
Execution Generated Test Cases: How to Make Systems Code Crash Itself

Cristian Cadar and Dawson Engler”

Computer Systems Laboratory

Stanford University

Stanford, CA 94305, U.S.A.

Abstract the charm that it requires no manual work, other than
: : interfacing the generator to the tested code. However,

This paper presents a technique that uses code to auto- . SI :
: : : : random test generation by itself has several severe draw-

matically generate its own test cases at run-time by using : : : :
Je. : : backs. First, blind generation of values means that it

a combination of symbolic and concrete (i.e., regular) :
: misses errors triggered by narrow ranges of inputs. A

execution. The input values to a program (or software . : Ce
: ; trivial example: if a function only has an error if its 32-

component) provide the standard interface of any test- oo. » ,
. bit integer argument is equal to “12345678” then random

ing framework with the program it is testing, and gen- :
CL .. will most likely have to generate billions of test cases be-

erating input values that will explore all the “interest- oo : a.
Ca CL fore it hits this specific case. Second, and similarly, ran-
ing” behavior in the tested program remains an important : : Co

: dom testing has difficulty hitting errors that depend on
open problem in software testing research. Our approach : : : 7 : :

: several different inputs being within specific (even wide)
works by turning the problem on its head: we lazily gen- : ol :

Cl : : ranges of values. Third, the ability of random testing to
erate, from within the program itself, the input values to .

: effectively generate random noise is also its curse. It is
the program (and values derived from input values) as oo.

) : very poor at generating input that has structure, and as a
needed. We applied the technique to real code and found :

: : result will miss errors that require some amount of cor-
numerous corner-case errors ranging from simple mem- ..

Ca : : rect structure in input before they can be hit. A clear
ory overflows and infinite loops to subtle issues in the

example would be using random test generation to find
interpretation of language standards. :

bugs in a language parser. It will find cases where the

parser cannot handle garbage inputs. However, because

1 Introduction of the extreme improbability of random generation con-

structing inputs that look anything like legal programs it

Systems code is difficult to test comprehensively. Exter- ~~ will miss almost all errors cases where the parser mis-
nally, systems interfaces tend towards the baroque, with ~~ handles them.

many different possible behaviors based on tricky combi- Of course, random can be augmented with some

towards heavily entangling nests of conditionals that are puts, though this comes at the cost of manual interven-
difficult to enumerate, much less exhaust with test cases. tion. A typical example would be writing a tool to take
Both features conspire to make comprehensive, manual a manually-written language grammar and use it to ran-
testing an enormous undertaking, so CNOrmous that em- gomly generate legal and illegal programs that are fed
pirically, many systems code test suites consist only of {5 the tested program. Another would be having a spec-
a handful of simple cases or, perhaps even more com- fication or model of what a function’s external behav-

monly, none at all. ior 1s and generate test cases using this model to try to
Random testing can augment manual testing to some jt “interesting” combinations. However, all such hybrid

degree. A good example is the fuzz [22, 21] tool, which approaches require manual labor and, more importantly,
automatically generates random inputs, which is enough 3 willingness of implementors to provide this labor at
to find errors in many applications. Random testing has JI. The reluctance of systems builders to write speci-

*This exact text (with author names elided) was submitted to the fications, grammars, models of what their code does, or
20th ACM Symposium on Operating Systems Principles, March 25, even assertions is well known. As a result, very few real
2005. systems have used such approaches.

This paper’s first contribution is the observation that 7. Finally, at line 5, solve x’s constraints for a concrete

code can be used to automatically generate its own po- value (e.g., x = 1). This value is used as our third,

tentially highly complex test cases. At a high level, the final case.

basic idea is simple. Rather than running the code on

manually-constructed concrete input, we instead run it We can then test the code on the three generated values
on symbolic input that is initially allowed to be “any- for x. Of course, this sketch leaves many open questions
thing.” As the code observes this input, these observa- — when to generate concrete values, how to handle sys-
tions tell us what legal values (or ranges of values) the tem calls, how to tell what is correct, ete. The rest of the
input could be. Each time the code makes a decision paper discusses these issues in more detail.
based on an observation we conceptually fork the execu- There are a couple of ways to look at the approach.
tion, on one branch we add the constraint that the input From one pont of View, mplementation code has a
satisfies the observation, on the other that it does not. We grammar of the legal nputs it accepts and acts or, or
can then generate test cases by solving these constraints rejects. EGT 1s an automatic method to extract this ram
for concrete values. We call such tests execution gener- mar (and the concrete sentences it accepts and rejects)
ated testing (EGT). from the implementation rather than from a hand-written

This process is most easily seen by example. Con- specification. From another viewpoint, it can be seen as
sider the following contrived routine bad_abs that in- away to turn code “inside out” so that instead of con-
correctly implements absolute value: suming inputs becomes a generator of them. Finally, and

. . perhaps only half-vacuously, it can be viewed as a crude

> int Pe x) 4 analogue of the Heisenberg effect in the sense that unlike
5. return —x: observations perturbing experiments from a set of poten-
3 if(x == 12345678) tial states into a variety of concrete ones, observations
4 return —x: in this case perturb a set of possible inputs into a set of
5: return Xx; increasingly concrete ones. The more precise the obser-
6: } vation the more definitively it perturbs the input. The

As mentioned before, even such a simple error will most precise observation, an equality comparison, fixes
probably take billions of random-generated test cases to the input to a specific concrete value. The least precise,
hit. In contrast, finding it with execution generated test- an inequality, simply disallows a single value but leaves
ing it 1s straightforward. Symbolic execution would pro- all others as possibilities.
ceed as follows: This paper has three main contributions:

I. Initial state: set x to the symbolic value of “any- 1." A simple conceptual apProach to automatically sell”
thing.” In this case, before any observations at all, it erate test cases by running code on symbolic inputs.
can be any value between INT MIN and INTMAX. 2. A working prototype EGT system.
Thus we have the constraints x > INT_MIN A

+> INTMAX. 3. Experimental results showing that the approach is
B effective on real code.

2. Begin running the code. The paper is organized as follows. Section 2 gives an

3. At the first conditional (line 1) fork the execution, overview of the method. section 3 discusses concrete
setting x to the symbolic constraint 2 < 0 on the implementation issues. The next four sections give four
true path, and to z > 0 on the false path. case studies of applying the approach to systems code.

’ - Finally, Section 7 discusses related work and Section 8

4. At the return on (line 2) solve the constraints on x concludes.
for a concrete value (such as x == -1). This value

is later used used as a test input to bad_abs. 2 Overview

5. At the second conditional (line 3) fork the execu- This section gives an overview of EGT. The next section

tion, setting x to the constraints x = 12345678 A discusses some of the implementation details.
x > 0 on the true path and x # 12345678 Ax > 0 In order to generate test cases, EGT runs the code on
on the false path. symbolic rather than real input. Whenever code reads

from its environment (via network packets, command

6. At the return on line 4 solve the symbolic con- line options, files, etc) we want to instead return a sym-
straints x = 12345678 A x > 0. The value is bolic variable that has no constraints on its actual value.

12345678 1s our second test case. As the program executes and uses or observes this value

(e.g., through comparisons), we add constraints based on section sketches how we can symbolically execute code.

these observations. Then, to determine how to reach a For ease of exposition, we initially assume that all the

given program path, we solve these constraints and gen- variables in a program are symbolic; Section 3.2 shows

erate input that satisfies them. how we can intermix symbolic and concrete execution in

At a high-level, the EGT system has three core activi- order to efficiently process real code.

ties: Assignment: v = e. We symbolically do an assign-

I. Instrumentation to track symbolic constraints. Our ment of an expression & (0 a variable v by generating the
prototype EGT system instruments the tested code constraint that v=e For example, v = x : Ty genet

oo ates the constraint that v = x + y; other arithmetic and
using a source-to-source transformation. This in- loeical (i
strumentation inserts checks around every assign- og1cdl Opetd O18 are St ar.
ment, expression and branch in the tested program The complication is that v may have been involved in
and calls into our runtime system. It also inserts previous constraints. We must distinguish the newly as-
code to fork a new process at each decision point at signed value of v from its use in any already generated
which the associated boolean condition could return constraints. For example, assume we have two assign-
both t rue and false ments: (1) x = y and then (2) y = 3. The first as-

signment will generate the constraint that x = y. The

2. Constraint solving: We model our constraints using second will generate the constraint y = 3. At this point,
formulas of quantifier-free first-order logics as rep- the constraints imply x = 3, which is obviously nonsen-
resented by CVCL, a state-of-the-art decision pro- sical. This new value for y after its assignment y = 3
cedure solver [4, 15]. CVCL has been used in ap- has nothing to do with any prior constraints involving y
plications ranging hardware verification to program and should have no impact on them. Thus, an assign-
analysis to mathematical theorem proving. ment v = e must have two parts. First, generate a new

We use CVCL in two ways. First, after every branch ~~ location for v and only then generate the constraint that
: LL. — 1

point we call it to determine if the current set of con- v=Y.

straints is satisfiable. If not, we stop following the If-statements. We symbolically execute an if-
code path, otherwise we continue. CVCL is sound: statement as follows: (1) fork execution at the condi-
if it states that a no solution exists, it is correct. Sec- tional, (2) on the true path add the constraint that the

ond, at the end of a code path that uses symbolic conditional expression e is true (e = true) and con-
input, we use CVCL to generate concrete values to tinue, (3) on the false path add the constraint that e is
use as test input. false (e = false) and continue. For example:

concrete | symbolic

3. Modeling. External functions that return or con- if(c) | if(fork() == child)
sume input can either be modeled so that they work sl: | add_constraint(e == true);
with symbolic variables, or not modeled, in which | sl;
case any value they take must be made concrete. In else | else

general, one can leave most things unmodeled, with $2; | add_constraint(e == false);
the downside that testing coverage will be reduced. | $2;
Models are not that hard to write. A four-line model Loops. We transform loops into if-statements with

for the Unix recv system call is given in Section 6. goto’s so they are handled as above. One danger is that it-
In addition, models can be used to speed up the test ~~ erating on a symbolic loop variable can continue forever,

generation. This optimization is discussed in Sec- forking a new execution on each evaluation of the loop
tion 3.4. condition. The usual practical hack is to only iterate a

fixed number of times or for a fixed amount of time (we
The mechanical act of instrumenting code is pretty easy, Lo :

do the latter). Neither solution is perfect. However, in
and there are a lot of constraint solvers to pick from and Co

our context almost any solution is preferable to manual
use as black boxes. Thus, the main challenge for the

test generation.
approach is how to run code symbolically. The next sub- .
section talks about this in more detail Function calls: f (x). There are three differences

between a symbolic function call and an imperative, call-

oo. . . by-value call. First, control can return multiple times into
2.1 The basic idea for symbolic execution the caller, once for each fork-branching that occurs. Sec-

The basic idea behind our approach is that when we per- ond, constraints placed on x in the body of £ must prop-
form logical or arithmetic operations, we generate con- I Alternatively, ignoring aliasing, we could have equivalently gone
straints for these, and when we perform control flow de- through all existing constraints involving v and relabeled them to use a
cisions, we fork execution and go down both paths. This new, fresh name.

// initial constraints: based on the above rules.

// x >= INT_MIN /\ x <= INT_MAX

int symbolic_bad_abs(int x) { .
// holds the return expression. 2.2 What is correctness?

ret = new symbol. EGT, like all testing approaches, needs to have some no-
// fork execution at each branch point. tion of what “bad” behavior is so that it can flag it. We
if(fork() == child) use three approaches to do so.

add_constraint(x < 0); First, and unsurprisingly, check for program inde-
add_constraint(ret = —x); pendent properties, such as segmentation faults, storage

leaks, memory overflows, division by zero, deadlocks,

// first return, final constraints: uses of freed memory, etc.
I x >= INT_MIN /\ x <= INT_MAX Second, do cross-checking. If a piece of code imple-
x<0 /\ ret = —x ments an important interface, then there are likely to be
return ret; several implementations of it. These implementations

else

add_constraint(x >= 0): can be cross-checked against each other by running the
test cases generated from one implementation (or both)

// fork execution on both implementations and flagging differences. One
if(fork() == child) important usage model: after modifying a new version of

add_constraint(x = 12345678); a system, cross-check it against the old version to make
add_constraint(ret = —x); sure any change was intended. This approach works es-

pecially well for complex interfaces.

/I second return, final constraints: Third, specification-by-example. While writing speci-
I x >= INT_MIN /\ x <= INT_-MAX fications to state what exactly code must do in general is
II \ x >= 0 hard, it is often much easier to take the specific test cases
II /\ x = 12345678 /\ ret = —x : :
return ret our tool generates and specify what the right answers are

else just for these cases. For example, for the bad_abs rou-
add_constraint(x != 12345678); tine, the EGT system generates the three concrete values:

-3, 12345677, 12345678. Thus, for testing we wouldjust

add_constraint(ret = Xx); do:
// last return final constraints: assert(bad_abs(—3) == 3);

// x >= INT_MIN /\ x <= INT_MAX assert(bad_abs(12345677) == 12345677),
I N\ x >=0 assert(bad_abs(12345678) == 12345678);
Il \ x = 12345678 /\ ret = x

return ret; 3 Implementation Issues

This section discusses some of EGT’s implementation

Figure 1: A symbolic translation of bad_abs. aspects more concretely.

3.1 Transformations to the input CFG
agate up to the caller. For example, the concrete code:

int foo(int x) { We use the CIL tool [24], designed for writing program
if(x == 3) analyses and source-to-source transformations of C pro-

return 1; grams to instrument the code of tested programs. The

else main benefit of using CIL is that it compiles C to a high-

return 2; level representation that is then “lowered” to a repre-
} sentation that has fewer constructs than C, reducing the

will generate a symbolic execution that returns twice into number of cases we would have to handle in a stock com-

the caller, since the branch will cause a forked execution. ~~ piler.

On the true branch we want to propagate the constraint In addition to CIL’s default lowering, we did several
that x = 3 back to the caller and on the false that x # simplifying transformations of our own. Both CIL’s and
3. The final difference is that at the exit point from a our transformations occur before we do any instrumenta-
function, we create a temporary symbolic variable and tion (described in the next subsection).

return that as the function’s expression value. First, all higher-level constructs such as while loops,
Figure 1 gives a symbolic translation of bad_abs for loops and switch statements are translated so that

all variables in the program appear only in assignments ~~ assign_rule(T &v, T e) {
and if branches. Once this is accomplished, we start if(e is concrete)
transforming each assignment and branch in the modi- /I" equivalent to v.concrete = e.concrete;

fied program. Assignments are reduced to one of two I v.symbolic = emalds
general forms: function calls, and assignments which ee. = (concrete=e.concrete, symbolic=<invalid>);
contain only variables and primitive operators (a single // equivalent: v.symbolic = e.symbolic
binary or unary operator) on the right hand side. v = (concrete=<invalid>, symbolic=new symbolic var T);

For example, the following assignment: constraint(v.symbolic = e.symbolic);
int a = max_abs(max_abs(b, c), d) + e¢; }

1s broken down to the following three assignments:
int tmpl = max_abs(b, c): Figure 2: Rewrite rule for assignment v = e for any
int tmp2 = max_abs(tmpl, d); variable v and expression e of type T.
int a = tmp2 + e;

The C transformer also rewrites each 1 f£ clause to con- holds i | d
tain only simple conditions, that is conditions with no crete, o Comers ho 51s one valle hylogical and or logical or. The ? operator is also rewrit- Vv. SYmboLie COMals the special token (invalid 1).
ten as an 1 f clause Conversely, if v is symbolic, v.symbolic holds its

After these transformations, the program representa- ymbolic value and v oneness . =to {tii
tion is then fed to our instrumentation code. We sketch n practice, we track the v. sympolic fie using 4

: : : table lookup that takes the address of a the variable v
the rewrite rules in the next subsection along with some Co)

of the practical details (which gives it a unique name) and returns v’s associ-
ated “shadow” symbolic variable v. symbolic (if it is

symbolic) or null (if it is concrete). In the latter case, the

3.2 Mixed symbolic and concrete execution variable v contains the concrete value (v.concrete)
: Ce and can just be used directly. The following examples

Ignoring memory and solver-limitations, we can run any assume o licit concrete ands mbolic fields Yor clare
code entirely symbolically until it interacts with the out- The ho{ basic operation assionment. Fi 0
side, concrete world. For example, if it calls external p & a g
code, or sends a packet on a real network to a machine gives the basic assignment rule. If the right hand vari-
runnin concrete code. of prints outout to be read bv a able e is a concrete expression or variable, just assign

£ Lode Or p Pb > DY its concrete value to the left-hand side v and mark v’s
real person. At this point you must either make the inputs swmbolic component as invalid If e is svmbolic
to the external code concrete (e.g, you must send data Y PONE y ’

: .C. then as explained in the previous section, we must al-
rather than a symbolic constraint in a network packet), : :

: . locate a fresh symbolic variable to be used in any new
or, alternatively, make a model of the world to pull it into
the simulation constraints that are generated. After that, we first set

Lo : v.concrete to be invalid and then add the con-
In practice, constraint solvers are not as robust as one : : :

straint that v. symbolic equals e. symbolic.
might hope and so without care overzealous constraint ; : :

: : It may not be immediately obvious but the same effect
generation will blow them up, sometimes for good theo- : : :

: : : could have been achieved by simple assignment, since
retic reasons, sometimes for unimpressive practical ones. : :
Further. svmbolic-onlv execution is expensive in both two symbolic variables constrained to be equal can just

> SY J -P be the same variable. E.g.,
speed and space. Thus, we do a hybrid approach that =v a.
intermixes concrete and symbolic execution. The basic v = (concrete=<invalid>, symbolic=e.symbolic);
approach is that before every operation we dynamically ~~ Or Ven
check if the values are all concrete. If so, we do the oper- V = eg;

ation concretely. Otherwise, if at least one value is sym- since e already has its concrete component set to

bolic we do the operation symbolically (using the logic invalid.

described in Section 2.1. Roughly as simple are basic binary arithmetic opera-

We sketch how to conceptually rewrite source con- tors. Figure 3 gives the rewrite rule for binary addition;

structs for a C-like language so that they can run on ei- other binary arithmetic operators are similar. If both x

ther concrete or symbolic values, mentioning some of the and y are concrete, we just return an expression whose

more important practical details. concrete part is just their addition and symbolic part is

Our first transformation conceptually changes each invalid. Otherwise we build a symbolic constraint s and

variable or expression v to have two instances: a then return an expression that has s as its symbolic com-

concrete one (denoted v.concrete) and a sym- ponent and invalid for its concrete.

bolic one (denoted v.symbolic). If v 1s con- The rewrite rule for if-statements is a straight-forward

// rule for x + y pointer p that points to a symbolic value also works as
T plus_rule(T x, Ty) { expected (i.e., just like assignment, except that the rvalue

if(x and y are concrete) is dereferenced). However, if p itself is symbolic, then
return (concrete=x.concrete + y.concrete, <invalid>); eo cannot actually dereference it to get what it points to

but instead must generate a funny constraint that says that
s = new symbolic var T; :

if(x is concrete) the result of doing so equals the symbolic dereference of
constraint(s = x.concrete + y.symbolic); Pp.

else if y is concrete At an implementation level, CVCL currently does not
constraint(s = x.symbolic + y.concrete); handle symbolic dereferences so we do not either. Fur-

else ther, in the short term we do not really do the right thing

constraint(s = x.symbolic + y.symbolic); with any pointer dereference that involves a symbolic

return (concrete=<invalid>, symbolic=s); value (such as a symbolic offset off of a concrete pointer
} or a symbolic index into a symbolic array). In such cases

we will generate a concrete value, which may be illegal.
Figure 3: Rewrite rule for “x + y” where variables x One happy result of this limitation is that. when corm.ppy result of this ation is that, when co

and y are of iype T. bined with the the way the implementation uses a lookup
. table to map variables to their shadow symbolic values,

| enef mule 0) { it makes handling address-of trivial. For example, given
if(p is concrete) the assignment p = &v we simply do the assignment,

return (concrete=*p, symbolic=<invalid>); always, no matter if v is a symbolic or concrete. A
else lookup of p will return the same symbolic variable (if

s = new symbolic var T; any) that lookup of &v does. Thus any constraints on it
if(p is concrete) are implicitly shared by both. Alternatively, if there is

constraint(s = (*p).symbolic); no symbolic, then p will point directly at the concrete
else variable and dereference will work as we want with no

// symbolic dereference of p help.
constraint(s = deref(p.symbolic)); Conceptually, function calls are rewritten similarly to

return (concrete=<invalid>, symbolic=s); the previous section. The implementation is slightly
} more messy since we essentially rewrite the signature to
Figure 4: Rewrite rule for dereference “*p” of any add an additional parameter for each original parameter
pointer p of type T. The main complication occurs when and use this to pass the symbolic variable associated with

Te each parameter (or null if there is none). For example:
we dereference a symbolic pointer: in this case we must

add a symbolic constraint on the dereferenced value. . concrete | rewritten
void f(T x) { | void f(T x, T *x_symbolic) {

| bind(&x, x_symbolic);

combination of the purely symbolic rule for if-statements Te |
with the similar type of concrete-symbolic checking that ; od
y : C1 And the caller becomes:

occurs in binary relations. There are two practical issues.

First, our current system will happily loop on symbolic f(x, lookup(x));
values — the parent process of a child doing such loop-

ing will terminate it after a timeout period expires. Sec- 3.3 Constraint solving issues
ond, we use the Unix fork system call to clone the exe-

cution at every symbolic branch point. Naively this will CVCL has two engines. An “integer” engine that works

quickly lead to an exponential number of processes ex- well with integer arithmatic, including the non-linear op-

ecuting. Instead we have the parent process wait for the erations multiplication and division, but does not handle

child to finish before continuing to execute on its branch modulo or bitwise operations (and, or, xor). The other

of the conditional. This means we essentially do depth- 1s a “bitvector” engine that works well with bitwise log-

first search where there will only be one active process ical operations and arithmetic except for modulo and di-

and a chain of its predecessors who are sleeping waiting vision. Additionally, they have a variety of exponential

for the active process to complete. and doubly-exponential algorithms buried inside, which

Because dereference deals with storage locations, it is means that they differ dramatically and unpredictably in

one of the least intuitive rewrite rules. Figure 4 gives terms of solution time and ability to generate concrete
the rewrite rule for dereferencing *p. A concrete deref- values from constraints.

erence works as expected. A dereference of a concrete Thus, we represent all constraints in our own solver-

independent form which is translated to a solver- 3.5 Discussion
dependent form only when communicating to the solver.

This lets us translate between either engine or, in the fu- ~~ CUTently we do lazy evaluationof constraints, deferring
ture, to an entirely different solver. solving them until the last possible moment. We could

Additionally, to isolate the effects of the constraint instead of eager evaluation, where as soon as we use d
solver we run it in its own child Unix process so that (1) symbolic value we make up a concrete one. This elim-
we can kill it if it does not terminate and (2) any prob- nates the need to execute code symbolically. However,
lems it runs into in terms of memory or exceptions are committing to a concrete value immediately precludes
‘solated. the ability to pick a different concrete value later, which

will often be necessary to execute both paths of any

subsequent branch based on the variable’s value (since

3.4 Creating a model for speed the concrete value will either satisfy the true or false

Not all the code in the program under testing should be ranches, but wo both). oo exmammple assume x Is sym-
given the same level of attention. For example, many of otic in the fo OWE “0 ©
our benchmarks make intensive use of the string library, / Assume x Is symbolic

y = X; // make up concrete value for x (c.g., 4)
but we don’t want to generate test cases that exercise the

code 1n these string routines. if(x —= 4)
More precisely, imagine a program which uses foo();

strcmp to compare two of its symbolic strings. Most else

implementations of strcmp would traverse one of the bar();

strings, and would compare each character in the first When we assign x to y we would have to make up a
string with the corresponding character in the second concrete. Assume we set x equal to 4. Then, we will
string and would return a value when the two characters not be able to execute the following false branch of the
differ or when the end of a string has been reached. Thus, conditional. And, of course, we if make it to not be 4 we

the routine would return to the caller approximately 2n ~~ will not hit the true branch. To handle this problem we
times, each time with a different set of constraints. How- would have to checkpoint execution at each point where
ever, most applications use a routine such as strcmp as we made a value concrete and, if this decision precluded
a black box, which could return only one of the following subsequent code paths, roll back, changing the concrete
three values: 0, when the strings are equal, -1 when the value and go back forward. A hybrid approach might be
first string is lexicographically smaller than the second best, where we make up concrete values immediately and
one, and 1 otherwise. Returning the same value multiple then only do full symbolic execution on code paths that
times does not make any difference for the caller of the this misses.
black box.

Instead of instrumenting routines such as those in the

string library, we could instead provide models for them. 4 Micro-case study: Mutt’s UTF8 routine
A model for st rcmp would return three times, once for

each possible return value. After each fork, the model As the first micro-benchmark to evaluate EGT, we ap-
would add a series of constraints which would make the ~~ plied it to a routine used by the popular Mutt email client

outcome of that branch symbolically true: for example, to convert strings from the UTF-8 to the UTF-7 format.
on the branch which returns 0, the model would add con- As reported by Securiteam, this routine in Mutt versions

straints setting the two strings equal. Of course, certain up to version 1.4 have a buffer overflow vulnerability
branches may be invalid; e.g. if the two string have dif- ~~ Which may allow a malicious IMAP server to execute
ferent lengths, strcmp could not return 0. In this case, arbitrary commands on the client machine [23].
the corresponding branch is simply terminated. We selected this paper in part because it has been one
We implemented models for the routines in the string ~~ of the examples in a recent reliability paper [25], which

library, and used them in generating tests for our bench- used a carefully hand-crafted input to exploit it.
marks. Adding these specifications has two main bene- We extracted the UTF8 to UTF7 conversion routine
fits. On the one hand, it removes useless test cases from from Mutt version 1.4, ran the code through our tool, and

the generated test suites (by removing tests which would generated test cases for different lengths of the UTF-8
only improve code coverage in the string routines), and input string. Running these generated tests immediately
on the other hand it significantly improves performance. ~~ found the error.
For the WsMp3 benchmark that we evaluate in Section 6, The paper we took the code from suggested a fix

the test suites are generated approximately seven times of increasing the memory allocation ratio from n*2 to

faster. n*7/3. We applied this change to the code, and reran

the EGT generated test cases, which immediately flagged "%lle™ " SHOE" " GZ." " % +1"
that the code still has an overflow. The fact that the " S#he™ " 200." " SHJLT OM H+"

adjusted ratio was still incorrect highlights the need for ~~" 3=L1f" " S#hf" * 5+£¥ "SEL E"
(and lack of) automated, comprehensive testing.) 500 I. ibyhe

Table 1 presents our results. For each input size, we © #e aE cee °C)
. . . nw S# pe" nw E——-—" nw 1G nw nw S+—-u"

report the size of the generated test suite and the time "mg _——_ "ps mm goqn
1t took to generate it, the cumulative statement cover- Wey0 Mm MoS_ggM MW 2_0o" MW 21la"
age achieved up to and including that test suite, and "SOG MM SEL" M0 yu" M 9gSM
the largest output size that we generated for that input

size. These results (and all our later results), were gener- Figure 5: A representative subset of the format strings
ated on a Intel Pentium 4 Mobile CPU at 1.60GHz, with ~~ EGT generated from the Pintos implementation.
512MB RAM.

Input | Generation | Test Suite | Statement | Largest widely-read C book) had intimate knowledge of the
Size Time Size Coverage | Output standard.

1 16s 10 84.0% 5

2 1m35s 38 04.29% Q 2. The gccfast printf, which implements a ver-

3 Tm26s 132 04.29% 11 sion of printf in terms of fprintf. 2

4 34m1l2s 458 95.6% 15

5 2'h35m 1569 95.6% 19 3. A reduced-functionality printf implementation
for embedded devices.

Table 1: Test suites generated for utf8_to_utf7 We used EGT to generate test suites by making the
format string the single symbolic argument to printf.

We set the size of this symbolic string to a fixed length

. and generated test cases from the resultant constraints.
5 Case study: printf We describe our measurements below and then discuss

Thi y lies EGT to three diff . Cf the bugs and differences found.
| 15 i o PbEo ip oo tieren rn oh Measurements. We generated test cases for format

piCMENLALOnS. © prin routine 1s a goo cramp © strings of length 2, 3, 4, and 128. Table 2 shows the test
of real systems code: a highly complex, tricky interface oo

) suite size that we generated for each format length and
that necessitates an implementation with thickets of cor- C. :

) the time it took to generate the test suite. We allowed
ner cases. Its main source of complexity is the output

Co : : a maximum of 30 seconds per CVCL query; there were
format string it takes as its first argument. The semantics Co

oo. : : only two queries killed after spending more than 30 sec-
of this single string absorb the bulk of the 234 lines the :

) onds. For format lengths of 128 long, we terminated the
ANSI C99 standard devotes to defining printf; these

test generation after approximately two hours.
semantics define an exceptionally ugly and startling pro- : :

ramming language (which even manages to include it- Figure 5 gives a representative set of format strings ofstall length 4. Note that while almost all look fairly bizarre,
eration!).

: : because they are synthesized from actual comparisons in
Thus, printf is a best-case scenario for EGT. The hy s

: the code, many are legal (and at some level “expected

standard and code complexity create many opportuni- by the code)
ties for bugs. Yet the inputs to test this complexity y : :

: : : : Results. After generating test suites, we checked the
can be readily derived from print f’s parsing code, : :

: : : : output for each print f in two ways. First, we took the
which devolves to fairly simple, easily solved equality :

tests each implementation generated and cross-checked
checks. Further, the importance of print f means there CL ,

:) its output on these tests against the output of glibc’s
are many different implementations, which we can use : :

to finesse the need for a specification by cross-checking printf. Bach of of the three implementations attempts
: to implement a subset of the ANSI C99 standard, while

against each other. : : : :
: : glibc intends to fully implement it. Thus, any differ-

We checked the following three printf implemen- : : :
: : : : ence is a potential bug. EGT discovered lots of such dif-

tations; all of them (intentionally) implemented only a : os
ferences automatically: 426 in Pintos, 146 in the Em-

subset of the ANSI C90 standard: ,
bedded printf and 7 in GCCfast’s printf (which

I. The Pintos instructional operating systems BEV —— }:] http://www.opensource.apple.com

printf; the implementation intentionally elides darwinsource/WWDC2004/goetast1614
floating point. This implementation is a stern test 3http://www.menie.org/georges/embedded/ index.
of EGT, since the developer (the co-author of a html

Format | Pintos” Embedded | GCCfast

2 34 17 30

EE EA
3 356 75 273

EN
/* Performs an integer conversion, writing 40m47s 21mo6s 87m36s

output to OUTPUT with auxiliary data AUX. 128 590 72 908

The integer converted has absolute value mses | Tomas | 120mios
VALUE. If NEGATIVE is true the value is

negative, otherwise positive. The output

will use the given DIGITS, with strlen(DIGITS) Table 2: Test suites generated for print £, the first row

indicating the output base. Details of the of each size gives the number of generated tests, the sec-

conversion are in C. */ ond row the time required to do so.
static void

format_integer (uintmax_t value, bool negative, Pintos’ Embedded | GCCfast

const struct printf_conversion *c, =

void (output) (char, void *), void "aux)

{ self tests of 4214 of 501 of 3316
rr Mismatches 624 6395 91

// [BUG 1: hard —to—spot bug in conversion Statement 95% 95% 98%
// of large ints into comma—seperated form.]

cp = buf;

group_cnt = 0;

while (value > 0) { Table 3: Mismatches found in the printf implementa-
if((c—>fhgs & GROUP) tions.
&& group_cnt++ == b—>group) {

p++ = 1,7;

group_cnt = 0; was surprising since it only does minimal parsing and
} then just calls fprintf, which then calls glibc’s

*cp++ = b—>digits[value % b—>base]; printf). Since we had access to the implementor of
value /= b—>base; Pintos we focused on these; we discuss these below.

yJ ny Second, we took the tests generated by all implemen-
ol tations and cross-checked their output against each other.

// [BUG 2: appending sign always, should Since they intentionally implement different subsets of
// only do if format specifier is signed!] the standard, we expect them to have different behavior.
if (c—>thgs & PLUS) This experiment tests whether EGT can find such dif-

*cp++ = negative ? 1’ +7; ferences automatically. It can: 624 in Pintos, 6395 in
else if (c—>fhgs & SPACE) Embedded and 91 in GCCfast.

“cp++ = negative ? 1" I’ Note that in both experiments, the Pintos and the GC-
else if (negative) Cfast print f routines print an error message and abort

por=="; when they receive a format string that they cannot han-
ne dle. Since they only intend to handle a subset of the

; standard, this is correct behavior, and we do not report
Figure 6: Pintos’ format_integer routine: contains two, :

difficult to find errors immediately detected using EGT. 4 mismatch n this Case: In Contras, the Embedded
printf instead fails silently when it receives a format

string which it cannot handle. This means that we can-

not differentiate between an incorrect output of a handled

case and an unhandled case, and thus we report all these
cases as mismatches.

Table 3 also shows the statement coverage achieved

by these test suites; all printf’s achieve more than

95% coverage. Most of the lines that were not cov-

ered are unreachable. For example, Pintos’ printf We now give a more cursory description of the remain-

has a NOT_REACHED statement which should never be ing errors.

reached as long as Pintos treats all possible format Incorrect alignment of strings. Pintos incorrectly
strings. Similarly, for the Embedded printf, we don’t ~~ handles width fields with strings, although this feature
reach the lines which redirect the output to a string buffer ~~ works correctly for integers (which got better testing).

instead of stdout; these lines are used by sprintf, Incorrect handling of the t and z flags. When
and never by printf. Some lines however where not the flag t is used, the unsigned type corresponding to
reached because our system treats only the format string ptrdiff_t should be used. This is a detail of the stan-
as symbolic, while the rest of the arguments are concrete. dard which was overseen by the developer. We found a
Finally, two of the three printf implementations use similar bug for the z flag, which specifies that the signed
non-standard implementations for determining whether type corresponding to size_t should be used.
a character is a digit, which our system does currently No support for wide strings and chars. Pintos does
not handle correctly. The number of lines reported in Ta- not support wide string and wide chars, but fails silently
ble 3 are real lines of code, that is lines which have at in this case with no error message.
least one instruction. Undefined behavior. We found several bugs which
We reported all mismatches from Pintos to its devel- are caused by underspecified features. An example of

oper, Ben Pfaff. We got confirmation and fixes of the gychacaseis “printf (}'%hi’’, wv), whose output
following bugs. 1s undefined if v cannot be represented as a short.

Incorrect grouping of integers into groups of thou-
sands.

6 Case study: WsMp3
“Dammit. I thoughtI fixed that... Its quite ob-

viously incorrect in that case.” — Ben Pfaff, This section applies our technique to the WsMp3 web
unsolicited exclamation, 3/23/05, 3:11pm. server designed for transferring MP3 files [28]. We use

The code mishandled the “’” specifier that says to WsMp3 version 0.0.5 which, uninstrumented contains
comma-separate integer digits into groups of three. The about 2000 lines of C code; instrumented about 40,000.
exact test case was: This version contains a security vulnerability that allows

/| correct: —155,209,728 attackers to execute arbitrary commands on the host ma-
// pintos : —15,5209,728 chine [26, 27]. Our technique automatically generated
printf("%’ da", —155209728); test cases that found this security hole. In addition, it

Amusingly enough, the bug had been fixed in the de- found three other memory overflows and an infinite loop
veloper’s tree, but he had forgotten to push this out to the ~~ caused by bad network input (which could be used for a
released version (which we were testing). DoS attack).

Incorrect handling of the space and plus flags. We first discuss how we set up test generation, cover-

age results, and then the most direct method of effective-

“That case is so obscure I never would have ness: bugs found.
thought of it.” — Ben Pfaff, unsolicited excla-

mation, 3/23/05, 3:09pm.

6.1 Setting up WsMp3
The character “%$” can be followed by a space flag, which

means that “a blank should be left before a positive num- WsMp3 has the typical web server core: a main loop

ber (or empty string) produced by a signed conversion” that listens for connections using accept, reads packet

(man printf (3)). Pinto incorrectly leaves a blank from the connection using recv, and then does opera-

before an unsigned conversion too. We found a similar tions based on the packet value. It also has a reasonably

bug for the plus flag. rich interaction with the operating system. As a first cut

This bug and the previous error both occurred in the we only made the network packet’s returned by recv

same routine, format_integer, which deals with for- be symbolic, but made the packet size be concrete. We

mating integers. The routine is shown is Figure ??. The did so by replacing calls to recwv with calls to a model

complexity of the specification of even this one small of it (recv_model) that just “returned” a symbolic ar-

helper function is representative of the minutia-laden ray of bytes of a specific length. Figure 7 gives this

constraints placed on many systems interfaces and their code. It “reads in” a message of length msg_len by

internals. The bugs are labeled BUG 1 and BUG 2 re- telling the system the address range between buf and

spectively. The only thing clear from their associated buf+msg_len should be treated as symbolic. We then

code fragments is that the cause of each error is not clear generated test cases for one byte packet, two bytes, and

at all. so forth by changing msg_len to the desired length.

// [model does not generate failures; msg_len is fixed] number of tests generated for each size, (2) the time it

ssize_t recv_model(int s, char "buf, size_t len, int fhgs) { took (user time), and (3) the number of times the CVCL
make_bytes_symbolic(buf, msg_len); constraint solver failed to generate a concrete test from a
return msg_len; set of constraints within 30 seconds.

} Given our naive implementation, the test generation
Figure 7: Model for the recv system call to symboli- time was non-trivial. For packets of size 12 and 128 we

Coir? stopped it after 14 hours (they were running on a laptop
cally “receive” a packet of (fixed) size msg_len. : :

that we wanted to write this paper on). However, note

that in some sense high test generation cost is actually

After the webserver finishes processing a message, we ~~ not so important. First, test generation happens infre-
inserted a call into the system to emit concrete values quently. The frequent case, running the generated tests,
associated with the message’s constraints. We then emit takes less than a minute (while to test all the random tests
these into a test file and run it on it. generated it takes about two hours and half). Second, test

One subtlety is that after the webserver processes a generation is automatic. The time to manually generate
single message we exit it. Recall that at every conditional tests that would get similar amounts types of path cov-
on a symbolic value (roughly) we fork execution. Thus, erage would be enormous. Further, manual generation
the webserver will actually create many different chil- easily misses cases silently. Finally, as far as we know,
dren, one for each branch point. Thus, even processing there was no test suite for WsMp3. Clearly the EGT al-
a “single” message will generate many many test mes- ternative is much better.

sages. In the context of this server, one message has little Packer 0 7000 1 100.000 ECT
to do explicitly with another and thus we would not get :

: oo Size tests tests tests Testing
any more test cases by doing additional ones. However,
for a more stateful server, we could of course do more : 13.3% | 13.3% 13.3% 13.3%
than one 2 13.3% | 13.3% | 13.3% 13.3%

Finally, it was not entirely unheard of for even the 3 23.0% | 23.1% | 23.1% | 23.1%
4 23.1% | 23.1% | 23.1% | 28.1%

symbolic input to cause the code to crash during test gen-
:) : : 5 23.1% | 23.1% | 23.1% | 29.6%

eration. We handle segmentation faults by installing a 128 43.1% | 23.1% | 23.49 31.29
handler for the SIGSEGV signal and, if it is invoked, HO 70 ro 70
generate a concrete test case for the current constraints 256 23.1% 1 23.1% | 23.3%

512 | 23.1% | 23.1% | 23.4%

and then exit the process. : ¥ TT 37
Since WsMp3 makes intensive use of the standard

string library, we used our own string.h library de- Time
scribed in Section 3.4. In our tests, using this library

improves performance by roughly seven-fold. Table 5: Statement coverage of EGT versus random test-
ing. Random testing quickly reaches its asymtotic limit.

6.2 Test generation measurements
We compare coverage from EGT to random testing.

Packet | Unfinished T Execution | Test Suite We use state statement coverage generated using gece
Si : Time (s) Si and gcov. We would have preferred a more insight-
= ueies = > = ful metric than line coverage, but were not able to find

> adaquate tools. We generated random tests by modify-
2 0 Os 1 : :

ing recv_mode routine to request messages filled with
3 0 57s 18 :

4 0 10m28 90 random data of a given size. For each packet size, we
fm.208 generate 10, 1000, and 100,000 random tests. Table 5

5 8 16m13s 97 oo. :
presents the time it takes to do a given number of random

12 134 14h15m 1173 : :
tests and statement coverage achieved by it and EGT.

128 63 14h15m 165 CL
The statement coverage reported for random testing is

cumulative: each data point reports the statement cover-

Table 4: Test suites generated for WsMp3. We stopped ~~ age achieved by all the test cases of that message size and
test generation for size 12 and 128 after roughly 14 smaller.
hours. EGT hits roughly 9% more lines of code than random;

this is almost certainly a dramatic underreporting of the

We used EGT testing to generate tests for packets of ~~ number of distinct paths it hits. More importantly, these

size 1, 2, 3, 4, 5, 12, and 128. Table 4 gives (1) the lines appear out of reach ofrandom testing no matter how

many more random tests we do. // [buf holds network message]
We manually examined the code to see why EGT ~~ char® get_op(char “buf) {

missed the other statements. We discuss the reasons be- char” op;
low: int i;

1. Debugging and logging code: we did not enable ei- if((op=(char *)malloc(10))==NULL) {
ther debugging or logging code, which respectively printf("Not enough memory !\n");

account for roughly 5% and 10% of code statements. \ exit(1);
2. Error messages: WsMp3 tests whether various re- // [note: buf is ’ 0’ terminated]

source allocation functions fail, and if so, it termi- if(buf!l=NULL && strlen(buf)>=3) {

nates with an error message. Most of the code in [/strnepy(op,buf,3);
this category checks the return statement value from i=0;
malloc. These checks account for approximately while(bufli]!=" A
3% of the code. OPli}=bufli];

i++;

3. Arguments to main: The code which processes }
the command-line arguments accounts for approxi- opli]="\0";
mately 4% of the code. We are currently not treating ; “NULL:
command-line arguments as symbolic inputs. CIS OP

However, the rest of approximately 45% of the code is return op;
not reached because the request messages that we fabri- }

oeAPR——or because we Figure 8: WsMp3 buffer overflow bug: occurs if received
As an example from the first category, when a GET re- message (held in buf) has more than 10 characters be-

quest is received, the web server extracts the file name fore the first space.
from the request packet, and then it checks if the file ex-

ists by using topen. If the file does not exist, WsMp3 buffer. Thus, if it receives an invalid request which does
sends a corresponding error message to the client. If the : the first ten characters. than buffer
file 1s valid, the file name is passed through various pro- not anai WOM: : © Il : CC h
cedures for further processing. Since we don’t have any OVETTOWS on I N b- N lerminates wit os
files on our server, and since almost all the files being mentation a t. Amusingly, there Is a (commente out)
fabricated by our system would be invalid anyway, the oem to stead co some sort of copy using the safe
code which process files and file names is never invoked. length. BY yup PIE=SP
The right way to solve this problem is to provide mod- Co

els for functions such as fopen, fread, and stat. This routne 5 involved ma second bug. As bart of
However, even without these models, we find interesting the checking it does do, it will return NULL if the input
errors. as the next subsection describes 1s NULL or if the size of the incoming message is less

than three characters. However, the caller of this routine

does not check for a NULL return and always passes the

6.3 Errors Found buffer to st remp, causing a remote-triggered segmen-

We have identified five errors in the code which parses ation fault
the request messages received by WsMp3. All were The third final bug was interesting: for certain rare re-
caused by a series of incorrect assumptions that WsMp3 quest messages (where the sixth character is either a pe-
makes about the request being processed. We describe riod or a slash, and is followed by zero or more periods
three illustrative bugs below. or slashes, which are immediately followed by a zero),

Figure 8 gives the first bug. Here WsMp3 assumes that ~~ YSMPp3 goes into an infinite loop. Our EGT system au-
the first part of the request message (held in buf) holds tomatically generates the very unusual message required
the type of the client request, such as GET or POST, sep- to hit this bug. Figure 9 gives the problematic code.
arated from the rest of the message by a space. After a

request is received, WsMp3 copies this action type in an

auxiliary buffer by copying all the characters from the 7 Related Work
original request, until a space is encountered. Unfor-

tunately, it assumes the request is legal rather than po- We compare EGT to past test generation work and then

tentially malicious and allocates only ten bytes for this to bug finding methods.

while (cp[0] ==." || cp[0] == "/") list or binary tree) and exhaustively generates all non-
for (i=1; cp[i] I= "\0’; i++) { isomorphic data structures up to a given size, with the

cpli—1] = cpli]; intention of testing a progrem using them. They use sev-
it (cpli+1] == "\0") eral optimizations to prune data structure possibilities,

cpli] = "07; such as ignoring any data struture field not read by a pro-
; gram. EGT differs from this work by attempting to avoid

Figure 9: The WsMp3 infinite loop error. cp points to any manual specification and targetting a much broader
the sixth character in the message buffer. class of tested code.

Past automatic input generation techniques appear to

focus primarily on generating an input that will reach a

7.1 Test and input generation given path, typically motivated by the (somewhat con-
trived) problem of answering programmer queries as to

To the best of our knowlege, while there has been work whether control can reach a statement or not.

related to test generation and synthesis of program inputs Ferguson and Korel[14] iteratively generate tests cases
to reach a given program point, there is no approach that jth the goal of hitting a specified statement. They start
effectively generates comprehensive tests automatically with an initial random guess, and then iteratively refine
from a real program. There certainly exists no tool that the guess to discover a path likely to hit the desired state-
can handle systems code. We first compare to static and ment.

then dynamic techniques below. Gupta et al. [18] use a combination of static analy-
Static techniques. There has been a long stream of sis and generated test cases to hit a specified path. They

research that attempts to use static techniques to gener- define a loss function consisting of “predicate residuals”
ate inputs that will cause execution to reach a specific which roughly measures by “how much” the branch con-
program point or path. ditions for that path were not satisifed. By generating a
One of the first papers to attack this problem, Boyer at series of test cases, they use a numerical solver to find

al. [6], proposes the use of symbolic execution to follow test case values that can trigger the given path. Gupta’s

a given path was in the context of a system, SELECT, in- technique combines some symbolic reasoning with dy-
tended to assist in debugging programs written in a sub- namic execution, mitigating some of the problems in-

set of LISP. The usage model was that the programmer herit in either approach but not in both. Unfortunately,

would manually mark each decision point in the path that the scalability of the technique has more recently been
they wanted executed and the system would incremen- called into question, where small systems can require the

tally attempt to satisfy each predicate. method to take an unbounded amount of time to generate

More recently, researchers have tended to use static a test case [12].

analysis to extract constraints which they then use vari- In EGT differs from this work by focusing on the prob-

ous methods to try to solve. lem of comphrehensively generating tests on all paths

One example is Gotlieb et al [17], who statically ex- controlled by input. This prior work appears to be much
tracted constraints which they tried to solve using (nat- more limited in this regard.
urally) a constraint solver. More recently, Ball [1] stati-

cally extracted predicates (1.e., constraints) using “pred- 7.2 Bug finding
1cate abstraction” [2] and then used a model checker to

try to solve these predicates for concrete values. Software Model Checking. Model checkers have been
There are many other similar static efforts. In gen- previously used to find errors in both the design and the

eral, static techniques are vastly weaker than dynamic at implementation of software systems [19, 16, 20, 7, 9, 3,

gathering the type of information needed to generate real 16]. These approaches tend to require significant man-
test cases. They can deal with limited amounts of fairly ual effort to build testing harnesses. However, to some

straightforward code that does not interact much (or at ~~ degree the approaches are complementary: the tests our

all) with the heap or complex expressions, but run into approach generates could be used to drive the model
intractable problems fairly promptly. checked code.

Dynamic techniques. Much of the test generation Generic bug finding. There has been much recent

work relies on the use of a non-trivial manually-written work on bug finding [11, 3, 10, 8]. Roughly speak-

specification of some kind. This specification is used to ing [13], because static analysis can examine all paths

guide the generation of testing values ignoring the de- and only needs to compile code in order to check it, it

tails of a given implementation. One of the most inter- is relatively better at finding errors in surface properties

esting examples of such an approach is Korat [5], which visible in the source (“lock is paired with unlock”)

takes a specification of a data-structure (such as a linked than dynamic techniques. In contrast, because dynamic

checking runs code it is limited to just executed paths, [11] M. Das, S. Lerner, and M. Seigle. Path-sensitive program verifi -

by code. For example that the code will infinite loop on 2002 Conference on Programming Language Design and Imple-
)))] mentation, Berlin, Germany, June 2002.

bad inputs, that a formatting command is not obeyed cor-
Iv. M fh th 1d be difficul [12] J. Edvardsson and M. Kamkar. Analysis of the constraint solver

rectly. any of the errors in this paper wou C 1 cult in una based test data generation. In ESEC/FSE-9: Proceedings
to get with that approach. However, we view static anal- of the 8th European software engineering conference heldjointly
ysis as complementary to EGT testing — it is lightweight with 9th ACM SIGSOFT international symposium on Founda-

enough that there is no reason not to apply it and then use tions ofsoftware engineering, pages 237-245. ACM Press, 2001.
EGT. [13] D. Engler and M. Musuvathi. Static analysis versus software

model checking for bug fi nding. In Invited paper: Fifth Interna-

tional Conference on Verification, Model Checking, and Abstract

8 Conclusion Interpretation (VMCAIO4), pages 191-210, Jan. 2004.
[14] R. Ferguson and B. Korel. The chaining approach for software

This paper has proposed a simple method of automat- ot oygeneration. ACM Trans. Softw. Eng. Methodol., 5(1):63—
ically generating test cases by executing code on sym- N
bolic inputs called execution generated testing. We build [15] V. Ganesh, S. Berezin, and D. L. Dill. A decision procedure for
a prototype EGT system and applicdit to real code. We fi xed-width bit-vectors. Unpublished Manuscript, 2005.
found NUMErouS COrner-case errors ranging from simple [16] P. Godefroid. Model Checking for Programming Languages us-

} }]] ing VeriSoft. In Proceedings of the 24th ACM Symposium on

memory overflows and infinite loops to subtle issues in Principles of Programming Languages, 1997.

the Interpretation of language standards. [17] A. Gotlieb, B. Botella, and M. Rueher. Automatic test data gen-
These results, and our experience dealing with and eration using constraint solving techniques. In ISSTA 98: Pro-

building systems suggests that EGT will work well on ceedings ofthe 1998 ACM SIGSOFT international symposium on

systems code, with its often complex requirements and Software testing and analysis, pages 53-62. ACM Press, 1998.
tangled logic. [18] N. Gupta, A. P. Mathur, and M. L. Soffa. Automated test data

generation using an iterative relaxation method. In SIGSOFT

"98/FSE-6: Proceedings of the 6th ACM SIGSOFT international

References symposium on Foundations of software engineering, pages 231—
244. ACM Press, 1998.

[1] Le Baeo .Afete Methods forfolieSonents [19] G. J. Holzmann. The model checker SPIN. Software Engineering,
and Objects. SpringerPress, 2004. 23(5):279-295, 1997.

[2] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Auto- [201 G. J. Holzmann. From code to models. In Proc. 2nd Int. Cony.
matic predicate abstraction of ¢ programs. In PLDI '0l: Pro- on Applications of Concurrency io System Design, pages 3-10,
ceedings of the ACM SIGPLAN 2001 conference on Program- Newcastle upon Tyne, U.K., 2001.
ming language design and implementation, pages 203-213. ACM [21] B. Miller, D. Koski, C. P. Lee, V. Maganty, R. Murthy, A. Natara-
Press, 2001. jan, and J. Steidl. Fuzz revisited: A re-examination of the relia-

[3] T. Ball and S. Rajamani. Automatically validating temporal bility of UNIX utilities and services. Technical report, University
safety properties of interfaces. In SPIN 2001 Workshop on Model of Wisconsin - Madison, 1995.
Checking of Software, May 2001. [22] B. P. Miller, L. Fredriksen, and B. So. An empirical study of the

[4] C. Barrett and S. Berezin. CVC Lite: A new implementation of reliability of UNIX utilities. Communications of the Association
the cooperating valid ity checker. In R. Alur and D. A. Peled, ed- Jor Computing Machinery, 33(12):32-44, 1990.
itors, CAV, Lecture Notes in Computer Science. Springer, 2004. [23] Mutt exploit reported by Securiteam. http://www.

[5] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated securiteam.com/unixfocus/5SFPOTOUSFU.html.
testing based on Java predicates. In Proceedings of the Inter- [24] G. C. Necula, S. McPeak, S. Rahul, and W. Weimer. Cil: Inter-

national Symposium on Software Testing and Analysis (ISSTA), mediate language and tools for analysis and transformation of c¢

pages 123-133, July 2002. programs. In International Conference on Compiler Construc-

[6] R.S. Boyer, B. Elspas, and K. N. Levitt. Select — a formal system tion, March 2002.
for testing and debugging programs by symbolic execution. ACM [25] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, and
SIGPLAN Notices, 10(6):234-45, June 1975. J. William S. Beebee. Enhancing server availability and security

[7] G. Brat, K. Havelund, S. Park, and W. Visser. Model checking through failure-oblivious computing. In Symposium on Operat-
programs. In IEEE International Conference on Automated Soft- ing Systems Design and Implementation, December 2004.
ware Engineering (ASE), 2000. [26] WsMp3 exploit reported by Computer Associates. http:

[8] W. Bush, J. Pincus, and D. Sielaff. A static analyzer for fi nding //www3.ca.com/securityadvisor/vulninfo/
dynamic programming errors. Software: Practice and Experi- Vuln.aspx?ID=15609.
ence, 30(7):775-802, 2000. [27] WsMp3 exploit reported by Secunia. http://secunia.

[9] J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach, C. Pasareanu, com/product/801/.
Robby, and H. Zheng. Bandera: Extracting fi nite-state models [28] WsMp3 webpage. http: //wsmp3.sourceforge.net/.
from java source code. In ICSE 2000, 2000.

[10] SWAT: the Coverity software analysis toolset. http://

coverity.com.

