GSTS,GBL ;Region status word
.BLKW. 1,R.GPRO,GBL ;Protection code of region
.BLKW. 0,R.GLGH,GBL ;Length of region definition block
```

8.4.12.1 Region Status Word Symbols

```
.IF IDN <DEF$G>, <GBL>
.GLOBL RS.CRR,RS.UNM,RS.MDL,RS.NDL,RS.ATT,RS.NEX
.GLOBL RS.DEL,RS.EXT,RS.WRT,RS.RED
.ENDC
```

RS.CRR=^O<100000>	;Region was successfully created
RS.UNM=^O<40000>	One or more windows were unmapped on a detach
RS.MDL=^O<200>	;Mark region for delete on last detach
RS.NDL=^O<100>	;Created region is not to be marked for ; detach
RS.ATT=^O<40>	;Attach to created region
RS.NEX=^O<20>	;Created region is not extendable
RS.DEL=^O<10>	;Delete access desired on attach
RS.EXT=^O<4>	Extend access desired on attach
RS.WRT=^O<2>	;Write access desired on attach
RS.RED=^O<1>	;Read access desired on attach

8.4.13 Status Control Block (SCB)

Defined by: .MACRO SCBDF\$, L, B, SYSDEF

The SCB defines the status of a device controller. The SCB is pointed to by Unit Control Blocks (UCBs). One SCB exists for each device controller in the system. This is true even if the controller handles more than one device-unit (as in the case of the RK11 Controller). However, line multiplexers such as the DH11 and DJ11 are considered to have one controller for each line because all lines may transfer in parallel. As an example, where a group of terminals may be connected to two controllers, a DL11-A and a DH11, each terminal interfaced via the DL11-A would have a SCB because each DL11-A is an independent interface unit. The terminals interfaced via the DH11 would also each have an SCB because the DH11 is a single controller but multiplexes many units in parallel.

Most of the information in the SCB is dynamic, and is used by both the Executive and the driver.

```
.ASECT
.=177772
S.RCNT: 'L'
               .BLKB 1
                         ; Number of registers to copy on error
S.ROFF: 'L'
              .BLKB 1
                         ;Offset to first device register
S.BMSV:'L'
              .BLKW 1
                         ;Saved I/O active bitmap and pointer to
                           the EMB
S.BMSK: 'L'
              .BLKW 1
                         ;Device I/O active bit mask
S.LHD: 'L'
              .BLKW 2
                         ;Controller I/O gueue listhead. The first
                           word points to the first I/O packet in the
                           queue and the second word points to the
                           last I/O packet in the queue. If the queue
                           is empty, the first word is 0 and the
                           second word points to the first word.
S.PRI:'L'
               .BLKB 1
                         ;Priority at which the device interrupts.
S.VCT: 'L'
               .BLKB 1
                         ; Interrupt vector address divided by 4.
                           For loadable drivers, the MCR/VMR LOA[D]
                           function uses this field and the existence
                           of driver symbol(s) $xxINT, $xxINP, and
                           $xxOUT to initialize the device interrupt
                           vector.
S.CM:'L'
              .BLKB 1
                        ;Current timeout count. RSX-11M supports
                           device timeout, which enables a driver to limit the time that elapses between the
                           issuing of an I/O operation and its
                           termination. The current timeout count (in
                           seconds) is initialized by moving S.ITM
                           (initial timeout count) into S.CTM. The
                           Executive clock routines (in TDSCH) examine
```

the time, decrement it and, if it reaches 0, call the driver at its device timeout entry point. The internal clock count is kept in 1-second increments. Thus, a time count of 1 is not precise because the internal clocking mechanism is operating asynchronously with driver execution. The minimum meaningful clock interval is 2 if you intend to treat timeout as a consistently detectable error condition. Note, if the count is 0, that no timeout occurs; a 0 value is, in fact, an indication that timeout is not operative. The maximum count is 255. You are responsible for setting this field. Resetting occurs at actual timeout or within \$FORK. S.ITM: 'L' .BLKB 1 ;Initial timeout value S.CON: 'L' .BLKB 1 ; Controller index. This is the controller number multiplied by 2. Drivers that are written to support more than one controller use this byte. S.CON may be used by the driver to index into a controller table that the driver creates and maintains internally. Indexing the controller table enables the driver to service the correct controller when a device causes an interrupt. S.STS:'L' .BLKB 1 ;Controller status (0=idle, l=busy). This is the interlock for marking a driver as busy for a specific controller. It is tested and set by \$GTPKT and reset by \$IODON. S.CSR: 'L' .BLKW 1 ; Address of the control status register for the device controller. The driver uses S.CSR to initiate I/O operations and to access, by indexing, other registers related to the device that are located in the I/O page. This address need not be a CSR. It may only be a member of the device's register set. It is accessed at system bootstrap time to determine if the interface exists on the system hosting the Executive. The Executive uses S.CSR to set the offline bit at bootstrap so that system software can be interchanged between systems without an intervening system generation. Otherwise, it is only accessed by the driver itself. S.PKT: 'L' .BLKW 1 ; Address of current I/O packet established by \$GTPKT. This field is used to retrieve the I/O packet address upon the completion of an I/O request. S.PKT is not zeroed after the packet is completed. S.FRK:'L' ; Fork block link word .BLKW 1 ;Fork-PC .BLKW 1 .BLKW 1 :Fork-R5 .BLKW 1 ;Fork-R4 The four words starting at S.FRK are used for fork block storage when the driver establishes itself as a fork process. Fork block storage preserves the state of the driver, which is restored when the driver regains control at fork level. This area is used when the driver calls \$FORK.

```
The fork block is 5 words long in-
                          stead of 4 if two conditions are met:
                           1. Loadable drivers have been selected as
                               a SYSGEN option
                               The system is a mapped system
                          If these conditions are met, and the fork
                          block is 5 words long, you must not use
                          the fork block for any other purpose. In
                          other words, your driver may not share the
                          space reserved for the fork block. If it is
                          shared, the loadable driver's relocation
                          base will be destroyed. In addition, the
                          5-word fork block should always be part of
                          the SCB if the two conditions listed above
                          are met.
              .IF NB SYSDEF
              .IF DF L$$DRV & M$$MGE
              .BLKW 1
                        ; Fork driver relocation base
              .ENDC
S.CCB:'L'
                        ;Mixed MASSBUS channel control block
S.MPR: 'L'
              .BLKW 6
                        ;11/70 extended memory UNIBUS device
                          C-block. Drivers use the 6 words starting
                          at S.MPR for non-processor request (NPR)
                          devices attached to a PDP-11/70 with 22-bit
                          addressing.
              .IFF
     .PSECT
8.4.13.1 Status Control Block Priority Byte Condition Code Status Bit Definition
SP.EIP='B'1
                        ;Error in progress (1=yes)
SP.ENB='B'2
                        ;Error logging enabled (0=yes)
SP.LOG='B'4
                        ;Error logging available (l=yes)
SPARE=10
                        ;Spare bit
8.4.13.2 Mapping Assignment Block (for UNIBUS Mapping Register Assignment)
     .ASECT
.=0
M.LNK:'L'
              .BLKW 1
                        ;Link word
M.UMRA: 'L'
              .BLKW 1
                        ; Address of first assigned UMR
M.UMRN:'L'
                        ; Number of UMR's assigned * 4
              .BLKW 1
M.UMVL:'L'
              .BLKW 1
                        ;Low 16 bits mapped by 1st assigned UMR
M.UMVH: 'L'
              .BLKB 1
                        ;High 2 bits mapped in bits 4 and 5
M.BFVH: 'L'
              .BLKB 1
                        ;High 6 bits of physical buffer address
M.BFVL:'L'
              .BLKW 1
                        ;Low 16 bits of physical buffer address
M.LGTH='B'.
                        ;Length of mapping assignment block
              .ENDC
     .PSECT
8.4.14 Snap Block
Defined by: .MACRO SNPDF$ GBL
           .IF IDN <GBL>, <DEF$G>
     .GLOBL SB.CTL,SB.DEV,SB.UNT,SB.EFN,SB.ID,SB.LM1,SB.PMD
     .GLOBL SC.HDR,SC.LUN,SC.OVL,SC.STK,SC.WRD,SC.BYT
           . ENDC
```

```
SB.CTL = 0
                         ;Control word
SB.DEV = 2
                        ;Device name
SB.UNT = 4
                        ;Device unit number
SB.EFN = 6
SB.ID = ^0<10>
                        ;Event flag number
                        ;Snapshot identification word
SB.LM1 = ^0<12>
                        ;First word of address limits
SB.PMD = ^O<32>
                        ;.RAD50 /PMD.../
SC.HDR = 1
                      ;Dump task header (including registers)
SC.LUN = 2
                        ;Dump assigned LUN information
SC.OVL = 4
SC.STK = ^O<10>
                        ;Dump overlay structure information
                        ;Dump task stack
SC.WRD = ^0<20>
                        ;Send output in word/RAD50 format
SC.BYT = ^O<40>
                        ;Send output in byte/ASCII format
8.4.15 Task Abort Codes
Defined by: .MACRO ABODF$, L, B
NOTE: S.COAD-S.CFLT are also SST vector offsets
S.COAD='B'0.
                         ;Odd address and traps to 4
S.CSGF='B'2.
                        ;Segment fault
S.CBPT='B'4.
                        ;Break point or trace trap
S.CIOT='B'6.
                        ; IOT instruction
S.CILI='B'8.
                        ;Illegal or reserved instruction
S.CEMT='B'10.
                        ;Non RSX EMT instruction
S.CTRP='B'12.
                        ;TRAP instruction
                       ;11/40 floating point exception
S.CFLT='B'14.
S.CSST='B'16.
                        ;SST abort - bad stack
;AST abort - bad stack
S.CAST='B'18.
                        ;ABORT via directive
S.CABO='B'20.
S.CLRF='B'22.
                        ;Task load request failure
S.CCRF='B'24.
                        ;Task checkpoint read failure
S.IOMG='B'26.
                        ;Task exit with outstanding I/O
```

8.4.16 Task Control Block (TCB) And Status Definitions

;Task memory parity error

Defined by: .MACRO TCBDF\$,L,B,SYSDEF

.ENDM

S.PRTY='B'28.

```
T.LNK:'L'
               .BLKW 1
                         ;Utility link word
T.PRI:'L'
              .BLKB 1
                         ;Task priority
T.IOC:'L'
              .BLKB 1
                         ;I/O pending count
T.CPCB: 'L'
              .BLKW 1
                         ;Pointer to checkpoint PCB
              .BLKW 2
T.NAM: 'L'
                         ;Task name in RAD50
T.RCVL: 'L'
              .BLKW 2
                         ;Receive gueue listhead
T.ASTL:'L'
              .BLKW 2
                         ;AST gueue listhead
T.EFLG: 'L'
              .BLKW 2
                         ;Task local event flags 1-32
T.UCB: 'L'
               .BLKW 1
                         ;UCB address for pseudo device 'TI'
T.TCBL: 'L'
               .BLKW 1
                         ;Task list thread word
T.STAT: 'L'
                         ;First status word (blocking bits) ;Second status word (state bits)
               .BLKW 1
T.ST2:'L'
               .BLKW 1
T.ST3:'L'
              .BLKW 1
                         ;Third status word (attribute bits)
              .BLKB 1
T.DPRI:'L'
                         ;Task's default priority
T.LBN:'L'
              .BLKB 3
                         ;LBN of task load image
T.LDV:'L'
             .BLKW 1
                        ;UCB address of load device
T.PCB: 'L'
              .BLKW 1
                         ;PCB address of task partition
```

```
T.MXSZ:'L'
              .BLKW 1
                         ; Maximum size of task image (mapped only)
T.ACTL: 'L'
              .BLKW 1
                         ; Address of next task in active list
START OF PLAS AREA
T.ATT: 'L'
              .BLKW 2
                         ;Attachment descriptor listhead
T.OFF: 'L'
              .BLKW 1
                         ;Offset to task image in partition
              .BLKB 1
                         ; Reserved
T.SRCT: 'L'
              .BLKB 1 :SREF with EFN count in all receive
                         ; gueues
T.RRFL: 'L'
              .BLKW 2
                         ; Receive by reference listhead
              .IF NB SYSDEF
              .IF NDF P$$LAS
T.LGTH='B'T.ATT
              .IFF
T.LGTH='B'.
                         ;Length of task control block
              .ENDC
T.EXT='B'0
                         ;Length of TCB extension
8.4.16.1 Task Status Definitions
First Status Word (Blocking Bits)
TS.EXE='B'100000
                         ;Task not in execution (l=yes)
TS.RDN='B'40000
                         ;I/O rundown in progress (l=yes)
TS.MSG='B'20000
                         ;ABORT message being displayed (1=yes)
TS.NRP='B'10000
                         ;Task mapped to nonresident partition
                           (l=yes)
TS.RUN='B'4000
                         ;Task is running on another processor
                           (l=yes)
                         ;Task is out of memory (l=yes)
;Task is being checkpointed (l=yes)
TS.OUT='B'400
TS.CKP='B'200
TS.CKR='B'100
                         ;Task checkpoint requested (l=yes)
Task Blocking Status Mask
TS.BLK='B'TS.CKP!TS.CKR!TS.EXE!TS.MSG!TS.NRP!TS.OUT!TS.RDN
Second Status Word (State Bits)
T2.AST='B'100000
                        ;AST in progress (l=yes)
T2.DST='B'40000
                        ;AST recognition disabled (l=yes)
T2.CHK='B'20000
                         ;Task not checkpointable (l=yes)
T2.CKD='B'10000
                        ;Checkpointing disabled (1=yes)
T2.BFX='B'4000
                        ;Task being fixed in memory (1=yes)
T2.FXD='B'2000
                        ;Task fixed in memory (l=yes)
T2.TIO='B'1000
                        ;Task is engaged in terminal I/O
T2.CAF='B'400
                       ;DYN checkpoint space allocation failure
                       Task is being halted (1=yes)
T2.HLT='B'200
T2.ABO='B'100
                       ;Task marked for ABORT (1=yes)
;Task stopped (1=yes)
T2.STP='B'40
                       Task stopped (1=yes)
T2.STP='B'20
T2.SPN='B'10
                       ;Saved TS.SPN on AST in progress
T2.SPN='B'4
                       ;Task suspended (l=yes)
                     ;Saved TS.WFR on AST in progress
T2.WFR='B'2
```

;Task in Wait For state (l=yes)

T2.WFR='B'1

Third Status Word (Attribute Bits)

```
T3.ACP='B'100000
                        ;Ancillary control processor (1=yes)
T3.PMD='B'40000
                       ;Dump task on synchronous abort (0=yes)
T3.REM='B'20000
                       ; Remove task on exit (l=yes)
T3.PRV='B'10000
                       ;Task is privileged (l=yes)
T3.MCR='B'4000
                       ;Task requested as external MCR function
                          (l=yes)
T3.SLV='B'2000
                       ;Task is a slave task (1=yes)
T3.CLI='B'1000
                       ;Task is a command line interpreter
                          (1=yes)
T3.RST='B'400
                       ;Task is restricted (l=yes)
T3.NSD='B'200
                       ;Task does not allow send data
T3.CAL='B'100
                       ;Task has checkpoint space in task image
                      ;Task has resident overlays
T3.ROV='B'40
T3.NET='B'20
                       ;Network protocol level
```

8.4.17 Task Header

Defined by: .MACRO HDRDF\$,L,B

```
.ASECT
```

```
.=0
H.CSP: 'L'
              .BLKW 1
                      ;Current stack pointer
H.HDLN:'L'
              .BLKW 1
                      Header length in bytes
H.EFLM: 'L'
             .BLKW 2
                      ; Event flag mask word and address
                       ;Current task UIC
H.CUIC: 'L'
              .BLKW 1
H.DUIC: 'L'
              .BLKW 1
                        ;Default task UIC
H.IPS:'L'
              .BLKW 1
                        ;Initial processor status word (PS)
H.IPC: 'L'
              .BLKW 1 ; Initial program counter (PC)
              .BLKW 1 ; Initial stack pointer (SP)
H.ISP:'L'
H.ODVA:'L'
             .BLKW 1 ;ODT SST vector address
             .BLKW 1 ;ODT SST vector length
H.ODVL:'L'
H.TKVA: 'L'
             .BLKW 1 ;Task SST vector address
                      ;Task SST vector length
H.TKVL:'L'
             .BLKW 1
H.PFVA: 'L'
                        ;Power fail AST control block address
              .BLKW 1
H.FPVA: 'L'
              .BLKW 1 ;Floating point AST control block address
H.RCVA: 'L'
              .BLKW l ; Receive AST control block address
H.EFSV:'L'
             .BLKW l ; Event flag address save address .BLKW l ; Pointer to floating point/EAE save area
H.FPSA:'L'
H.WND: 'L'
              .BLKW 1
                        ;Pointer to number of window blocks
H.DSW:'L'
              .BLKW 1
                        ;Task directive status word
H.FCS: 'L'
              .BLKW 1
                        ;FCS impure pointer
H.FORT: 'L'
              .BLKW l ; FORTRAN impure pointer
H.OVLY:'L'
             .BLKW 1 ;Overlay impure pointer
H.VEXT: 'L'
             .BLKW 1 ; Work area extension vector pointer
                      Priority difference for swapping
H.SPRI:'L'
              .BLKB 1
H.NML:'L'
              .BLKB 1
                        ;Network mailbox LUN
H.RRVA: 'L'
              .BLKW 1
                        ; Receive by reference AST control block
                        ; address
              .BLKW 3
                       ;Reserved words
H.GARD:'L'
              .BLKW 1
                       ;Pointer to header guard word
H.NLUN: 'L'
              .BLKW 1
                       ;Number of LUNs
H.LUN: 'L'
              .BLKW 2
                        ;Start of logical unit table
```

8.4.17.1 Window Block Offsets

```
.=0
W.BPCB:'L' .BLKW l ;Partition control block address
W.BLVR:'L' .BLKW l ;Low virtual address limit
```

```
W.BHVR: 'L'
               .BLKW 1
                         ;High virtual address limit
W.BATT: 'L'
               .BLKW 1
                         ; Address of attachment descriptor
W.BSIZ: 'L'
               .BLKW 1
                         ;Size of window in 32W blocks
               .BLKW 1
W.BOFF: 'L'
                         ;Physical memory offset in 32W blocks
W.BFPD:'L'
               .BLKB 1
                         ;First PDR address
W.BNPD: 'L'
               .BLKB 1
                         ; Number of PDRs to map
W.BLPD: 'L'
               .BLKW 1
                         ;Contents of last PDR
                         ;Length of window descriptor
W.BLGH: 'L'
```

8.4.18 Task Image File Label Block

8.4.18.1 Resident Library Descriptor Offsets

Defined by: .MACRO LBLDF\$, L, B

.ASECT

.=0		
R\$LNAM: 'L'	.BLKW 2	;RADIX-50 library name
R\$LSA:'L'	.BLKW 1	;Library starting virtual address
R\$LHGV:'L'	.BLKW 1	;Library address window 0 bound
R\$LMXV:'L'	.BLKW 1	;Library high virtual address limit
R\$LLDZ:'L'	.BLKW 1	;Library load size (32W blocks)
R\$LMXZ:'L'	.BLKW l	;Library max. size (32W blocks)
R\$LOFF: 'L'	.BLKW 1	;Library offset into partition (32W
		; blocks)
R\$LWND:'L'	.BLKW 1	;Number of library address windows
R\$LSEG: 'L'	.BLKW 1	;Size of library segment descriptors
R\$LFLG:'L'	.BLKW 1	Library flags word
R\$LDAT: 'L'	.BLKW 3	;Library creation date (yr., mo., day)
R\$LSIZ:'L'	.BLKW 0	;Length of library descriptor

8.4.18.2 Library List Entry Flags

```
LD$ACC='B'100000 ;Access intent (l=RW, 0=RO)
LD$RSV='B'040000 ;APR reservation flag (l=APR reserved)
LD$REL='B'000004 ;PIC flag (l=position independent)
```

8.4.18.3 Label Block Offsets

.=0
L\$BTSK:'L' .BLKW 2 :RADIX 50 task name

NOTE

Label block parameters between this offset and the start of the task library descriptors must be identical in format and content to a resident library descriptor entry.

```
L$BPAR:'L' .BLKW 2 ;RADIX 50 partition name
L$BSA:'L' .BLKW 1 ;Starting address of task
L$BHGV:'L' .BLKW 1 ;Window 0 virtual address limit
L$BMXV:'L' .BLKW 1 ;Task high virtual address limit
```

```
L$BLDZ:'L'
              .BLKW 1
                         ;Task load size (32W blocks)
L$BMXZ:'L'
              .BLKW 1
                         ; Task max. size (32W blocks)
L$BOFF: 'L'
              .BLKW 1
                         ;Task offset into partition (32W blocks)
L$BWND:'L'
              .BLKW 1
                         ; Number of task windows (less libraries)
L$BSEG: 'L'
              .BLKW 1
                         ;Size of task segment descriptors (bytes)
L$BFLG: 'L'
               .BLKW 1
                         ;Task flags word
                         ;Task creation date (yr., mo., day)
L$BDAT: 'L'
               .BLKW 3
L$BLIB:'L'
              .BLKW <7.*<R$LSIZ/2>>+1 ; Resident library entries
L$BPRI:'L'
              .BLKW 1 ; Task priority
L$BXFR: 'L'
              .BLKW 1
                         ;Task transfer address
L$BEXT: 'L'
              .BLKW 1
                         ;Task extend size (32W blocks)
L$BSGL:'L'
              .BLKW 1
                         ; Relative block number of segment length
                         ; list
L$BHRB: 'L'
              .BLKW 1
                         ; Relative block number of task image
                         ; header
                         ; Number of blocks in label
L$BBLK: 'L'
               .BLKW 1
L$BLUN: 'L'
               .BLKW 1
                         ; Number of logical units
               .BLKW <512.-.>/2
               .BLKW 0
L$BASG: 'L'
                         ;Start of device assignment tables
TS$PIC='B'100000
                         ;Task is PIC (l=yes)
TS$NHD='B'040000
                         ;No header in task image (l=yes)
TS$ACP='B'020000
                         ;Task is ancillary control processor (l=yes);Generate post-mortem dump (l=yes)
TS$PMD='B'010000
TS$SLV='B'004000
                         ;Task is slaveable (l=yes)
TS$NSD='B'002000
                         ; No send to task is permitted (l=yes)
TS$NET='B'001000
                         ;Task uses new network protocol (1=yes)
TS$PRV='B'000400
                         ;Task is privileged (1=yes)
TS$CMP='B'000200
                         ;Task built in compatibility mode (l=yes)
                         ;Task is checkpointable (0=yes)
TS$CHK='B'000100
TS$RES='B'000040
                         ;Task has resident overlays (1=yes)
     .PSECT
```

8.4.19 Task Termination Notification Message Codes

Defined by: .MACRO ABODF\$,L,B

```
T.NDNR='B'0 ;Device not ready
T.NDSE='B'2 ;Device select error
T.NCWF='B'4 ;Checkpoint write failure
T.NCRE='B'6 ;Card reader hardware error
T.NDMO='B'8. ;Dismount complete
T.NLDN='B'12. ;Link down (networks)
T.NLUP='B'14. ;Link up (networks)
```

8.4.20 Unit Control Block (UCB)

Defined by: .MACRO UCBDF\$, L, B

One UCB exists for each device-unit attached to a system. In other words, one UCB exists for each device-unit of each DCB. The UCB defines the status of an individual device-unit, and is the control block that is pointed to by the first word of an assigned LUN. The UCBs associated with a particular DCB are contiguous in memory, have the same length, and are pointed to by the DCB. UCBs associated with different DCBs may have different lengths but are of the same length for a specific DCB.

Much of the information in the UCB is static, though a few dynamic parameters exist. From the UCB, however, it is possible to access most of the other structures in the I/O data base. In this sense, the

UCB gives access to a large amount of dynamic data. For example, the redirect pointer, which reflects the results of an MCR Redirect command, is updated dynamically.

As with the DCB, most of the UCB is established in the assembly source; however, its contents are used and modified by both the Executive and the driver, though modification of a given datum is usually done by either the Executive or the driver, but not both. Because the UCB is the key control in the I/O data structures, access to other I/O control blocks usually occurs via links implanted in the UCB.

.ASECT		
U.LUIC: 'L'	.BLKW 1	;LOGIN UIC - for terminal UCBs on multi-user systems only
U.OWN:'L'	.BLKW 1	;The UCB address of the owning terminal for allocated devices - multi-user systems only
U.DCB:'L'	.BLKW 1	;Back pointer to corresponding DCB Access to other control blocks in the I/O data structure usually occurs via the UCB.
U.RED:'L'	.BLKW 1	;Pointer to redirect unit UCB. initially points to U.DCB. This field is changed as the result of the Redirect command. After the command is issued, this field points to the UCB to which this device-unit has been redirected. The redirect chain ends when this field points to U.DCB field in the UCB in which it resides.
U.CTL:'L'	.BLKB 1	;Control processing flags (set at assembly time). U.CTL and the function mask words in the DCB drive QIO directive processing. Any inaccuracy in the bit setting of U.CTL produces erroneous I/O processing. See the RSX-11M Guide to Writing an I/O Driver for more details.
U.STS:'L' U.UNIT:'L'	.BLKB 1	;Device independent unit status ;Physical unit number of device. If the controller for the device supports only one
U.ST2:'L'	.BLKB 1	unit, the unit number is always 0. ;Unit status extension
U.CWl:'L'	.BLKW 1	;First device characteristics word This is the first word in a cluster of device characteristics information. U.CWl and U.CW4 are device independent. U.CW2 and U.CW3 are device dependent. The four characteristic words are retrieved from the UCB and placed in the requestor's buffer upon issuance of a GLUN\$ Executive directive. It is the responsibility of the driver writer to supply the contents of these four words in the assembly source of the driver's data structure. See the RSX-11M Guide to Writing an I/O Driver.
U.CW2:'L'	.BLKW 1	;Second device characteristics word. This word is specific to a given device driver and, with an exception, is available for working storage or constants. The exception is for block-structured devices. In this case, U.CW2 and U.CW3 may not be used for working storage. In drivers for block-structured devices (disks and

```
DECtape), these two words must be
                             initialized to a double-precision number
                             giving the total number of blocks on the
                             device. Place the high-order bits in the
                             low-order byte of U.CW2 and the low-order
                             bits in U.CW3.
U.CW3:'L'
                           :Third device characteristics word
               .BLKW 1
U.CW4:'L'
                           ; Fourth device characteristics word
               .BLKW 1
U.SCB: 'L'
                         ;Pointer to SCB for this UCB. In general, R4
                .BLKW 1
                             contains the value in this word upon entry
                             to the driver via the driver dispatch table
                             because service routines frequently refer-
                             ence the SCB.
U.ATT: 'L'
                .BLKW 1
                           ; Address of the TCB of the task attached to
                             to the unit.
U.BUF: 'L'
                           ; Relocation bias of current I/O request.
                .BLKW 1
                           ;Buffer address of current I/O request.
                .BLKW 1
                             U.BUF labels two consecutive words that
                             serve as a communication region between
                             SGTPKT and the driver. If a non-transfer function is indicated (in D.MSK), U.BUF,
                             U.BUF+2, and U.CNT receive the first three parameter words from the I/O packet.
                               For transfer operations, the format of
                             these two words depends upon the setting of
                             UC.NPR in U.CTL. The driver does not format
                             the words; all formatting is completed be-
                             fore the driver receives control. For un-
                             mapped systems, the first word is 0 and the second word is the physical address of the buffer, For mapped systems, the UC.NPR
                             bit determines the format. UC.NPR is set
                             for an NPR device and reset for a pro-
                             gram-transfer device.
                               For more information, see the RSX-11M
                           Guide to Writing an I/O Driver. Byte count of current I/O request
U.CNT: 'L'
               .BLKW 1
                             Contains the byte count of the buffer
                             described by U.BUF. The driver uses this
                             field to construct the device address.
                               U.BUF and U.CNT keep track of the current
                             data item in the buffer for the current
                             transfer (except for NPR transfers). Because this field is being altered dyna-
                             mically, the I/O packet may be needed to
                             reissue an I/O operation; for instance,
                             after a powerfail or error retry.
U.VCB='B'U.CNT+4
                           ; Address of volume control block
U.CBF='B'U.CNT+2
                           ;Control buffer relocation and address
                          ;Terminal UIC (terminals only)
U.UIC='B'U.CNT+<9.*2>
      .PSECT
8.4.20.1 Device Table Status Definitions
Device Characteristics Word 1 (U.CW1) Device Type Definition Bits
DV.REC='B'1
                           ; Record oriented device (1=yes)
DV.CCL='B'2
                           ;Carriage control device (l=yes)
DV.TTY='B'4
                          ;Terminal device (l=yes)
DV.DIR='B'10
                          ;File structured device (1=yes)
```

;Single directory device (l=yes)

;Sequential device (1=yes)

DV.SDI='B'20

DV.SQD='B'40

```
DV.MXD='B'100
                          ; MASSBUS device (1=yes)
DV.UMD='B'200
                         ;User mode diagnostics supported (1=yes)
DV.SWL='B'1000
                         ;Unit software write locked (1=yes)
DV.ISP='B'2000
                         ;Input spooled device (l=yes)
                         ;Send output to spooled device (l=yes);Pseudo device (l=yes)
DV.OSP='B'4000
DV.PSE='B'10000
DV.COM='B'20000
                          ; Device is mountable as COM channel
                          ; (1=yes)
                         ;Device is mountable as Fll device
DV.F11='B'40000
                          ; (l=yes)
DV.MNT='B'100000
                          ; Device is mountable (l=yes)
Terminal Dependent Characteristics Word 2 (U.CW2) Bit Definitions
U2.DH1='B'100000
                          ;Unit is a multiplexer (l=yes)
U2.DJ1='B'40000
                          ;Unit is a DJ11 (1=yes)
U2.RMT='B'20000
                         ;Unit is remote (1=yes)
U2.L8S='B'10000
                         ;Unit is LA180s (1=yes)
U2.NEC='B'4000
                         ;Do not echo solicited input (l=yes)
U2.CRT='B'2000
                         ;Unit is a CRT (l=yes)
                        ;Unit generates escape sequences (1=yes);User logged on terminal (0=yes);Unit is a slave terminal (1=yes);Unit is a DZ11 (1=yes);Terminal is in hold screen mode (1=yes)
U2.ESC='B'1000
U2.LOG='B'400
U2.SLV='B'200
U2.DZ1='B'100
U2.HLD='B'40
                        ;MCR command AT. being processed (l=yes);Unit is a privileged terminal (l=yes)
U2.AT.='B'20
U2.PRV='B'10
                        ;Unit is a LA30S terminal (l=yes)
U2.L3S='B'4
                         ;Unit is a VTO5B terminal (1=yes)
U2.VT5='B'2
U2.LWC='B'1
                         ;Lower case to upper case conversion
                          ; (1=yes)
RH11-RS03/RS04 Characteristics Word 2 (U.CW2) Bit Definitions
U2.R04='B'100000
                          ;Unit is a RS04 (1=yes)
RH11-TU16 Characteristics Word 2 (U.CW2) Bit Definitions
U2.7CH='B'10000
                          ;Unit is a 7 channel drive (l=yes)
Unit Control Processing Flag Definitions
UC.ALG='B'200
                          ;Byte alignment of data buffers is allowed
                             (0=ves)
                            Word alignemnt is allowed (l=yes)
UC.NPR='B'100
                          ;Device is an NPR device (1=yes)
                            This word determines the format of the
                             2-word address in U.BUF.
UC.QUE='B'40
                          ;Call driver before queuing (1=yes)
                            If set, the QIO directive processor calls
                            the driver prior to queing the I/O packet.
                            The disposition of the I/O packet is the
                            driver's responsibility. Typically, an I/O
                            packet is queued prior to a call to the
                            driver, which later retrieves it by a call
                            to $GTPKT.
UC.PWF='B'20
                          ;Call driver at powerfail always (l=yes)
                            If set, the driver is always called when
                            power is restored after a power failure
                            occurs. Typically, the driver is called on
                            power restoration only when an I/O opera-
                            tion is in progress.
```

```
UC.ATT='B'10
                          ;Call driver on ATTACH/DETACH (1=yes)
                            If this bit is set, the driver is called
                            when $GTPKT processes an Attach/Detach I/O
                            function. Typically, the driver does not get control for Attach/Detach requests and
                            the Executive performs the entire function without any assistance from the driver.
                         ;Call driver at I/O kill always (l=yes)
UC.KIL='B'4
                            If set, the driver is called on a Cancel
                            I/O request even if the specified unit is
                            not busy. Typically, the driver is called on a Cancel I/O only if an I/O operation
                            is in progress.
UC.LGH='B'3
                          :Transfer length mask bits
                            These two bits are used to check
                            whether the byte count specified
                            in an I/O request is a legal buffer
                            modulus. See Guide to Writing an
                            I/O Driver manual.
Unit Status (U.STS) Bit Defintions
This byte contains device-independent status information. US.MDM,
US.MNT, and US.FOR apply only to mountable devices.
US.BSY='B'200
                         ;Unit is busy (1=yes)
US.MNT='B'100
                        ;Unit is mounted (0=yes)
US.FOR='B'40
                         ;Unit is mounted as foreign volume (l=yes)
US.MDM='B'20
                         ;Unit is marked for dismount (1=yes)
Card Reader Dependent Unit Status Bit Definitions
US.ABO='B'1
                          ;Unit is marked for abort if not ready
                          ; (1=yes)
US.MDE='B'2
                          ;Unit is in 029 translation mode (l=yes)
FILES-11 Dependent Unit Status Bits
US.WCK='B'10
                          ;Write check enabled (l=yes)
US.SPU='B'2
                         ;Unit is spinning up (l=yes)
Terminal Dependent Unit Status Bit Definitions
US.DSB='B'10
                        ;Unit is disabled (l=yes)
US.CRW='B'4
                         ;Unit is waiting for carrier (l=yes)
US.ECH='B'2
                         ;Unit has echo in progress (1=yes)
US.OUT='B'l
                         ;Unit is expecting output interrupt
                          ; (1=yes)
LPS11 Dependent Unit Status Bit Definitions
US.FRK='B'2
                         ;Fork in progress (l=yes)
US.SHR='B'1
                        ;Shareable function in progress (0=yes)
```

```
ANSI Magtape Dependent Unit Status Bits
US.LAB='B'4
                        ;Unit has labeled tape on it (l=yes)
Unit Status Extension (U.ST2) Bit Definitions
US.OFL='B'1
                     ;Unit offline (l=yes)
US.RED='B'2
                        ;Unit redirectable (0=yes)
US.PUB='B'4
                       ;Unit is public device (l=yes)
US.UMD='B'10
                       ;Unit attached for diagnostics (1=yes)
8.4.21 Volume Control Block (VCB)
     .ASECT
.=0
V.TRCT:
              .BLKW 1
                      :Transaction count
                      ;Index file window
V.IFWI:
              .BLKW 1
                       ; File Control Block listhead
V.FCB:
              .BLKW 2
V.IBLB:
              .BLKB 1
                       ; Index bit map 1st LBN high byte
              .BLKB 1
                       ;Index bit map size in blocks
V.IBSZ:
                       ; Index bit map 1st LBN low bits
              .BLKW 1
              .BLKW 1 ; Max no. of files on volume
V.FMAX:
              .BLKB 1 ; Dflt size of window in no. of rtrv ptrs
V.WISZ:
                        ; Value is < 128.
                      Storage bit map cluster factor
              .BLKB 1
V.SBCL:
              .BLKW 1
                       ;Storage bit map size in blocks
V.SBSZ:
                        ;Storage bit map 1st LBN high byte
              .BLKB 1
V.SBLB:
              .BLKB 1
V.FIEX:
                        ;Default file extend size
              .BLKW 1
                        ;Storage bit map 1st LBN low bits
                       ; Volume owner's UIC
V.VOWN:
              .BLKW 1
V.VPRO:
              .BLKW 1
                        ; Volume protection
              .BLKW 1
                        ; Volume characteristics
V.VCHA:
V.FPRO:
              .BLKW 1
                        ; Volume default file protection
              .BLKW 1
                        ;Volume file sequence number
V.VFSQ:
              .BLKB 1
V.FRBK:
                        ; Number of free blocks on volume high
V.LRUC:
              .BLKB 1
                        ; Count of available LRU slots in FCB list
              .BLKW 1
                        ; Number of free blocks on volume low bits
V.STAT:
              .BLKB 1
                        ; Volume status byte, containing the
                          following:
VC.IFW= 1
                          Index file is write accessed
VC.BMW= 2
                          Storage bit map file is write accessed
V.FFNU:
              .BLKB 1
                        ;First free index file bit map block
```

8.4.22 Window Definition Block (WDB)

Defined by: .MACRO WDGDF\$ GBL

V.LGTH:

;Size in bytes of VCB

8.4.22.1 Window Definition Block Offsets

```
.MCALL .BLKW.,.BLKB.,.BLK.
.BLK.
.BLKB. 1,W.NID,GBL
                        ;Window ID
.BLKB. 1, W. NAPR, GBL
                        ;Base APR
.BLKW.
                        ; Virtual base address (bytes)
       1,W.NBAS,GBL
.BLKW.
        1,W.NSIZ,GBL
                        ;Window size (32W blocks)
.BLKW.
        1,W.NRID,GBL
                        ;Region ID
.BLKW.
                        ;Offset in partition (32W blocks)
        1,W.NOFF,GBL
.BLKW.
                        ;Length to map (32W blocks)
        1, W. NLEN, GBL
.BLKW.
        1,W.NSTS,GBL
                        ;Window status word
.BLKW. 1, W.NSRB, GBL
                       ;Send/receive buffer virtual address (bytes)
                        ;Length of window definition block
.BLKW. 0, W.NLGH, GBL
```

8.4.22.2 Window Status Word Symbols

```
.IF IDN <DEF$G>,<GBL>
.GLOBL WS.CRW,WS.UNM,WS.ELW,WS.RRF,WS.64B
.GLOBL WS.MAP,WS.RCX,WS.DEL,WS.EXT,WS.WRT,WS.RED
.ENDC
```

```
WS.CRW=^O<100000>
                          ; Address window was successfully created
                          ; One or more windows were unmapped in
WS.UNM=^O<40000>
                          ;Create address window or map.
                          ;One or more windows were eliminated in
WS.ELW=^O<20000>
                          ;Create address window
WS.RRF=^O<10000>
                         ; Reference was successfully received
WS.64B=^o<400>
                         ;64 byte alignment allowed
WS.MAP=^O<200>
                          ; Map after create window or receive
                        by reference
                         ;Exit if no references to receive
WS.RCX=^O<100>
WS.DEL=^O<10>
                        ;Send with delete access
                        ;Send with extend access
WS.EXT=^0<4>
                         ;Send with write access or map with
WS.WRT=^O<2>
                         ; write access
                         ;Send with read access
WS.RED=^O<1>
```

CHAPTER 9

CROSS-REFERENCES

9.1 EXECUTIVE MODULE TO ROUTINE CROSS-REFERENCE

This cross-reference contains a listing of the executive modules (driver tables not included) and the routines that they contain. The routines are in alphabetical order as are the modules. A dollar sign (\$) preceeds the label of global routines. All named labels are in this cross-reference but some are the labels of data areas or fields.

Large and important local routines are in this cross-reference. A dollar sign (\$) does not preced these routines because they are not global.

Module Routines and Labels BFCTL Buffer control routines \$BLXIO - Move block of data \$GTBYT - Get next byte from user buffer \$GTCWD - Get next word from user control buffer \$GTWRD - Get next word from user buffer \$PTBYT - Put next byte in user buffer \$PTWRD - Put next word in user buffer CORAL Core buffer allocation routines \$ALCLK - Allocate clock queue core block \$ALOC1 - Allocate core buffer (alternate entry) \$ALOCB - Allocate core buffer \$ALPKT - Allocate SEND or I/O REQUEST core block \$DEAC1 - Deallocate core buffer (alternate entry) \$DEACB - Deallocate core buffer \$DECLK - Deallocate clock queue core block \$DEPKT - Deallocate SEND or I/O REQUEST core block CRASH Crash dump routines \$CRASH - Crash dump routine \$CRSBF - Internal crash stack \$CRSBN - Starting device address \$CRSCS - Checksum of device address SCRSHT - Halt to wait for the user \$CRSUN - Crash unit number (C\$\$RUN) stored here \$PANIC - Reference entry label only CTDRV TAll tape cassette controller driver \$CTINT - Controller interrupt processing CTINI - Controller initiator \$CTTBL - Driver dispatch table SPCBK - Spacing function

RDBLK - Read logical function

Module Routines and Labels CTDRV WRBLK - Write logical function WREOF - Rewind and write EOF functions (cont.) CTOUT - Device timeout CVRTM Convert time routine \$CVRTM - Convert a time interval-time units pair to a clock ticks count RH11-RP04/05/06 disk pack driver DBDRV CNTBL - Address of current unit control block RTTBL - Retry count for current operation - Temporary storage for controller number OFFAD - Address of current offset value OFFTB - Offset positioning value table FUNTBL - Diagnostic function table \$DBTBL - Driver dispatch table DBINI - Initiator DLDRV RL11/RL01 disk driver CNTBL - Address of current unit control block RTTBL - Retry count for current operation TEMP - Temporary storage for controller number \$DLTBL - Driver dispatch table DLINI - Initiator (get I/O packet)
DLINIO - Initiate I/O operation DLOUT - Device timeout DLDIFF - Cylinder address difference calculator DLDVER - Error logging routine DLDTER - Error logging routine DMDRV RK611-RK06/RK07 disk cartridge driver CNTBL - Address off currrent unit control block RTTBL - Retry count for current operation - Temporary storage for controller number FUNTBL - Diagnostic function table OFFTB - Offset positioning data \$DMTBL - Driver dispatch table DMINI - Initiator DMINIO - I/O initiator DMOUT - Device timeout DMECC - Error correction DMECOR - Memory address calculation for correction DMDVER - Error logging DMDVTO - Error logging DMRPAS - Controller register pass routine DMDINT - Diagnostic interrupt handler DPDRV RP11-C/E disk pack controller driver CNTBL - Address of current unit control block RTTBL - Error retry count and positioning flag - Temporary storage for controller number TEMP FUNTBL - Diagnostic function code table SDPTBL - Driver dispatch table DPINI - Initiator DPOUT - Device timeout DRABO Abort task routine \$DRABO - Abort a specified task DRASG Assign a device unit to a logical unit number

\$DRASG - Assign logical unit number (LUN)

Routines and Labels Module DRATX End execution of an asynchronous system trap service routine \$DRATX - Asynchronous system trap (AST) service exit routine DRCIN Connect or disconnect an interrupt vector to an interrupt service routine (ISR) in the task's own space \$DRCIN - Connect to interrupt \$DISIN - Disconnect interrupt vector DRCMT Cancel MARK TIME and SCHEDULE REQUEST directives \$DRCMT - Cancel MARK TIME requests \$DRCSR - Cancel SCHEDULE requests DRDAR Disable or enable AST recognition directive processing \$DRDAR - Disable AST recognition \$DREAR - Enable AST recognitionDAR DRDCP Disable or enable checkpointing directive processing \$DRDCP - Disable checkpointing \$DRECP - Enable checkpointing DRDSP DRDSP contains the directive dispatch table BTRMV - Bytes to remove on exit DSPMP - Dispatch mapping table DSPTBL - Directive dispatch table **SEMTRP** - EMT instruction trap routine \$DPLM1 - Get pointer to definition block \$DPLM2 - Get size of definition block \$DRATP - NOP alter priority \$DRLM1 - Get first word on user stack \$DRLM2 - Get first DPB word \$TRTRP - TRAP instruction trap routine USRPS - Pointer to user PS word DREIF End execution of the issuing task directive processing \$DREIF - Terminate the execution of the issuing task if the event flag is clear \$DREXT - Terminate the execution of the issuing task MTQUE - Subroutine to empty gueue SCNLN - Scan logical unit table DREXP Extend partition directive processing \$DREXP - Extend the partition of the issuing task DRGCI. Get MCR command line or release MCR command buffer directive processing \$DRGCL - Get MCR command line \$RLMCB - Release MCR command buffer DRGLI Get logical unit number information directive processing \$DRGLI - Get LUN information DRGPP Get partition parameters directive processing \$DRGPP - Get partition parameters DRGSS Get sense switch register contents directive processing \$DRGSS - Get sense switch contents DRGTK Get task parameters directive processing \$DRGTK - Get task parameters

```
Module
          Routines and Labels
DRGTP
          Get time parameters directive processing
          $DRGTP - Get current time parameters
DRMAP
          Mapping and send or receive by reference directive
                   processing
          $DRCRW - Create address window
          $DRELW - Eliminate address window
          $DRGMX - Get mapping context of the task
          $DRMAP - Map window to region
          $DRRRF - Receive by reference
          $DRSRF - Send by reference
          $DRUNM - Unmap address window
DRMKT
          Mark time and run directive processing
          $DRMKT - Mark time; declare a significant event after a
                   specified interval
          $DRRUN - Run the task after a specified interval or
                   run the task after a specified interval and
                   repeat the task periodically
DRPUT
          Specify floating-point, powerfail, and receive AST traps
                   directive processing
          SDRFEX - Specify floating-point exception ASTs for the
                    issuing task
          $DRPUT - Specify power recovery ASTs for the issuing
                   task
          SDRRCV - Specify receive ASTs for the issuing task
          SDRRRA - Specify receive by reference ASTs for the issuing task
DROIO
          Queue I/O directive processing
                Build attribute pointer blockBuild an I/O packet
          ATRBK
          BDPKT
          CKACC
                 - Check if access also requested on create
                 - Check for file already accessed on LUN
          CKALN
                 - Check connect parameter buffer
          CKCON
                - Fill disconnect parameter buffer and interlock
          CKDIS
                   LUN usage
                - Check for volume marked for dismount
          CKDMO
                 - Check for file accessed on LUN
          CKNLN
                - Check for read access priviliges and
          CKRAC
                   exit to transfer function
          CKRLK - Access or deaccess interlock
          CKWAC - Check for write access priviliges and exit
                   to transfer function
          CKXIT - Exit polish to function exit
          $DQLMl - Zero I/O status block
          $DQLM2 - Clear I/O status block
          $DRQIO - Queue I/O request
          $DRQIW - Queue I/O request and wait
          $DRQRQ - Insert I/O packet in a controller queue
          FCACC - Access file; check if volume marked for dismount
          FCCAW - Access file; check if file accessed
          FCCON - Connect to process
                 - Create file
          FCCRE
          FCCTL
                 - Function is control function
          FCDAC - Deaccess file; check if file accessed on LUN
          FCDIS - Disconnect from process
          FCDSP - Function code dispatch vector
          FCIFC - Set illegal function status
FCKIL - Flush I/O gueue
```

Module Routines and Labels DRQIO FCNCT - Network control function (Cont.) FCPKT Build an I/O packet - Read virtual block; check if file accessed on LUN FCRVB FCTRN - Function is a transfer function; address check and map function FCWVB - Write virtual block; check if file accessed on LUN - Insert parameter 2 (within FCCTL routine) FCXFR FCXIT - Clean stack and retrieve address of I/O packet (prior to entry into \$DRQRQ) - Insert optional filename block FILNM IEALN - File already accessed on LUN; set file already accessed code - Bad parameter; set bad parameter status IEBAD - Illegal byte count or alignment; declare odd byte IEBYT status - Common error exit IECMN IEIFC - Illegal function; declare illegal function code status IENLN - No file accessed on LUN; set no file accessed status IENOD - No buffer space available; set no buffer status - Specified device is offline IEOFL IEOVR - Illegal load overlay UCB; declare illegal load overlay function status IEPRI - Privilege violation; set privilege violation status IESPC - Illegal buffer address specified; declare illegal buffer status ISSUC - Function is a NOOP function; declare successful completion status - Location to mark stack address MSTK MOVE3 - Move extend and access control words into I/O packet OPPRM - Interpret optional block address - Interpret required block address ROPRM UNLCK - Unlock block Set up registers for unlock and exit UNLKT to control address DRRAS Receive and send directive processing \$DRREC - Receive data and receive data or exit. Dequeue data from the issuing task's receive gueue \$DRSND - Send data; queue data in a specified task's receive queue DRREG Attach and detach region directive processing \$DRATR - Attach region to the current task \$DRCRR - Create a region and optionally attach to it \$DRDTR - Detach the specified region, unmapping if necessary \$DETRG - Detach region by attachment descriptor address DRREQ Request task execution directive processing \$DRREQ - Request task execution DRRES Resume or suspend task execution or alter task priority directive processing \$DRATP - Alter task priority of a specified task \$DRRES - Resume executing a task that has issued the suspend directive

\$DRSPN - Suspend execution of the issuing task

```
Module
          Routines and Labels
DRSED
          Significant event and event flag directive processing
          $DRCEF - Clear event flag and report its polarity
                   before clearing
          $DRDSE - Declare a significant event
          $DRRAF - Read all event flags (local and common)
          $DRSEF - Set an event flag and report its polarity
                   before setting
          $DRWFL - Suspend task execution until LOGICAL OR of
                   event flags occur
          $DRWFS - Suspend task execution until a specified
                   event flag is set
          $DRWSE - Suspend execution of the issuing task until
                   the next significant event
          $TKWSE - Execute a wait for significant event directive
                   for the current task
DRSST
          Specify SST vector directive processing
          $DRSDV - Specify debugging aid SST vector
          $DRSTV - Specify task SST vector
DTDRV
          TCll DECTAPE controller driver
          CNTBL - Address of current unit control block
                - Error retry count and drive reset flag
          RTTBL
                 - Temporary storage for controller number
          TEMP
          $DTTBL - Driver dispatch table
          DTINI - Initiator
          DTCAN - Cancel I/O operation
          DTOUT - Reference label
DXDRV
          RX11 floppy disk driver
                - Address of current UCB for controller
          CNTBL
          DXCAN - Cancel I/O entry point
          DXTBL - Driver dispatch table
          DXINI - Initiator
          DXOUT - Log device timeout
         DXPWF - Powerfail entry point
DXRTY - Retry last function
          NXTSEC - Update block number, buffer address, and
                   buffer pointer
          RTTBL - Error retry count for current unit
          SETBUF - Set up buffer pointer for CPU; SILO transfers
                 - Temporary storage for controller number
          TRKSEC - Convert logical or physical block number
                   to track-sector pair
ERROR
          Error logging and error log processing
          $ALEB1 - Allocate an error message block (EMB);
                   (alternate entry)
          $ALEMB - Allocate an error message block
          SBMSET - Set a driver's bit in the I/O active bitmap
          $DTOER - Log timeout error; EMB formatting routine
          DTOTMP - Device timeout storage
          $DVCER - Log device error bit errors; EMB formatting
                   routine
          $DVERR - Same as $DVCER
          $NSO
                 - Call common nonsense interrupt code; group
                   0 - 17
          $NS1
                 - Call common nonsense interrupt code; group
                   20 - 37
          $NS2
                 - Call common nonsense interrupt code; group
                   40 - 57
```

```
Module
          Routines and Labels
ERROR
          $NS3
                  - Call common nonsense interrupt code; group
(Cont.)
                    60 - 77
          SNS4
                  - Call common nonsense interrupt code; group
                    100 - 117
          $NS5
                  - Call common nonsense interrupt code; group
                    120 - 137
          $NS6
                  - Call common nonsense interrupt code; group
                    140 - 157
          NSI
                  - Nonsense interruption recursion counter
                 - Nonsense interrupt errors
          NSIER
                  - Nonsense interruption old PS storage
          OPC
                  - Nonsense interruption old PC storage
          $QEMB - Queue an error message block (EMB)
          TEMP
                  - Nonsense interrupt PS storage
INITL
          System startup and initialization routine
          DEVMG - "DEVICE dduu: NOT IN CONFIGURATION" message
          $INITL - System gets control here after a boot to
                    initialize and start up the system
          OPMSG
                  - Send message to terminal
          $POOL
                 - Start of pool
                 - Terminal prompt character
          PROMT
          $SYBEG - Beginning of dynamic storage region
          SYSMG
                 - System identification message
          SYSID - System ID
          $SYTOP - Last address in the Executive
          TRTRP - Non-existent memory trap routine
IOSUB
          I/O related subroutine processing
          $ACHCK - Address check, word aligned
$ACHK2 - Address check 2-byte directive parameter block
           $ACHKB - Address check byte aligned
           $ACHKP - Address check parameter block
           $ACHKW - Address check parameter block, word aligned
          SASUMR - Assign UNIBUS mapping registers
          $BLKCl - Logical block check routine (alternate
                    entry)
          $BLKCK - Logical block check routine
           $CEFI - Convert event flag number for I/O
          $CEFN - Convert event flag number for directive
          SCRPAS - Common register pass routine
SDEUMR - Deassign UNIBUS mapping registers (UMRs)
          $DIV - Integer divide magnitude numbers
$DQUMR - Dequeue from UNIBUS mapping register (UMR)
                    wait
           $DVMSG - Device message output to task termination
                    notification task
           $ECCOR - Common ECC correction code for RP04/RK06
           $GTPKT - Get I/O packet from request gueue
           $IOALT - I/O done (alternate entry); finish I/O
                    processing
           $IODON - I/O done; finish I/O processing
           $IOFIN - Finish I/O processing where unit and controller
                    are not to be idle
           $IOKIL - Kill I/O; flush all I/O requests for the
                    current task and cancel current I/O
           $LCKPR - Lock processing routine
           $MPLND' - Map logical unit number (LUN); check for
                    redirected device
           $MPLNE - Map LUN for exit
           $MPLUN - Map LUN
           $MPPHY - Map to physical address
```

```
Module
         Routines and Labels
         IOSUB
(Cont.)
          $MPUBM - Map UNIBUS to memory
          $MPVBM - Map virtual block number
               - Integer multiply magnitude numbers
          $RELOC - Relocate virtual address into a relocation
                  bias and displacement in block
          $RELOM - Relocate and map address
          $RELOP - Relocate UNIBUS physical address
          $RLCH - Release channel
          $RQCH - Request channel
          $SCDV1 - Scan device tables (alternate entry)
          $SCDVT - Scan device tables
          $STMAP - Set up UNIBUS mapping address
          $WTUMR - Wait for change in UNIBUS mapping register
                   state
          Task to load and checkpoint all nonresident tasks
LOADR
          IOSB
                - I/O status double word
          LDRBF - R/W I/O DPB; buffer address
          LDRBK - LBN of I/O transfer
          LDRDP - R/W I/O DPB; DIC, DPB size
          LDRFC - R/W I/O DPB; function code
                             ; LUN 1
                              ; EFN 1
                              ; I/O status doubleword address
                              ; no AST service routine
          LDRLN - R/W I/O DPB; buffer length
          LDRTK - R/W I/O DPB; pointer to request task TCB
          $LOADR - 1. Read a non-resident task into memory
                      and initialize it for execution
                   2. Read a previously checkpointed task back
                      into memory and restart its execution
                   3. Write a checkpoint image of a running task
                      and free its partition
LOWCR
          START - Interrupt and trap vectors
                   $EMTRP - EMT instruction trap
$ILINS - Illegal instruction trap
                   $IOTRP - IOT instruction trap
                   $NONSI - Nonsense interrupt vector
                   STRACE - Breakpoint trap
                   STRP04 - Trap to 4
                   $TRTRP - TRAP instruction trap
          DSW
                 - Pointers
                   Address of directive status
                   Directive status word
                   FCS impure area pointer
                   FORTRAN impure area pointer
                   Overlay run time system impure area pointer
          $STACK - Executive stack area
LPDRV
          LP11/LS11 line printer controller driver
          CNTBL - Address of UCB
                - Cancel I/O
          LPCAN
                - Driver initiator
          LPINI
          LPINT - Interruption processing
                - Device timeout processing
          LPOUT
          LPPWF
                - Powerfail return
          LPRNT - Fill line printer buffer
          $LPTBL - Driver dispatch table
                 - Temporary storage for controller number
```

Module Routines and Labels MMDRV RH11/RH70 TM02/TM03 magnetic tape controller driver BSPACE - Backspace one record CHKEOV - Check for logical end of volume CNTBL - Address of current UCB DRVCLR - Issue drive clear FMTBL - Format code save area INTADD - Current interruption service address LGFCN - Legal function dispatch table MMCAN - Cancel I/O operation MMDINT - Tul6 diagnostic interruption and timeout handler MMINI - Tape controller initiator MMPWF - Powerfail processing \$MMTBL - Driver dispatch table REWND - Rewind function RLCH - Release channel - Request channel RQCH RTTBL - Error retry count SELECT - Select drive SELERR - Select error SPCBK - Space block function SPCFL - Space file function SPTBL - Space checking TEMP - Temporary storage for controller number WRBLK - Write logical function WREOF - Write tape mark function MTDRV TMll magnetic tape controller driver BSPACE - Backspace one record function CHKEOV - Check for logical end of volume CNTBL - Address of current unit control block INTADD - Current interuption service address LGFCN - Legal function dispatch table MTCAN - Cancel I/O operation \$MTCLK - Reference label for timeout MTDINI - Diagnostic interruption and timeout handler MTINI - Tape controller initiator MTOUT - Device timeout processing \$MTTBL - Driver dispatch table RDBLK - Read logical function REWND - Rewind function RTTBL - Error retry count SELECT - Select a tape drive SELERR - Select error SPCBK - Space block function SPCFL - Space file function SPTBL - For space checking - Temporary storage for controller number TEMP WRBLK - Write logical function WREOF - Write tape mark function NLDRV Null device driver \$NLTBL - Driver dispatch table NLINI - Null driver executable code PARTY Memory parity interrupt handling - Address/data group 0 and 1, time of last error ERTRK - Executive parity error message EXMSG \$PARTB - Dummy control status register (CSR) for nonexistant registers

\$MPCTL - New cache parity CSR contents

```
Routines and Labels
Module
PARTY
          $MPCSR - Vector of cache CSR addresses
          MSTAT - First two parity CSRs
PARLV - Interruption recursion level counter
(Cont.)
          RECURS - Jump to halt processor
          STAT - Memory status register
          PARER - Memory parity error interrupt processing
PLSUB
          Program logical address space (PLAS) common subroutines
          $CKACC - Check desired access of a task into a region
           $CRATT - Create attachement descriptor
          $SRATT - Search for attachment descriptor
          $SRNAM - Search for named partition
           $SRWND - Search for specified address window
          SUNMAP - Unmap address window
POWER
          Power failure recovery processing
          $LDPWF - Save APR5; reference label for LOAD
          PDOWN - Powerfail interrupt processing
           $POWER - Power failure recovery processing routine
          PIIP
               - Power up interrupt processing
          PWBTM - Volatile register storage
          PWVCT - Powerfail vector
PPTAB
          Device tables
          $PPDAT - Start of device tables
          $PPEND - End of device tables
PRDRV
          PCll/PRll paper tape reader driver
          CNTBL - Address of unit control block
PRCAN - In process I/O tranfers are not terminated
          PRINI - Controller initiator
           $PRINT - Controller interruption processing
          PROUT - Device timeout processing
          PRPWF - Powerfail return
           $PRTBL - Driver dispatch table
          TEMP
                  - Temporary storage for controller number
QUEUE
          General gueue manipulation processing
          $CLINS - Clock queue insertion
$CLRMV - Clock queue removal
           $QINSF - Queue insertion at end of list
           $QINSP - Queue insertion by priority
           $QMCRL - Queue MCR command line
          $QRMVF - Queue removal from front of list
$QRMVT - Queue removal by TCB address
REQSB
          Task request related subroutines
           $ABCTK - Abort current task
           $ABTSK - Abort task
           SACTTK - Put task in active task list
           $ACTRM - Remove task from the active task list
           $BILDS - Build stack and initialize header
           $CHKPT - Checkpoint task
           $DASTT - Declare AST trap
           $DQAC - Dequeue AST block queued by $QASTC
           SEXROF - Executive request with FIFO queue insert
           $EXRQN - Executive request with no queue insertion
           SEXRQP - Executive request with gueue insert by priority
           SFNDSP - Find space in PCB list
           $ICHKP - Initiate checkpoint
           $LOADT - Put task in loader queue
```

```
Module
          Routines and Labels
REQSB
           $MAPTK - Map task address window
           SNXTSK - Assign next task to partition
(Cont.)
           $QASTC - Queue AST to task
           $QASTT - Queue AST to task
           $RLPAR - Release task partition; get PCB address
           $RLPR1 - Release partition; clear busy
           $SETCR - Set conditional schedule request
           $SETF - Set event flag; convert to mask and address
$SETM - Set event flag
           $SETRQ - Set schedule request
           $SETRT - Set schedule request for current task
           $STPCT - Stop current task
           $STPTK - Stop task
           $SRSTD - Search system task directory
           $TSTCP - Test if checkpoint should be initiated
           $TSKRP - Task request (default UIC)
$TSKRQ - Task request (UCB specified)
$TSKRT - Task request (default UCB)
           $UISET - Establish default UIC and current UIC
SSTSR
           Synchronous system trap (SST) service routine
                     processing
           $EMSST - Non-RSX EMT/TRAP instruciton
           FLFRK - Floating-point fork block
           FLSTS - Floating-point status
           $FLTRP - Floating-point exception (11/40)
           $FLTRP - Floating-point exception (11/45)
           $FPINT - Programmed interrupt request processing
           $ILINS - Illegal or reserved instruction trap routine
           $IOTRP - IOT instruction trap routine
           $SGFLT - Segment fault trap routine
           SSTXT - Common SST exit routine
           $TRACE - TRACE (T-bit) or break point instruction (BPT)
                     trap routine
           $TRP04 - Traps occuring at 4 (odd address,
                     non-existant memory, etc.) trap routine
SYSCM
           System common data areas
           $ABTIM - H.CSP; current stack pointer
$ACTHD - T.MXSZ; active task list listhead
           $BTMSK - Bit mask table
           $CFLPT - W.BOFF; pointer to first checkpoint file PCB
           $CKCNT - T.ASTL+2; address of clock count register
           SCKCSR - T.EFLG; address of clock control status
                     register
           $CKLDC - T.EFLG+2; clock load count
           $CLKHD - P.TCB; clock queue
           $COMEF - T.TCB; common event flags 1. - 16.
           $COPT - P.STAT; pointer to command output UCB
           SCRAVL - P.PRI; dynamic storage listhead
           $DEVHD - H.FCS; pointer to first DCB
$DYPMN - H.VEXT; February, March
           SERRHD - Error logging message queue listhead
           $ERRLM - Limit on resident error logging data
           $ERRPT - W.BHVR; pointer to error logger TCB
           $ERRSQ - Universal error sequence number
           $ERRSV - Pointer to error file identification
           $ERRSZ - Resident bytes of error logging data
$EXSIZ - W.BSIZ; address of last byte in Executive
           $FMASK - P.WAIT+2; system feature mask
           $FRKHD - P.SIZE; fork gueue listhead
```

```
Module
          Routines and Labels
SYSCM
          SHEADR - T.LNK; pointer to current task header
          SINTCT - P.MAIN; clock interrupt ticks count
(Cont.)
          $IOABM - Device I/O active bitmap
          $LDRPT - H.FORT; pointer to loader TCB
          $LOGHD - T.NRPC; logical device assignment list
          $LSTLK - T.LDV; lock word (TCB address of owner)
          $MCRCB - T.LBN+1; MCR command block address
          $MCRPT - H.OVLY; pointer to MCR TCB
$MXEXT - GLobal task size limit for extend task
                    directive
          $PARHD - H.CUIC; pointer to partition table
          $PARPT - P.BUSY; parity address vector table pointer
          $PKAVL - Pointer to first packet in list
          $PKMAX - Maximum number allowed in list
          $PKNUM - Number of packets currently in list
          SPWRFL - H.EFLM; powerfail recovery pointer
          $RQSCH - H.EFSV; schedule request TCB address
          $SHFPT - W.BATT; pointer to shuffler TCB
          $SIGFL - H.EFLM+2; task waiting for significant event
          $STKDP - H.FPSA; stack depth indicator
          $SYSID - T.NAM+2,T.RCVL; system identification
          $SYSIZ - Size of memory in 32 word blocks
$SYUIC - T.UCB; default system UIC (mapped or unmapped)
$TKNPT - T.RCVL+2; pointer to TKTN TCB
          $TKPS - Ticks per second
          $TKTCB - H.FPVA; pointer to current task TCB
          $TSKHD - W.BLVR; pointer to system task directory
          $TTNS - Tick of second
          $UMRHD - Mapping assignment block listhead
          SUMRWT - UMR wait queue listhead
SYSDF
          Contains directive status codes, system global and
                     control block offset definitions
SYSTB
          Contains system device tables
          $DEVTB - Device tables
SYSXT
          System entrance, exit, and processor dispatching
                    routines
          $DIRSV - Directive save routine
           $DIRXT - Directive exit
           $FINBF - Finish terminal input buffered I/O
          $FORKO - Fork and create system process (alternate
                    entry)
           $FORK1 - Fork and create system process and save R5
          $FORK2 - Fork and create system process (CINT$
                    directive)
           $FORK - Fork and create system process (called from
                    I/O driver)
           $INTSC - Interrupt save (CINT$ directive)
           $INTSE - Interrupt save (error logging devices)
           $INTSV - Interrupt save
           $INTXl - Interrupt exit
           SINTXT - Interrupt exit
           $NONSI - Nonsense interrupt RTI routine
                  - Nonsense interrupt vector
           $NS1
                  - Nonsense interrupt vector
           $NS2
                  - Nonsense interrupt vector
           $NS3
                  - Nonsense interrupt vector
           $NS4
                - Nonsense interrupt vector
           $NS5
                - Nonsense interrupt vector
```

```
Module
          Routines and Labels
SYSXT
          $NS6
                 - Nonsense interrupt vector
(Cont.)
          $NS7
                 - Nonsense interrupt vector
                - Rescheduling requested; clear schedule request
          RESCH
          $SAVNR - Save non-volatile registers
          $SWSTK - Switch from task stack to system stack
SYTAB
          System tables needed for resident tasks and
                   bootstrapping the system
          .LDRHD - Loader task header
          $PCBS - Loader partition control block
                 - Loader task control block
          $STD
TDSCH
          Time dependent scheduling and device timeout
                   processing
          $CKINT - Clock interrupt processing routine
          TUOVO
                 - Test for one second elapsed time
                - Executive round robin scheduling
          ROBIN
          RNDCT
                - Clock ticks to next schedule interval
                 - Disk swapping algorithm; reduce swapping
          SWAP
                   priority of resident tasks
          SWPCT
                 - Clock ticks to next swapping interval
          TDS
                 - Time dependent scheduling
          TIMXT
                 - Exit time dependent scheduling if no
                   unprocessed clock ticks remain
          UPTIM - Update absolute and real time of day and date
TTDRV
          Terminal driver for DL11-A line interface and
                   DH11/DJ11/DZ11 line multiplexers
          BECHOB - Echo next byte
          CLKSW - DMll-BB clock switch word
                - Address of unit control block
          CNTBL
          CRTRUB - Backspace, space, backspace (/ /)
          CTRLC
                - Control output message (MCR>)
          CTRLR - Control R processing
          CTRLU
                - Control output message (U)
          CTRLZ - Control output message (Z)
          DHCSR - DH11 CSR address
          $DHINP - DHll terminal multiplexer input interrupt
                   processing
          $DHOUT - DH11 terminal multiplexer output interrupt
                   processing
                 - Pointer to DHll table
          DHTBL
          DHTMP
                 - Temporary storage for controller number (DB11)
          DJCSR
                 - DJ11 CSR address
          $DJINP - DJll terminal multiplexer input interrupt
                   processing
          $DJOUT - DJ11 terminal multiplexer output interrupt
                   processing
                - DJ11 terminal multiplexer save routine
          DJSAV
          DJTBL
                 - Pointer to DJ11 UCB table
                - Temporary storage for controller number (DJ11)
          DJTMP
          $DLINP - DL11 terminal input interrupt processing
          $DLOUT - DL11 terminal output interrupt processing
          DLSAV - DL11 terminal save routine
          DLTMP - Temporary storage for controller number (DL11)
          $DM11B - DM11-B or DM11-BB modem control interrupt
                   processing
          DMHUP
                 - Subroutine to hang up a DMll-BB unit if not
                   ready
          DMSAV
                - DH11 terminal multiplexer save routine
          DMTBL - DM11-BB CSR address
```

```
Module
         Routines and Labels
TTDRV
         DMTMO - DMll-BB time out routine
(Cont.)
         DOCTLC - Lock out input characters
         DZCLK - Clock queue entry address
         DZCLKS - DZll clock switch word
         DZCSR - DZ11 CSR address
          $DZINP - DZ11 terminal multiplexer input interrupt
                  processing
          $DZOUT - DZ11 terminal multiplexer output interrupt
                  processing
                - DZ11 terminal multiplexer save routine
         DZSAV
         DZTBL - Pointer to DZll UCB table (indexed by
                   controller number)
         DZTMO - DZ11 time out routine
         DZTMP - Temporary storage for controller number (DZ11)
         ECHOB1 - Display (send out) a character
         ECHOB - Echo next byte
         FCHAR - Send a character to a terminal
         FILTB - LA30S carriage return fill table
         FWRITE - Breakthrough write (disallow control-0)
         GETBF - Get input buffer and set terminal control block
         GETBF2 - Allocate a core block
         GMCTAB - Terminal characteristics
          ICHAR - Process an input character
          INPINI - Copy UCB address
          INPPT - Input request in progress
                - Enable input character handling
          INPT0
               - Fork to finish an input request
          INPT1
          INPT2 - End-of-line fork process
          IODON - Finish I/O operation
          JTTINI - Go to terminal initiator
          LEVHSM - Leave hold-screen mode ()
          MECHOl - Multi-echo processing
          OCHAR - Send a character to a terminal
          OUTPT - Start or continue an output stream
          OUTPT1 - Test if a fill should be echoed
          SYNTAB - Escape sequence syntax table
          TCHR1 - Teminal characteristics
          TINPl - Unsolicited input fork process
          TICAN
                - Cancel I/O operation (force I/O complete)
          TTCHK - Terminal driver special parameter checking
          TTHUP - Cancel I/O and BYE if DMll or DZll line hangs
                   up
          TTINI - Terminal initiator
          TTOUT - Terminal driver timeout entry point
          TTOUT1 - Terminal timeout; finish I/O operation
          TTPWF - Powerfail entry point (loaded as a loadable
                   driver)
          $TTTBL - Device initiator entry point
          UCBTB - Address of UCB for line
          UCJTB - Address of line's UCB (DJ11)
          UCZTB - UCB address for each line; indexed
                   by line (unit) number
XBDRV
          DAll-B Interprocessor Communications Driver
                   - Unit impure data table (reference label)
          UNITBL
                   - Unit impure data table
          $XBTBL:: - Device dispatch table
                   - DAll-B parallel communications link controller
          DBINIT
                    I/O initiator entry point
                   - Successful completion entry
          SUCC:
          DBTMO:
                   - Device timeout entry
```

Module Routines and Labels XBDRV DBCANC: - Device cancellation entry (Cont.) DBPWRF: - Device powerfail entry \$XBINT:: - DAll-B interrupt routine IEVER: - Unrecoverable error finish - Successful completion SUCDN: INTDN: - Finish I/O - Check for enable receive TXDN: NOTHING: - Check for interrupt - Wait for transfer completion EXIT: - Error checking ERR: - Check for valid UCB address and device online - Exit from interrupt DBSET: DBEXIT: - Initiate device for unsolicited receive XBRCV: - Receive error. Check for receiver active RESYNC: MYSYNC: - Receive error. Device must be resynced XMDRV RSX-11M DMC11 Driver UCB displacements used - Transmit listhead address U.XQ: U.RQ: - Receive listhead address - Error status U.ERR: U.XAST: - Exception AST block address U.ABO: - Number of I/O requests marked for abort Listhead displacements IOTYPE: - SELO request type - Sent count COUNT: - Next UMR to use UMR: UMRSUM: - Sum of both UMR addresses - Microprocessor base table BASE: \$XMTBL:: - Driver dispatch table - UCB address table CNTBL: - Temporary unit save TEMP: - Listheads LIST: BTAB: - Multiple unit base table addresses - Multiple unit listhead addresses XLTAB: - Address extension bits AXTAB: - Return point XMRET: XMINIT: - Initiate DMC I/O entry PKTOK: - Finish packet with "IS.SUC" status - Alternate entry for PKTOK FINPKT: XMDNR: - Device not ready XMSPC: - Illegal buffer - Illegal function code XMIFC: TRAN: - Transfer function - Try to give transfer request to DMC TRY: - Give buffer address and count to DMC GIVE: SETDMC: - Initialize DMC hardware WRDYIC: - Release port and wait for RDYI clear WRDYIS: - Wait for RDYI set - Do 22-bit mapping and load data port MAP22: \$XMINP:: - Process RDYI interrupt XMTRDY: - DMC ready for transmit buffer RCVRDY: - DMC ready for receive buffer FPERR: - Force procedure error \$XMOUT:: - Process completion interrupt XMTCOM: - Transmit buffer complete RCVCOM: - Receive buffer complete - Control out CNTLO: - Exit from interrupt (reference label) BAD: XMINTX: - Exit from interrupt

- Setup for interrupt routines and transfer

XMSET:

```
Module
          Routines and Labels
XMDRV
                   - Give buffer to DMC
          RDYINT:
                   - Process buffer complete
(Cont.)
          BUFCOM:
                   - Start fork process if fork process not running
          XMFRK:
                   - Timeout processing entry
          XMTMO:
          XMCANC: - Cancel I/O entry
                   - Powerfail recovery entry
          XMPWRF:
          XMCANC: - Indicate I/O kill was done
                   - Kill the device
          KILL:

Alternate entry for KILL:
Alternate entry for KILL:
Queue an AST to the CCP (clear AST block address)
Queue an AST to the CCP (declare significant

          ROPABO:
          RQP:
          OXAST:
          QAST:
                     event)
          DORAP:
                    - Dequeue and return an I/O packet
          RAP:
                   - Return an already dequeued I/O packet
          ITRY:
                   - Try to set up another buffer from interrupt level
                   - Request the data port
          PORT:
          IPORT:
                   - Request the data port from interrupt level
                   - Initiate DECNET transmit
          NTXMT:
                   - Initiate DECNET receive
          NTRCV:
          NTFIX: - DECNET error recovery
          NTABO: - Abort by CCB address
XPDRV
          DP11 Synchronous Communications Driver
          CNTBL:
                   - Reference label for UNITBL:
          UNITBL:
                   - UCB addresses
          TEMP:
                   - Reference label for UNIT:
                   - Temporary storage for unit number
          UNIT:
          $XPTBL:: - Driver dispatch table
          DPINIT: - DPll Synchronous Communications Controller I/O
                      initiator
          DPSUCC: - Return successful status
                   - Idle controller and mark unit idle
          DPFIN:
          DPPWRF: - Power fail service routine
          DPCANC: - I/O cancellation entry
                    - Timeout service routine
          DPTMO:
          $XPINP:: - DP11 input interrupt service routine
          $XPOUT:: - Transmitter interrupt service routine
          DPTXND: - End of transmission
DPRXER: - Receiver error detected. Resync controller
                   - Unsolicited receive initialization. Activate
          DPRCV:
                      controller
                    - Set up register R4 with CSR address, R5 with UCB
          DPSET:
                      address, unit number in low-order 4 bits of unit
                    - Dismiss interrupt
          DPSXT:
XQDRV
          DQll Synchronous Communications Driver
          CNTBL:
                   - Reference label for UNITBL:
          UNITBL: - UCB address tabel
                    - Reference label for UNIT:
          TEMP:
          UNIT:
                    - Temporary storage for unit number
          $XQTBL:: - Device dispatch table
          DQINIT: - DQll Synchronous Communications Controller I/O
                      initiator
                   - Return from initiator
          DQRET:
                   - Do I/O done (successful)
          SUCC:
          UNSUCC: - Do I/O done (unsuccessful)
          DQCANC: - I/O cancellation entry
          DQPWRF: - Powerfail routine entry
```

DQTMO: - Timeout routine entry

Module Routines and Labels XODRV TNEXT: - Select appropriate buffer address register to use (Cont.) (transmit) Select appropriate buffer address register to use (transmit - double buffering ahead) TOAN: - Select appropriate buffer address register to use RNEXT. (receive) ROAN: - Select appropriate buffer address register to use (receive - double buffering ahead) \$XQOUT:: - Transmit interrupt routine TXTRN: - Finish transmit DOTXDN: - Transmit done ERROR: - Error routine - Receive BCC error RBCERR: DOSET: - Set up R4 with RXCSR address, R5 with UCB address, unit number in low-order four bits of unit. \$DQEXIT: - Jump to \$INIXT to dismiss interrupt \$XQINP:: - Receive interrupt routine RXENT: - End of receive routine. Clear spurious clock error, save registers, check for buffers finished. DQRCV: - Initialize DQ for unsolicited receive RESYNC: - Re-sync or initialize receiver to receive from a dead start. SETUP: - Set up device with next receive buffer **XUDRV** DUll Synchronous Communications Driver CNTBL: - Reference label (for UNITBL:) UNITBL: - UCB address table TEMP: - Reference label (for UNIT:) \$XUTBL:: - Driver dispatch table DUINIT: - DUll Synchronous Communication Controller I/O initiator DUSUCC: - Return successful status for mode change full- or half-duplex) DUFIN: - End mode change request routine DUPWRF: - Powerfail service routine - I/O cancellation service routine DUCANC: - Timeout service routine DUTMO: \$XUINP:: - Input interrupt service routine \$XUOUT:: - Transmitter interrupt service routine - End of transmitter interrupt service DUTXND: DURXER: - Receiver error - re-sync controller DURCV: - Activate controller to be ready to accept data DUSET: - Set up R4 with CSR address, R5 with UCB address, unit number in low-order 4 bits of unit

- Jump to \$INTXT to dismiss interrupt

DUSXT:

Module Routines and Labels

XWDRV DUP11 Synchronous Communications Driver CNTBL: - Reference label for UNITBL:

UNITBL: - UCB address table

TEMP: - Reference label for UNIT:

UNIT: - Temporary storage for unit number

\$XWTBL:: - Driver dispatch table

DWINIT: - DUP11 Synchronous Communication Controller

I/O initiator

DWSUCC: - Successful device mode change request
DWFIN: - End of device mode change request routine

DUPWRF: - Powerfail service routine

DWCANC: - I/O cancellation service routine

DWTMO: - Timeout service routine

\$XWINP:: - DUPll input interrupt service routine \$XWOUT:: - Transmitter interrupt service routine DWTXND: - End of transmitter interrupt service

DWRXER: - Receiver error detected. Resync controller DWRCV: - Activate controller to be ready to receive data

DWSET: - Set R4 with CSR address, R5 with UCB address,

unit number in low-order 4 bits of unit

9.2 RSX-11M EXECUTIVE GLOBAL CROSS-REFERENCE

The Executive global cross-reference contains an alphabetic listing of each global symbol along with its value and the name of each referencing module.

The value contains the suffix -R if the symbol is relocatable.

The symbol # preceeds the module in which the symbol is defined.

Symbol	Value	Modules	Tha	t Refer	enc	e Symbol				
C.SYST	000006	# EXEDF		TTDRV						
DV.MXD	000100	# EXEDF		IOSUB						
DV.PSE	010000	# EXEDF		INITL		IOSUB				
DV.TTY	000004	# EXEDF		IOSUB						
DV.UMD	000200	DRQIO	#	EXEDF		IOSUB				
D\$\$YNM	000000	# SYSDF								
D.DSP	000012	DRQIO	#	EXEDF		IOSUB		POWER		TDSCH
D.MSK	000014	DRQIO	#	EXEDF						
D.NAM	000004	DRASG	#	EXEDF		INITL		IOSUB		
D.PCB	000034	DRQIO	#	EXEDF		IOSUB		POWER		TDSCH
D.RS00	000000	DRSED	#	SYSDF						
D.RS1	177777	CORAL		DREXP		DRMAP		DRREG		DRREQ
		# SYSDF	1							
D.RS10	177766	DRDCP	#	SYSDF						
D.RS16	177760	DRDSP		DRMAP		DRMKT		DRREG		DRRES
		PLSUB	#	SYSDF						
D.RS17	177757	# SYSDF								
D.RS19	177755	# SYSDF								
D.RS2	177776	DRDSP		DRGPP		DRMAP		DRRAS	;	# SYSDF
D.RS22	000002	DREIF		DRRES		DRSED	#	SYSDF		
D.RS5	177773	DRGLI		DRQIO	#	SYSDF				
D.RS6	177772	DRQIO	#							
D.RS7	177771	DRABO		DRREQ		DRRES	#	SYSDF		
D.RS8	177770	DRDAR		DRDCP		DREXP		DRMAP		DRPUT
		DRRAS		DRRES	#	SYSDF				

Symbol	Value	Modules	That Refer	ence Symbol	L	
D.RS80	177660	DRATX	DRGCL	DRPUT	# SYSDF	
D.RS81	177657	# SYSDF				
D.RS84	177654	DREXP	DRMAP	# SYSDF		
D.RS85	177653	DRMAP	# SYSDF			
D.RS86	177652	DRMAP	DRREG	PLSUB	# SYSDF	
D.RS87 D.RS90	177651	PLSUB	# SYSDF			
D.RS92	177646 177644	DRASG DRASG	# SYSDF # SYSDF			
D.RS93	177643	CVRTM	# SISDF # SYSDF			
D.RS94	177642	DRREG	# SYSDF			
D.RS95	177641	DRRES	# SYSDF			
D.RS96	177640	IOSUB	# SYSDF			
D.RS97	177637	DRDSP	DRSED	IOSUB	# SYSDF	
D.RS98	177636	DRSST	IOSUB	SSTSR	# SYSDF	
D.RS99	177635	DRDSP	# SYSDF			
D.UCBL	000002 000010	DRASG	# EXEDF	INITL	IOSUB	
D.UNIT	000010	DRASG DRASG	# EXEDF # EXEDF	INITL INITL	IOSUB IOSUB	
D.VCAN	000002	# EXEDF	IOSUB	14111	10000	
D.VINI	000000	DRQIO	# EXEDF			
TUOV. D	000004	# EXEDF	TDSCH			
D.VPWF	000006	# EXEDF	POWER			
EC.DTO	000140	ERROR	# EXEDF			
EC.DVC EC.NSI	000001 000141	ERROR	# EXEDF # EXEDF			
E.LGTH	000141	ERROR ERROR	# EXEDF			
E.OPC	000022	ERROR	# EXEDF			
E.RTRY	000016	# EXEDF	IOSUB			
IE.ABO	177761	DTDRV	IOSUB	LPDRV	TTDRV	
IE.ALN	177736	DRQIO				
IE.BAD	177777	ADDRV	DRQIO	ICDRV	TTDRV	
IE.BBE IE.BLK	177710 177754	DRDRV	MMDRV			
IE.BYT	177755	DXDRV DRQIO	IOSUB ICDRV			
IE.CNR	177667	GRDRV	ICDRV			
IE.DAA	177770	IOSUB				
IE.DAO	177763	MMDRV				
IE.DNA	177771	IOSUB				
IE.DNR	177775	ADDRV	DBDRV	DKDRV	DMDRV	DRDRV
IE.EOF	177766	ICDRV MMDRV	MMDRV NLDRV	TDSCH TTDRV	TTDRV	
IE.EOT	177702	MMDRV	MUDAV	IIDRV		
IE.EOV	177765	MMDRV				
IE.FHE	177705	MMDRV				
IE.FLN	177657	ICDRV				
IE.IEF	177637 177776	GRDRV	DUDDI			
IE.IFC	1////6	DBDRV DTDRV	DKDRV ICDRV	DMDRV	DRDRV	DRQIO
		TTDRV	UDDRV	IOSUB	ISDRV	MMDRV
IE.LCK	177745	IOSUB	ODDAV			
IE.MOD	177753	ICDRV	ISDRV			
IE.NLN	1:77733	DRQIO				
IE.NOD	177751	DRQIO	IOSUB	TTDRV		
IE.OFL	177677	DRQIO				
IE.OVR IE.PRI	177756 177760	DRQIO DRQIO	ICDRV	IOSUB	TTDRV	
IE.RSU	177757	TTDRV	TCDKA	TOBUB	TIDKA	
IE.SPC	177772	ADDRV	DRQIO	GRDRV	ICDRV	MMDRV
		TTDRV				
IE.ULK	177653	IOSUB				
IE.VER	177774	DBDRV	DKDRV	DMDRV	DRDRV	DTDRV
		DXDRV	MMDRV			

I.E. WCK	Symbol	Value	Modules	That Refere	ence Symbol		
IE.WLK	IE.WCK	177652	DBDRV	DKDRV	DMDRV	DRDRV	
MMDRV							บรดรา
IO.ATT		_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		21.21.1	551.	51.51.7	D10111
IO.CLN	TO.ATT	001400		TOSIIR	ህወጣጥጥ		
IO.CON			-	10505	IIDIN		
IO.DET							
IO.DIS				OTORO	TOSUR	ጥጥኮ ውጥ	
IO.EOF				21.010	10000	1101(
IO.FLN							
IO.GTS							
IO_LOV							
IO. ONL		001010	DROIO				
D. RLV	IO.ONL	017400					
D.RLV	IO.RLB	001000	DBDRV	DKDRV	DMDRV	DRDRV	DROIO
IO.RPR			DTDRV	DXDRV	LOADR		
IO. RVB	IO.RLV	001100	DTDRV	MMDRV			
IO.STC	IO.RPR	004400	TTDRV				
IO. STP	IO.RVB	010400	DRQIO	IOSUB			
IO, ULK	IO.STC	002500	MMDRV				
IO.WLB	IO.STP	016400	GRDRV				
IO.WLC	IO.ULK	005000	IOSUB	•			
IO.WLC	IO.WLB	000400	DMDRV	DRDRV	DRQIO	DXDRV	IOSUB
IO.WLT			LOADR	MMDRV	NLDRV	TTDRV	
IO.WLV			DBDRV	DKDRV	DMDRV	DRDRV	
IO.WVB	IO.WLT			DRDRV			
IQ.UMD				•			
IQ.X							
IS.RDD	-				IOSUB		
IS.SUC				DKDRV	DMDRV	DRDRV	DXDRV
DRQIO DTDRV DXDRV GRDRV ICDRV IOSUB ISDRV LPDRV MMDRV NLDRV							
IOSUB	IS.SUC	000001					
TTDRV							
ISSS11					LPDRV	MMDRV	NLDRV
I.FCN	TCCC11	000000		UDDRV			
I.PRI 000002				4 n n n 1 1			
I.PRM 000024					ICDRV	NLDRV	TTDRV
I.TCB					TORRE	*** ****	mmn n**
KISAR5 172352 # EXEDF QUEUE KISAR6 172354 DRMAP # EXEDF GRDRV TTDRV L.ASG 000010 DRASG # EXEDF L.NAM 000002 DRASG # EXEDF L.TYPE 000005 DRASG # EXEDF L.UCB 000006 DRASG # EXEDF L.UNIT 000004 DRASG # EXEDF M\$\$EXT 000000 # SYSDF M\$\$MGE 000000 # SYSDF M.BFVH 000011 # EXEDF IOSUB M.BFVL 000012 # EXEDF IOSUB M.LGTH 000014 # EXEDF IOSUB M.UMRA 000002 # EXEDF IOSUB M.UMRA 000004 # EXEDF IOSUB M.UMRN 000004 # EXEDF IOSUB M.UMVH 000010 # EXEDF IOSUB M.UMVH 000010 # EXEDF IOSUB M.UMVL 000006 # EXEDF IOSUB PR4 0000200 # EXEDF GRDRV							TTDRV
KISAR6 172354 DRMAP # EXEDF GRDRV TTDRV L.ASG 000010 DRASG # EXEDF L.NAM 000002 DRASG # EXEDF L.TYPE 000005 DRASG # EXEDF L.UCB 000006 DRASG # EXEDF L.UNIT 000004 DRASG # EXEDF M\$\$EXT 000000 # SYSDF M\$\$MGE 000000 # SYSDF M.BFVH 000011 # EXEDF IOSUB M.BFVL 000012 # EXEDF IOSUB M.LGTH 000014 # EXEDF IOSUB M.UMRA 000002 # EXEDF IOSUB M.UMRA 000004 # EXEDF IOSUB M.UMRN 000004 # EXEDF IOSUB M.UMVH 000010 # EXEDF IOSUB M.UMVH 000010 # EXEDF IOSUB M.UMVL 000006 # EXEDF IOSUB M.UMVL 000006 # EXEDF IOSUB M.UMVL 000006 # EXEDF IOSUB PR4 0000200 # EXEDF GRDRV					ICDRV	TTDRV	
L.ASG 000010 DRASG # EXEDF L.NAM 000002 DRASG # EXEDF L.TYPE 000005 DRASG # EXEDF L.UCB 000006 DRASG # EXEDF L.UNIT 000004 DRASG # EXEDF M\$\$EXT 000000 # SYSDF M\$\$MGE 000000 # SYSDF M.BFVH 000011 # EXEDF IOSUB M.BFVL 000012 # EXEDF IOSUB M.LGTH 000014 # EXEDF IOSUB M.UMRA 000002 # EXEDF IOSUB M.UMRA 000004 # EXEDF IOSUB M.UMRN 000004 # EXEDF IOSUB M.UMVH 000010 # EXEDF IOSUB M.UMVH 000010 # EXEDF IOSUB M.UMVL 000006 # EXEDF IOSUB M.UMVL 000006 # EXEDF IOSUB PR4 0000200 # EXEDF GRDRV					CPDPV	mm D D T	
L.NAM 000002 DRASG # EXEDF L.TYPE 000005 DRASG # EXEDF L.UCB 000006 DRASG # EXEDF L.UNIT 000004 DRASG # EXEDF M\$\$EXT 000000 # SYSDF M\$\$MGE 000000 # SYSDF M.BFVH 000011 # EXEDF IOSUB M.BFVL 000012 # EXEDF IOSUB M.LGTH 000014 # EXEDF IOSUB M.UMRA 000002 # EXEDF IOSUB M.UMRN 000004 # EXEDF IOSUB M.UMRN 000004 # EXEDF IOSUB M.UMVH 000010 # EXEDF IOSUB M.UMVH 000010 # EXEDF IOSUB M.UMVL 000006 # EXEDF IOSUB PR4 0000200 # EXEDF GRDRV					GKDKV	IIDKV	
L.TYPE 000005 DRASG # EXEDF L.UCB 000006 DRASG # EXEDF L.UNIT 000004 DRASG # EXEDF M\$\$EXT 000000 # SYSDF M\$\$MGE 000000 # SYSDF M.BFVH 000011 # EXEDF IOSUB M.BFVL 000012 # EXEDF IOSUB M.LGTH 000014 # EXEDF IOSUB M.UMRA 000002 # EXEDF IOSUB M.UMRN 000004 # EXEDF IOSUB M.UMRN 000004 # EXEDF IOSUB M.UMVH 000010 # EXEDF IOSUB M.UMVH 000010 # EXEDF IOSUB M.UMVL 000006 # EXEDF IOSUB PR4 0000200 # EXEDF GRDRV							
L.UCB 000006 DRASG # EXEDF L.UNIT 000004 DRASG # EXEDF M\$\$EXT 000000 # SYSDF M\$\$MGE 000000 # SYSDF M.BFVH 000011 # EXEDF IOSUB M.BFVL 000012 # EXEDF IOSUB M.LGTH 000014 # EXEDF IOSUB M.UMRA 000002 # EXEDF IOSUB M.UMRN 000004 # EXEDF IOSUB M.UMVH 000010 # EXEDF IOSUB M.UMVH 000010 # EXEDF IOSUB M.UMVL 000006 # EXEDF IOSUB PR4 000200 # EXEDF GRDRV							
L.UNIT 000004 DRASG # EXEDF M\$\$EXT 000000 # SYSDF M\$\$MGE 000000 # SYSDF M.BFVH 000011 # EXEDF IOSUB M.BFVL 000012 # EXEDF IOSUB M.LGTH 000014 # EXEDF IOSUB M.UMRA 000002 # EXEDF IOSUB M.UMRN 000004 # EXEDF IOSUB M.UMVH 000010 # EXEDF IOSUB M.UMVL 000006 # EXEDF IOSUB PR4 000200 # EXEDF GRDRV							
M\$\$EXT 000000 # SYSDF M\$\$MGE 000000 # SYSDF M.BFVH 000011 # EXEDF IOSUB M.BFVL 000012 # EXEDF IOSUB M.LGTH 000014 # EXEDF IOSUB M.UMRA 000002 # EXEDF IOSUB M.UMRN 000004 # EXEDF IOSUB M.UMVH 000010 # EXEDF IOSUB M.UMVL 000006 # EXEDF IOSUB PR4 000200 # EXEDF GRDRV							
M\$\$MGE 000000							
M.BFVH 000011							
M.BFVL 000012				IOSUB			
M.LGTH 000014	M.BFVL	000012					
M.UMRA 000002		000014					
M.UMVH 000010 # EXEDF IOSUB M.UMVL 000006 # EXEDF IOSUB PR4 000200 # EXEDF GRDRV	M.UMRA			IOSUB			
M.UMVL 000006 # EXEDF IOSUB PR4 000200 # EXEDF GRDRV	M.UMRN	000004					
PR4 000200 # EXEDF GRDRV			# EXEDF	IOSUB			
			# EXEDF	IOSUB			
DD5 000240 # EVEDE ##DD7			# EXEDF	GRDRV			
	PR5	000240	# EXEDF	TTDRV			
PR6 000300 # EXEDF ICDRV							
PR7 000340 # EXEDF GRDRV							
PS 177776 # EXEDF GRDRV ICDRV TTDRV						TTDRV	,
P.ATT 000036 DRREG PLSUB # SYSDF	P.ATT	000036	DRREG	PLSUB	# SYSDF		

Symbol	Value	Modules	Tha	t Refere	enc	e Symbol				
P.BLKS	000016	# EXED	, #	SYSDF						
P.BUSY	000024	# EXEDI	, #	SYSDF						
P.HDR	000032	DREXI		DRRES		ERROR		LOADR		REQSB
P.IOC	000003	# SISDE		SYSXT SYSDF		TDSCH		TTDRV		
P.LGTH	000042	DREI		DRREG		REQSB	#	SYSDF		
P.LNK	000000	# EXED				KUQOD	π	01001		
P.MAIN	000012	# EXED		SYSDF						
P.NAM	000004	# EXED		SYSDF						
P.OWN	000026	# EXED		SYSDF						
P.SIZE	000016	# EXEDI		SYSDF						
P.STAT	000030	# EXED		SYSDF						
P.SUB	000010	# EXEDI	, #	SYSDF						
P.SWSZ	000022	# EXEDI	, #	SYSDF						
P.TCB	000026	# EXED	`#	SYSDF						
P.WAIT	000020	# EXEDI		SYSDF						
SP.EIP	000001	ERRO		EXEDF		IOSUB		SYSXT		
SP.ENB	000002	ERROI		EXEDF						
S\$\$IEN	000115	# SYSCM								
S\$\$LDC	000001	# SYSCM								
S\$\$RTZ	000074	# SYSCM								
S\$\$TPS S.BMSK	000074 177776	# SYSCM		EDDOD	п	EVEDE	ш	CVCDE		CVCVM
S.BMSV	177774	DTDR\ ERROI		ERROR EXEDF	#	EXEDF IOSUB	#	SYSDF SYSDF		SYSXT
S.CCB	000030	# SYSDI		EVEDE		10506	#	31301		SISAT
S.CON	000010	DBDRV		DKDRV		DMDRV		DRDRV		DXDRV
D.COM	000010	# EXEDE		IOSUB		MMDRV		POWER	#	
		SYSXI		TDSCH		PIPIDICY		LOWER	π	OIODI
s.csr	000012	ADDRI		DBDRV		DKDRV		DMDRV		DRDRV
		DTDRI		DXDRV		ERROR	#			GRDRV
		ICDRV		INITL		LPDRV		MMDRV	#	SYSDF
	•	TDSCH		TTDRV						
S.CTM	000006	DBDRV	7	DKDRV		DMDRV		DRDRV		DTDRV
		DXDRV	' #	EXEDF		LPDRV		MMDRV	#	SYSDF
		SYSXI		TDSCH		TTDRV				
S.DHCK	000030	# SYSTE		TTDRV						
S.FLG	000000	ICDRV						~~		
S.FRK	000016	# EXED		IOSUB	#	SYSDF		SYSXT		Dmp 017
S.ITM	000007	DBDRV		DKDRV EXEDF		DMDRV LPDRV		DRDRV	11	DTDRV
		DXDRV TTDRV		EVEDE		LPDRV		MMDRV	#	SYSDF
S.LHD	000000	# EXED		SYSDF						
S.MPR	000030	IOSUE		SYSDF						
S.PKT	000014	DBDRV		DKDRV		DMDRV		DRDRV		DTDRV
		DXDRV	•	ERROR	#	EXEDF		IOSUB		LPDRV
		MMDRV	••	SYSDF		TTDRV				
S.PRI	000004	ERROI		EXEDF		IOSUB	#	SYSDF		SYSXT
		TDSCH		TTDRV						
S.RCNT	177772	ERROI		EXEDF		IOSUB	#	SYSDF		
S.ROFF	177773	ERROF		EXEDF		IOSUB	#			D D
S.STS	000011	DBDRV		DKDRV		DMDRV		DRDRV	п	DTDRV
		# EXEDI		IOSUB		LPDRV		MMDRV	₩	SYSDF
s.vcT	000005	# EXED		SYSDF						
TS.CKR	000100	# EXEDI		TTDRV						
TS.RDN	040000	# EXED		TTDRV						
T.ASTL	000016	# EXED		GRDRV		TTDRV				
T.EXT	000000	# SYSDI								
T.IOC	000003	# EXED	,	GRDRV		TTDRV				
T.LGTH	000070	# SYSDE								
T.PCB	000046	# EXED		TTDRV						
T.STAT	000032	# EXED	,	TTDRV						

T.ST2 000034	Symbol	Value	M	odules	Tha	t Refer	ence	e Symbol				
T2.ABO	T.ST2	000034	#	EXEDF		GRDRV		TTDRV				
100000	T.ST3	000036	#.	EXEDF		ICDRV		TTDRV				
UC.LCH 000004		000100	#	EXEDF		GRDRV						
U.C. LGH	T2.AST	100000	#	EXEDF		GRDRV		TTDRV				
U. PR	UC.KIL	000004	#	EXEDF		IOSUB						
U., OPE				DRQIO	#	EXEDF						
U.S.												
UISBRO			#									
US.BRO												
US.CRY 000004												
US.DES 000010					#							
US.DSB 000010								TTDRV				
US.FOR 000002												
US.LAB 000040 DRQIC												
US.AB			π				#	EXEDE		TOSUB		
US. MDM 000020 DRQIC EXEDF US.OFT 10SUB					#		ır			10000		
US.OFL 000001 DRQIO DRQIO EXEDF TTDRV US.OUT 000001 EXEDF TTDRV US.OUT 000001 EXEDF TTDRV US.PUB 000004 DRQIO EXEDF TTDRV US.SPU 000002 DBRV DKDRV DKDRV DMDRV DRDRV EXEDF US.UMD 000010 DBRV DKDRV DMDRV DRDRV EXEDF US.UMD 000010 DBRV DKDRV DMDRV DRDRV EXEDF US.UMD 000012 DRGS EXEDF IOSUB U.ACT 000022 DRASG DREIS EXEDF IOSUB U.ATT 000022 DRASG DREIS EXEDF IOSUB U.ATT 000024 ADDRV DTDRV DXDRV EXEDF IOSUB U.CNT 000030 ADDRV DMDRV DMDRV DXDRV EXEDF IOSUB U.CNT 000030 ADDRV DBDRV DXDRV EXEDF IOSUB LPDRV DXDRV EXEDF INITL IOSUB LPDRV DXDRV EXEDF INITL IOSUB LPDRV DXDRV EXEDF INITL IOSUB LPDRV DXDRV EXEDF IOSUB DXDRV DXDRV E												
US.OUT 000001							#	EXEDF		IOSUB		
US.PUB 000001					#							TTDRV
US.JWD 000010 DRDRV DRDRV DRDRV DRDRV # EXEDF US.WCK 000010 DBDRV DRDRV DMDRV DRDRV DRDRV US.WCK 000010 DBDRV DRDRV DMDRV DRDRV DRDRV US.WCK 000012 DRBSS # EXEDF IOSUB U.ACP 000022 DRASG DREIF # EXEDF IOSUB TTDRV DRDRV DRD			#		-							
US.WCK 000010 DEDRY DKDRY DMDRY DRDRY \$EXEDF 10SUB 10SUB	US.PUB	000004		DRQIO	#	EXEDF						
U. ACP	US.SPU	000002		DBDRV		DKDRV		DMDRV		DRDRV	#	EXEDF
U.ACP	US.UMD				#	EXEDF		IOSUB				
U.ATT				DBDRV				DMDRV		DRDRV	#	EXEDF
U.BUF					#							
U.BUF	U.ATT	000022				DREIF	#	EXEDF		IOSUB		
U.CNT		000004										BWB 517
U.CNT	O.BOF	000024							11			
U.CNT									₩	EXEDE		10208
DTDRV	II CNIM	000020								DMDDU		ממממ
U.CTL 000004 DRQIO # EXEDF IOSUB POWER INITL IOSUB U.CW1 000010 DRGLI DRQIO DRRES # EXEDF INITL IOSUB U.CW2 000012 ADDRV DMDRV DMDRV TTDRV IOSUB LPDRV MMDRV TTDRV U.CW3 000014 DMDRV # EXEDF IOSUB MMDRV TTDRV U.CW4 000016 # EXEDF LPDRV TTDRV U.OWN 177776 DRQIO # EXEDF U.SCB 000002 # EXEDF IOSUB DTRV DXDRV # EXEDF IOSUB U.SCB 000002 # EXEDF IOSUB LPDRV DXDRV # EXEDF ICDRV DXDRV # EXEDF IOSUB DTRV DXDRV # EXEDF ICDRV DXDRV BADRV DXDRV BADRV DRQIO DRRES DTDRV DXDRV # EXEDF ICDRV DXDRV BADRV DXDRV BADRV DRQIO DRRES BEXEDF IOSUB MMDRV SYSXT TTDRV U.STS 000005 DBDRV DKDRV DKDRV DMDRV DRDRV DRQIO DRRES # EXEDF IOSUB MMDRV POWER TTDRV U.ST2 000007 DRQIO # EXEDF IOSUB MMDRV DRDRV DXDRV U.UNIT 000006 DBDRV DKDRV DKDRV DMDRV DRDRV DXDRV U.UNIT 000006 DBDRV DKDRV DKDRV DMDRV DRDRV DXDRV U.UNIT 000006 DBDRV DKDRV DMDRV DRDRV DXDRV U.UNIT 000006 DBDRV DKDRV DMDRV DRDRV DXDRV U.UNIT 000006 DBDRV DXDRV DXDRV DXDRV TTDRV U.UNIT 000006 BEXEDF TTDRV U.SEC 001000 # EXEDF TTDRV U.U.UNIT 000004 # EXEDF TTDRV U2.ESC 001000 # EXEDF TTDRV U2.ESC 001000 # EXEDF TTDRV U2.LWC 000400 # EXEDF TTDRV U2.LWC 000400 # EXEDF TTDRV U2.LWC 000001 # EXEDF TTDRV U2.LWC 000001 # EXEDF TTDRV U2.LWC 000001 # EXEDF TTDRV	O.CNI	000030					#					
U.CTL							π	EXEDE		10200		HEDKY
U.CW1 000010 DRGLI 10SUB DRQIO DRRES # EXEDF INITL IOSUB U.CW2 000012 ADDRV DBDRV DMDRV DTDRV # EXEDF U.CW3 000014 DMDRV EXEDF IOSUB MMDRV TTDRV U.CW4 000016 # EXEDF LPDRV TTDRV U.DMCS 000064 # SYSTB TTDRV U.SCB 000020 DBDRV DKDRV DMDRV DRDRV DRQIO DRRES DTDRV DKDRV DMDRV DRDRV DRQIO DRRES DTDRV DXDRV # EXEDF ICDRV INITL IOSUB LPDRV MMDRV SYSXT TTDRV U.STS 000005 DBDRV DKDRV DMDRV DRDRV DRQIO DRRES # EXEDF IOSUB MMDRV POWER TDSCH TTDRV U.ST2 000007 DRQIO # EXEDF IOSUB MMDRV DRDRV DXDRV U.ST2 000006 # EXEDF IOSUB MMDRV DRDRV DXDRV U.UNIT 000006 # EXEDF IOSUB MMDRV DXDRV DXDRV U.VCB 000034 DREIF DRQIO DTDRV TTDRV U.VCB 000034 DREIF DRQIO DTDRV # EXEDF MMDRV U.SEDF TTDRV U.SEC 001000 # EXEDF TTDRV U.SEC 001000 # EXEDF TTDRV U.SEC 000040 # EXEDF TTDRV U.SEC 001000 # EXEDF TTDRV U.SEC 000040 # EXED	II. CTL	000004			#			TOSUB		POWER		
U.CW2				_	"				#			INITL
U.CW3 000014 DMDRV # EXEDF 10SUB MMDRV TTDRV U.CW4 000016 # EXEDF LPDRV TTDRV U.DMCS 000064 # SYSTB TTDRV U.OWN 177776 DRQIO # EXEDF 10SUB U.SCB 000020 BBDRV DKDRV DMDRV DRDRV DRQIO DRRES DTDRV DXDRV # EXEDF 1CDRV INITL 10SUB LPDRV MMDRV SYSXT TTDRV U.STS 000005 DBDRV DKDRV DMDRV DRDRV DRQIO DRRES # EXEDF 10SUB MMDRV POWER TDSCH TTDRV U.ST2 000007 DRQIO # EXEDF INITL 10SUB POWER U.UNIT 000006 DBDRV DKDRV DMDRV DRDRV DRQIO # EXEDF 10SUB MMDRV DXDRV U.VCB 000034 DREIF DRQIO DTDRV TTDRV U.VCB 000034 DREIF DRQIO DTDRV EXEDF MMDRV U2.CRT 002000 # EXEDF TTDRV U2.ESC 001000 # EXEDF TTDRV U2.LWC 000001 # EXEDF TTDRV U2.LWC 000001 # EXEDF TTDRV U2.LWC 000001 # EXEDF TTDRV									"			
U.CW3	U.CW2	000012		ADDRV		DBDRV		DMDRV		DTDRV	#	EXEDF
U.CW4 000016 # EXEDF LPDRV TTDRV U.DMCS 000064 # SYSTB TTDRV U.OWN 177776 DRQIO # EXEDF U.RED 000002 # EXEDF IOSUB U.SCB 000020 DBDRV DKDRV DMDRV DRDRV DRQIO DRRES DTDRV DXDRV # EXEDF ICDRV INITL IOSUB LPDRV MMDRV SYSXT TTDRV U.STS 000005 DBDRV DKDRV DMDRV DRDRV DRQIO DRRES # EXEDF IOSUB MMDRV POWER TDSCH TTDRV U.ST2 000007 DRQIO # EXEDF INITL IOSUB POWER U.UNIT 000006 DBDRV DKDRV DMDRV DRDRV DXDRV U.VCB 000034 DREIF DRQIO DTDRV TTDRV U2.CRT 002000 # EXEDF TTDRV U2.ESC 001000 # EXEDF TTDRV U2.LUC 000001 # EXEDF TTDRV								MMDRV		TTDRV		
U.DMCS 000064 # SYSTE TTDRV U.OWN 177776 DRQIO # EXEDF U.RED 000002 # EXEDF IOSUB U.SCB 000020 DBDRV DKDRV DMDRV DRDRV DRQIO DRRES DTDRV DXDRV # EXEDF ICDRV INITL IOSUB LPDRV MMDRV SYSXT TTDRV U.STS 000005 DBDRV DKDRV DMDRV DRDRV DRQIO DRRES # EXEDF IOSUB MMDRV POWER TDSCH TTDRV U.ST2 000007 DRQIO # EXEDF INITL IOSUB POWER TTDRV U.UNIT 000006 DBDRV DKDRV DMDRV DRDRV DXDRV U.VCB 000034 DREIF DRQIO DTDRV # EXEDF MMDRV U2.CRT 002000 # EXEDF TTDRV U2.ESC 001000 # EXEDF TTDRV U2.LOG 000400 # EXEDF TTDRV U2.LOG 000400 # EXEDF TTDRV U2.LOG 000400 # EXEDF TTDRV U2.LOG 000401 # EXEDF TTDRV U2.LWC 000001 # EXEDF TTDRV					#					MMDRV		TTDRV
U.OWN								TTDRV				
U.RED			#		и							
U.SCB			ш		₩							
DRRES			Ħ					DMDDII		זומחמח		DDOTO
INITL	0.305	000020							#			
U.STS									π			
U.STS						10000		BLDKV		MILLIA		DIUNI
U.ST2 000007 DRQIO # EXEDF INITL IOSUB POWER TTDRV U.UNIT 000006 DBDRV DKDRV DMDRV DRDRV DXDRV # EXEDF IOSUB MMDRV TTDRV U.VCB 000034 DREIF DRQIO DTDRV # EXEDF MMDRV U2.CRT 002000 # EXEDF TTDRV U2.ESC 001000 # EXEDF TTDRV U2.HLD 000040 # EXEDF TTDRV U2.LOG 000400 # EXEDF TTDRV U2.LWC 000001 # EXEDF TTDRV	U.STS	000005				DKDRV		DMDRV		DRDRV		DRQIO
U.ST2 000007 DRQIO # EXEDF INITL IOSUB POWER TTDRV U.UNIT 000006 DBDRV DKDRV DMDRV DRDRV DXDRV # EXEDF IOSUB MMDRV TTDRV U.VCB 000034 DREIF DRQIO DTDRV # EXEDF MMDRV U2.CRT 002000 # EXEDF TTDRV U2.ESC 001000 # EXEDF TTDRV U2.HLD 000040 # EXEDF TTDRV U2.LOG 000400 # EXEDF TTDRV U2.LWC 000001 # EXEDF TTDRV				DRRES	#	EXEDF		IOSUB		MMDRV		POWER
TTDRV U.UNIT 000006 DBDRV DKDRV DMDRV DRDRV DXDRV # EXEDF IOSUB MMDRV TTDRV U.VCB 000034 DREIF DRQIO DTDRV EXEDF MMDRV U2.CRT 002000 # EXEDF TTDRV U2.ESC 001000 # EXEDF TTDRV U2.HLD 000040 # EXEDF TTDRV U2.LOG 000400 # EXEDF TTDRV U2.LWC 000001 # EXEDF TTDRV				TDSCH		TTDRV						
U.UNIT 000006 DBDRV DKDRV DMDRV DRDRV DXDRV # EXEDF IOSUB MMDRV TTDRV U.VCB 000034 DREIF DRQIO DTDRV EXEDF MMDRV U2.CRT 002000 # EXEDF TTDRV U2.ESC 001000 # EXEDF TTDRV U2.HLD 000040 # EXEDF TTDRV U2.LOG 000400 # EXEDF TTDRV U2.LWC 000001 # EXEDF TTDRV	U.ST2	000007		DRQIO	#	EXEDF		INITL		IOSUB		POWER
# EXEDF IOSUB MMDRV TTDRV U.VCB 000034 DREIF DRQIO DTDRV # EXEDF MMDRV U2.CRT 002000 # EXEDF TTDRV U2.ESC 001000 # EXEDF TTDRV U2.HLD 000040 # EXEDF TTDRV U2.LOG 000400 # EXEDF TTDRV U2.LWC 000001 # EXEDF TTDRV												
U.VCB 000034 DREIF DRQIO DTDRV # EXEDF MMDRV U2.CRT 002000 # EXEDF TTDRV U2.ESC 001000 # EXEDF TTDRV U2.HLD 000040 # EXEDF TTDRV U2.LOG 000400 # EXEDF TTDRV U2.LWC 000001 # EXEDF TTDRV	U.UNIT	000006										DXDRV
U2.CRT 002000	II WOD	000024	#						ш			MMDDIT
U2.ESC 001000 # EXEDF TTDRV U2.HLD 000040 # EXEDF TTDRV U2.LOG 000400 # EXEDF TTDRV U2.LWC 000001 # EXEDF TTDRV			4					DIDKV	₩	EXEDE		MMDRV
U2.HLD 000040												
U2.LOG 000400 # EXEDF TTDRV U2.LWC 000001 # EXEDF TTDRV												
U2.LWC 000001 # EXEDF TTDRV												

Symbol	Value	Modules	Tha	t Refer	ence	e Symbol				
W.BATT	000006	# EXEDF		TTDRV						
W.BLGH	000020	# EXEDF		TTDRV						
W.BOFF X.AST	000012 000032	# EXEDF # SYSDF		TTDRV						
X.DSI	000032	# SYSDF								
X.FORK	000012	# SYSDF								
X.ISR	000010	# SYSDF	,							
X.JSR	000002	# SYSDF								
X.LEN	000050	# SYSDF								
X.LNK X.PSW	000000 000006	# SYSDF # SYSDF								
X.REL	000022	# SYSDF								
X.TCB	000026	# SYSDF								
X.VEC	000044	# SYSDF								
X.VPC	000046	# SYSDF								
\$ABCTK \$ABTIM	016370-R 006174-R	DRATX		DREIF	#	REQSB		SSTSR		SYSXT
\$ABTSK	016374-R	QUEUE DRABO		SYSCM LOADR		TDSCH PARTY	#	REQSB		
\$ACHCK	007704-R	ADDRV		DRATX		DRQIO	#			SSTSR
,		SYSXT					"			
SACHKB	007712-R	DRQIO		IOSUB		TTDRV				
\$ACHKP	007650-R	DRDSP		DRGLI		DRGPP		DRGTK		DRGTP
\$ACHKW	007674 B	DRMAP		DRRAS		DRSED	#	IOSUB		
\$ACTHD	007674-R 006172-R	DRSST DREIF		IOSUB DRSED		POWER		REQSB	#	SYSCM
YACIND	0001/2-K	TDSCH		DKSED		FOWER		KEQOD	π	DIDCH
\$ACTRM	017102-R	DREIF		DRRES	#	REQSB				
SACTTK	016562-R	DRRES		LOADR	#	REQSB				
\$ADTBL	075350-R	# ADDRV								
\$ALCLK	007300-R	# CORAL		DRMKT		DRPUT				
\$ALEB1 \$ALEMB	034644-R 034630-R	# ERROR # ERROR		PARTY		POWER				
\$ALOCB	007166-R	# CORAL		DMDRV		DREIF		DRQIO		DRREG
		ERROR		GRDRV		IOSUB		LOADR		PLSUB
		REQSB		TTDRV						
\$ALOC1 \$ALPKT	007230-R	# CORAL # CORAL		DOWAD		DDOTO		DDD1.0		
\$ASUMR	007314-R 013154-R	# CORAL # IOSUB		DRMAP		DRQIO		DRRAS		
\$BILDS	016450-R	LOADR		REQSB						
\$BLKCK	010640-R	DBDRV		DKDRV		DMDRV		DRDRV		DTDRV
An- 11.03	010670 -	# IOSUB								
\$BLKC1 \$BLXIO	010650-R 006650-R	DMDRV # BFCTL		DRDRV	#	IOSUB				
\$BMSET	034740-R	DBDRV		DKDRV		DMDRV		DRDRV		DXDRV
		# ERROR		MMDRV		22				55
\$BTMSK	006264-R	DRQIO		IOSUB	#	SYSCM		SYSTB		TTDRV
\$BTSTP	002626-R	# CRASH		PANIC						
SCEFI SCEFN	010024-R 010020-R	DRQIO DRDSP		GRDRV	#	IOSUB	ш	REQSB		
\$CFLPT	010020-R 006212-R	REQSB		DRMAP SYSCM		DRQIO	#	IOSUB		
\$CHKPT	020136-R	DREXP		LOADR	#	REQSB				
\$CLKHD	006232-R	QUEUE		SYSCM	-	TDSCH				
SCLPAR	014666-R	# PARTY		POWER						
\$CLRMV	016174-R 006116-R	DRCMT		QUEUE						
\$CMBEG \$CMEND	006430-R	# SYSCM # SYSCM								
\$CMEND \$COMEF	006122-R	DRSED		IOSUB		REQSB	#	SYSCM		
\$COPT	006234-R	REQSB		SYSCM						
\$CRALT	001674-R	# CRASH		EXDBT						
\$CRASH	001664-R	# CRASH		LOWCR		SSTSR	щ	חד מיים		
\$CRATT \$CRAVL	036034-R 006166-R	DRMAP CORAL		DRREG INITL	#	LOADR SYSCM	Ŧ	PLSUB		
TOMEVE	22270 - V	CORAL		****	π	DIBON				

Symbol	Value	Modules	That Referen	nce Symbol		
\$CRLF \$CRPAS	052566-R 013634-R	CRASH DBDRV MMDRV	# PANIC DKDRV	DRDRV	DTDRV	# IOSUB
\$CRPBF	001114-R	# CRASH				
\$CRPST	001160-R	# CRASH				
SCRSBF	001124-R	# CRASH				
\$CRSBN	001656-R	# CRASH				
\$CRSCS	001662-R	# CRASH				
\$CRSHT	002404-R	# CRASH				
\$CRSST	001654-R	# CRASH				
\$CRSUN \$CRUPC	002410-R 000632-R	# CRASH # CRASH	EVDDM			
\$CRUST	000632-R	# CRASH	EXDBT EXDBT			
\$CURPR	006121-R	REQSB	# SYSCM	SYSXT		
\$CVRTM	007532-R	# CVRTM	DRMKT	DIUMI		
\$C5TA	006430-R	# C5TA	DREIF			
\$DASTT	016740-R	DREIF	DRMAP	DRRAS	LOADR	POWER
		# REQSB	SSTSR			
\$DBINT	051340-R	# DBDRV				
\$DBTBL	050634-R	# DBDRV				
\$DB0	104756-R	# SYSTE				
\$DEACB	007334-R	# CORAL	DMDRV	DREIF	DRGCL	DRREG
\$DEAC1	007374-R	INITL # CORAL	LOADR	REQSB	SYSXT	TTDRV
\$DEACT	007374-R	# CORAL	חוזממת	OUTUE	MDCCR	
\$DECLK \$DEPKT	007330-R	# CORAL	DRPUT DREIF	QUEUE DRMAP	TDSCH DRQIO	DRRAS
700111	00/330 K	IOSUB	DIGIT	DIMIAL	DRQIO	DIKKAD
\$DETRG	033512-R	DREIF	# DRREG			
\$DEUMR	013272-R	# IOSUB				
\$DEVHD	006204-R	DRASG	INITL	IOSUB	# SYSCM	
\$DEVTB	104512-R	SYSCM	# SYSTB			
\$DHINP	045132-R	# TTDRV		•		
\$DHOUT	044600-R	# TTDRV				
\$DIRSV	002634-R	DRDSP	PARTY	SSTSR	# SYSXT	
\$DIRXT \$DIV	003100-R 013730-R	INITL C5TA	# SYSXT	DEDDIA	DMDDU	DDDDU
2DI A	013/30-K	DRGLI	DBDRV EXDBT	DKDRV INITL	DMDRV # IOSUB	DRDRV
\$DKINT	062702-R	# DKDRV	LADDI	INTIL	# 1030B	
\$DKTBL	062272-R	# DKDRV				
\$DPLM1	023610-R	# DRDSP	EXDBT	SSTSR		
\$DPLM2	023614-R	# DRDSP	EXDBT	SSTSR		
\$DQLM1	030472-R	# DRQIO	EXDBT	SSTSR		
\$DQLM2	030502-R	# DRQIO	EXDBT	SSTSR		
\$DQUMR	013472-R	# IOSUB	22242			
\$DRABO \$DRASG	024066-R 024112-R	# DRABO # DRASG	DRDSP DRDSP			
\$DRASG \$DRATP	024112-R 034030-R	# DRASG	# DRRES			
\$DRATE	034030-R 033176-R	DRDSF	# DRREG			
\$DRATX	024336-R	# DRATX	DRDSP			
\$DRCEF	034350-R	DRDSP	# DRSED			
SDRCMT	024504-R	# DRCMT	DRDSP	DREIF		
\$DRCRR	032610-R	DRDSP	# DRREG			
\$DRCRW	026052-R	DRDSF	# DRMAP			
\$DRCSR	024510-R	# DRCMT	DRDSP			
\$DRDAR	024524-R	# DRDAR	DRDSP			
\$DRDCP	024560-R	# DRDCP	DRDSP	DD#15	00010	2222
\$DRDSE	034360-R	DRDSF # DRSED	DREIF POWER	DRMAP REQSB	DRRAS TDSCH	DRRES
\$DRDTR	033360-R	DRDSF	# DRREG	VEASR	IDSCH	
\$DREAR	033300-R 024540-R	# DRDAR	DRDSP			
\$DRECP	024604-R	# DRDCP	DRDSP			
\$DREIF	004674-R	DRDSP	# DREIF			

Symbol	Value	Modules	Tha	t Refer	enc	e Symbol		
\$DRELW	026300-R	DRDSP	#	DRMAP				
\$DREXP	024630-R	DRDSP		DREXP				
\$DREXT	004702-R	DRDSP		DREIF		DRMAP	DRRAS	SYSXT
SDRFEX	030066-R	DRDSP		DRPUT				
\$DRGCL	025354-R	DRDSP		DRGCL				
\$DRGLI	025462-R	DRDSP		DRGLI				
\$DRGMX	027472-R	DRDSP	#	DRMAP				
\$DRGPP	025564-R	DRDSP	#	DRGPP				
\$DRGSS	025666-R	DRDSP	#	DRGSS				
SDRGTK SDRGTP	025676-R 026016-R	DRDSP	#	DRGTK				
\$DRGIP \$DRINT	047202-R	DRDSP # DRDRV	#	DRGTP				
\$DRLM1	023514-R	# DRDSP		EXDBT		SSTSR		
\$DRLM2	023534-R	# DRDSP		EXDBT		SSTSR		
\$DRMAP	026334-R	DRDSP	#	DRMAP		55151		
SDRMKT	027716-R	DRDSP		DRMKT				
\$DRPUT	030110-R	DRDSP	#	DRPUT				
\$DRQIO	030376-R	DRDSP	#	DRQIO				
\$DRQRQ	031472-R	DREIF	#	DRQIO				
\$DRRAF	034374-R	DRDSP	#	DRSED				
\$DRRCV	030150-R	DRDSP	#	DRPUT				
\$DRREC	032262-R	DRDSP	#	DRRAS				
\$DRREQ	033724-R	DRDSP	#	DRREQ				
\$DRRES	033756-R	DRDSP	#	DRRES				
\$DRSPN \$DRSRF	034016-R 026704-R	DRDSP DRDSP	#	DRRES DRMAP				
\$DRSTV	034550-R	DRDSP		DRSST				
\$DRTBL	046372-R	# DRDRV		DRODI				
\$DRUNM	026660-R	DRDSP		DRMAP				
SDRWFL	034460-R	DRDSP		DRSED				
\$DRWFS	034522-R	DRDSP		DRQIO	#	DRSED		
\$DRWSE	034444-R	DRDSP	#	DRSED				
\$DR0	105470-R	# SYSTB						
\$DS0	105672-R	# SYSTB						
SDTINT	071066-R	# DTDRV						
\$DTOER	034764-R	DBDRV		DKDRV		DMDRV	DRDRV	DTDRV
\$DTTBL	070444-R	DXDRV # DTDRV	₩	ERROR		MMDRV		
\$DT10	106214-R	# SYSTB						
\$DVCER	035026-R	# ERROR						
\$DVERR	035026-R	DBDRV		DKDRV		DMDRV	DRDRV	DTDRV
		DXDRV	#	ERROR		MMDRV		
\$DVMSG	010110-R	DTDRV	#	IOSUB		LOADR	LPDRV	MMDRV
\$DXINT	074122-R	# DXDRV						
\$DXTBL	073532-R	# DXDRV						
\$DX0	106424-R	# SYSTB		~~ ~ ~ ·				
\$DYPMN \$EDIT	006250-R	# SYSCM		TDSCH				
SEMSST	052614-R 021070-R	CRASH DRDSP	#	PANIC SSTSR				
\$EMTRP	021070-R 023440-R	# DRDSP	T	EXDBT		LOWCR		
\$ERRHD	006324-R	ERROR	#	SYSCM		DOWCK		
\$ERRLM	006330-R	ERROR		SYSCM				
\$ERRPT	006210-R	ERROR		SYSCM				
\$ERRSQ	006332-R	DMDRV		ERROR	#	SYSCM		
\$ERRSV	006334-R	# SYSCM						
\$ERRSZ	006336-R	ERROR	#	SYSCM	"	2000		
\$EXRQF \$EXRQN	020344-R 020362-R	IOSUB	и	QUEUE	#	REQSB	mmo nu	
\$EXRQN \$EXRQP	020362-R 020336-R	DREIF IOSUB	#	REQSB REQSB		TDSCH	TTDRV	
\$EXSIZ	020336-R 006150-R	CORAL		SYSCM				
\$FINBF	004452-R	DREIF		SYSXT				
\$FLTRP	021124-R	EXDBT	#	SSTSR				

Symbol	Value	Modules	That Refe	rence Symbol		
\$FMASK	006226-R	# SYSCM				
\$FNDSP	017660-R	DRREG				
\$FORK	002670-R	DBDRV		DMDRV	DRDRV	DTDRV
		DXDRV	LPDRV	MMDRV	# SYSXT	TTDRV
\$FORK0	002712-R	IOSUE	SSTSR	# SYSXT	TDSCH	
\$FORK1	002710-R	ERROR	GRDRV	# SYSXT		
\$FPPRQ	021146-R	INITL	# SSTSR			
\$FPPR7	021124-R	POWER				
\$FPPR8	021132-R	INITL	,			
\$FRKHD	006222-R	# SYSCM				
\$GRFRK	000000	GRDRV				
\$GTWRD	006616-R	# BFCTL				
\$HEADR	006116-R	DRATX		DREIF	DRRAS	IOSUB
		LOADR		POWER	SSTSR	# SYSCM
CT CUVD	020070 5	SYSXT				
\$ICHKP \$ICINT	020070-R 075320-R	IOSUB				
\$ICTBL	075320-R 074676-R	# ICDRV # ICDRV				
\$IDLCT	074676-R 006244-R	# ICDRV # SYSCM				
\$IDLFL	006245-R	# SYSCM				
\$IDLPT	006245-R	# SYSCM				
\$ILINS	021232-R	EXDBT		# SSTSR		
SINITL	117656-R	EXDBT		" DOIDE		
SINTCT	006220-R	# SYSCM				
SINTSE	002762-R	# SYSXI				
SINTSV	003020-R	ERROR		SSTSR	# SYSXT	TDSCH
		UDDRV				
\$INTXT	002760-R	NLDRV	# SYSXT	UDDRV		
\$INTX1	003042-R	# SYSXT	ı			
SIOABM	006340-R	DTDRV		# SYSCM	SYSXT	
\$IOALT	010736-R	# IOSUE				
\$IODON	010740-R	DBDRV		DMDRV	DRDRV	DTDRV
	011114 -	DXDRV		LPDRV	MMDRV	TTDRV
\$IOFIN	011116-R	ADDRV		GRDRV	ICDRV	# IOSUB
CTOVIT	011274 5	ISDRV		SYSXT	TTDRV	UDDRV
\$IOKIL \$IOTRP	011374-R 021244-R	DRASG EXDBT		DRQIO # SSTSR	# IOSUB	
\$ISINT	075666-R	# ISDRV		# 35T5K		
\$ISTBL	075570-R	# ISDRV				
\$LCKPR	012314-R	# IOSUE				
\$LDPWF	016034-R	# POWER				
SLDRPT	006240-R	IOSUE		# SYSCM		
\$LOADR	102600-R	# LOADE				
\$LOADT	020332-R	# REQSE				
\$LOGHD	006156-R	DRASG	# SYSCM			
\$LPINT	067622-R	# LPDRV	•			
\$LPTBL	067464-R	# LPDRV				
\$LP0	106546-R	# SYSTE				
\$LSTLK	006162-R	DREIF				
SMAPTK	020746-R	DREXP		# REQSB		
\$MCRCB	006160-R	DRGCL				
\$MCRPT	006206-R	QUEUE				
\$MMINT \$MMTBL	054762-R 053406-R	# MMDRV # MMDRV				
\$MMTBL \$MMO	106746-R	# MMDRV # SYSTE				
\$MPCSR	014130-R	# PARTY				
\$MPCTL	014136-R 014126-R	# PARTY				
SMPLND	011634-R	DRASG		# IOSUB		
SMPLNE	011614-R	DREIF		# IOSUB		
\$MPLUN	011576-R	DRASG		DRQIO	# IOSUB	
\$MPPHY	011676-R	DRQIO	GRDRV	# IOSUB		
\$NLO	117070-R	# SYSTB				

Symbol	Value	Modules	Tha	t Refer	enc	e Symbol	L			
\$NONSI	003142-R	INITL		LOWCR	#	SYSXT				
\$NSO	035310-R	# ERROR		LOWCR						
\$NS1	035316-R	# ERROR		LOWCR						
\$NS2	035324-R	# ERROR		LOWCR						
\$NS3	035332-R	# ERROR		LOWCR						
\$NS4 \$NS5	035340-R 035346-R	# ERROR								
\$NS6	035354-R	# ERROR # ERROR								
\$NS7	035362-R	# ERROR								
SNXTSK	017232-R	DRATX		DRDCP		DREXP		DRRES		IOSUB
, 5		# REQSB		TDSCH		DILL				10000
\$OUT	052664-R	CRASH		PANIC						
\$OUTB	052660-R	CRASH		PANIC						
SPANIC	052562-R	# PANIC								
SPARHD	006236-R	PLSUB		SYSCM		TDSCH				
\$PARPT	006230-R	# SYSCM								
\$PARTB	014034-R	INITL		PARTY		SYSCM				
\$PCBS	117426-R	SYSCM		SYTAB						
\$PKAVL \$PKMAX	006410-R 006413-R	CORAL		SYSCM SYSCM						
\$PKNUM	006413-R	CORAL # SYSCM		SISCM						
\$POOL	117552-R	CORAL		INITL						
\$POWER	015664-R	# POWER		SYSXT						
SPTBYT	006570-R	# BFCTL		TTDRV						
\$PTWRD	006616-R	ADDRV								
\$PWRFL	006152-R	POWER	#	SYSCM		SYSXT				
\$QASTT	016772-R	# REQSB		TDSCH		TTDRV				
\$QEMB	035526-R	# ERROR		IOSUB		PARTY		POWER		
\$QINSF	016242-R	DRMAP		DRRAS		DRRES		ERROR		GRDRV
COTMED	016050 5	IOSUB		PLSUB	#	QUEUE		REQSB		
\$QINSP	016250-R	DRQIO		DRRES		LOADR		PLSUB	#	QUEUE
\$QMCRL	016306-R	REQSB DREIF	11	TTDRV QUEUE		TTDRV				
\$QRMVF	016316-R	DREIF		DRMAP		DRRES		LOADR		
7 2111111	010310 K	# QUEUE		SYSXT		DKKES		LOADK		
\$QRMVT	016330-R	DRRAS		DRREG		DRRES	#	QUEUE		REQSB
\$RELOC	012764-R	ADDRV		DRQIO		GRDRV	#	IOSUB		SYSXT
		TTDRV		-						
\$RELOM	013034-R	DRATX		DRQIO	#	IOSUB		SSTSR		SYSXT
\$RELOP	013554-R	DBDRV		DMDRV		DRDRV	#	IOSUB		
\$RLMCB	025416-R	DREIF		DRGCL						
\$RLPAR \$RLPR1	017156-R 017220-R	DREIF		LOADR	#	REQSB				
\$RQSCH	006200-R	DRREG DRSED	₩	REQSB POWER		DEOCD	#	SYSCM		SYSXT
\$SAVNR	004620-R	ERROR		IOSUB		REQSB LOADR	Ħ	REQSB	#	SYSXT
\$SCDVT	013050-R	# IOSUB		POWER		TDSCH		KEGSD	π	DIDKI
\$SCDV1	013054-R	# IOSUB		LONDIN		100011				
SSETCR	016614-R	DRRES		GRDRV		IOSUB	#	REQSB		
SSETF	016674-R	DRRAS		IOSUB	#	REQSB	-			
\$SRATT	036134-R	DRGPP		DRMAP		DRREG	#	PLSUB		
\$SRNAM	035654-R	DRGPP		DRREG	#	PLSUB				
\$SRSTD	017042-R	DRDSP		-						
\$SRWND	036172-R	DRMAP		PLSUB		T.17 T.07	,,			
\$STACK	000632-R	CRASH		DRDSP		INITL	#	LOWCR		SSTSR
\$STD	117462-R	SYSXT SYSCM		SYTAB						
\$STKDP	006202-R	DRDSP		EXDBT		SSTSR	#	SYSCM		SYSXT
SSTMAP	013316-R	DKDRV		DMDRV		DTDRV	#			
\$STPCT	017132-R	LOADR		REQSB			"			
\$STPTK	017136-R	# REQSB		TTDRV						
SSWSTK	004640-R	DRDSP	#	SYSXT						
\$SYBEG	120756-R	# INITL		SYSCM						

Symbol	Value	Modules	That	Refer	ence	e Symbol				
\$SYSID	006126-R	EXDBT		INITL	#	SYSCM				
\$SYSIZ	006342-R	INITL	#	SYSCM						
SSYTOP	124756-R	# INITL	.,	SYSCM						
SSYUIC	006144-R	# SYSCM								
STKNPT	006132-R	DREIF		IOSUB		REQSB	#	SYSCM		
\$TKPS	006370-R	CVRTM		DRGTP		INITL	#			TDSCH
711110	000370 10	TTDRV		DIGII		THILD	π	DIDCM		1DDCII
\$TKTCB	006176-R	DRDSP		DREIF		DRQIO		DRSED		IOSUB
TIKICD	0001/0-K	LOADR		PARTY		REQSB		SSTSR	#	SYSCM
		SYSXT		PARII		KEQSD		22121	TT.	SISCM
\$TKWSE	034440-R	DREIF		DRQIO	4	DRSED		LOADR		
\$TRACE	021324-R	EXDBT		LOWCR	#			LOADK		
\$TRP04	021324-R 021336-R	EXDBT		LOWCR		SSTSR				
\$TRTRP	021330-R 023374-R	# DRDSP		EXDBT	#					
\$TSKHD	006242-R	REQSB	#	SYSCM		LOWCR				
\$TSKRP	020414-R	_								
\$TSKRO	020414-R 020412-R	DRREQ	#	REQSB						
\$TSKRT	020412-R 020406-R	# REQSB	ш	REQSB		TDSCH				
\$TSTCP	017762-R	# REQSB	#	KEQSB		TDSCH				
\$TTNS	006406-R	DRGTP		ERROR		PARTY	п	SYSCM		MDCC11
\$TTTBL	044570-R			EKKOK		PARTI	#	SISCM		TDSCH
\$TT0	107130-R	# TTDRV # SYSTB								
\$110 \$TT1	107130-R 114556-R	***								
\$TT10	114556-R 115046-R									
•	115046-R 115076-R	# SYSTB								
\$TT11 \$TT12		# SYSTB								
\$TT12 \$TT13	115126-R 115156-R	# SYSTB								
\$1113 \$TT14		# SYSTB								
\$TT14 \$TT15	115206-R	# SYSTB								
	115236-R 115266-R	# SYSTB								
\$TT16 \$TT17	115266-R 115316-R	# SYSTB								
\$TT17 \$TT2	113316-R 114626-R	# SYSTB								
\$TT20	114626-R 115346-R	# SYSTB								
\$1120 \$TT21	115376-R	# SYSTB								
\$1121 \$TT22	115376-R 115426-R	# SYSTB								
\$TT23	115426-R 115456-R	# SYSTB								
		# SYSTB								
\$TT24 \$TT25	115506-R 115536-R	# SYSTB								
\$TT25	115566-R	# SYSTB								
	115616-R	# SYSTB								
\$TT27 \$TT3		# SYSTB								
\$TT30	114656-R 115646-R	# SYSTB # SYSTB								
\$1130 \$TT31	115676-R									
\$TT31 \$TT32	115676-R 115726-R	# SYSTB # SYSTB								
\$1132 \$TT33	115726-R 115756-R	# SYSTB								
\$TT34	116006-R	# SYSTB								
\$TT35	116036-R	# SISIB								
\$TT36	116056-R	# SYSTB								
\$TT37	116116-R	# SYSTB								
\$TT4	114706-R	# SYSTB								
\$114	116146-R	# SYSTB								
\$1140 \$TT41	116176-R	# SYSTB								
\$TT42	116226-R	# SISIB								
\$TT43	116256-R	# SYSTB								
\$TT44	116306-R	# SYSTB								
\$TT45	116336-R	# SISIB								
\$TT46	116366-R	# SYSTB								
\$TT47	116416-R	# SYSTB								
\$115	114736-R	# SYSTB								
\$1150	116446-R	# SYSTB								
\$TT51	116476-R	# SYSTB								
\$TT52	116526-R	# SYSTB								

Symbol	Value	Mo	odules	That	Refer	ence	e Symbol
\$TT53	116556-R	#	SYSTB				
\$TT54	116606-R	#	SYSTB				
\$TT55	116636-R	#	SYSTB				
\$TT56	116666-R	#	SYSTB				
\$TT57	116716-R	#	SYSTB				
\$TT6	114766-R	#	SYSTB				
\$TT60 \$TT7	116746-R 115016-R	#	SYSTB				
SUDINT	050560-R	#	UDDRV				
\$UDTBL	050472-R	#	UDDRV				
SUISET	020706-R	"	DRMKT		DRREQ	#	REQSB
SUMRHD	006416-R		IOSUB	#	SYSCM		
\$UMRWT	006424-R		IOSUB	#	SYSCM		
\$UNMAP	036232-R		DRMAP		DRREG	#	PLSUB
SUSRTB	000000		SYSTB				
ŞWTUMR	013516-R	#	IOSUB				
\$XDT .CL0	076362-R 117220-R	#	EXDBT SYSTB				
.CO0	117220-R 117174-R	Ħ	SYSCM	#	SYSTB		
.DBO	104552-R	#	SYSTB	п	01010		
.DB1	104612-R	#	SYSTB				
.DB2	104652-R	#	SYSTB				
.DB3	104712-R	#	SYSTB				
.DKO	105054-R	#	SYSTB				
.DKl	105114-R	#	SYSTB				
.DK2	105154-R	#	SYSTB				
.DT0	105770-R 106034-R	#	SYSTB				
.DT1	106034-R 106100-R	#	SYSTB				
.DT3	106144-R	#	SYSTB				
.DXO	106320-R	#	SYSTB				
.DX1	106360-R	#	SYSTB				
.LBO	117244-R		INITL	#	SYSTB		SYTAB
.LDR	117462-R		SYSCM	#	SYTAB		
.LDRHD	117302-R	#	SYTAB				
.LPO	106514-R	#	SYSTB				
.MMO .MMl	106636-R 106700-R	#	SYSTB SYSTB				
.NLO	117036-R	#	SYSTB				
.SYO	117270-R	u	INITL	#	SYSTB		SYTAB
.TIO	117150-R	#	SYSTB				
.TTO	107046-R	#	SYSTB				
.TT1	107222-R	#					
.TT10	110050-R	#	SYSTB				
.TT11 .TT12	110142-R 110234-R	#	SYSTB				
.TT13	110234-R 110326-R	#	SYSTB				
TT14	110320 R 110420-R	#	SYSTB				
.TT15	110512-R	#	SYSTB				
.TT16	110604-R	#	SYSTB				
.TT17	110676-R	#	SYSTB				
.TT2	107314-R	#	SYSTB				
TT20	110770-R 111062-R	#	SYSTB				
.TT21 .TT22	111062-R 111154-R	#	SYSTB				
.TT23	111134-R 111246-R	#	SYSTB				
.TT24	111340-R	#	SYSTB				
.TT25	111432-R	#	SYSTB				
.TT26	111524-R	#	SYSTB				
TT27	111616-R	#	SYSTB				
.TT3	107406-R	#	SYSTB				
.TT30	111710-R	#	SYSTB				

Symbol	Value	Mo	odules	That	Reference	Symbol
.TT31	112002-R	#	SYSTB			
.TT32	112074-R	#	SYSTB			
.TT33	112166-R	#	SYSTB			
.TT34	112260-R	#	SYSTB			
.TT35	112352-R	#	SYSTB			
.TT36	112444-R	#	SYSTB			
.TT37	112536-R		SYSTB			
.TT4	107500-R	#	SYSTB			
.TT40	112630-R	#	SYSTB			
.TT41	112722-R	#	SYSTB			
.TT5	107572-R	#	SYSTB			
.TT50	113550-R	#	SYSTB			
.TT51	113642-R	#	SYSTB			
.TT52	113734-R	#	SYSTB			
.TT53	114026-R	#	SYSTB			
.TT54	114120-R	#	SYSTB			
.TT55	114212-R	#	SYSTB			
.TT56	114304-R	#	SYSTB			
.TT57	114376-R	#	SYSTB			
.TT6	107664-R	#	SYSTB			
.TT60	114470-R	#	SYSTB			
.TT7	107756-R	#	SYSTB			

9.3 MCRMU GLOBAL CROSS-REFERENCE

This cross-reference is for a mapped system.

The cross-reference contains an alphabetic listing of each global symbol along with its value and the name of each referencing module. When a symbol is defined in several segments within an overlay structure, TKB prints the last defined value in the listing. Similarly, in a real TKB cross-reference listing, TKB would print the module name more than once for each symbol if the module is loaded in several segments within the structure.

The Task Builder creates an MCRMU.CRF cross-reference file when /CR is specified in the Task Builder command file used to build MCRMU. One of the input files to the Task Builder when building MCRMU is the Executive symbol table file, RSX11M.STB. RSX11M.STB is needed because MCRMU references some Executive symbols. All the symbols from RSX11M.STB are put in the MCRMU.CRF symbol table file even though they are not referenced by MCR. Therefore, some symbols appearing here in the MCRMU cross-reference are defined in the Executive but not used by MCRMU. These symbols are shown defined in the Executive LOWCR or EXEDF modules.

The value contains the suffix -R if the symbol is relocatable.

Prefix symbols accompanying each module name define the type of reference as follows:

Prefix Symbol	Reference Type
blank	Module contains a reference that is resolved in the same segment or in a segment toward the root.
^	Module contains a reference that is resolved directly in a segment away from the root or in a co-tree.
@	Module contains a reference that is resolved through an autoload vector.
#	Module contains a non-autoloadable definition. This module defines the symbol.
*	Module contains an autoloadable definition. This module defines the symbol.

Symbol	Value	Modules Th	nat Referenc	ce Symbol		-
C.SCHD	000002	# EXEDF	FIXOV			
DV.PSE	010000	# EXEDF	# LOWCR			
DV.TTY	000004	# EXEDF	# LOWCR			
DV.UMD	000200	# EXEDF	# LOWCR			
D\$\$YNM	000000	# LOWCR				
D.DSP	000012	# EXEDF	# LOWCR			
D.LNK	000000	# EXEDF	FIXOV			
D.MSK	000014	# EXEDF	# LOWCR			
D.NAM	000004	# EXEDF	FIXOV	FMTDV	GTTSK	# LOWCR
		MCRDIS				
D.PCB	000034	# EXEDF	# LOWCR			
D.RS00	000000	# LOWCR				
D.RSl	177777	# LOWCR				
D.RS10	177766	# LOWCR				
D.RS16	177760	# LOWCR				
D.RS17	177757	# LOWCR				
D.RS19	177755	# LOWCR				
D.RS2	177776	# LOWCR				
D.RS22	000002	# LOWCR				
D.RS5	177773	# LOWCR				
D.RS6	177772	# LOWCR				
D.RS7	177771	# LOWCR				
D.RS8	177770	# LOWCR				
D.RS80	177660	# LOWCR				
D.RS81	177657	# LOWCR				
D.RS84	177654	# LOWCR				
D.RS85	177653	# LOWCR				
D.RS86	177652	# LOWCR				
D.RS87	177651	# LOWCR				
D.RS90	177646	# LOWCR				
D.RS92	177644	# LOWCR				
D.RS93	177643	# LOWCR				
D.RS94	177642	# LOWCR				
D.RS95	177641	# LOWCR				
D.RS96	177640	# LOWCR				
D.RS97	177637	# LOWCR				
D.RS98	177636	# LOWCR				
D.RS99	177635	# LOWCR				
D.UCB	000002	# EXEDF	FIXOV	FMTDV	GTMNM	# LOWCR

Symbol	Value	Modules	That	t Refere	nce	e Symbol		
D.UCBL	000010	# EXEDE		FIXOV		FMTDV	GTMNM	# LOWCR
D.UNIT	000006	# EXEDF		FIXOV		FMTDV	GTMNM	# LOWCR
D.VCAN	000002	# EXEDF		LOWCR				
D.VINI	000000	# EXEDF		LOWCR				
D.VOUT	000004	# EXEDF		LOWCR				
D.VPWF	000006	# EXEDF		LOWCR				
EC.DTO	000140	# EXEDF		LOWCR				
EC.DVC	000001	# EXEDE		LOWCR				
EC.NSI	000141	# EXEDE		LOWCR				
E.LGTH E.OPC	000056 000022	# EXEDF		LOWCR				
E.RTRY	000016	# EXEDF		LOWCR LOWCR				
E.SIZE	000000	# EXEDE		LOWCR				
FE.CAL	000040	# EXEDE	•	MCRDIS				
FE.MUP	000002	# EXEDE		FIXOV		MCRDIS		
FE.MXT	040000	# EXEDE		MCRDIS				
FE.PLA	000020	# EXEDE		FIXOV		MCRDIS		
H.HDLN	000002	# EXEDE		FIXOV				
H.LUN	000076	# EXEDF	1	FIXOV				
H.WND	000044	# EXEDF	•	MCROOT				
IE.ABO	177761	# LOWCF	1					
IE.ALN	177736	# LOWCE	1					
IE.BAD	177777	# LOWCE						
IE.BLK	177754	# LOWCF						
IE.BYT	177755	# LOWCF						
IE.DAA	177770	# LOWCE						
IE.DNA	177771	# LOWCE						
IE.DNR	177775	# LOWCE						
IE.EOF	177766	MCRDI						
IE.IFC IE.LCK	177776 1777 4 5	# LOWCF						
IE.NLN	177733	# LOWCE				•		
IE.NOD	177751	# LOWCE						
IE.OFL	177677	# LOWCE						
IE.OVR	177756	# LOWCE						
IE.PRI	177760	# LOWCF						
IE.SPC	177772	# LOWCE	1					
IE.ULK	177653	# LOWCF						
IO.ATT	001400	LN1OV		LOWCR				
IO.CLN	003400	# LOWCE						
IO.DET	002000	# LOWCE		LUNOV				
IO.KIL	000012	ERROV		MCRDIS				
IO.LOV	001010 011400	# LOWCE						
IO.NLK	001000	FIXOV LN1OV		LOWCR				
IO.RVB	010400	# LOWCE		LOWCK				
IO.ULK	005000	# LOWCE						
IO.WLB	000400	# LOWCE						
IO.WVB	011000	ERROV		LNlov	#	LOWCR	MCRDIS	
IQ.UMD	000004	# LOWCE			"	LOWOK		
IS.SUC	000001	# LOWCE						
KISAR5	172352	# EXEDE		LOWCR				
KISAR6	172354	# EXEDF		LOWCR				
L.ASG	000010	# EXEDE		LOWCR				
L.NAM	000002	# EXEDF		LOWCR				
L.TYPE	000005	# EXEDE		LOWCR				
L.UCB	000006	# EXEDE		LOWCR				
L.UNIT M\$\\$MGE	000004 000000	# EXEDE		LOWCR				
məəmge P.ATT	000000	# LOWCF FIXOV		LOWCR				
P.BLKS	000036	# EXEDE		LOWCR				
P.BUSY	000010	# EXEDE		LOWCR				
		" ~	11					

Symbol	Value	Modules	That Referen	nce Symbol		
P.HDR	000032	FIXOV	# LOWCR			
P.IOC	000003	# EXEDF				
P.LGTH	000042	FIXOV	# LOWCR			
P.LNK	000000	# EXEDF				
P.MAIN	000012	# EXEDF				
P.NAM	000004	# EXEDE				
P.OWN P.PRI	000026 000002	# EXEDF # EXEDF				
P.PRO	000034	# LOWCE				
P.REL	000014	# EXEDF				
P.SIZE	000016	# EXEDF				
P.STAT	000030	# EXEDF				
P.SUB	000010	# EXEDF				
P.SWSZ	000022	# EXEDF				
P.TCB	000026	# EXEDF				
P.WAIT	000020	# EXEDF				
SP.EIP SP.ENB	000001 000002	# EXEDF # EXEDF				
S.BMSK	177776	# EXEDF # EXEDF				
S.BMSV	177774	# EXEDE				
S.CCB	000030	# LOWCE				
S.CON	000010	# EXEDF	iii.			
S.CSR	000012	# EXEDF				
S.CTM	000006	# EXEDF	# LOWCR			
S.DZCK	000030	# LOWCE				
S.FRK	000016	# EXEDF				
S.ITM	000007	# EXEDF				
S.LHD S.MPR	000000 000030	# EXEDF # LOWCR				
S.PKT	000014	# LOWCR # EXEDF				
S.PRI	000004	# EXEDF				
S.RCNT	177772	# EXEDF				
S.ROFF	177773	# EXEDF	44			
S.STS	000011	# EXEDF				
S.VCT	000005	# EXEDF				
TS.EXE	100000	# EXEDF		MCRDIS		
TS.OUT	000400 000052	# EXEDF		MCRDIS		
T.ACTL T.ATT	000054	# EXEDF # EXEDF				
T.CPCB	000004	# EXEDE				
T.DPRI	000040	# EXEDF				
T.EXT	000000	# LOWCR				
T.LGTH	000070	FIXOV		MCRDIS		
T.MXSZ	000050	# EXEDF				
T.NAM T.OFF	000006 000060	ABOOV		FIXOV		
T.PCB	000046	# EXEDF # EXEDF		LKLST	MCRDIS	
T.PRI	000002	# EXEDE		PUTPI	MCKDIS	
T.RCVL	000012	# EXEDF		MCRDIS		
T.RRFL	000064	# EXEDF				
T.STAT	000032	ABOOV	# EXEDF	FIXOV	MCRDIS	
T.ST2	000034	ABOOV		FIXOV	LKLST	MCRDIS
T.ST3	000036	ABOOV		FIXOV	MCRDIS	
T.TCBL	000030	# EXEDF		MCRDIS	CMm C ?	Manner
T.UCB T2.ABO	000026 000100	ABOOV ABOOV		GTMNM	GTTSK	MCRDIS
T2.BFX	004000	# EXEDF				
T2.CHK	020000	# EXEDF		MCRDIS		
T2.CKD	010000	# EXEDF				
T2.FXD	002000	# EXEDF				
T3.ACP	100000	# EXEDF				
T3.MCR	004000	# EXEDF	MCRDIS			

Symbol	Value	Modules	That Reference Symbol		
T3.PMD	040000	# EXEDF	MCRDIS		
T3.PRV	010000	ABOOV	# EXEDF MCRDIS		
T3.REM	020000	# EXEDF	FIXOV MCRDIS		
T3.RST	000400	# EXEDF	MCRDIS		
T3.SLV	002000	ABOOV	# EXEDF		
UC.ATT	000010	# EXEDF	# LOWCR		
UC.KIL	000004	# EXEDF	# LOWCR		
UC.LGH	000003	# EXEDF	# LOWCR		
UC.NPR	000100	# EXEDF	# LOWCR		
UC.PWF	000020	# EXEDF	# LOWCR		
UC.QUE UISARO	000040 177640	# EXEDF	# LOWCR # LOWCR		
UISDR0	177600	# EXEDF # EXEDF	# LOWCR # LOWCR		
US.BSY	000200	# EXEDF	# LOWCR		
US.FOR	000040	# EXEDF	# LOWCR		
US.MDM	000020	# EXEDF	# LOWCR		
US.MNT	000100	# EXEDF	# LOWCR		
US.OFL	000001	# EXEDF	# LOWCR		
US.PUB	000004	# EXEDF	# LOWCR		
US.UMD	000010	# EXEDF	# LOWCR		
U.ACP	000032	# EXEDF	# LOWCR		
U.ATT	000022	# EXEDF	# LOWCR		
U.BUF U.CNT	000024 000030	# EXEDF # EXEDF	# LOWCR # LOWCR		
U.CTL	000004	# EXEDE	# LOWCR		
U.CW1	000010	# EXEDF	# LOWCR		
U.CW2	000012	ABOOV	# EXEDF FIXOV	# LOWCR	MCRDIS
U.CW3	000014	# EXEDF	# LOWCR		
U.CW4	000016	# EXEDF	MCRDIS		
U.DCB	000000	# EXEDF	FMTDV GTMNM	GTTSK	MCRDIS
U.LUIC	177774	# EXEDF	MCRDIS		
U.OWN U.RED	177776 000002	# EXEDF	# LOWCR # EXEDF GTMNM	# LOWCR	MCRDIS
U.SCB	000020	ABOOV # EXEDF	# EXEDF GTMNM # LOWCR	# DOWCK	MCRDIS
U.STS	000005	# EXEDE	# LOWCR		
U.ST2	000007	# EXEDF	# LOWCR		
U.UIC	000052	# EXEDF	MCRDIS		
U.UNIT	000006	# EXEDF	# LOWCR		
U.VCB	000034	# EXEDF	# LOWCR		
U2.AT.	000020	# EXEDF	MCRDIS		
U2.HLD	000040	# EXEDF	MCRDIS		
U2.LOG U2.PRV	000400 000010	# EXEDF ABOOV	FIXOV MCRDIS # EXEDF FIXOV	MCRDIS	
V\$\$CTR	000410	# LOWCR	# EXED! PIXOV	MCKDIS	
W.BLVR	000002	# EXEDF	MCROOT		
X.AST	000032	# LOWCR			
X.DSI	000024	# LOWCR			
X.FORK	000012	# LOWCR			
X.ISR	000010	# LOWCR			
X.JSR X.LEN	000002 000050	# LOWCR			
X.LNK	000000	# LOWCR # LOWCR			
X.PSW	000006	# LOWCR			
X.REL	000022	# LOWCR			
X.TCB	000026	# LOWCR			
X.VEC	000044	# LOWCR			
X.VPC	000046	# LOWCR			
\$ABCTK	014460	# LOWCR	DD1017		
\$ABOEP \$ABTIM	122036-R 005414	# ABOOV # LOWCR	PRIOV		
\$ABTSK	014464	ABOOV	# LOWCR		
\$ACHCK	007242	# LOWCR	. — - · · · • • ·		

Symbol	Value	Modules	That Refere	nce Symbol
\$ACHKB	007250	# LOWCR		
\$ACHKP	007206	# LOWCR		
\$ACHKW	007232	# LOWCR		
\$ACTHD	005634	# LOWCR		
\$ACTRM	015172	# LOWCR		
\$ACTTK	014652	# LOWCR		
SALCLK	006636	# LOWCR	·	
\$ALEB1	032634	# LOWCR		
\$ALEMB	032620	# LOWCR		
\$ALOCB	006524	FIXOV	# LOWCR	MCRDIS
\$ALOC1	006566	# LOWCR		
\$ALPKT	006652	# LOWCR		
\$BILDS	014540	# LOWCR		
SBLKCK	010174	# LOWCR		
SBLKCl	010204	# LOWCR		
\$BLXIO	006212	# LOWCR		
SBMSET	032730	# LOWCR		
SBTMSK	005640	# LOWCR		
\$CANEP	122122-R	# ABOOV	PR1OV	
SCAT5	125444	GTTSK	MCRDIS	PRIOV
\$CBDMG	123250	LUNOV		
\$CBOMG	123264	FMTDV	GTMNM	
\$CEFI	007362	# LOWCR		
\$CEFN	007356	# LOWCR	1	
SCFLPT	005522	# LOWCR		
SCHKPT	016226	# LOWCR		
\$CKACC	033726	# LOWCR		
\$CKCNT	005604	# LOWCR		
\$CKCSR	005606	# LOWCR		
\$CKINT \$CKLDC	017726	# LOWCR		
\$CLINS	005610 014162	# LOWCR		
\$CLKHD	005556	# LOWCR # LOWCR		
\$CLRMV	014264	# LOWCR FIXOV	# LOWCR	
\$COMEF	005570	# LOWCR	# DOMCK	•
\$COPT	005560	# LOWCR		
\$CRASH	001470	# LOWCR		
SCRATT	034024	# LOWCR		
\$CRAVL	005532	# LOWCR		
\$CRPAS	012470	# LOWCR		
\$CRSBF	000730	# LOWCR		
\$CRSBN	001462	# LOWCR		
\$CRSCS	001466	# LOWCR		
\$CRSHT	001752	# LOWCR		
SCRSST	001460	# LOWCR		
\$CRSUN	001756	# LOWCR		
\$CVRTM	007070	# LOWCR		
\$C5TA	005772	ERROV	# LOWCR	
SDASTT	015030	# LOWCR		
\$DB0	043366	# LOWCR	B =	
\$DEACB	006672	FIXOV	# LOWCR	MCRDIS
\$DEAC1	006732	# LOWCR		
\$DECLK	006644	# LOWCR	# form	
\$DEPKT \$DETRG	006666 031502	FIXOV	# LOWCR	
\$DEVHD	031302	FIXOV FIXOV	# LOWCR # LOWCR	
\$DEVIED	043122	# LOWCR	# LOWCK	
\$DIRSV	002264	# LOWCR		
\$DIRXT	002514	# LOWCR		
\$DIV	012564	FMTDV	GTMNM	# LOWCR
\$DK0	043630	# LOWCR	G I . MIT	"
\$DPLM1	021662	# LOWCR		

Symbol Symbol	Value	Modules	That Reference Symbol
\$DPLM2	021666		
\$DQLM1	026526	# LOWCR # LOWCR	
\$DQLM1	026536	# LOWCR # LOWCR	
\$DRABO	022140	# LOWCR	
\$DRASG	022164	# LOWCR	
\$DRATP	032020	ABOOV	# LOWCR
\$DRATE	031166	# LOWCR	# LOWCK
SDRATX	022410	# LOWCR	
\$DRCEF	032340	# LOWCR	
SDRCMT	022556	# LOWCR	
\$DRCRR	030600	# LOWCR	
\$DRCRW		# LOWCR	
\$DRCSR	022562	# LOWCR	
\$DRDAR	022576	# LOWCR	
\$DRDCP	022632	EDCKP	# LOWCR
\$DRDSE	032350	LKLST	# LOWCR
\$DRDTR	031350	# LOWCR	
\$DREAR	022612	# LOWCR	
\$DRECP	022656	EDCKP	# LOWCR
\$DREIF	004220	# LOWCR	
\$DRELW	024312	# LOWCR	
SDREXP	022702	# LOWCR	
SDREXT	004226	# LOWCR	MCRDIS
\$DRFEX	026100	# LOWCR	
\$DRGCL	023372 023500	# LOWCR	
\$DRGLI \$DRGMX	025504	# LOWCR # LOWCR	
\$DRGPP	023602	# LOWCR	
\$DRGSS	023704	# LOWCR	
\$DRGTK	023714	# LOWCR	
\$DRGTP	024030	# LOWCR	
\$DRLM1	021566	# LOWCR	
\$DRLM2	021606	# LOWCR	
\$DRMAP	024346	# LOWCR	
\$DRMKT	025730	# LOWCR	
\$DRPUT	026122	# LOWCR	
\$DRQIO	026410	# LOWCR	
\$DRQRQ	027516	# LOWCR	
\$DRRAF	032364	# LOWCR	
\$DRRCV	026162	# LOWCR	
\$DRREC	030306	# LOWCR	
\$DRREQ	031714	# LOWCR	
\$DRRES \$DRRRA	031746 026142	# LOWCR # LOWCR	
\$DRRRF	025232	# LOWCR	
\$DRRUN	025762	# LOWCR	
\$DRSDV	032532	# LOWCR	
\$DRSEF	032420	# LOWCR	
SDRSND	030440	# LOWCR	
\$DRSPN	032006	# LOWCR	
\$DRSRF	024716	# LOWCR	
\$DRSTV	032540	# LOWCR	
\$DRUNM	024672	# LOWCR	
\$DRWFL	032450	# LOWCR	
\$DRWFS	032512	# LOWCR	
\$DRWSE	032434	# LOWCR	
\$DSW	000046	ABOOV	
\$DS0	044064	# LOWCR	
\$DTOER \$DT0	032754 044276	# LOWCR # LOWCR	
\$DTU \$DVCER	033016	# LOWCR # LOWCR	
\$DVERR	033016	# LOWCR	
		" 2011011	

Symbol	Value	Modules That Reference Sy	mbol
\$DVMSG	007446	# LOWCR	
\$DX0	044472	# LOWCR	
\$DYPMN	005470	# LOWCR	
\$EMSST	017156	# LOWCR	
\$EMTRP	021512	# LOWCR	
\$ERREP	121660-R	# ERROV	
\$ERRHD	005700	# LOWCR	
\$ERRLM	005704	# LOWCR	
\$ERRLN	000404	# ERRMSG ERROV	
\$ERRPT	005514	FIXOV # LOWCR	
ŞERRSQ	005706	# LOWCR	
\$ERRSV	005710	# LOWCR	
\$ERRSZ	005712	# LOWCR	
\$ERRTB	124064-R	# ERRMSG ERROV	
\$EXRQF	016434 016452	# LOWCR	
ŞEXRQN ŞEXRQP	016426	# LOWCR # LOWCR	
\$EXSIZ	005520	# LOWCR	
SFINBF	003776	# LOWCR	
\$FIXEP	122714-R	# FIXOV PRIOV	
SFLTRP	017212	# LOWCR	
\$FMASK	005552	FIXOV # LOWCR MCR	DIS
\$FMTDV	123156-R	# FMTDV LUNOV	
\$FNDSP	015750	# LOWCR	
\$FORK	002320	# LOWCR	
\$FORKO	002342	# LOWCR	
\$FORK1	002340	# LOWCR	
SFPINT	017226	# LOWCR	
\$FRKHD	005546	# LOWCR	
\$GNBLK	125270-R	# GNBLK	
\$GTBYT	006102	# LOWCR	DIG
ŞGTMNM	125340-R		DIS
\$GTPKT \$GTTSK	007510 124714-R	# LOWCR ABOOV FIXOV # GTT	SK LN1OV
\$GTWRD	006160	# LOWCR	SK UNIOV
\$HEADR	005564	FIXOV GTTSK LKL	ST LN1OV # LOWCR
711011011	003301	MCROOT	31 31131 331131
\$ICHKP	016160	# LOWCR	
\$ILINS	017304	# LOWCR	
\$INITL	052414	# LOWCR	
SINTCT	005542	# LOWCR	
SINTSE	002376	# LOWCR	
\$INTSV	002434	# LOWCR	
SINTXT	002374	# LOWCR	
\$INTX1 \$IOABM	002456 005714	# LOWCR # LOWCR	
\$IOABM \$IOALT	010272	# LOWCR	
\$IODON	010272	# LOWCR	
\$10EUN	010414	# LOWCR	
SIOKIL	010666	# LOWCR	
SIOTRP	017316	# LOWCR	
\$LCKPR	011552	# LOWCR	
\$LDPWF	014124	# LOWCR	
\$LDRPT	005464	# LOWCR	
\$LN1EP	124436-R	# LN1OV PRIOV	
\$LOAD	121004	MCROOT	
\$LOADR	041214	# LOWCR	
\$LOADT	016422	# LOWCR	D.T.C.
\$LOCKL \$LOGHD	125120-R 005624	FIXOV # LKLST MCR # LOWCR	DIS
\$LOGHD \$LP0	044614	# LOWCR	
\$LPU \$LSTLK	005630	LKLST # LOWCR	
4 DO I DI	003030	PURDI # DOMOK	

Symbol	Value	Modules That Reference Symbol	
\$LUNEP	122636-R	# LUNOV	
\$MAPTK	017036	# LOWCR	
\$MBUF	120362-R	ERROV LN1OV LUNOV	MCRDIS # MCROOT
\$MCKD	122212-R	# EDCKP ERROV MCRDIS	
SMCKE	122224-R	# EDCKP ERROV MCRDIS	
SMCMD	120454-R	ERROV FIXOV LNIOV	MCRDIS # MCROOT
,		PRIOV	" " " " " " " " " " " " " " " " " " " "
\$MCOV	120464-R	MCRDIS # MCROOT PRIOV	
\$MCR	120634-R	ABOOV ERROV FIXOV	LUNOV # MCROOT
\$MCRCB	005626	# LOWCR MCRDIS	zonot " nenoot
SMCRPT	005466	FIXOV # LOWCR	
\$MDIS	120500-R	# MCROO'T	
\$MDPB	120366-R	ABOOV ERROV FIXOV	LN1OV LUNOV
7	120300 K	MCRDIS # MCROOT	201201
\$MERLD	120720-R	ABOOV FIXOV LN1OV	LUNOV MCRDIS
7	120/20 1	# MCROO'T PRIOV	201101 HCRDID
SMERR	120470-R	# MCROO'F	
SMERRN	120474-R	ABOOV ERROV FIXOV	LN1OV LUNOV
7.1011111	220171 10	MCRDIS # MCROOT PRIOV	20101
\$MLDOV	120724-R	LNIOV MCRDIS # MCROOT	
SMLIMI	120632-R	# MCROO'T	
SMLINE	120504-R	MCRDIS # MCROOT	
\$MMO	045014 N	# LOWCR	
\$MOVRB	120416-R	# MCROOT	
\$MPARS	120410 R	ABOOV ERROV FIXOV	LN1OV LUNOV
VIII AND	120424 1	MCRDIS # MCROOT PRIOV	BN10V BONOV
\$MPCSR	012734	# LOWCR	
\$MPLND	011126	# LOWCR	
SMPLNE	011106	# LOWCR	
SMPLUN	011070	# LOWCR	
SMPPHY	011170	# LOWCR	
SMPPKT	011240	# LOWCR	
SMPRSR	120460-R	MCRDIS # MCROOT	
SMPVBN	011372	# LOWCR	
SMROOT	120706-R	# MCROO'T	
SMTERM	120476-R	MCRDIS # MCROOT	
\$MUCB	120364-R	ABOOV FIXOV LN1OV	MCRDIS # MCROOT
SMUL	012534	# LOWCR	" " " " " " " " " " " " " " " " " " " "
SMXEXT	005770	# LOWCR	
\$NLO	051622	# LOWCR	
SNNBLK	125272-R	# GNBLK PRIOV	
\$NONSI	002556	# LOWCR	
\$NSO	033300	# LOWCR	
\$NS1	033306	# LOWCR	
\$NS2	033314	# LOWCR	
\$NS3	033322	# LOWCR	ŧ
\$NS4	033330	# LOWCR	
\$NS5	033336	# LOWCR	
\$NS6	033344	# LOWCR	
\$NS7	033352	# LOWCR	
\$NULL	043100	# LOWCR	
\$NXTSK	015322	FIXOV # LOWCR	
SOVEP	121634-R	# MCRDIS ^ MCROOT	
SPANIC	001470	# LOWCR	
\$PARHD	005422	# LOWCR	
\$PARPT	005554	# LOWCR	
\$PARTB	012670	# LOWCR	
\$PCBS	052164	# LOWCR	
\$PKAVL	005764	# LOWCR	
\$PKMAX	005767	# LOWCR	
\$PKNUM	005766	# LOWCR	
\$POOL	052310	# LOWCR	

Symbol	Value	Module	s Tha	t Referenc	e Symbol		
\$POWER	013750	# LOWC	R				
\$PPO	045144	# LOWC					
\$PRO	045266	# LOWC					
\$PR1EP	121654-R	# PR10					
\$PTBYT	006132	# LOWC					
SPTWRD	006160	# LOWC					
\$PWRFL	005416	# LOWC					
SORME	015062	# LOWC		es.			
\$QEMB \$QINSF	033516 014332	# LOWC:					
\$QINSP	014332	FIXO		LOWCR			
\$QMCRL	014376	# LOWC		DOWCK			
\$QRMVF	014406	FIXO		LOWCR	MCRDIS		
SQRMVT	014420	# LOWC					
\$RELOC	012222	# LOWC					
\$RELOM	012272	# LOWC					
\$RELOP	012410	# LOWC:					
\$REMEP	122714-R	# FIXO		PRIOV			
\$RESEP	122134-R	# ABOO'		PRIOV			
\$RLMCB \$RLPAR	023434 015246	# LOWC		LOWER			
\$RLPR1	015310	FIXO' # LOWC		LOWCR			
\$RQSCH	005452	# LOWC					
\$SAVNR	004144	# LOWC					
SSCDVT	012306	# LOWC					
\$SCDV1	012312	# LOWC					
\$SETCR	014704	# LOWC					
\$SETF	014762	# LOWC	R				
SSETM	014766	# LOWC					
\$SETRQ	014734	# LOWC					
SSETRT	014732	# LOWC:					
\$SGFLT	017336	# LOWC					
\$SHFPT	005516	FIXO		LOWCR			
\$SIGFL \$SRATT	005420 034124	LKLS'		LOWCR			
\$SRNAM	033644	# LOWC					
\$SRSTD	015132	GTTS		LOWCR	MCRDIS		
\$SRWND	034162	# LOWC					
\$STACK	000642	# LOWC	3				
\$STD	052220	# LOWC					
\$STKDP	005454	# LOWC					
SSTPCT	015222	# LOWC:		MCRDIS			
\$STPTK \$SWSTK	015226	# LOWC!	_				
\$SYBEG	004164 053424	# LOWC!					
\$SYSID	005574	# LOWC!					
\$SYSIZ	005716	# LOWC!					
SSYTOP	063424	# LOWC!					
\$SYUIC	005612	# LOWC	?				
STKNPT	005600	FIXO		LOWCR			
\$TKPS	005744	# LOWC:					
\$TKTCB	005446	ABOO'		EDCKP	GTMNM	GTTSK	LKLST
STKWSE	022420	# LOWCI		MCRDIS			
\$TRWSE \$TRACE	032430 017376	LKLS'		LOWCR			
\$TRP04	017376	# LOWC!					
\$TRTRP	021446	# LOWC					
\$TSKHD	005512	FIXO		LOWCR			
\$TSKRP	016504	# LOWC		MCRDIS			
\$TSKRQ	016502	# LOWC					
STSKRT	016476	# LOWC					
\$TSTCP	016052	# LOWC	3				

Symbol	Value	Modules That Reference Symbol
\$TTNS	005762	# LOWCR
\$TTO	045534	# LOWCR
STT1	045564	# LOWCR
\$TT10	047672	# LOWCR
\$TT11	047722	# LOWCR
\$TT12	047752	# LOWCR
\$TT13	050002	# LOWCR
STT14	050032	# LOWCR
\$TT15	050062	# LOWCR
\$TT16	050112	# LOWCR
\$TT17	050142	# LOWCR
\$TT2	047452	# LOWCR
\$TT20	050172	# LOWCR
\$TT21	050222	# LOWCR
\$TT22	051210	# LOWCR
\$TT23	051260	# LOWCR
\$TT24	051310	# LOWCR
\$TT25	051340	# LOWCR
\$TT26	051370	# LOWCR
\$TT27 \$TT3	051420	# LOWCR
	047502	# LOWCR
\$TT30 \$TT31	051450 051500	# LOWCR
\$1131 \$TT4	047532	# LOWCR # LOWCR
\$TT5	047562	# LOWCR
\$TT6	047612	# LOWCR
\$TT7	047642	# LOWCR
\$UISET	016776	# LOWCR
SUNFER	122714-R	# FIXOV PRLOV
\$UNLKL	125210-R	FIXOV # LKLST MCRDIS
SUNMAP	034222	# LOWCR
\$USRTB	000000	# LOWCR
\$XDT	035002	# LOWCR
.CLO	051756	# LOWCR
.CO0	051732	# LOWCR
.DBO	043162	# LOWCR
.DBl	043222	# LOWCR
.DB2	043262	# LOWCR
.DB3	043322	# LOWCR
.DKO	043464	# LOWCR
.DK1	043524 043564	# LOWCR # LOWCR
.DSW	000044	# LOWCR
.DSO	043720	# LOWCR
.DS1	043760	# LOWCR
.DS2	044020	# LOWCR
.DTO	044162	# LOWCR
.DT1	044226	# LOWCR
.DXO	044366	# LOWCR
.DXl	044426	# LOWCR
.LBO	052002	# LOWCR
.LDR	052220	# LOWCR
.LDRHD	052040	# LOWCR
.LPO	044562	# LOWCR
. MMO	044704	# LOWCR
.MM1	044746	# LOWCR
.NLO	051570	# LOWCR
.PPO	045112	# LOWCE
.PRO .SYO	045234 052026	# LOWCR # LOWCR
.TIO	051706	# LOWCR # LOWCR
1110	031/00	I TOUCK

9.4 MCRMU SEGMENT CROSS-REFERENCE

The MCRMU segment cross-reference lists the name of each overlay segment and the modules that compose it. The cross-reference follows:

Segment Name	Resident	Modules				
ERROV	EDCKP	ERRMSG	ERROV			
LUNOV	EXEDF	FMTDV	LUNOV			
MCROOT	EXEDF	LOWCR	MCROOT			
MCROV	EDCKP	EXEDF	GTMNM	LKLST	MCRDIS	
PRIOV	ABOOV	EXEDF	FIXOV	GNBLK	GTMNM	GTTSK
	LKLST	LN1OV	PRIOV			

SYS Global Cross-references

9.5 SYS GLOBAL CROSS-REFERENCES

This cross-reference is for a mapped system.

The cross-reference contains an alphabetic listing of each global symbol along with its value and the name of each referencing module. When a symbol is defined in several segments within an overlay structure, TKB prints the last defined value in the listing. Similarly, in a real TKB cross-reference listing, TKB would print the module name more than once for each symbol if the module is loaded in several segments within the structure.

The Task Builder creates an SYS.CRF cross-reference file when /CR is specified in the Task Builder command file used to build SYS. One of the input files to the Task Builder when building SYS is the Executive symbol table file, RSX1lM.STB. RSX1lM.STB is needed because SYS references some Executive symbols. All the symbols from RSX1lM.STB are put in the SYS.CRF symbol table file even though they are not referenced by SYS. Therefore, some symbols appearing here in the SYS cross-reference are defined in the Executive but not used by SYS. These symbols are shown defined in the Executive LOWCR or EXEDF modules.

The value contains the suffix -R if the symbol is relocatable.

Prefix symbols accompanying each module name define the type of reference as follows:

Prefix Symbol	Reference Type
blank	Module contains a reference that is resolved in the same segment or in a segment toward the root.
•	Module contains a reference that is resolved directly in a segment away from the root or in a co-tree.
@	Module contains a reference that is resolved through an autoload vector.
#	Module contains a reference that is resolved This module defines the symbol.
*	Module contains an autoloadable definition. This module defines the symbol.

Symbol	Value	Mod	dules	That	Reference	Symbol				
DV.F11	040000	#	EXEDE	,	SDSOV	SPROV				
DV.ISP	002000	#	EXEDE	,	REDOV					
DV.MNT	100000		ALLOV	7	DEAOV	DEVOV	#	EXEDF		REDOV
			SDSOV	,	SPROV					
DV.OSP	004000	#	EXEDI	ŗ	REDOV					
DV.PSE	010000		ALLO	7	ASNOV	DEAOV		DEVOV	#	EXEDF
		#	LOWCE	1	OPEOV	REDOV		SDSOV		SPROV
DV.SQD	000040		DEVO	, #	EXEDF.					
DV.TTY	000004		ALLO\	7	ASNOV	ATLOV		DEVOV	#	EXEDF
		#	LOWCE	₹	SDSOV	SPROV				

Symbol	Value	Modules 7	That Refer	ence Symbol	l	
DV.UMD	000200	# EXEDF	LOWCR			
DSSYNM	000000	# LOWCR				
D.DSP	000012	DEVOV	# EXEDF	# LOWCR		
D.LNK	000000	DEAOV	DEVOV	# EXEDF	SDSOV	\$FDUCB
D.MSK	000014	# EXEDF	# LOWCR			
D.NAM	000004	asnov	DEAOV	DEVOV	# EXEDF	FMTDV
		GTTSK	# LOWCR	OPEOV	RAPOV	REDOV
		SPROV	\$FDUCB			
D.PCB	000034	DEVOV	# EXEDF	# LOWCR	OPEOV	
D.RSOO	000000	# LOWCR				
D.RS1	177777	# LOWCR				
D.RS10	177766	# LOWCR				
0.RS16	177760	# LOWCR				
D.RS17	.177757	# LOWCR				
D.RS19	177755	# LOWCR				
D.RS2	177776	# LOWCR				
D.RS22	000002	# LOWCR				
D.RS5	177773	# LOWCR				
D.RS6	177772	# LOWCR				
D.RS7	177771	# LOWCR				
D.RS8	177770	# LOWCR				
D.RS80	177660	# LOWCR				
D.RS81	177657	# LOWCR				
D.RS84	177654	# LOWCR				
D.RS85	177653	# LOWCR				
D.RS86	177652	# LOWCR				
D.RS87	177651	# LOWCR				
D.RS90	177646	# LOWCR				
D.RS92	177644	# LOWCR				
D.RS93	177643	# LOWCR				
D.RS94	177642	# LOWCR				
D.RS95	177641	# LOWCR				
D.RS96	177640	# LOWCR				
D.RS97	177637	# LOWCR				
D.RS98	177636	# LOWCR				
D.RS99	177635	# LOWCR				
D.UCB	000002	DEAOV	DEVOV	# EXEDF	FMTDV	GTMNM
		# LOWCR	OPEOV	SDSOV	\$FDUCB	
D.UCBL	000010	DEAOV	DEVOV	# EXEDF	FMTDV	GTMNM
		# LOWCR	SDSOV	\$FDUCB		
D.UNIT	000006	DEAOV	DEVOV	# EXEDF	FMTDV	GTMNM
		# LOWCR	\$FDUCB			
D.VCAN	000002	# EXEDF	# LOWCR			
D.VINI	000000	# EXEDF	# LOWCR			
D.VOUT	000004	# EXEDF	# LOWCR			
D.VPWF	000006	# EXEDF	# LOWCR			
EC.DTO	000140	# EXEDF	# LOWCR			
EC.DVC	000001	# EXEDF	# LOWCR			
EC.NSI	000141	# EXEDF	# LOWCR			
E.LGTH	000056	# EXEDF	# LOWCR			
E.OPC	000022	# EXEDF	# LOWCR			
E.RTRY	σ00016	# EXEDF	# LOWCR			
E.SIZE	000000	# EXEDF	# LOWCR			
FE.DRV	000010	DEVOV	# EXEDF			
FE.EXP	000200	# EXEDF	SDSOV	SPROV		
FE.EXT	000001	# EXEDF	PAROV	SDSOV	SETOV	TASOV
FE.EXV	000004	# EXEDF	SPROV			
FE.MUP	000002	ALLOV	DEAOV	DEVOV	# EXEDF	RPSOV
		RUNOV	SPROV			
FE.NLG	100000	# EXEDF	SPROV			
FE.PKT	000100	# EXEDF	SDSOV	SPROV		
FE.PLA	000020	# EXEDF	SETOV	SPROV		

Symbol	Value	Modules	That Refere	ence Symbol		
H.CSP	000000	ATLOV	# EXEDF			
H.GARD	000072	ATLOV	# EXEDF			
H.WND	000044	# EXEDF	SYSROT			
IE.ABO	177761	# LOWCR				
IE.ALN IE.BAD	177736 177777	# LOWCR # LOWCR				
IE.BLK	177754	# LOWCR				
IE.BYT	177755	# LOWCR				
IE.DAA	177770	# LOWCR				
IE.DNA	177771	# LOWCR				
IE.DNR	177775	# LOWCR				
IE.IFC	177776	# LOWCR				
IE.LCK	177745	# LOWCR				
IE.NLN IE.NOD	177733 177751	# LOWCR				
IE.OFL	177751	# LOWCR # LOWCR				
IE.OVR	177756	# LOWCR				
IE.PRI	177760	# LOWCR				
IE.SDP	177635	ALTOV				
IE.SPC	177772	# LOWCR		•		
IE.ULK	177653	# LOWCR				
IE.UPN	177777	ASNOV				
IO.ATT	001400	ASNOV	ATLOV	CLQOV	DEVOV	# LOWCR
IO.CLN	003400	OPEOV # LOWCR	PAROV	TASOV		
IO.DET	002000	ASNOV	ATLOV	CLQOV	DEVOV	# LOWCR
		OPEOV	PAROV	TASOV		
IO.KIL	000012	ERROV				
IO.LOV	001010	# LOWCR				
IO.RLB	001000	# LOWCE	RAPOV	TASOV		
IO.RVB	010400	# LOWCR	OPEOV			
IO.ULK.	005000	# LOWCR				
IO.WAL	000410 000400	# LOWCR	OPEOV	REAOV		
IO.WVB	011000	ASNOV	ATLOV	CLQOV	DEVOV	ERROV
	30233	# LOWCR	OPEOV	PAROV	SDSOV	SPROV
		TASOV	TIMOV			
IQ.UMD	000004	# LOWCR				
IS.SUC	000001	# LOWCR				
KISAR5 KISAR6	172352	# EXEDF	# LOWCR			
L.ASG	172354 000010	# EXEDE	# LOWCR # EXEDF	# LOWCR	\$FDUCB	
L.LGTH	000010	ASNOV	# EXEDF	# DOWCK	QF DOCB	
L.LNK	000000	ASNOV	# EXEDF	\$FDUCB		
L.NAM	000002	ASNOV	# EXEDF	# LOWCR	\$FDUCB	
L.TYPE	000005	ASNOV	# EXEDF	# LOWCR	\$FDUCB	
L.UCB	000006	ASNOV	# EXEDF	# LOWCR	\$FDUCB	
L.UNIT	000004	ASNOV	# EXEDF	# LOWCR	\$FDUCB	
M\$\$MGE PADVBF	000000 125730-R	# LOWCR DEVOV	# PAROV			
PR7	000340	# EXEDF	# PAROV SETOV			
PS	177776	# EXEDF	SETOV			
P.ATT	000036	# LOWCR				
P.BLKS	000016	# EXEDF	# LOWCR			
P.BUSY	000024	# EXEDF	# LOWCR			
P.HDR	000032	ATLOV	# LOWCR	OPEOV		
P.IOC P.LGTH	000003 000042	# EXEDF # LOWCR	# LOWCR SETOV			
P.LNK	000042	# EXEDF	# LOWCR			
P.MAIN	000012	ALTOV	# EXEDF	# LOWCR		
P.NAM	000004	# EXEDF	# LOWCR			
P.OWN	000026	# EXEDF	# LOWCR			

Symbol	Value	Modules	That Refer	ence Symbol		
P.PRI	000002	# EXEDF	# LOWCR			
P.PRO	000034	# LOWCR				
P.REL	000014	# EXEDF	# LOWCR			
P.SIZE	000016	# EXEDF	# LOWCR			
P.STAT	000030	# EXEDF	# LOWCR			
P.SUB	000010	# EXEDF	# LOWCR			
P.SWSZ P.TCB	000022 000026	# EXEDF # EXEDF	# LOWCR # LOWCR			
P.WAIT	000020	ALTOV	# EXEDF	# LOWCR		
SP.EIP	000001	# EXEDF	# LOWCR	# LONCK		
SP.ENB	000002	# EXEDF	# LOWCR			
S.BMSK	177776	# EXEDF	# LOWCR			
S.BMSV	177774	# EXEDF	# LOWCR			
S.CCB	000030	# LOWCR				
s.con	000010	# EXEDF	# LOWCR			
S.CSR	000012	# EXEDF	# LOWCR	SETOV		
S.CTM	000006	# EXEDF	# LOWCR			
S.DZCK S.FRK	000030 000016	# LOWCR # EXEDF	# LOWCR			
S.ITM	000010	# EXEDF	# LOWCR			
S.LHD	000000	# EXEDF	# LOWCR			
S.MPR	000030	# LOWCR	" LONGK			
S.PKT	000014	# EXEDF	# LOWCR			
S.PRI	000004	# EXEDF	# LOWCR			
S.RCNT	177772	# EXEDF	# LOWCR			
S.ROFF	177773	# EXEDF	# LOWCR			
S.STS	000011	# EXEDF	# LOWCR			
S.VCT	000005	# EXEDF	# LOWCR			
T.EXT T.LGTH	000000 000070	# LOWCR # LOWCR				
T.NAM	000076	CLQOV	# EXEDF	PAROV		
T.PCB	000046	# EXEDF	LKLST	SETOV		
T.ST2	000034	# EXEDF	LKLST	55101		
T.ST3	000036	# EXEDF	RPSOV	SYSOV		
T.TCBL	000030	# EXEDF	SETOV			
T.UCB	000026	# EXEDF	GTMNM	GTTSK	SPROV	SYSOV
		\$FDUCB				•
T2.CKD	010000	# EXEDF	LKLST	aa		
T3.MCR UC.ATT	004000 000010	# EXEDF	RPSOV	SYSOV		
UC.KIL	000010	# EXEDF # EXEDF	# LOWCR # LOWCR			
UC.LGH	000003	# EXEDF	# LOWCR			
UC.NPR	000100	# EXEDF	# LOWCR			
UC.PWF	000020	# EXEDF	# LOWCR			
UC.QUE	000040	# EXEDF	# LOWCR			
UISAR0	177640	# EXEDF	# LOWCR			
UISDRO	177600	# EXEDF	# LOWCR			
US.BSY	000200	# EXEDF	# LOWCR			
US.FOR	000040	# EXEDF	# LOWCR	# LONGD		
US.MDM US.MNT	000020 000100	DEVOV ALLOV	# EXEDF DEAOV	# LOWCR DEVOV	# EXEDF	# LOWCR
JO . PINI	200100	REDOV	PEROV	DLVOV	# UVEDE	# LOWCK
US.OFL	000001	DEVOV	# EXEDF	# LOWCR	SETOV	
US.PUB	000004	ALLOV	DEAOV	DEVOV	# EXEDF	# LOWCR
		SDSOV	SPROV			
US.RED	000002	# EXEDF	REDOV			
US.UMD	000010	# EXEDF	# LOWCR	anno		
US.WCK	000010	# EXEDF	SDSOV	SPROV		
U.ACP U.ATT	000032 000022	# EXEDF ALLOV	# LOWCR ASNOV	ATLOV	CLQOV	DEVOV
O.AIT	000022	# EXEDF	# LOWCR	REDOV	CHOOA	DE 404
U.BUF	000024	# EXEDF	# LOWCR			
		"				

Symbol	Value	Modules	That Refe	rence Symbol	L	
U.CNT	000030	# EXEDF	# LOWCR			
U.CTL	000004	# EXEDF	# LOWCR			
U.CW1	000010	ALLOV		ATLOV	DEAOV	DEVOV
		# EXEDF	# LOWCR	OPEOV	REDOV	SDSOV
		SPROV				
U.CW2	000012	ALLOV	ASNOV	ATLOV	DEAOV	DEVOV
		# EXEDF	# LOWCR	RUNOV	SDSOV	SETOV
		SPROV	SYSOV			
U.CW3	000014	# EXEDF	# LOWCR	SDSOV	SETOV	
U.CW4	000016	# EXEDF	SDSOV	SPROV		
U.DCB	000000	# EXEDF	FMTDV	GTMNM	GTTSK	REDOV
_		SDSOV	\$FDUC	В		
U.LUIC	177774	DEVOV	# EXEDF	RUNOV	SPROV	
U.OWN	177776	ALLOV	DEAOV	DEVOV	# EXEDF	# LOWCR
		SDSOV				
U.RED	000002	ASNOV		# EXEDF	GTMNM	# LOWCR
		REDOV				
U.SCB	000020	# EXEDF		SETOV		
U.STS	000005	ALLOV		DEVOV	# EXEDF	# LOWCR
		REDOV		SPROV		
U.ST2	000007	ALLOV		DEVOV	# EXEDF	# LOWCR
		REDOV		SETOV	SPROV	
U.UIC	000052	# EXEDF		SPROV		
U.UNIT	000006	# EXEDF		SETOV		
U.VCB	000034	DEVOV		# LOWCR		
U2.CRT	002000	# EXEDF		SPROV		
U2.DH1	100000 040000	# EXEDF # EXEDF				
U2.DJ1 U2.DZ1	000100			CEMON	CDDOW	
U2.ESC	001000	# EXEDF # EXEDF		SETOV SPROV	SPROV	
U2.HLD	000040	# EXEDE		SPROV		
U2.LOG	000400	ALLOV		# EXEDF		
U2.LWC	000001	# EXEDF		SPROV		
U2.L3S	000004	# EXEDF		SPROV		
U2.L8S	010000	# EXEDE		SPROV		
U2.PRV	000010	ASNOV		DEAOV	# EXEDF	RUNOV
021211	000020	SDSOV		SYSOV	" DNDDI	RONOV
U2.RMT	020000	# EXEDF		SPROV		
U2.SLV	000200	# EXEDF	_	SPROV		
U2.VT5	000002	# EXEDF		SPROV		
V\$\$CTR	000410	# LOWCE				
W.BLVR	000002	# EXEDF		T		
X.AST	000032	# LOWCE				
X.DSI	000024	# LOWCE	L			
X.FORK	000012	# LOWCE				
X.ISR	000010	# LOWCE				
X.JSR	000002	# LOWCR	<u>.</u>			
X.LEN	000050	# LOWCE	,			
X.LNK	000000	# LOWCE				
X.PSW	000006	# LOWCE				
X.REL	000022	# LOWCE				
X.TCB	000026	# LOWCE				
X.VEC	000044	# LOWCE				
X.VPC	000046	# LOWCE				
\$ABCTK	014460	# LOWCE				
\$ABTIM	005414	CLQOV				
\$ABTSK	014464	# LOWCE				
\$ACHCK \$ACHKB	007242	# LOWCE				
\$ACHKB \$ACHKP	007250	# LOWCE				
\$ACHKW	007206 007232	# LOWCR				
\$ACTEP	122566-R	# LOWCK				
THOTHE	155300-K	# VITOA				

Symbol	Value	Modules	Tha	t Referer	nce Symbol			
\$ACTHD	005634	# LOWCR						
\$ACTRM	015172	# LOWCR						
\$ACTTK	014652	# LOWCR						
SALCLK	006636	# LOWCR						
SALEBI	032634	# LOWCR						
\$ALEMB	032620	# LOWCR						
SALLEP	123350-R	# ALLOV		REAOV				
\$ALOCB	006524	ASNOV	#	LOWCR	RPSOV		SETOV	
\$ALOC1	006566	# LOWCR						
SALPKT	006652	# LOWCR						
\$ALTEP	122170-R	# ALTOV						
\$ASNEP	122636-R	# ASNOV		RAPOV				
SATLEP	122556-R	# ATLOV						
\$BILDS	014540	# LOWCR						
\$BLKCK \$BLKC1	010174 010204	# LOWCR						
\$BLXIO	010204	# LOWCR						
\$BMSET	032730	# LOWCR # LOWCR						
\$BRKEP	124642-R	# BRKOV		OPEOV				
\$BTMSK	005640	# LOWCR		OPEOV				
\$CAT5	127134	ALTOV		GTTSK	OPEOV		RAPOV	RPSOV
+ 02		SPROV		SYSOV	Or DO V		ICAL OV	KEBOV
\$CBDMG	124206	ATLOV		CLQOV	SDSOV		TASOV	
\$CBOMG	125304	ASNOV		ATLOV	FMTDV		GTMNM	SDSOV
,		TASOV						
\$CDTB	127310	GETNUI	M	RPSOV	TIMOV			
\$CEFI	007362	# LOWCR						
\$CEFN	007356	# LOWCR						
\$CFLPT	005522	# LOWCR						
\$CHKPT	016226	# LOWCR						
\$CKACC	033726	# LOWCR						
\$CKCNT	005604	# LOWCR						
\$CKCSR	005606	# LOWCR						
\$CKINT	017726	# LOWCR						
\$CKLDC	005610	# LOWCR						
\$CLINS	014162	# LOWCR		RUNOV				
\$CLKHD \$CLRMV	005556 014264	CLOOA	#	LOWCR				
\$CDKMV \$COMEF	005570	# LOWCR # LOWCR						
\$COPT	005560	# LOWCR						
\$COTB	127316	ASNOV		GETNUM	OPEOV		\$FDUCB	
\$CRASH	001470	# LOWCR		GEINOM	OFLOV		PEDUCE	
\$CRATT	034024	# LOWCR						
\$CRAVL	005532	# LOWCR		SDSOV				
\$CRPAS	012470	# LOWCR						
\$CRSBF	000730	# LOWCR						
\$CRSBN	001462	# LOWCR						
\$CRSCS	001466	# LOWCR						
\$CRSHT	001752	# LOWCR						
\$CRSST	001460	# LOWCR						
\$CRSUN	001756	# LOWCR						
\$CVRTM	007070	# LOWCR						
\$C5TA	005772	ATLOV		CLOOA	ERROV	#	LOWCR	PAROV
¢ D z com	015000	SDSOV		TASOV				
\$DASTT	015030	# LOWCR						
\$DB0 \$DDIV	043366 124454	# LOWCR						
\$DDIV \$DEACB	006672	CLQOV ASNOV	π	LOWCE	PREOM		MOM	G PMOT
ADEWCD	000072	SPROV	Ħ.	LOWCR	RPSOV		RUNOV	SETOV
\$DEAC1	006732	# LOWCR						
\$DEAEP	123624-R	# DEAOV		REAOV				
\$DECLK	006644	# LOWCR						

Symbol	Value	Modules That Reference Symbol
\$DEPKT	006666	# LOWCR
\$DETRG	031502	# LOWCR
\$DEVEP	122302-R	# DEVOV
\$DEVHD	005462	DEAOV DEVOV # LOWCR OPEOV SDSOV
		\$FDUCB
\$DEVTB	043122	# LOWCR
\$DIRSV	002264	# LOWCR
\$DIRXT	002514	# LOWCR
\$DIV	012564	FMTDV GTMNM # LOWCR TIMOV
\$DK0	043630	# LOWCR
\$DPLM1	021662	# LOWCR
\$DPLM2	021666	# LOWCR
\$DQLM1	026526	# LOWCR
\$DQLM2 \$DRABO	026536 022140	# LOWCR # LOWCR
\$DRASG	022140	# LOWCR
\$DRATP	032020	# LOWCR
\$DRATR	031166	# LOWCR
\$DRATX	022410	# LOWCR
\$DRCEF	032340	# LOWCR
\$DRCMT	022556	# LOWCR
\$DRCRR	030600	# LOWCR
\$DRCRW	024064	# LOWCR
\$DRCSR	022562	# LOWCR
\$DRDAR	022576	# LOWCR
\$DRDCP	022632	EDCKP # LOWCR
\$DRDSE	032350	LKLST # LOWCR
\$DRDTR	031350	# LOWCR
\$DREAR \$DRECP	022612 022656	# LOWCR EDCKP # LOWCR
\$DREIF	004220	# LOWCR
SDRELW	024312	# LOWCR
\$DREXP	022702	# LOWCR
\$DREXT	004226	# LOWCR
\$DRFEX	026100	# LOWCR
\$DRGCL	023372	# LOWCR
\$DRGLI	023500	# LOWCR
\$DRGMX	025504	# LOWCR
\$DRGPP \$DRGSS	023602 023704	# LOWCR # LOWCR
\$DRG35 \$DRGTK	023714	# LOWCR
\$DRGTP	024030	# LOWCR
\$DRLM1	021566	# LOWCR
\$DRLM2	021606	# LOWCR
\$DRMAP	024346	# LOWCR
\$DRMKT	025730	# LOWCR
\$DRPUT	026122	# LOWCR
\$DRQIO	026410	# LOWCR
\$DRQRQ	027516	# LOWCR
\$DRRAF	032364	# LOWCR
\$DRRCV \$DRREC	026162 030306	# LOWCR # LOWCR
\$DRREQ	031714	# LOWCR
\$DRRES	031746	# LOWCR
\$DRRRA	026142	# LOWCR
\$DRRRF	025232	# LOWCR
\$DRRUN	025762	# LOWCR
\$DRSDV	032532	# LOWCR
\$DRSEF	032420	# LOWCR
\$DRSND	030440	# LOWCR
\$DRSPN	032006	# LOWCR
\$DRSRF	024716	# LOWCR

Symbol	Value	Modules T	hat Refere	nce Symbol	L	
\$DRSTV	032540	# LOWCR				
\$DRUNM	024672	# LOWCR				
\$DRWFL	032450	# LOWCR				
\$DRWFS	032512	# LOWCR				
\$DRWSE	032434	# LOWCR				
\$DSW	000046	ALTOV	ASNOV		•	
\$DSO	044064	# LOWCR				
\$DTOER	032754	# LOWCR				
\$DT0	044276	# LOWCR				
SDVCER	033016	# LOWCR				
\$DVERR	033016	# LOWCR				
\$DVMSG	007446	# LOWCR				
\$DX0	044472 005470	# LOWCR	MT NOV			
SDYPMN SEMSST	017156	# LOWCR # LOWCR	TIMOV			
\$EMTRP	021512	# LOWCR				
SERREP	122160-R	# ERROV				
\$ERRHD	005700	# LOWCR				
ŞERRLM	005704	# LOWCR				
SERRLN	000404	# ERRMSG	ERROV			
SERRPT	005514	# LOWCR				
SERRSQ	005706	# LOWCR				
\$ERRSV	005710	# LOWCR				
\$ERRSZ	005712	# LOWCR				
\$ERRTB	124364-R	# ERRMSG	ERROV			
SEXRQF	016434	# LOWCR	RPSOV			
\$EXRQN	016452	# LOWCR				
\$EXRQP	016426	# LOWCR				
ŞEXSIZ	005520	# LOWCR	SDSOV	SETOV	SPRC) V
\$FDLGG	126422-R	# \$FDUCB	1011017	DELOW	53.50	annou
\$FDLOG	126430-R	ALLOV	ASNOV	DEAOV	RAPC	OV SPROV
\$FDUCB	126436-R	# \$FDUCB ASNOV	ATLOV	REDOV	# \$FDU	(CD
\$FINBF	003776	# LOWCR	ALLOV	KEDUV	# \$FDU	CB
\$FLTRP	017212	# LOWCR				
SFMASK	005552	ALLOV	DEAOV	DEVOV	# LOWO	R OPEOV
,	***************************************	PAROV	RPSOV	RUNOV	SDSC	
		SPROV	TASOV			
\$FMTDV	125176-R	ASNOV	ATLOV	DEVOV	# FMTE	V SDSOV
		TASOV				
SFNDSP	015750	# LOWCR				
\$FORK	002320	# LOWCR				
\$FORKO	002342	# LOWCR				
\$FORK1	002340 017226	# LOWCR				
\$FPINT \$FRKHD	005546	# LOWCR # LOWCR				
\$GNBLK	126750-R	# LOWCR ALLOV	ASNOV	ATLOV	DEAC	V DEVOV
YGNDUK	120/30-R	# GNBLK	MBNOV	AILOV	DEAC	DEVOV
\$GTBYT	006102	# LOWCR				
\$GTMNM	126034-R	# GTMNM	GTTSK			
\$GTNUM	126716-R	ALTOV	# GETNUM	RAPOV	RPSC	V SPROV
\$GTPKT	007510	# LOWCR				
\$GTTSK	125460-R	ALTOV	# GTTSK	RAPOV		
\$GTWRD	006160	# LOWCR				
\$HEADR	005564	GTTSK	LKLST	# LOWCR	OPEC	
	·	RPSOV	RUNOV	SETOV	SYSF	ROT TASOV
A		\$FDUCB				
\$ICHKP	016160	# LOWCR				
\$ILINS	017304	# LOWCR				
\$INITL \$INTCT	052414 005542	# LOWCR # LOWCR				
\$INTCT \$INTSE	003342	# LOWCR				
TINIDE	0023/0	# JONCK				

Symbol	Value	Modules That Reference	e Symbol		
\$INTSV	002434	LOWCR			
\$INTXT	002374	LOWCR			
\$INTX1	002456	LOWCR			
\$IOABM	005714	LOWCR			
\$IOALT	010272	LOWCR			
\$IODON	010274	LOWCR			
\$IOFIN	010414	LOWCR			
\$IOKIL	010666	LOWCR			
\$IOTRP	017316	LOWCR			
\$LCKPR	011552	LOWCR			
\$LDPWF	014124	LOWCR			
\$LDRPT	005464	LOWCR			
\$LOAD \$LOADR	121004	SYSROT			
\$LOADR \$LOADT	041214 016422	LOWCR			
\$LOCKL	124564-R	LOWCR ASNOV ATLOV	DEMON	# LKLST	PAROV
APOCKE	124364-K	ASNOV ATLOV REDOV SETOV	DEVOV TASOV	# LVT21	PAROV
\$LOGHD	005624	ASNOV # LOWCR	\$FDUCB		
\$LP0	044614	LOWCR	AFDOCE		
\$LSTLK	005630	LKLST # LOWCR			
SMAPTK	017036	LOWCR			
SMBUF	120362-R	ASNOV ATLOV	CLOOV	DEVOV	ERROV
7	22000	OPEOV PAROV	RPSOV	SDSOV	SPROV
		SYSOV # SYSROT	TASOV	TIMOV	511101
\$MCKD	122512-R	EDCKP ERROV			
\$MCKE	122524-R	EDCKP ERROV			
\$MCMD	120454-R	ERROV RAPOV	RPSOV	SPROV	SYSOV
		SYSROT			
\$MCOV	120464-R	SPROV SYSOV #	SYSROT		
\$MCR	120634-R	ALLOV ALTOV	ASNOV	ATLOV	BRKOV
		CLQOV DEAOV	DEVOV	ERROV	OPEOV
		PAROV REAOV	REDOV	RPSOV	RUNOV
		SDSOV SETOV	SPROV	# SYSROT	TASOV
*		TIMOV			
\$MCRCB	005626	LOWCR			
\$MCRPT	005466	LOWCR RPSOV			
\$MDIS	120500-R	SYSROT	DEMON	EDDOM	ODEOU
\$MDPB	120366-R	ASNOV ATLOV PAROV RAPOV	DEVOV REAOV	ERROV SDSOV	OPEOV SPROV
		SYSROT TASOV	TIMOV	3D30V	SPROV
\$MERLD	120720-R	ALLOV ALTOV	ASNOV	ATLOV	CLQOV
71111111	120/20 K	DEAOV DEVOV	OPEOV	PAROV	RAPOV
		REAOV REDOV	RPSOV	RUNOV	SDSOV
		SETOV SPROV		# SYSROT	TASOV
		TIMOV			
\$MERR	120470-R	# SYSROT			
\$MERRN	120474-R	ALLOV ALTOV	ASNOV	ATLOV	CLQOV
		DEAOV DEVOV	ERROV	OPEOV	PAROV
		RAPOV REAOV	REDOV	RPSOV	RUNOV
		SDSOV SETOV	SPROV	SYSOV	# SYSROT
6 W = 5	100004 =	TASOV TIMOV			
\$MLDOV	120724-R	RAPOV RPSOV	SPROV	SYSOV	# SYSROT
\$MLIMI	120632-R	ATLOV DEVOV	PAROV	# SYSROT	TASOV
\$MLINE \$MM0	120504-R 045014	SYSOV # SYSROT			
\$MMU \$MOVRB	120416-R	LOWCR SYSROT			
\$MOVED \$MPARS	120416-R 120424-R	ALLOV ALTOV	ASNOV	ATLOV	DEAOV
4HI MAD	T	DEVOV ERROV	OPEOV	PAROV	RAPOV
		REAOV REDOV	RPSOV	RUNOV	SDSOV
			SYSROT	TASOV	TIMOV
\$MPCSR	012734	LOWCR "		723DQ V	1 1 1 1 O V
\$MPLND	011126	LOWCR			

Symbol	Value	Modules That Reference Symbol
\$MPLNE	011106	# LOWCR
\$MPLUN	011070	# LOWCR
SMPPHY	011170	# LOWCR
SMPPKT	011240	# LOWCR
SMPRSR	120460-R	SYSOV # SYSROT
\$MPVBN	011372	# LOWCR
\$MROOT	120706-R	# SYSROT
SMTERM	120476-R	RPSOV RUNOV SYSOV # SYSROT
\$MUCB	120364-R	ALLOV ASNOV ATLOV CLQOV DEAOV
		DEVOV PAROV RPSOV RUNOV SDSOV
\$MUL	012524	SPROV SYSOV # SYSROT TIMOV # LOWCR RUNOV
\$MXEXT	012534 005770	
\$NLO	051622	# LOWCR SDSOV SPROV # LOWCR
\$NNBLK	126752-R	# LOWCK # GNBLK SPROV TIMOV
\$NONSI	002556	# LOWCR
\$NSO	033300	# LOWCR
\$NS1	033306	# LOWCR
\$NS2	033314	# LOWCR
\$NS3	033322	# LOWCR
\$NS4	033330	# LOWCR
\$NS5	033336	# LOWCR
\$NS6	033344	# LOWCR
\$NS7	033352	# LOWCR
\$NULL	043100	# LOWCR
\$NXTSK	015322	ALTOV # LOWCR
SOPEEP	122226-R	# OPEOV
SPANIC	001470	# LOWCR
SPAREP	123654-R	DEVOV # PAROV
\$PARHD	005422	# LOWCR OPEOV PAROV SDSOV SETOV SPROV
\$PARPT	005554	# LOWCR
\$PARTB	012670	# LOWCR
\$PCBS	052164	# LOWCR
SPKAVL	005764	# LOWCR
\$PKMAX	005767	# LOWCR SDSOV SPROV
\$PKNUM	005766	# LOWCR SDSOV
\$POOL	052310	# LOWCR
SPOWER	013750	# LOWCR
\$PPO	045144	# LOWCR
\$PRO	045266	# LOWCR
\$PTBYT \$PTWRD	006132 006160	# LOWCR
\$PWRFL	005416	# LOWCR # LOWCR
\$OASTT	015062	# LOWCR
\$QEMB	033516	# LOWCR
SQINSF	014332	# LOWCR
SQINSP	014340	ALTOV # LOWCR
\$QMCRL	014376	# LOWCR
\$QRMVF	014406	# LOWCR
SQRMVT	014420	ALTOV # LOWCR
\$RAPEP	122144-R	# RAPOV
\$REAEP	123142-R	# REAOV
\$REDEP	123000-R	ALTOV # REDOV
\$RELOC \$RELOM	012222	# LOWCR
\$RELOM \$RELOP	012272 012410	# LOWCR # LOWCR
\$RLMCB	023434	# LOWCR # LOWCR
\$RLPAR	015246	# LOWCR
\$RLPR1	015310	# LOWCR
SRPSEP	122206-R	# RPSOV
\$RQSCH	005452	# LOWCR

Symbol	Value	Modules 1	Tha	t Refere	ence	e Symbol		
\$RUNEP	122144-R	# RUNOV						
\$SAVNR	004144	CBTO		CBTO	#	LOWCR		
\$SCDVT	012306	# LOWCR						
\$SCDV1 \$SDSEP	012312 122676-R	# LOWCR # SDSOV						
\$SETCR	014704	# LOWCR						
\$SETEP	122164-R	# SETOV						
SSETF	014762	# LOWCR						
\$SETM	014766	# LOWCR						
\$SETRQ	014734	# LOWCR						
ŞSETRT	014732	# LOWCR						
\$SGFLT \$SHFPT	017336 005516	# LOWCR # LOWCR						
\$SIGFL	005420	# LOWCK LKLST	#	LOWCR				
\$SOVEP	122134-R	# SYSOV	Ä	SYSROT				
\$SPREP	122700-R	# SPROV						
\$SRATT	034124	# LOWCR						
\$SRNAM	033644	# LOWCR	_					
\$SRSTD	015132	GTTSK	#	LOWCR		OPEOV	RPSOV	RUNOV
\$SRWND \$STACK	034162 000642	# LOWCR # LOWCR						
\$STACK \$STD	052220	# LOWCR # LOWCR						
\$STKDP	005454	# LOWCR		RUNOV				
SSTPCT	015222	# LOWCR						
\$STPTK	015226	# LOWCR						
\$SWSTK	004164	# LOWCR						
\$SYBEG \$SYSID	053424 005574	# LOWCR # LOWCR						
\$SYSIZ	005716	# LOWCR		OPEOV		SETOV	SPROV	
\$SYTOP	063424	# LOWCR		01 201		DDIOV	D1 1.0 1	
\$SYUIC	005612	# LOWCR		SDSOV		SPROV		
\$TALEP	122576-R	# ATLOV						
STASEP	122172-R	# TASOV						
\$TIMEP \$TKNPT	122260-R 005600	# TIMOV # LOWCR						
\$TKPS	005744	# LOWCK	#	LOWCR		RUNOV	TIMOV	
\$TKTCB	005446	EDCKP	"	GTMNM		GTTSK	LKLST	# LOWCR
		RPSOV		SPROV		SYSOV	\$FDUCB	
\$TKWSE	032430	LKLST	••	LOWCR				•
\$TRACE	017376	BRKOV	#	LOWCR				
\$TRP04 \$TRTRP	017410 021446	# LOWCR # LOWCR						
\$TSKHD	005512	ALTOV	#	LOWCR		SETOV	TASOV	
\$TSKRP	016504	# LOWCR		RUNOV		00101	*******	
\$TSKRQ	016502	# LOWCR						
\$TSKRT	016476	# LOWCR						
\$TSTCP	016052	# LOWCR	ш	T ONIOD		D	m= 14011	
\$TTNS \$TT0	005762 045534	CLQOV # LOWCR	₩	LOWCR		RUNOV	TIMOV	
\$TT1	045564	# LOWCR						
\$TT10	047672	# LOWCR						
\$TT11	047722	# LOWCR						
\$TT12	047752	# LOWCR						
\$TT13 \$TT14	050002	# LOWCR # LOWCR						
\$TT14 \$TT15	050032 050062	# LOWCR # LOWCR						
\$TT16	050112	# LOWCR						
\$TT17	050142	# LOWCR						
\$TT2	047452	# LOWCR						
\$TT20	050172	# LOWCR						
\$TT21 \$TT22	050222 051210	# LOWCR # LOWCR						
T ~ 1 ~ 4	UJ1210	" TOHOT						

Symbol	Value	Modules	That	Reference	e Symbol		
\$TT23	051260	# LOWCR					
\$TT24	051310	# LOWCR					
\$TT25	051340	# LOWCR					
\$TT26	051370	# LOWCR					
\$TT27	051420	# LOWCR					
\$TT3	047502	# LOWCR					
\$TT30	051450	# LOWCR					
\$TT31	051500	# LOWCR					
\$TT4	047532	# LOWCR					
\$TT5	047562	# LOWCR					
\$TT6 \$TT7	047612 047642	# LOWCR					
\$UISET	016776	# LOWCR # LOWCR					
\$UNLKL	124654-R	ALTOV	2	ASNOV	ATLOV	DEVOV	# LKLST
TONERE	T24034-1	PAROV		REDOV	SETOV	SYSOV	TASOV
\$UNMAP	034222	# LOWCR	•		00101	51501	111501
SUSRTB	000000	# LOWCR					
\$XDT	035002	# LOWCR					
.CBTO	124752-R	# CBTO	I	DEVOV	OPEOV	PAROV	
.CLO	051756	# LOWCR					
.COT2B	125056-R	# COT2B	(PEOV			
.000	051732	# LOWCR	,		Dinorr		
.C2BTO	124732-R 124666-R	# CBTO # CBTO		OPEOV OPEOV	PAROV PAROV		
.DB0	043162	# LOWCR	•	JF EOV	FAROV		
.DB1	043222	# LOWCR					
.DB2	043262	# LOWCR					
.DB3	043322	# LOWCR					
.DKO	043464	# LOWCR					
.DK1	043524	# LOWCR					
.DK2	043564	# LOWCR					
.DSW .DSO	000044 043720	# LOWCR # LOWCR					
.DS1	043760	# LOWCR					
.DS2	044020	# LOWCR					
.DTO	044162	# LOWCR					
.DT1	044226	# LOWCR					
.DXO	044366	# LOWCR					
.DX1	044426	# LOWCR		,			
.KEYWD	127020-R	# KEYWD	(DPEOV	RPSOV	SPROV	
.LBO	052002	# LOWCR					
.LDR	052220 052040	# LOWCR # LOWCR					
.LPO	044562	# LOWCR					
. MMO	044704	# LOWCR					
.MMl	044746	# LOWCR					
.NLO	051570	# LOWCR					
.PPO	045112	# LOWCR					
.PRO	045234	# LOWCR					
.SYO	052026 051706	# LOWCR # LOWCR					
.TT0	045362	# LOWCR					
.TT1	045452	# LOWCR					
.TT10	046400	# LOWCR					
.TT11	046470	# LOWCR					
.TT12	046560	# LOWCR					
.TT13	046650	# LOWCR					
.TT14 .TT15	046740 047030	# LOWCR # LOWCR					
.TT16	047030	# LOWCR					
.TT17	047210	# LOWCR					
.TT2	045660	# LOWCR		,			

Symbol	Value	Modules That Reference Symbol
Symbol .TT20 .TT21 .TT22 .TT23 .TT24 .TT25 .TT26 .TT27 .TT3 .TT30 .TT31 .TT4	Value 047300 047370 050316 050406 050476 050566 050746 045750 051036 051126 046040 046130	Modules That Reference Symbol # LOWCR
.TT6 .TT7	046220 046310	# LOWCR # LOWCR

9.6 SYS SEGMENT CROSS-REFERENCES

The SYS segment cross-reference lists the name of each overlay and the modules that compose it. The cross-reference follows:

Segment Name	Resident	Modules				
ALTOV	ALTOV	EXEDF	GETNUM	GTMNM	GTTSK	LKLST
	REDOV	\$FDUCB	J_ 11.0			
ATLOV	ATLOV	EXEDF	FMTDV	GNBLK	GTMNM	GTTSK
	LKLST	\$FDUCB				
CLQOV	CLQOV	EXEDF				
DEVOV	CBTO	DEVOV	EXEDF	FMTDV	GNBLK	LKLST
	PAROV					
ERROV	EDCKP	ERRMSG	ERROV			
OPEOV	BRKOV	CBTO	COT2B	KEYWD	OPEOV	
RAPOV	ASNOV	EXEDF	FMTDV	GETNUM	GNBLK	GTMNM
	GTTSK	LKLST	RAPOV	\$FDUCB		
REAOV	ALLOV	DEAOV	EXEDF	GNBLK	REAOV	\$FDUCB
RPSOV	EXEDF	GETNUM	KEYWD	RPSOV		
RUNOV	EXEDF	RUNOV				
SDSOV	EXEDF	FMTDV	SDSOV			
SETOV	EXEDF	LKLST	SETOV			
SPROV	EXEDF	GETNUM	GNBLK	KEYWD	SPROV	\$FDUCB
SYSOV	EXEDF	LKLST	SYSOV			
SYSROT	EXEDF	LOWCR	SYSROT			
TASOV	EXEDF	FMTDV	LKLST	TASOV		
TIMOV	GNBLK	TIMOV				

9.7 BIGFCP GLOBAL CROSS REFERENCES

The cross-reference contains an alphabetic listing of each global symbol along with its value and the name of each referencing module. When a symbol is defined in several segments within an overlay structure, TKB prints the last defined value in the listing. Similarly, in a real TKB cross-reference listing, TKB would print the module name more than once for each symbol if the module is loaded in several segments within the structure.

The value contains the suffix -R if the symbol is relocatable.

The Task Builder creates a BIGFCP.CRF cross-reference file when /CR is specified in the Task Builder command file used to build BIGFCP. One of the input files to the Task Builder when building BIGFCP is the Executive symbol table file, RSX11M.STB. RSX11M.STB is needed because BIGFCP references some Executive symbols. All the symbols from RSX11M.STB are put in the BIGFCP.CRF symbol table file even though they are not referenced by BIGFCP. Therefore, some symbols appearing here in the BIGFCP cross-reference are defined in the Executive but not used by BIGFCP. These symbols are shown defined in the Executive LOWCR or EXEDF modules.

Prefix symbols accompanying each module name define the type of reference as follows:

Prefix Symbol	Reference Type
blank	Module contains a reference that is resolved in the same segment or in a segment toward the root.
•	Module contains a reference that is resolved directly in a segment away from the root or in a co-tree.
@	Module contains a reference that is resolved through an autoload vector.
#	Module contains a non-autoloadable definition. This module defines the symbol.
*	Module contains an autoloadable definition. This module defines the symbol.

Symbol	Value	Modu	ıles	That	R	eference	Symbol
AT.FCB	000100	#	ATCI	'L		RATCM	WATCM
AT.HDR	000000	#	ATCT	L			
AT.IDN	000001	#	ATCI	'L			
AT.MAP	000002	#	ATCT	'L			
AT.PRO	000040	#	ATCI	'L		WATCM	
AT.RO	000200	#	ATCI	'L		WATCM	
DV.PSE	010000	#	EXEC	F	ŧ	LOWCR	
DV.TTY	000004	#	EXED	F i	Ħ	LOWCR	
DV.UMD	000200	#	EXEC	F	#	LOWCR	
D\$\$YNM	000000	#	LOWC	R			
D.DSP	000012	#	EXEC	F	Ħ	LOWCR	
D.MSK	000014	#	EXED)F	Ħ	LOWCR	
D.NAM	000004	#	EXEC	F	ŧ	LOWCR	
D.PCB	000034	#	EXEC	F	#	LOWCR	
D.RS00	000000	#	LOWC	R			
D.RS1	1 <i>ሻ7777</i>	#	LOW	R			

÷...

Symbol	Value	Modules	That	Reference	Symbol		
D.RS10	177766	# LOWCR					
D.RS16	177760	# LOWCR					
D.RS17	177757	# LOWCR					
D.RS19	177755	# LOWCR					
D.RS2	177776	# LOWCR					
D.RS22	000002	# LOWCR					
D.RS5	177773	# LOWCR					
D.RS6 D.RS7	177772	# LOWCR # LOWCR					
D.RS8	177771 177770	# LOWCR # LOWCR					
D.RS80	177660	# LOWCR					
D.RS81	177657	# LOWCR					
D.RS84	177654	# LOWCR					
D.RS85	177653	# LOWCR		*			
D.RS86	177652	# LOWCR					
D.RS87	177651	# LOWCR					
D.RS90	177646	# LOWCR					
D.RS92	177644	# LOWCR					
D.RS93 D.RS94	177643 177642	# LOWCR # LOWCR					
D.RS95	177641	# LOWCR					
D.RS96	177640	# LOWCR					
D.RS97	177637	# LOWCR					
D.RS98	177636	# LOWCR	•				
D.RS99	177635	# LOWCR					
D.UCB	000002	# EXEDF		LOWCR			
D.UCBL	000010	# EXEDF	#	LOWCR			
D.UNIT	000006	# EXEDF		LOWCR			
D.VCAN	000002	# EXEDF		LOWCR			
D.VINI	000000	# EXEDF		LOWCR			
D.VOUT D.VPWF	000004 000006	# EXEDF # EXEDF		LOWCR LOWCR			
EC.DTO	000140	# EXEDF		LOWCR			
EC.DVC	000001	# EXEDF		LOWCR			
EC.NSI	000141	# EXEDF		LOWCR			
E.BDHD	000000	# DISPAT		RDHDR			
E.LGTH	000056	# EXEDF	#	LOWCR			
E.OPC	000022	# EXEDF		LOWCR			
E.RTRY	000016	# EXEDF		LOWCR			
E.SIZE	000000 000002	# EXEDF		LOWCR	DDO GV		
FE.MUP F.EFBK	000010	CRFIL DRACC		EXEDF DREOF	PROCK		
F.FFBY	000014	DRACC		DREOF			
F.HIBK	000004	DRACC		DREOF			
F.RSIZ	000002	DRACC					
F.RTYP	000000	DRACC					
IE.ABO	177761	# LOWCR		RWVBL			
IE.ALC	177654	SMALC					
IE.ALN	177736	# LOWCR	_				
IE.BAD	177777	ACCESS			DEACC	DISPAT	DLMRK
		DRINI LOCAT			EXCOM RWATT	GTFID RWVB	INWIN
IE.BDR	177716	DRACC	π	LUNCK	******	WM A D	
IE.BHD	177700	NXHDR		RDHDR	SMDEL	SMSCN	
IE.BLK	177754	# LOWCR		-			
IE.BVR	177701	ENTNM					
IE.BYT	177755	# LOWCR					
IE.CKS	177742	RDHDR	_				
IE.CLO	177732	ACCESS	j .				
IE.DAA IE.DFU	177770 177750	# LOWCR SMALC					
IE.DPU	177771	# LOWCR					
DIA		# HOWCK					

Symbol	Value	Modules Ti	hai	t Reference	Symbol	
IE.DNR	177775	# LOWCR				
IE.DUP	177707	ENTNM				
IE.EOF	177766	RWVB		RWVBL	TRUNC	
IE.HFU	177744	EXCMP				
IE.IFC	177776	# LOWCR				
IE.IFU	177747	CRFID				
IE.LCK	177745	ACCESS	#	LOWCR	TRUNC	WACCK
IE.NLN	177733	GTFID	#	LOWCR	DISTING	
IE.NOD IE.NSF	177751 177746	ALLOC DLMRK	₩	LOWCR FDRMV	RWVBL PROCK	RDHDR
IE.OFL	177677	# LOWCR		FURNIV	PROCK	KUNUK
IE.OVR	177756	# LOWCR				
IE.PRI	177760	# LOWCR		PROCK	TRUNC	WRATT
IE.RER	177740	RW1LB				
IE.SNC	177735	RDHDR				
IE.SPC	177772	# LOWCR				
IE.SQC	177734	NXHDR		RDHDR		
IE.ULK	177653	# LOWCR				
IE.UPN	177777	RWVBL		RW1LB		
IE.WAC	177743 177741	ACCESS		WA MON		•
IE.WAT IE.WER	177737	RATCM CLNUP		WATCM RW1LB		
IE.WLK	177764	CRFIL		PROCK		
IO.ACR	006400	ACCESS		PROCK		
IO.ATT	001400	# LOWCR				
IO.CLN	003400	# LOWCR				
IO.CRE	012000	CLCOM				
IO.DEL	012400	CLCRE		DLFIL		
IO.DET	002000	# LOWCR			•	
IO.EXT	011400	DREXT		IXEXT		
IO.FNA	004400	DRACC				
IO.LOV	001010	# LOWCR				•
IO.RLB	001000	# LOWCR		RWVBL	RW1LB	
IO.RVB	010400 005000	# LOWCR # LOWCR				
IO.WLB	000400	# LOWCR		RWVBL	RW1LB	
IO.WVB	011000	# LOWCR		RWVBL	MATER	
IQ.UMD	000004	# LOWCR				
IŠ.SUC	000001	# LOWCR				
KISAR5	172352	# EXEDF	#	LOWCR		
KISAR6	172354	# EXEDF	#	LOWCR		
L.ASG	000010	# EXEDF	#	LOWCR		
L.NAM L.TYPE	000002	# EXEDF	#	LOWCR		
L.UCB	000005 000006	# EXEDF # EXEDF	#	LOWCR LOWCR		
L.UNIT	000004	# EXEDF	#	LOWCR		
M\$\$MGE	000000	# LOWCR	π	DONCK		
NB.SNM	000040	ENTHM		FDRMV	LOCAT	
NB.STP	000020	ENTNM		FDRMV	LOCAT	
NB.SVR	000010	ENTNM		FDRMV	LOCAT	
N.DID	000024	DRINI		FNDNM		
N.FNAM	000006	FNDNM				
N.FVER	000016	ENTNM		FDRMV		
N.NEXT	000022	ENTNM		FDRMV		
N.STAT P.ATT	000020 000036	ENTNM		FDRMV		
P.BLKS	000036	# LOWCR # EXEDF	#	LOWCR		
P.BUSY	000018	# EXEDF	#	LOWCR		
P.HDR	000024	CRFIL	#	LOWCR	PROCK	
P.IOC	000003	# EXEDF	#	LOWCR		
P.LGTH	000042	# LOWCR				
P.LNK	000000	# EXEDF	#	LOWCR		

Symbol	Value	Modules	Tha	t Refere	nce	Symbol		
P.MAIN	000012	# EXED	? #	LOWCR				
P.NAM	000004	# EXED		LOWCR				
P.OWN	000026	# EXED		LOWCR				
P.PRI	000002	# EXED	?#	LOWCR				
P.PRO	000034	# LOWC1						
P.REL	000014	# EXED	? #	LOWCR				
P.SIZE	000016	# EXED		LOWCR				
P.STAT	000030	# EXED		LOWCR				
P.SUB	000010	# EXED!		LOWCR				
P.SWSZ	000022	# EXED!		LOWCR				
P.TCB	000026	# EXED!		LOWCR				
P.WAIT R.FIX	000020 000001	# EXED! DRAC		LOWCR				
SP.EIP	000001	# EXED		LOWCR				
SP.ENB	000002	# EXED		LOWCR				
S.BMSK	177776	# EXED		LOWCR				
S.BMSV	177774	# EXED		LOWCR				
S.CCB	000030	# LOWC						
S.CON	000010	# EXED	? #	LOWCR				
S.CSR	000012	# EXED	?#	LOWCR				
S.CTM	000006	# EXED	?#	LOWCR				
S.DRFN	000032	DREX		DRINI	#	LOCAT		RMVNM
S.DZCK	000030	# LOWC						
S.FRK	000016	# EXED!		LOWCR				
S.ITM	000007	# EXED!		LOWCR LOWCR				
S.LHD S.MPR	000000 000030	# EXED! # LOWC!		LOWCK				
S.NFEN	000030	DRAC		ENTNM		FDRMV		
S.PKT	000014	# EXED		LOWCR		2 22		
S.PRI	000004	# EXED		LOWCR				
S.RCNT	177772	# EXED	F' #	LOWCR				
S.ROFF	177773	# EXED		LOWCR				
S.STS	000011	# EXED		LOWCR				
S.VCT	000005	# EXED!		LOWCR				
T.EXT T.LGTH	000000 000070	# LOWC:						
UC.ATT	000010	# EXED		LOWCR				
UC.KIL	000004	# EXED		LOWCR				
UC.LGH	000003	# EXED		LOWCR				
UC.NPR	000100	# EXED		LOWCR				
UC.PWF	000020	# EXED	7 #	LOWCR				
UC.QUE	000040	# EXED		LOWCR				
UISARO	177640	# EXED		LOWCR				
UISDRO US.BSY	177600 000200	# EXED!		LOWCR				
US.FOR	000200	# EXED!		LOWCR LOWCR				
US.MDM	000020	DISP		DMOUNT	#	EXEDF	#	LOWCR
US.MNT	000100	DMOU		EXEDF	#	LOWCR	"	DOMOI!
US.OFL	000001	# EXED		LOWCR	"			
US.PUB	000004	# EXED		LOWCR				
US.UMD	000010	# EXED	P #	LOWCR				
U.ACP	000032	# EXED		LOWCR				
U.ATT	000022	# EXED!		LOWCR				
U.BUF	000024	# EXED		LOWCR				
U.CNT U.CTL	000030 000004	# EXED!		LOWCR LOWCR				
U.CW1	000010	# EXED		LOWCR				
U.CW2	000012	# EXED		LOWCR				
U.CW3	000014	# EXED		LOWCR				
U.OWN	177776	# EXED	P #	LOWCR				
U.RED	000002	# EXED!		LOWCR				
U.SCB	000020	# EXED	? #	LOWCR				

Symbol	Value	Modules That Reference Symbol	
U.STS	000005	DISPAT DMOUNT # EXEDF # LOWCR	
U.ST2	000007	# EXEDF # LOWCR	
U.UNIT	000006	# EXEDF # LOWCR	
U.VCB	000034	CLNUP DISPAT DMOUNT # EXEDF	# LOWCR
V\$\$CTR	000410	# LOWCR	
X.AST	000032	# LOWCR	
X.DSI	000024	# LOWCR	
X.FORK	000012	# LOWCR	
X.ISR	000010	# LOWCR	
X.JSR X.LEN	000002 000050	# LOWCR # LOWCR	
X.LNK	000000	# LOWCR	
X.PSW	000006	# LOWCR	
X.REL	000022	# LOWCR	
X.TCB	000026	# LOWCR	
X.VEC	000044	# LOWCR	
X.VPC	000046	# LOWCR	
\$ABCTK	014460	# LOWCR	
SABTIM	005414	# LOWCR	
ŞABTSK	014464	# LOWCR	
\$ACHCK	007242	# LOWCR	
\$ACHKB \$ACHKP	007250 007206	# LOWCR	
\$ACHKW	007232	# LOWCR # LOWCR	
\$ACTHD	005634	# LOWCR	
SACTRM	015172	# LOWCR	
\$ACTTK	014652	# LOWCR	
\$ALCLK	006636	# LOWCR	
\$ALEB1	032634	# LOWCR	
\$ALEMB	032620	# LOWCR	
\$ALERR	122774-R	# OVERR	
\$ALOCB \$ALOC1	006524 006566	ALLOC # LOWCR # LOWCR	
\$ALPKT	006652	# LOWCR	
\$BILDS	014540	# LOWCR	
SBLKCK	010174	# LOWCR	
\$BLKC1	010204	# LOWCR	
\$BLXIO	006212	BLXIO # LOWCR	
\$BMSET	032730	# LOWCR	
\$BTMSK	005640	# LOWCR	
\$CEFI \$CEFN	007362 007356	# LOWCR # LOWCR	
\$CFLPT	007552	# LOWCR # LOWCR	
SCHKPT	016226	# LOWCR	
SCKACC	033726	# LOWCR	
\$CKCNT	005604	# LOWCR	
SCKCSR	005606	# LOWCR	
\$CKINT	017726	# LOWCR	
\$CKLDC	005610	# LOWCR	
\$CLINS \$CLKHD	014162 005556	# LOWCR	
\$CLRMV	014264	# LOWCR # LOWCR	
\$CDKMV \$COMEF	005570	# LOWCR # LOWCR	
\$COPT	005560	# LOWCR	
\$CRASH	001470	# LOWCR	
SCRATT	034024	# LOWCR	
\$CRAVL	005532	# LOWCR	
\$CRPAS	012470	# LOWCR	
\$CRSBF \$CRSBN	000730 001462	# LOWCR # LOWCR	
\$CRSBN \$CRSCS	001462	# LOWCR # LOWCR	
\$CRSHT	001752	# LOWCR	
7 -11-11-1		# == nost	

Symbol	Value	Modules That	Reference	Symbol		
\$CRSST	001460	# LOWCR				
\$CRSUN	001756	# LOWCR				
\$CVRTM	007070	# LOWCR				
\$C5TA \$DASTT	005772 015030	# LOWCR # LOWCR				
\$DB0	043366	# LOWCR				
\$DDIV	121164-R	# DARITH	SMALC	SMDEL		
\$DEACB	006672	# LOWCR	RLEAS	0.1000		
\$DEAC1	006732	# LOWCR				
\$DECLK	006644	# LOWCR				
ŞDEPKT	006666	# LOWCR				
\$DETRG \$DEVHD	031502 005462	# LOWCR				
\$DEVHD \$DEVTB	043122	# LOWCR # LOWCR				
\$DIRSV	002264	# LOWCR				
\$DIRXT	002514	# LOWCR				
\$DIV	012564	DATIM	DLHDR	INWIN	IXEXT	# LOWCR
		SMDEL				
\$DK0	043630	# LOWCR				
\$DMUL	121126-R	# DARITH	SMALC			
SDPLM1 SDPLM2	021662 021666	# LOWCR # LOWCR				
\$DPLM2 \$DOLM1	026526	# LOWCR				
\$DQLM2	026536	# LOWCR				
\$DRABO	022140	# LOWCR				
\$DRASG	022164	# LOWCR				
\$DRATP	032020	# LOWCR				
\$DRATR	031166	# LOWCR				
\$DRATX \$DRCEF	022410 032340	# LOWCR # LOWCR				
\$DRCMT	022556	# LOWCR				
\$DRCRR	030600	# LOWCR				
\$DRCRW	024064	# LOWCR				
\$DRCSR	022562	# LOWCR				
\$DRDAR \$DRDCP	022576 022632	# LOWCR # LOWCR				
\$DRDCF \$DRDSE	032350	# LOWCR				
\$DRDTR	031350	# LOWCR				
\$DREAR	022612	# LOWCR				
\$DRECP	022656	# LOWCR				
SDREIF	004220	# LOWCR				
\$DRELW \$DREXP	024312 022702	# LOWCR # LOWCR				
\$DREXT	004226		LOWCR			
SDRFEX	026100	# LOWCR	LONGK			
\$DRGCL	023372	# LOWCIR				
\$DRGLI	023500	# LOWCR				
\$DRGMX	025504	# LOWC:R				
\$DRGPP \$DRGSS	023602 023704	# LOWCR				
\$DRG55 \$DRGTK	023714	# LOWCR # LOWCR				
\$DRGTP	024030	# LOWCR				
\$DRLM1	021566	# LOWCR	,			
\$DRLM2	021606	# LOWCR				
\$DRMAP	024346	# LOWCR				
\$DRMKT \$DRPUT	025730 026122	# LOWCR # LOWCR				
\$DRPUT \$DRQIO	026122	# LOWCR # LOWCR				
\$DRQRQ	027516	# LOWCR	RWVB			
\$DRRAF	032364	# LOWCR	_			
\$DRRCV	026162	# LOWCR				
\$DRREC	030306	# LOWCR				

Symbol	Value	Мо	odules	Tha	t Refere	ence Symbol
\$DRREQ	031714	#	LOWCR			
SDRRES	031746	#	LOWCR			
\$DRRRA	026142	#	LOWCR			
\$DRRRF	025232	#	LOWCR			
\$DRRUN	025762	#	LOWCR			
\$DRSDV \$DRSEF	032532 032420	#	LOWCR			
\$DRSND	030440	#	LOWCR			
\$DRSPN	032006	#	LOWCR			
\$DRSRF	024716	#	LOWCR			
\$DRSTV	032540	#	LOWCR			
\$DRUNM	024672	#	LOWCR			
\$DRWFL	032450	#	LOWCR			
SDRWFS	032512	#	LOWCR			
SDRWSE	032434	#	LOWCR			D1 - m
\$DSW \$DS0	000046 044064	#	OVERR		RWVBL	RW1LB
\$DTOER	032754	#	LOWCR			
\$DTO	044276	#	LOWCR			
\$DVCER	033016	#	LOWCR			
\$DVERR	033016	#	LOWCR			•
\$DVMSG	007446		DMOUN'	r #	LOWCR	
\$DX0	044472	#	LOWCR			
\$DYPMN	005470	#	LOWCR			
SEMSST	017156	#	LOWCR			
\$EMTRP \$ERRHD	021512 005700	#	LOWCR			
\$ERRLM	005704	#	LOWCR			
\$ERRPT	005514	#	LOWCR			
SERRSQ	005706	#	LOWCR			
SERRSV	005710	#	LOWCR			
SERRSZ	005712	#	LOWCR			
SEXROF	016434	#	LOWCR			
\$EXRQN	016452	#	LOWCR			
\$EXRQP \$EXSIZ	016426 005520	#	LOWCR			
\$FINBF	0033776	#	LOWCR			
\$FLTRP	017212	#	LOWCR			
SFMASK	005552	•	CRFIL	#	LOWCR	PROCK
\$FNDSP	015750	#	LOWCR			
\$FORK	002320	#	LOWCR			
\$FORKO	002342	#	LOWCR			
\$FORK1 \$FPINT	002340 017226	#	LOWCR			
\$FRKHD	005546	#	LOWCR LOWCR			
SGTBYT	006102	#	LOWCR			
SGTPKT	007510	#	LOWCR			
SGTWRD	006160	#	LOWCR			
SHEADR	005564		DISPA	r #	LOWCR	MPVBN
\$ICHKP	016160	#	LOWCR			
SILINS	017304	#	LOWCR			
\$INITL \$INTCT	052414 005542	#	LOWCR			
\$INTSE	003342	#	LOWCR			
SINTSV	002434	#	LOWCR			
SINTXT	002374	#	LOWCR			
\$INTX1	002456	#	LOWCR			
\$IOABM	005714	#	LOWCR			
\$IOALT	010272	#	LOWCR			
\$IODON \$IOFIN	010274 010414	#	LOWCR	n 4	LOWCR	
\$IOFIN \$IOKIL	010414	#	DISPA:	Г #	HOWCK	
ATOVID	010000	Ħ	POMCK			

```
Symbol Value
                     Modules That Reference Symbol
$IOTRP
           017316
                     # LOWCR
          011552
$LCKPR
                     # LOWCR
$LDPWF
          014124
                     # LOWCR
                     # LOWCR
$LDRPT
          005464
          041214
$LOADR
                     # LOWCR
$LOADT
          016422
                     # LOWCR
$LOGHD
          005624
                     # LOWCR
$LP0
          044614
                     # LOWCR
$LSTLK
          005630
                     # LOWCR
          017036
$MAPTK
                     # LOWCR
$MCRCB
          005626
                     # LOWCR
$MCRPT
          005466
                     # LOWCR
          045014
$MMO
                     # LOWCR
$MPCSR
          012734
                     # LOWCR
$MPLND
          011126
                     # LOWCR
$MPLNE
          011106
                     # LOWCR
          011070
$MPLUN
                     # LOWCR
$MPPHY
          011170
                     # LOWCR
          011240
$MPPKT
                     # LOWCR
                                  RWVB
$MPVBN
          011372
                     # LOWCR
                                  MPVBN
                                             RWVBL
$MUL
                                # LOWCR
          012534
                       DATIM
                                             RATCM
                                                        WATCM
$MXEXT
          005770
                     # LOWCR
$NLO
          051622
                     # LOWCR
$NONSI
          002556
                     # LOWCR
$NSO
          033300
                     # LOWCR
$NS1
          033306
                     # LOWCR
$NS2
          033314
                     # LOWCR
$NS3
          033322
                     # LOWCR
                     # LOWCR
$NS4
          033330
$NS5
          033336
                     # LOWCR
$NS6
          033344
                     # LOWCR
$NS7
          033352
                     # LOWCR
$NULL
          043100
                     # LOWCR
$NXTSK
          015322
                     # LOWCR
                     # LOWCR
$PANIC
          001470
$PARHD
          005422
                     # LOWCR
$PARPT
          005554
                     # LOWCR
$PARTB
          012670
                     # LOWCR
$PCBS
          052164
                     # LOWCR
          005764
$PKAVL
                     # LOWCR
$PKMAX
          005767
                     # LOWCR
$PKNUM
          005766
                     # LOWCR
                     # LOWCR
$POOL
          052310
$POWER
          013750
                       LOWCR
$PP0
          045144
                     # LOWCR
$PR0
          045266
                     # LOWCR
$PTBYT
          006132
                     # LOWCR
$PTWRD
          006160
                     # LOWCR
          005416
$PWRFL
                     # LOWCR
          015062
$QASTT
                     # LOWCR
          033516
$OEMB
                     # LOWCR
$QINSF
          014332
                     # LOWCR
          014340
$QINSP
                     # LOWCR
$QMCRL
          014376
                     # LOWCR
$QRMVF
          014406
                       DISPAT
                                # LOWCR
$QRMVT
          014420
                     # LOWCR
$RELOC
          012222
                       BLXIO
                                # LOWCR
$RELOM
          012272
                       LOWCR
$RELOP
          012410
                       LOWCR
          023434
$RLMCB
                       LOWCR
                     #
SRLPAR
          015246
                     # LOWCR
$RLPR1
          015310
                     # LOWCR
```

Symbol	Value	Modules That Reference Symbol
\$RQSCH	005452	# LOWCR
\$SAVNR	004144	# LOWCR WTRN1
\$SCDVT	012306	# LOWCR
\$SCDV1	012312	# LOWCR
\$SETCR	014704	# LOWCR
\$SETF	014762	# LOWCR
\$SETM	014766	# LOWCR
SSETRO	014734	# LOWCR
\$SETRT	014732	# LOWCR
\$SGFLT	017336	# LOWCR
SSHFPT	005516	# LOWCR
\$SIGFL	005420	# LOWCR
SSRATT	034124	# LOWCR
\$SRNAM	033644	# LOWCR
\$SRSTD \$SRWND	015132 034162	# LOWCR # LOWCR
\$STACK	000642	# LOWCR # LOWCR
\$STD	052220	# LOWCR
\$STKDP	005454	# LOWCR
\$STPCT	015222	DISPAT # LOWCR
SSTPTK	015226	# LOWCR
SSWSTK	004164	# LOWCR
SSYBEG	053424	# LOWCR
\$SYSID	005574	# LOWCR
\$SYSIZ	005716	# LOWCR
\$SYTOP	063424	# LOWCR
\$SYUIC	005612	# LOWCR
STKNPT	005600	# LOWCR
\$TKPS	005744	# LOWCR
\$TKTCB	005446	DISPAT DMOUNT # LOWCR
ŞTKWSE	032430	# LOWCR
STRACE	017376	# LOWCR
\$TRP04	017410	# LOWCR
\$TRTRP \$TSKHD	021446 005512	# LOWCR
\$TSKRP	016504	# LOWCR # LOWCR
\$TSKRQ	016502	# LOWCR
STSKRT	016476	# LOWCR
STSTCP	016052	# LOWCR
\$TTNS	005762	# LOWCR
\$ TT 0	045534	# LOWCR
\$TT1	045564	# LOWCR
\$TT10	047672	# LOWCR
\$TT11	047722	# LOWCR
\$TT12	047752	# LOWCR
\$TT13	050002	# LOWCR
\$TT14	050032	# LOWCR
\$TT15 \$TT16	050062 050112	# LOWCR
\$TT10 \$TT17	050112	# LOWCR
\$TT2	047452	# LOWCR # LOWCR
\$TT20	050172	# LOWCR
\$TT21	050222	# LOWCR
\$TT22	051210	# LOWCR
\$TT23	051260	# LOWCR
\$TT24	051310	# LOWCR
\$TT25	051340	# LOWCR
\$TT26	051370	# LOWCR
\$TT27	051420	# LOWCR
\$TT3	047502	# LOWCR
\$TT30	051450	# LOWCR
\$TT31	051500	# LOWCR

Symbol	Value	Modules !	Tha t	t Refere	nce	e Symbol			
\$TT4	047532	# LOWCR							
\$TT5	047562	# LOWCR							
\$TT6	047612	# LOWCR							
\$ TT 7	047642	# LOWCR							
SUISET	016776	# LOWCR							
\$UNMAP	034222	# LOWCR							
\$USRTB	000000	# LOWCR							
\$XDT	035002	# LOWCR							
.ACBMX	000006	# ATCTL		RATCM		WATCM			
.ACCES	136540-R	* ACCESS	@	DISPAT					
.AGAIN	121406-R	# DISPAT		DREXT		IXEXT			
.ALCAD	121640-R	EXCMP		EXCOM		EXTEN		F11CM	
.ALCTL	121632-R	EXCMP		EXCOM		EXTEN	#	FllCM	SMALC
.ALFCB	120252-R	# ALLOC		INFCB					
.ALLOC	120274-R	ACCESS		ALLOC		INWIN			
.ALOBT	126144-R	SMALC	#						
ATCTL	137414-R	* ATCTL		RATCM		WATCM			
.ATMAX	000016	# ATCTL		RATCM		WATCM		CMBID	wa may
.BLXI	120340-R	# BLXIO		DRINI		EXTEN		GTFID	WATCM
.BLXIl	120344-R 120372-R	# BLXIO # BLXIO		CT CDE		CRFIL		DREX	EXCMP
. BLAU	1203/2-K	EXCOM		CLCRE RATCM		CKLID		DREA	EACMP
.BLXO1	120376-R	# BLXIO		KAICH					
.CKFRE	126136-R	SMALC	#	SMSCN					
.CKSM1	120430-R	# CKSUM	π	DINOCH					
.CKSUM	120424-R	# CKSUM		DREXT		RDHDR		WRHDR	
.CLACC	120450-R	# CLACC		CLNUP				***************************************	
.CLAC1	120516-R	# CLACC		CLDAC					
.CLCRE	136722-R	* CLCRE		CLNUP					4
.CLDAC	121034-R	# CLDAC		CLNUP		DEACC			
.CLDEL	136520-R	* CLCOM		CLNUP					
.CLDIR	137030-R	* CLDIR		CLNUP		DREOF		DREXT	DRWRT
		FNDNM							
.CLEXI	137730-R	* CLNUP	@	DISPAT					
.CLEXT	137134-R	CLCRE	*	CLEXT		CLNUP	@	DISPAT	
.CLEX1	121302-R	# DISPAT		TRUNC					
.CLEX2	121304-R	# DISPAT	_	EXTHD					
.CLFCB	137526-R	* CLFCB	6	DISPAT					
.CLFC1	121316-R	CLCOM	^	CLDAC		CLEXT	#	DISPAT	
.CLNUP	137744-R	* CLNUP * CLCOM	a	F11CM					
.CLRAT	136660-R 136702-R	* CLCOM * CLCOM		CLNUP CLNUP					
.CLWA1	051756	# LOWCR		CLNOP					
.CO0	051732	# LOWCR							
.CRFCB	122062-R	ACCESS		DRACC		EXTHD	#	INFCB	RDATT
.CRFID	137466-R	* CRFID		CRFIL		EXTHD	"		1101111
.CRFIL	137670-R	* CRFIL	e e	DISPAT					
.DATIM	140346-R	CRFIL	*	DATIM		DEACC			
.DBO	043162	# LOWCR							
.DBl	043222	# LOWCR							
.DB2	043262	# LOWCR							
.DB3	043322	# LOWCR							
.DEACC	140502-R	* DEACC		DISPAT					
.DELBT	126154-R	SMDEL	#	SMSCN					
.DKO	043464	# LOWCR							
.DK1	043524	# LOWCR							
.DK2	043564	# LOWCR		DI DI "		D		DDD44	
.DLBLK	140110-R	CLEXT		DLBLK		DLFIL		DREXT	
.DLBLl	140130-R 140304-R	CLEXT CLCRE		DLBLK DISPAT	*	DEPTT			
.DLFL1	121314-R	CLDAC		DISPAT		DLFIL DLMRK			
.DLHDR	140356-R	CLCOM	T	CLEXT		DLFIL	*	DLHDR	
		-20011		~~~				~~	

Symbol	Value	Modules 1	rha [,]	t Refere	ence	e Symbol				
.DLHD1	140404-R	CLCRE		CLEXT	*	DLHDR				
. DLMRK	140516-R	@ DISPAT	*	DLMRK						
.DMOUN	140716-R	@ DISPAT	*	DMOUNT						
.DRACC	141160-R	@ DISPAT	*	DRACC						
.DRAC1	121324-R	# DISPAT		ENTNM		FNDNM		RMVNM		
.DRALC	140652-R	* DRALC		DREXT						
.DRBUF	131232-R	DRGET		DRWRT	#	F11CM				
.DRCPY	141704-R	* DRCPY		DREXT						
.DREF1	121322-R	# DISPAT		DRWRT						
.DRENB	134232-R	DRGET	#	FllCM						
.DREOF	142020-R	@ DISPAT	*	DREOF						
.DREX	142100-R	* DREX		FNDNM						
.DREXT	142132-R	@ DISPAT	*	DREXT						
.DREX1	121320-R	# DISPAT		ENTNM						
.DRFNB	122252-R	DRINI		ENTNM		FDRMV	#	LOCAT		
.DRFRE	122246-R	ENTNM	#	LOCAT						
.DRGET	142624-R	* DRGET		ENTNM	9	LOCAT				
.DRHRC	122242-R	# LOCAT								
.DRHVR	122244-R	ENTNM	#	LOCAT						
.DRINI	143050-R	* DRINI		ENTNM		FNDNM		RMVNM		
.DRLBN	131226-R	DRWRT	#	FllCM						
.DRLVB	122250-R	ENTNM		FDRMV		LOCAT				
.DRNLB	134232-R	DRGET		ENTNM	#	F11CM				
.DRPAC	143172-R	* DRPAC		ENTNM		FNDNM		RMVNM		
.DRSEF	142040-R	* DREOF		DREXT						
.DRUCB	131224-R	CLNUP		DMOUNT		DRGET		ENTNM	#	FllcM
	142050 -	SCFAC								
.DRVLB	143250-R	DRCPY		DRGET	×	DRVLB		ENTNM		
.DRWEX	143416-R	* DRWRT		ENTNM		RMVNM				
.DRWRT	143354-R	* DRWRT		ENTNM		RMVNM				
.DRX1	142104-R	* DREX		DRWRT						
.DSPAT	121452-R	# DISPAT		DRACC		DREXT				
.DSW	000044	# LOWCR								
.DSO	043720	# LOWCR								
.DS1 .DS2	043760 044020	# LOWCR								
.DS2	044020	# LOWCR # LOWCR				*				
.DT1	044102	# LOWCR								
.DXO	044366	# LOWCR								
.DX1	044426	# LOWCR								
.ENTNM	143446-R	@ DISPAT	*	ENTNM						
ENTRY	121330-R	# DISPAT		DIVINA						
.ERMSG	121604-R	# FllCM								
.EXCMP	141550-R	@ DISPAT	*	EXCMP						
.EXCM1	121276-R	# DISPAT		DREXT		EXTEN		IXEXT		
.EXCM2	121310-R	# DISPAT		EXCOM				_		
.EXCM3	121312-R	# DISPAT		EXCMP						
.EXCNT	142624-R	@ DISPAT	*	EXCOM						
.EXCOM	142114-R	@ DISPAT		EXCOM						
.EXDSP	121616-R	CLCRE		CLNUP		DISPAT		DLFIL		DREXT
		# FllCM		IXEXT						
.EXFCB	121630-R	EXCMP		EXCOM		EXTHD	#	FllCM		
.EXFNU	121626-R	CLEXT		EXTHD	#	F11CM				
.EXHDJ	142030-R	@ DISPAT	*	EXCMP						
.EXHDR	121622-R	CLCOM		CLEXT		EXCOM	#	FllCM		TRUNC
.EXIT	121510-R	CLNUP	#	DISPAT						
.EXNHD	121624-R	CLEXT		EXTHD	#	F11CM		TRUNC		
.EXSTS	121617-R	ACCESS		CLCRE		CLDAC		CLEXT		CLNUP
		CRFIL		DEACC		EXCOM		EXTHD	#	F11CM
	140==0 -	RDATT		TRUNC		WRATT				
.EXTEN	142770-R	@ DISPAT		EXTEN						
.EXTEl	143064-R	@ DISPAT	*	EXTEN						

Symbol	Value	Мо	dules T	hat	Refere	ence	e Symbol				
.EXTHD	143320-R		EXCMP	*	EXTHD						
.EXTH1	121306-R	#	DISPAT'		EXCOM						
.EXTN1	121274-R		CRFIL	#	DISPAT						
.EXTSV	121620-R		CLCOM		CLEXT		EXCOM	#	FllcM		TRUNC
.FCBAD	121614-R		ACCESS		CLACC		CLCOM		CLDAC		CLDIR
			CLFCB		DEACC		DLMRK		DRACC		DRCPY
			DREOF		DREXT		DRGET		DRPAC		DRWRT
			ENTNM		EXCMP		EXCOM		EXTHD		FDRMV
			FNDNM	#	FllCM		GTFID		INWIN		IXEXT
			RATCM	н	RDATT		RDHDR		SCFAC		TRUNC
			WACCK		WATCM		KDIIDK		DCLAC		11/01/0
.FDRMV	144032-R	*			FNDNM		RMVNM				
.FILNO	121606-R		ACCESS		CLACC		CLCRE		CRFIL		DLMRK
· L L L L L L C	121000 K		DRINI		EXCMP		FNDNM	#	FllCM		GTFID
			IXEXT		RDATT		RDHDR	π	SCFCB		GILID
.FILSQ	121610-R		CRFIL		DRINI		FNDNM	#	FllCM		IXEXT
• F I I I I I	121010 1		RDHDR		SCFCB		LIDIN	π	PIICH		INDAI
.FNDNM	144360-R	а	DISPAT	*	FNDNM						
FREPT	125620-R	6	EXCMP		EXCOM	#	SMCOM				
.FRLH	121644-R		ALLOC	4	F11CM	11	INIT		RLEAS		
.Flend	136134-R	#	F11CM	π	INIT		T14 T T		KUEAS		
.Florg	134234-R		F11CM		INIT		RLEAS				
.FIORG	121720-R	#	ACCESS		DEACC		DLMRK		EXTEN	#	GTFID
.GIFID	121/20-K		RWATT		DEACC		DLINK		EXIEN	#	GIFID
.GTMAP	122044-R				CLEAM		CT PCD		CRFIL		DLFIL
•GIMAP	122044-K		CLCOM		CLEXT EXCOM		CLFCB EXTHD	Д	GTMAP		INFCB
			EXCMP NXHDR				TRUNC	Ħ	GTMAP		INTCD
.HDBUF	130224-R				RDHDR CLCOM				Of BVM		CDRII
. HDBUE	130224-K		ACCESS				CLDAC		CLEXT		CRFIL
			DEACC		DLBLK		DLHDR		DLMRK		DRACC
		ш	DREOF		DREXT		EXCMP		EXCOM		EXTHD
		₩	F11CM		GTMAP		INFCB		NXHDR		PROCK
			RATCM		RDHDR		TRUNC		WATCM		WRHDR
!!D	120000 5		WTRN1			,	-11.00				
.HDLBN	130220-R		CRFIL		EXTHD	#	F11CM		INFCB		
.HDUCB	130216-R		CLCOM		CLNUP		CRFID	ы	DLBLK		DLHDR
			DMOUNT		DREXT		EXTHD	₩	FllCM		RDHDR
TNECD	122100 B		WRHDR		DDAGG		DDEVM		EVOUD		numm
.INFCB	122100-R	#	CLFCB INFCB		DRACC RDATT		DREXT WATCM		EXCMP		EXTHD
.INIT	143772-R		DISPAT		INIT		WATCM				
.INWIN	143/72-R 144034-R	e.	ACCESS		DRACC	*	INWIN				
.IOPKT	121570-R		CLNUP		DISPAT		DLBLK		DRACC		DREX
. IOPKI	1213/0-K		DREXT		DRVLB		ENTNM		FDRMV	#	FllCM
			SMALC		SMNXB				FDRMV	#	FIICH
.IOSTS	121600-R		ACCESS		CLEXT		TRUNC		DISPAT		DREXT
.10515	121000-K		EXCMP		EXCOM		CLNUP EXTHD	#	F11CM		RWVBL
			SMALC		WATCM		EVIUD	#	FIICM		KMAPT
.IXEXT	144526-R	a	DISPAT	*	IXEXT						
.IXEX1	121300-R	6	CLNUP		CRFIL	4	DISPAT				
.LBO	052002	4	LOWCR		CKFIL	#	DISPAI				
.LDR	052220		LOWCR								
.LDRHD	052040		LOWCR								
.LOCAT	122304-R	Ħ	ENTNM		FDRMV	щ	LOCAT				
.LPO	044562	#	LOWCR		PDRMV	11	LOCAL				
.MMO	044704		LOWCR								
.MM1	044746		LOWCR								
.MPHDR	122604-R	π	CRFIL		EXTHD	#	MPHDR		RDHDR		
.MPVBN	122650-R		DRVLB		EXTEN	π	MPHDR	#	MPVBN		
.MPVBN	142126-R	*	DREXT		EVIEN		MEDUK	#	MEVBN		
.NDRSZ	142126-R 142124-R	*	DREXT								
.NLO	051570		LOWCR								
.NOOP	121566-R	#	DISPAT								
·HOOF	T27300-K	π	DISENI								

Symbol	Value	M	odules T	ha!	t Refere	ence	e Symbol	L			
.NXHDR	122706-R		ACCESS		EXCOM	#	NXHDR		RDATT		TRUNC
.NXHDl	122724-R		CLEXT		DLFIL	#	NXHDR		WOUT T		INONC
.PPO	045112	#	LOWCR		DUETU	π	NAIIDA				
.PRCK1	123024-R	**									
		#	PROCK								
.PRCK2	123034-R		DLMRK	#	PROCK						
.PRCK3	123044-R		ENTNM		FDRMV		PROCK				
.PROCK	123014-R		ACCESS WATCM		EXTEN	#	PROCK		RWATT		TRUNC
.PRO	045234	#	LOWCR								
.QIOST	121574-R	#	F11CM		RWVBL		RW1LB				
RATCM	144370-R		ACCESS	*	RATCM		RDATT				
.RDATT	144614-R	a	DISPAT	*	RDATT						
.RDFHD	123256-R	-	ACCESS		CLCRE		CLFCB		DEACC		DLMRK
			DRACC		DREOF		DREXT		EXCMP		EXTEN
		#	RDHDR		RWATT		D1(1)21		DACTIL		2.1.1.014
.RDHDR	123316-R	π	CLFCB	#	RDHDR		WITRN				
							MIIKM				
.RDNLB	124222-R 124242-R		DRGET	#							
.RD1LB	124242-R		CRFID		CRFIL		DLHDR		DRCPY		EXTHD
			RDHDR	#	RWlLB		SMRVB				
.RHDFN	123334-R		CLEXT		EXTHD		NXHDR		RDATT	#	RDHDR
.RHDLB	123342-R	#	RDHDR								
.RLEAS	123512-R		CLACC		CLCOM		CLDIR		CLNUP		DEACC
			DMOUNT		EXTEN		RATCM		RDATT	#	RLEAS
			RLFCB		SCFAC		WATCM				
.RLFCB	123554-R		CLACC		CLFCB	#	RLFCB				
. RMVNM	145002-R	a	DISPAT	*		"	10105				
RWATT	144772-R	G	RDATT	*	RWATT		WRATT				
.RWSIZ	124220-R	щ	RWILB		VMVII		MUMII				
					DATE						
.RWVB	145046-R	a	DISPAT	*	RWVB						
.RWVBL	123646-R		DISPAT	#							
.RWVB1	121326-R	#	DISPAT		RWVB						
.SCFAC	124376-R		ACCESS		DLMRK		DRACC		DREXT		EXTEN
			RWATT	#	SCFAC						
.SCFCB	124466-R		DRPAC		SCFAC	#	SCFCB				
.SMALC	124530-R		DRALC		EXCOM	#	SMALC				
.SMBUF	127216-R	#	F11CM		INWIN		SMALC		SMDEL		SMNXB
.SMCNT	125614-R		SMALC	#	SMCOM		SMDEL		SMNXB		
.SMCTL	125611-R		DRALC	•	EXCMP		EXCOM		SMALC	#	SMCOM
.SMDEL	145050-R		CLEXT		DLBLK	*	SMDEL			"	2
SMEXT	125610-R		EXCOM	#	SMCOM						
SMFLG	100000	#	F11CM	"	SMALC		SMNXB		SMRVB		
.SMNXB	125622-R	"	SMALC	#	SMNXB		SMSCN		Dinkvb		
.SMRVB	125730-R		CLEXT	"	DLFIL		DREXT		EXCMP		SMALC
	123/30 1		SMDEL		SMNXB	#			LACMP		SHADC
.smscn	126102-R		SMALC		SMDEL						
.SMUCB	120102-R 127212-R					#	SMSCN		DVOINT	п	711 CW
. SMUCE	12/212-R		CLACC		CLCOM		CLNUP		TMOUNT	₩	F11CM
G.1417511	107014 5		INWIN		SMALC		SMRVB				
.smvbn	127214-R		CLCOM		CLNUP	#	FllcM		SMALC		SMNXB
			SMSCN								
.SM1AD	125572-R		SMALC	#	SMCOM						
.SMlBT	125564-R		CLEXT		DRALC		EXCMP		EXCOM		EXTHD
			SMALC	#	SMCOM		SMDEL		TRUNC		
.SMlmK	125570-R		SMĀĹĆ	#	SMCOM						
.SMlvb	125574-R		SMALC	#	SMCOM		SMDEL				
.SM2AD	125600-R	#	SMCOM								
.SM2BT	125604-R		SMALC	#	SMCOM						
.SM2MK	125602-R	#	SMCOM	"	J						
.SM2VB	125576-R	"	SMALC	#	SMCOM						
SSTSZ	000007	#	F11CM	π	DITCOM						
.SSTVC	121646-R		FILCM								
.STACK	121040-R 120252-R	π	CLNUP		DICESE		DDAGG	ш	FllCM		
	120252-R 121334-R	ш			DISPAT		DRACC	₩	FIICM		
.START	121334-K	Ħ	DISPAT		RWVB						

Symbol	Value	Modules !	Chat	Refere	nc	e Symbol	•			
.SVLBN	125560-R	DLBLK		EXCMP		EXCOM	#	SMCOM		
.syo	052026	# LOWCR								
.TIO	051706	# LOWCR								
.TRUNC	145274-R	DLMRK	*	TRUNC						
.TTO	045362	# LOWCR								
.TT1	045452	# LOWCR								
.TT10	046400	# LOWCR								
.TTll	046470	# LOWCR								
.TT12	046560	# LOWCR								
.TT13	046650	# LOWCR								
.TT14 .TT15	046740	# LOWCE								
.TT15	047030 047120	# LOWCR								
.TT17	047120	# LOWCR # LOWCR								
.TT2	047210	# LOWCR								
.TT20	047300	# LOWCE								
.TT21	047370	# LOWCE								
.TT22	050316	# LOWCE								
.TT23	050406	# LOWCE								
.TT24	050476	# LOWCR								
.TT25	050566	# LOWCR								
.TT26	050656	# LOWCR								
.TT27	050746	# LOWCR								
.TT3	045750	# LOWCR								
.TT30	051036	# LOWCR								
.TT31	051126	# LOWCR								
.TT4	046040	# LOWCR								
TT5	046130	# LOWCR								
.TT6	046220	# LOWCR								
.TT7	046310	# LOWCR								
.UCBAD	121572-R	CLACC		CLNUP		CRFID		CRFIL		DISPAT
		DLBLK		DMOUNT		DREXT		DRGET		ENTNM
		# FllCM		PROCK		RDHDR		RWVB	•	SCFAC
		SMALC		SMRVB		WRHDR				
.USEPT	125616-R	EXCMP		EXCOM	#	SMCOM				
.WACCK	145172-R	DRACC		EXTEN	*	WACCK		WRATT		
.WATCM	145212-R	CRFIL		DEACC	*	WATCM		WRATT		
.WITRN	126172-R	DRVLB		EXTEN		INWIN		IXEXT		MPHDR
		RWVB		RWVBL	#	WITRN				
. WNDOW	121612-R	ACCESS		CLACC		CLDIR		DEACC		DRVLB
		EXCMP		EXTEN		EXTHD	#	FllCM		GTFID
	145540 -	INWIN		IXEXT		TRUNC		WRATT		
.WRATT	145542-R	@ DISPAT	*	WRATT						
.WRHDR	126272-R	CLCOM		CLDAC		CLEXT		CRFIL		DLMRK
		DREOF		DREXT		EXCMP		EXTHD		WRATT
MDUD1	126204 -	# WRHDR		DT 115-						
.WRHDl	126304-R	CRFID		DLHDR	#	WRHDR	n	DWITE		aup:
.WR1LB	124234-R	DLHDR		DRCPY		DRWRT	#	RWllB		SMRVB
WINDNI 1	126220 5	WRHDR		DVOVD		nvmm		1.77 mmar		
.WTRN1	126330-R	ACCESS		EXCMP		EXTHD		WITRN	Ħ	WTRN1
.ZERCT	000021	DISPAT	Ŧ	FllcM						

9.8 BIGFCP SEGMENT CROSS-REFERENCES

The BIGFCP segment cross-reference lists the name of each overlay and the modules that compose it. The cross-reference follows:

Segment Name	Resident	Modules				
FCPHI	ACCESS	ATCTL	CRFID	CRFIL	DATIM	DEACC
	DMOUNT	DRACC	EXCMP	EXCOM	EXTEN	EXTHD
	INIT	INWIN	RATCM	RDATT	RWATT	RWVB
	WACCK	WATCM	WRATT			
FCPLO	CLCOM	CLCRE	CLDIR	CLEXT	CLFCB	CLNUP
	DLBLK	DLFIL	DLHDR	DLMRK	DRALC	DRCPY
	DREOF	DREX	DREXT	DRGET	DRINI	DRPAC
	DRVLB	DRWRT	ENTNM	FDRMV	FNDNM	IXEXT
	RMVNM	SMDEL	TRUNC			
F11ACP	ALLOC	BLXIO	CKSUM	CLACC	CLDAC	DARITH
	DISPAT	EXEDF	F11ACP	FllcM	GTFID	GTMAP
	INFCB	LOCAT	LOWCR	MPHDR	MPVBN	NXHDR
	OVERR	PROCK	RDHDR	RLEAS	RLFCB	RWVBL
	RWllB	SCFAC	SCFCB	SMALC	SMCOM	SMNXB
	SMRVB	SMSCN	WITRN	WRHDR	WTRN1	

9.9 CONDITIONAL ASSEMBLY PARAMETER TO MODULE CROSS-REFERENCE

This cross-reference contains a listing of the conditional assembly parameters that are contained in the Executive modules. Listed to the right of each parameter are those Executive modules that contain conditional assemblies affected by the parameter.

Conditional Assembly Parameter	Modules T	hat Contai eter	n			
А\$\$СНК	DRATX DRQIO TTDRV	DRDSP DRRAS	DRGLI DRSED	DRGPP DRSST	DRGTK IOSUB	DRGTP SSTSR
A\$\$CPS	DKTAB IOSUB	DMTAB	DRQIO	DRRES	DTTAB	DXTAB
A\$\$D01	BFCTL					
A\$\$F11	BFCTL			-		
A\$\$NSI	DRQIO	MMTAB	MTDRV	MTTAB		
A\$\$PRI	DRDSP	DREIF	DRRES			
A\$\$TRP	DRATX DRMAP REQSB	DRCIN DRPUT SYSXT	DRDAR DRREG TDSCH	DRDSP IOSUB TTDRV	DREIF LOADR	DREXP POWER
B\$\$OOT	CRASH					
C\$\$CDA	CRASH					

Conditional Assembly Parameter	Modules T The Param	hat Contai eter	n			
C\$\$CKP	DRATX IOSUB TTDRV	DRDCP LOADR	DRDSP REQSB	DREIF SYSCM	DREXP SYSXT	DRREG TDSCH
C\$\$INT	DRCIN	DRDCP	REQSB	SYSXT	DRDSP	DREIF
C\$\$MPT	XUDRV					
C\$\$RSH	CRASH					
D\$\$B11	XBDRV					
D\$\$B11-1	XBDRV					
D\$\$H11	LOWCR	TTDRV				
D\$\$IAG	CTTAB DPDRV IOSUB PPTAB	DBDRV DRQIO LPTAB SYSTB	DKTAB DTDRV MMDRV	DLDRV DTTAB MMTAB	DMDRV DXTAB MTDRV	DMTAB ERROR MTTAB
D\$\$ISK	DRATX IOSUB	DRDCP LOADR	DRDSP	DREIF TDSCH	DRREG	DRRES
D\$\$J11	TTDRV	LOADK	REQSB	TUSCH		
D\$\$L11	TTDRV					
D\$\$M11	TTDRV					
D\$\$P11	XPDRV					
D\$\$P11-1	XPDRV	•				
D\$\$Q11	XQDRV					
D\$\$Q11-1	XQDRV					
D\$\$SHF	DRCIN	IOSUB	PARTY	REQSB	TDSCH	
D\$\$U11	XUDRV					
D\$\$U11-1	XUDRV					
D\$\$W11	XWDRV					
D\$\$W11-1	XWDRV					
D\$\$WCK	DBDRV	DMDRV	DPDRV			
D\$\$YNC	DREXP	LOADR	REQSB	SYSCM		
D\$\$YNM	DRCIN DRREQ SYSXT	DRDSP IOSUB TDSCH	DREIF PLSUB TTDRV	DREXP REQSB	DRGPP SYSCM	DRREG SYSDF
D\$\$Z11	TTDRV					
D\$\$ZMD	TTDRV					

Conditional Assembly Parameter	Modules T The Param	hat Contai eter	.n			
E\$\$DVC	CTDRV DMTAB DXTAB MTDRV SYSXT	CTTAB DPDRV ERROR MTTAB	DBDRV DRDRV IOSUB POWER	DKTAB DTDRV LPTAB PPTAB	DLDRV DTTAB MMDRV SYSCM	DMDRV DXDRV MMTAB SYSTB
E\$\$EAE	POWER	SYSXT				
E\$\$NSI	DRCIN	ERROR	LOWCR	POWER	SYSCM	SYSXT
E\$\$PER	ERROR	PARTY	POWER			
E\$\$XPR	DRDSP	DREXP	LOADR	SYSCM		
F\$\$AST	POWER	SSTSR				
F\$\$LPP	DRDSP SYSXT	DREIF	DRPUT	POWER	REQSB	SSTSR
F\$\$LTP	SSTSR					
G\$\$TPP	DRDSP	DRGPP	•	•		
G\$\$TSS	DRDSP	DRGSS				
G\$\$ TT K	DRDSP	DRGTK				
G\$\$WRD	BFCTL					
1\$\$C11	LOWCR					
I\$\$CAD	BFCTL					
I\$\$RAR	DREIF	TTDRV				
I\$\$RDN	DREIF	TTDRV				
K\$\$CNT	SYSCM					
K\$\$CSR	SYSCM					
K\$\$LDC	SYSCM					
K\$\$W11	POWER	TDSCH				
L\$\$11R	LPDRV					
L\$\$50H	TTDRV					
L\$\$ASG	DRASG					
L\$\$DRV	CTTAB DXTAB PPTAB TDSCH	DKTAB IOSUB QUEUE TTDRV	DMTAB LPTAB REQSB	DRGLI MMTAB SYSCM	DRQIO MTTAB SYSTB	DTTAB POWER SYSXT
L\$\$LDR	LOADR	SYSCM	SYTAB			
L\$\$Pll	LPDRV					

Conditional Assembly Parameter	Modules The Para	That Contai meter	in			
L\$\$SI1	CRASH	INITL	POWER	SYSCM	SYSXT	TTDRV
LD\$\$H	TTDRV					
LD\$\$J	TTDRV					
LD\$\$L	TTDRV					
LD\$\$Z	TTDRV					
LD\$CT	CTTAB					
LD\$DK	DKTAB					
LD\$DM	DMTAB					
LD\$DT	DTTAB					
LD\$DX	DXTAB					
LD\$LP	LPTAB					
LD\$MM	MMTAB					
LD\$MT	MTTAB					
LD\$NL	SYSTB					
LD\$PP	PPTAB					
LD\$PR	PPTAB					
LD\$TT	SYSTB	TTDRV				
LD\$TT	XMDRV					
M\$\$CRI	TTDRV					
M\$\$CRX	DRDSP	DREIF	DRGCL			
M\$\$EXT	DBDRV DRDRV MTDRV XMDRV	DKTAB DTDRV MTTAB XQDRV	DLDRV DTTAB POWER	DMDRV INITL SYSCM	DMTAB IOSUB SYSDF	DPDRV MMDRV XBDRV
M\$\$IXD	DBDRV	IOSUB	MMDRV			
M\$\$MGE	BFCTL DMDRV DRDSP DRGTP DRSST IOSUB MMTAB PPTAB SYSTB XMDRV	CRASH DMTAB DREIF DRQIO DTDRV LOADR MTDRV QUEUE SYSXT XPDRV	CTTAB DPDRV DREXP DRRAS DTTAB LOWCR MTTAB REQSB SYTAB XQDRV	DBDRV DRATX DRGLI DRREG DXDRV LPDRV PARTY SSTSR TDSCH XUDRV	DKTAB DRCIN DRGPP DRREQ DXTAB LPTAB PLSUB SYSCM TTDRV XWDRV	DLDRV DRGTK DRSED INITL MMDRV POWER SYSDF XBDRV

Conditional Assembly Parameter	Modules T The Param	hat Contai eter	in			
M\$\$MUP	CTTAB DRMKT DXTAB SYSCM	DKTAB DRQIO LPTAB SYSTB	DMTAB DRRAS MMTAB TTDRV	DRASG DRREQ MTTAB	DRDSP DRRES PPTAB	DRGTK DTTAB REQSB
M\$\$NET	DRQIO XUDRV	LOWCR XWDRV	XBDRV	XMDRV	XPDRV	XQDRV
n\$\$mov .	BFCTL					
n\$\$UMR	SYSCM					
P\$\$D70	PARTY					
P\$\$GMX	DRDSP	DRMAP				
P\$\$LAS	DRDSP DRREG SYSCM	DREIF LOADR SYSXT	DREXP LOWCR SYTAB	DRGPP PLSUB TTDRV	DRMAP REQSB	DRPUT SSTSR
P\$\$P45	NULTK					
P\$\$R11	PRDRV					
P\$\$RFL	DRDSP	DREIF	DRPUT	POWER	REQSB	
P\$\$RTY	INITL	PARTY	POWER	SYSCM		
P\$\$SRF	DRDSP SYTAB	DREIF	DRMAP	DRPUT	LOADR	REQSB
P\$\$WRD	BFCTL				`	
Q\$\$22	XMDRV					
Q\$\$10	XMDRV					
Q\$\$OPT	CORAL	IOSUB	SYSCM			
Q\$\$CRC	XQDRV					
Q\$\$MPT	XQDRV					
R\$\$11S	DRGTK	INITL	LOADR	SYSCM	SYTAB	TTDRV
R\$\$60F	DMDRV	IOSUB				
R\$\$611	DMDRV	IOSUB				
R\$\$DER	CORAL					
R\$\$EXV	SYSCM	SYSXT				
R\$\$JP1	DBDRV	IOSUB				
R\$\$JPO	DBDRV	IOSUB				
R\$\$JSl	IOSUB					

Conditional Assembly Parameter	Modules The Param	hat Contai eter	in		•	
R\$\$K11	IOSUB					
R\$\$L11	DLDRV	IOSUB				
R\$\$LKL	DROIO	ICSUB	SYSXT	TTDRV		
R\$\$M11	IOSUB					
R\$\$MOF	IOSUB					
R\$\$NDC	TDSCH					
R\$\$P11	DPDRV	IOSUB				
R\$\$SND	DRDSP	DREIF	DRPUT	DRRAS	LOADR	REQSB
R\$\$X11	DXDRV					
S\$\$ECC	DBDRV	DMDRV	IOSUB			
S\$\$WPC	LOADR	REQSB	TDSCH			
S\$\$WPR	LOADR					
S\$\$YSZ	SYSCM	•				
T\$\$18S	TTDRV					
T\$\$30P	SYSXT	TTDRV				
T\$\$All	CTDRV					
T\$\$ACR	SYSTB	TNDRV				
T\$\$BTW	SYSTB	TNDRV				
T\$\$BUF	DREIF	DREXP	DRREG	SYSXT	TTDRV	
T\$\$C11	DTDRV	IOSUB				
T\$\$CCA	SYSTB	TTDRV				
T\$\$CCO	SYSTB	TTDRV				
T\$\$CTR	TTDRV					
T\$\$ESC	SYSTB	TTDRV				
T\$\$GMC	SYSTB	TTDRV				
T\$\$GTS	SYSTB	TTDRV				
T\$\$HLD	SYSTB	TTDRV				
т\$\$J16	MMDRV					
T\$\$KMG	DREIF	IOSUB				
T\$\$LWC	TTDRV					

Conditional Assembly Parameter	Modules T	hat Contain eter
T\$\$M11	MTDRV	
T\$\$MIN	TTDRV	
T\$\$RNE	TTDRV	
T\$\$RPR	SYSTB	TTDRV
T\$\$RST	TTDRV	
T\$\$RUB	TTDRV	
T\$\$SMC	SYSXT	TTDRV
T\$\$SYN	SYSXT	TTDRV
T\$\$TRW	SYSXT	TTDRV
T\$\$UTB	SYSXT	TTDRV
T\$\$VBF	SYSXT	TTDRV
U\$\$ADM	BFCTL	
V\$\$CTR	LOWCR	SYSDF
x\$\$18	XMDRV	
X\$\$22	XMDRV	
X\$\$LDM	XMDRV	
x\$\$M11-1	XMDRV	•
x\$\$M11	XMDRV	

9.10 MODULE TO CONDITIONAL ASSEMBLY PARAMETER CROSS-REFERENCE

This cross-reference contains a listing of the Executive modules that contain conditional assembly parameters. Listed to the right of each module are the parameters that affect the assembly of the module.

Module	Conditio	nal Assem	bly Param	eters in	Module
BFCTL	A\$\$D01 N\$\$MOV	A\$\$F11 P\$\$WRD	G\$\$WRD U\$\$ADM	I\$\$CAD	M\$\$MGE
CORAL	Q\$\$OPT	RSSDER			
CRASH	в\$\$00Т	C\$\$CDA	C\$\$RSH	L\$\$SI1	M\$\$MGE
CTDRV	E\$\$DVC	T\$\$A11			
CTTAB	D\$\$IAG M\$\$MUP	E\$\$DVC	L\$\$DRV	LD\$CT	M\$\$MGE

Module	Condition	al Assemb	ly Parame	ters in M	Module
DBDRV	D\$\$IAG M\$\$MGE	D\$\$WCK R\$\$JPl	E\$\$DVC R\$\$JPO	M\$\$EXT S\$\$ECC	M\$\$IXD
DKTAB	A\$\$CPS M\$\$EXT	D\$\$IAG M\$\$MUP	E\$\$DVC	L\$\$DRV	LD\$DK
DLDRV	D\$\$IAG	E\$\$DVC	M\$\$EXT	M\$\$MGE	R\$\$L11
DMDRV	D\$\$IAG R\$\$60F	D\$\$WCK R\$\$611	E\$\$DVC S\$\$ECC	M\$\$EXT	M\$\$MGE
DMTAB	A\$\$CPS M\$\$EXT	D\$\$IAG M\$\$MGE	E\$\$DVC M\$\$MUP	L\$\$DRV	LD\$DM
DPDRV	D\$\$IAG R\$\$Pll	D\$\$WCK	E\$\$DVC	M\$\$EXT	M\$\$MGE
DRASG	L\$\$ASG	M\$\$MUP			
DRATX	A\$\$CHK	A\$\$TRP	C\$\$CKP	D\$\$ISK	M\$\$MGE
DRCIN	A\$\$TRP M\$\$MGE	C\$\$INT	D\$\$SHF	D\$\$YNM	E\$\$NSI
DRDAR	A\$\$TRP				
DRDCP	C\$\$CKP	C\$\$INT	D\$\$ISK		
DRDRV	E\$\$DVC	М\$\$ЕХТ	M\$\$MGE		
DRDSP	A\$\$CHK D\$\$ISK G\$\$TSS P\$\$GMX	A\$\$PRI D\$\$YNM G\$\$TTK P\$\$LAS	A\$\$TRP E\$\$XPR M\$\$CRX P\$\$RFL	C\$\$CKP F\$\$LPP M\$\$MGE P\$\$SRF	C\$\$INT G\$\$TPP M\$\$MUP R\$\$SND
DREIF	A\$\$PRI D\$\$YNM M\$\$MGE T\$\$BUF	A\$\$TRP F\$\$LPP P\$\$LAS T\$\$KMG	C\$\$CKP I\$\$RAR P\$\$RFL	C\$\$INT I\$\$RDN P\$\$SRF	D\$\$ISK M\$\$CRX R\$\$SND
DREXP	ASSTRP MSSMGE	C\$\$CKP P\$\$LAS	D\$\$YNC T\$\$BUF	D\$\$YNM	E\$\$XPR
DRGCL	M\$\$CRX			**	
DRGLI	A\$\$CHK	L\$\$DRV	M\$\$MGE		
DRGPP	А\$\$СНК	D\$\$YNM '	G\$\$TPP	M\$\$MGE	P\$\$LAS
DRGSS	G\$\$TSS				
DRGTK	А\$\$СНК	G\$\$TTK	M\$\$MGE	M\$\$MUP	R\$\$11S
DRGTP	A\$\$CHK	M\$\$MGE			
DRMAP	A\$\$TRP	P\$\$GMX	P\$\$LAS	P\$\$SRF	
DRMKT	M\$\$MUP				

1000

Module	Condition	nal Assemi	bly Param	eters in	Module
DRPUT	A\$\$TRP R\$\$SND	F\$\$LPP	P\$\$LAS	P\$\$RFL	P\$\$SRF
DRQIO	A\$\$CHK M\$\$MGE	A\$\$CPS M\$\$MUP	A\$\$NSI M\$\$NET	D\$\$IAG R\$\$LKL	L\$\$DRV
DRRAS	А\$\$СНК	M\$\$MGE	M\$\$MUP	R\$\$SND	Section 19
DRREG	A\$\$TRP P\$\$LAS	C\$\$CKP T\$\$BUF	D\$\$ISK	D\$\$YNM	MSSMGE
DRREQ	D\$\$YNM	M\$\$MGE	M\$\$MUP		
DRRES	A\$\$CPS	A\$\$PRI	D\$\$ISK	M\$\$MUP	**
DRSED	A\$\$CHK	M\$\$MGE			, , ,
DRSST	A\$\$CHK	M\$\$MGE			
DTDRV	D\$\$IAG	E\$\$DVC	M\$\$EXT	M\$\$MGE	T\$\$C11
DTTAB	A\$\$CPS M\$\$EXT	D\$\$IAG M\$\$MGE	E\$\$DVC M\$\$MUP	L\$\$DRV	್ಲ LD\$DT ಾರಿತೀ
DXDRV	E\$\$DVC	M\$\$MGE	R\$\$X11		\$ 11gg
DXTAB	A\$\$CPS M\$\$MGE	D\$\$IAG M\$\$MUP	E\$\$DVC	L\$\$DRV	LD\$DX
ERROR	D\$\$IAG	E\$\$DVC	E\$\$NSI	E\$\$PER	
INITL	L\$\$SI1	M\$\$EXT	M\$\$MGE	P\$\$RTY	R\$\$11S
IOSUB	A\$\$CHK D\$\$ISK M\$\$EXT R\$\$611 R\$\$L11 S\$\$ECC	A\$\$CPS D\$\$SHF M\$\$IXD R\$\$JPO R\$\$M11 T\$\$KMG	A\$\$TRP D\$\$YNM M\$\$MGE R\$\$JS1 R\$\$P11	C\$\$CKP E\$\$DVC Q\$\$OPT R\$\$C11 R\$\$LKL	D\$\$IAG L\$\$DRV R\$\$60F R\$\$K11 R\$\$MOF
LOADR	A\$\$TRP L\$\$LDR R\$\$SND	C\$\$CKP M\$\$MGE S\$\$WPC	D\$\$ISK P\$\$LAS S\$\$WPR	D\$\$YNC P\$\$SRF	E\$\$XPR R\$\$11S
LOWCR	D\$\$H11 P\$\$LAS	E\$\$NSI V\$\$CTR	I\$\$C11	M\$\$MGE	M\$\$NET
LPDRV	L\$\$11R	L\$\$P11	M\$\$MGE	: 20	
LPTAB	D\$\$IAG M\$\$MUP	E\$\$DVC	L\$\$DRV	LD\$LP	M\$\$MGE
MMDRV	D\$\$IAG T\$\$J16	E\$\$DVC	м\$\$ЕХТ	M\$\$IXD	M\$\$MGE
MMTAB	A\$\$NSI LD\$MT	D\$\$IAG M\$\$MGE	E\$\$DVC M\$\$MUP	L\$\$DRV	LD\$MM
MTDRV	A\$\$NSI T\$\$M11	D\$\$IAG	E\$\$DVC	M\$\$EXT	M\$\$MGE

Module	Condition	nal Assem	bly Param	eters in	Module
MTTAB	A\$\$NSI M\$\$EXT	D\$\$IAG M\$\$MGE	E\$\$DVC M\$\$MUP	L\$\$DRV	LD\$MT
NULTK	P\$\$P45				
PARTY	D\$\$SHF	E\$\$PER	M\$\$MGE	P\$\$D70	P\$\$RTY
PLSUB	D\$\$YNM	M\$\$MGE	P\$\$LAS		
POWER	ASSTRP FSSAST MSSEXT	E\$\$DVC F\$\$LPP M\$\$MGE	E\$\$EAE K\$\$Wll P\$\$RFL	E\$\$NSI L\$\$DRV P\$\$RTY	E\$\$PER L\$\$SI1
PPTAB	D\$\$IAG M\$\$MGE	E\$\$DVC M\$\$MUP	L\$\$DRV	LD\$PP	LD\$PR
PRDRV	P\$\$R11				
QUEUE	L\$\$DRV	M\$\$MGE			
REQSB	ASSTRP DSSYNC MSSMUP SSSWPC	C\$\$CKP D\$\$YNM P\$\$LAS	C\$\$INT F\$\$LPP P\$\$RFL	D\$\$ISK L\$\$DRV P\$\$SRF	D\$\$SHF M\$\$MGE R\$\$SND
SSTSR	A\$\$CHK P\$\$LAS	F\$\$AST	F\$\$LPP	F\$\$LTP	M\$\$MGE
SYSCM	C\$\$CKP E\$\$XPR L\$\$LDR N\$\$UMR R\$\$EXV	D\$\$YNC K\$\$CNT L\$\$SI1 P\$\$LAS S\$\$YSZ	D\$\$YNM K\$\$CSR M\$\$EXT P\$\$RTY	E\$\$DVC K\$\$LDC M\$\$MGE Q\$\$OPT	E\$\$NSI L\$\$DRV M\$\$MUP R\$\$11S
SYSDF	D\$\$YNM	M\$\$EXT	M\$\$MGE	V\$\$CTR	
SYSTB	D\$\$IAG M\$\$MGE T\$\$CCO T\$\$RPR	E\$\$DVC M\$\$MUP T\$\$ESC	L\$\$DRV T\$\$ACR T\$\$GMC	LD\$NL T\$\$BTW T\$\$GTS	LD\$TT T\$\$CCA T\$\$HLD
SYSXT	A\$\$TRP E\$\$EAE M\$\$MGE T\$\$SMC T\$\$VBF	C\$\$CKP E\$\$NSI P\$\$LAS T\$\$SYN	C\$\$INT F\$\$LPP R\$\$EXV T\$\$TRW	D\$\$YNM L\$\$DRV R\$\$LKL T\$\$UTB	E\$\$DVC L\$\$SI1 T\$\$BUF T\$\$30P
SYTAB	L\$\$LDR	M\$\$MGE	P\$\$LAS	P\$\$SRF	R\$\$11S
TDSCH	A\$\$TRP K\$\$Wll	C\$\$CKP L\$\$DRV	D\$\$ISK M\$\$MGE	D\$\$SHF R\$\$NDC	D\$\$YNM S\$\$WPC

Module	Condition	nal Assemb	ly Parame	eters in N	fodule
TTDRV	ASSCHK DSSL11 ISSRAR LDSSH MSSCRI RSSLKL TSSBUF TSSBMC TSSRNE TSSRNE	D\$\$M11 I\$\$RDN LD\$\$J M\$\$MGE T\$\$185 T\$\$CCA T\$\$GTS T\$\$RPR	C\$\$CKP D\$\$YNM L\$\$50H LD\$\$L M\$\$MUP T\$\$30P T\$\$CCO T\$\$HLD	P\$\$LAS T\$\$ACR T\$\$CTR	D\$\$J11 D\$\$ZMD L\$\$S11 LD\$TT R\$\$11S T\$\$BTW T\$\$ESC T\$\$MIN T\$\$SMC
XBDRV	D\$\$B11	M\$\$EXT	M\$\$MGE	M\$\$NET	en en e
XMDRV	LD\$XM Q\$\$IO X\$\$M11-1	M\$\$EXT X\$\$18	M\$\$MGE X\$\$22	M\$\$NET X\$\$LDM	Q\$\$22 X\$\$M11
XPDRV	M\$\$MGE	MSSNET	D\$\$P11-1	D\$\$P11	. ,
XQDRV	D\$\$Q11-1 Q\$\$CRC	D\$\$Q11 Q\$\$HPT	M\$\$EXT	M\$\$MGE	M\$\$NET
XUDRV	C\$\$MPT	D\$\$U11-1	D\$\$U11	M\$\$MGE	MSSNET
XWDRV	C\$\$MPT	D\$\$Wll-1	D\$\$W11	M\$\$MGE	MSSNET