Execution Generated Test Cases: How to Make Systems Code Crash Itself

Cristian Cadar and Dawson Engler*
Computer Systems Laboratory
Stanford University
Stanford, CA 94305, U.S.A.

Abstract

This paper presents a technique that uses code to auto-
matically generate its own test cases at run-time by using
a combination of symbolic and concrete (i.e., regular)
execution. The input values to a program (or software
component) provide the standard interface of any test-
ing framework with the program it is testing, and gen-
erating input values that will explore all the “interest-
ing” behavior in the tested program remains an important
open problem in software testing research. Our approach
works by turning the problem on its head: we lazily gen-
erate, from within the program itself, the input values to
the program (and values derived from input values) as
needed. We applied the technique to real code and found
numerous corner-case errors ranging from simple mem-
ory overflows and infinite loops to subtle issues in the
interpretation of language standards.

1 Introduction

Systems code is difficult to test comprehensively. Exter-
nally, systems interfaces tend towards the baroque, with
many different possible behaviors based on tricky combi-
nations of inputs. Internally, their implementations tend
towards heavily entangling nests of conditionals that are
difficult to enumerate, much less exhaust with test cases.
Both features conspire to make comprehensive, manual
testing an enormous undertaking, so enormous that em-
pirically, many systems code test suites consist only of
a handful of simple cases or, perhaps even more com-
monly, none at all.

Random testing can augment manual testing to some
degree. A good example is the fuzz [22, 21] tool, which
automatically generates random inputs, which is enough
to find errors in many applications. Random testing has

*This exact text (with author names elided) was submitted to the
20th ACM Symposium on Operating Systems Principles, March 25,
2005.

the charm that it requires no manual work, other than
interfacing the generator to the tested code. However,
random test generation by itself has several severe draw-
backs. First, blind generation of values means that it
misses errors triggered by narrow ranges of inputs. A
trivial example: if a function only has an error if its 32-
bit integer argument is equal to “12345678” then random
will most likely have to generate billions of test cases be-
fore it hits this specific case. Second, and similarly, ran-
dom testing has difficulty hitting errors that depend on
several different inputs being within specific (even wide)
ranges of values. Third, the ability of random testing to
effectively generate random noise is also its curse. It is
very poor at generating input that has structure, and as a
result will miss errors that require some amount of cor-
rect structure in input before they can be hit. A clear
example would be using random test generation to find
bugs in a language parser. It will find cases where the
parser cannot handle garbage inputs. However, because
of the extreme improbability of random generation con-
structing inputs that look anything like legal programs it
will miss almost all errors cases where the parser mis-
handles them.

Of course, random can be augmented with some
amount of guidance to more intelligently generate in-
puts, though this comes at the cost of manual interven-
tion. A typical example would be writing a tool to take
a manually-written language grammar and use it to ran-
domly generate legal and illegal programs that are fed
to the tested program. Another would be having a spec-
ification or model of what a function’s external behav-
ior is and generate test cases using this model to try to
hit “interesting” combinations. However, all such hybrid
approaches require manual labor and, more importantly,
a willingness of implementors to provide this labor at
all. The reluctance of systems builders to write speci-
fications, grammars, models of what their code does, or
even assertions is well known. As a result, very few real
systems have used such approaches.

This paper’s first contribution is the observation that
code can be used to automatically generate its own po-
tentially highly complex test cases. At a high level, the
basic idea is simple. Rather than running the code on
manually-constructed concrete input, we instead run it
on symbolic input that is initially allowed to be “any-
thing.” As the code observes this input, these observa-
tions tell us what legal values (or ranges of values) the
input could be. Each time the code makes a decision
based on an observation we conceptually fork the execu-
tion, on one branch we add the constraint that the input
satisfies the observation, on the other that it does not. We
can then generate test cases by solving these constraints
for concrete values. We call such tests execution gener-
ated testing (EGT).

This process is most easily seen by example. Con-
sider the following contrived routine bad_abs that in-
correctly implements absolute value:

0: int bad_abs(int x) {

1: if(x < 0)

2: return —x;
3: if(x == 12345678)
4: return —x;
5: return x;

6: }

As mentioned before, even such a simple error will
probably take billions of random-generated test cases to
hit. In contrast, finding it with execution generated test-
ing it is straightforward. Symbolic execution would pro-
ceed as follows:

1. Initial state: set x to the symbolic value of “any-
thing.” In this case, before any observations at all, it
can be any value between INT_MIN and INT _MAX.
Thus we have the constraints x > INT_MIN A
x>INT_MAX.

2. Begin running the code.

3. At the first conditional (line 1) fork the execution,
setting x to the symbolic constraint z < 0 on the
true path, and to > 0 on the false path.

4. At the return on (line 2) solve the constraints on x
for a concrete value (such as x == -1). This value
is later used used as a test input to bad_abs.

5. At the second conditional (line 3) fork the execu-
tion, setting x to the constraints x = 12345678 A
2 > 0 on the true path and x # 12345678 A x > 0
on the false path.

6. At the return on line 4 solve the symbolic con-
straints x = 12345678 A x > 0. The value is
12345678 is our second test case.

7. Finally, at line 5, solve x’s constraints for a concrete
value (e.g., x = 1). This value is used as our third,
final case.

We can then test the code on the three generated values
for x. Of course, this sketch leaves many open questions
— when to generate concrete values, how to handle sys-
tem calls, how to tell what is correct, etc. The rest of the
paper discusses these issues in more detail.

There are a couple of ways to look at the approach.
From one point of view, implementation code has a
“grammar” of the legal inputs it accepts and acts on, or
rejects. EGT is an automatic method to extract this gram-
mar (and the concrete sentences it accepts and rejects)
from the implementation rather than from a hand-written
specification. From another viewpoint, it can be seen as
a way to turn code “inside out” so that instead of con-
suming inputs becomes a generator of them. Finally, and
perhaps only half-vacuously, it can be viewed as a crude
analogue of the Heisenberg effect in the sense that unlike
observations perturbing experiments from a set of poten-
tial states into a variety of concrete ones, observations
in this case perturb a set of possible inputs into a set of
increasingly concrete ones. The more precise the obser-
vation the more definitively it perturbs the input. The
most precise observation, an equality comparison, fixes
the input to a specific concrete value. The least precise,
an inequality, simply disallows a single value but leaves
all others as possibilities.

This paper has three main contributions:

1. A simple conceptual approach to automatically gen-
erate test cases by running code on symbolic inputs.

2. A working prototype EGT system.

3. Experimental results showing that the approach is
effective on real code.

The paper is organized as follows. Section 2 gives an
overview of the method. Section 3 discusses concrete
implementation issues. The next four sections give four
case studies of applying the approach to systems code.
Finally, Section 7 discusses related work and Section 8
concludes.

2 Overview

This section gives an overview of EGT. The next section
discusses some of the implementation details.

In order to generate test cases, EGT runs the code on
symbolic rather than real input. Whenever code reads
from its environment (via network packets, command
line options, files, etc) we want to instead return a sym-
bolic variable that has no constraints on its actual value.
As the program executes and uses or observes this value

(e.g., through comparisons), we add constraints based on
these observations. Then, to determine how to reach a
given program path, we solve these constraints and gen-
erate input that satisfies them.

At a high-level, the EGT system has three core activi-
ties:

1. Instrumentation to track symbolic constraints. Our
prototype EGT system instruments the tested code
using a source-to-source transformation. This in-
strumentation inserts checks around every assign-
ment, expression and branch in the tested program
and calls into our runtime system. It also inserts
code to fork a new process at each decision point at
which the associated boolean condition could return
both true and false.

2. Constraint solving: We model our constraints using
formulas of quantifier-free first-order logics as rep-
resented by CVCL, a state-of-the-art decision pro-
cedure solver [4, 15]. CVCL has been used in ap-
plications ranging hardware verification to program
analysis to mathematical theorem proving.

We use CVCL in two ways. First, after every branch
point we call it to determine if the current set of con-
straints is satisfiable. If not, we stop following the
code path, otherwise we continue. CVCL is sound:
if it states that a no solution exists, it is correct. Sec-
ond, at the end of a code path that uses symbolic
input, we use CVCL to generate concrete values to
use as test input.

3. Modeling. External functions that return or con-
sume input can either be modeled so that they work
with symbolic variables, or not modeled, in which
case any value they take must be made concrete. In
general, one can leave most things unmodeled, with
the downside that testing coverage will be reduced.
Models are not that hard to write. A four-line model
for the Unix recv system call is given in Section 6.
In addition, models can be used to speed up the test
generation. This optimization is discussed in Sec-
tion 3.4.

The mechanical act of instrumenting code is pretty easy,
and there are a lot of constraint solvers to pick from and
use as black boxes. Thus, the main challenge for the
approach is how to run code symbolically. The next sub-
section talks about this in more detail.

2.1 The basic idea for symbolic execution

The basic idea behind our approach is that when we per-
form logical or arithmetic operations, we generate con-
straints for these, and when we perform control flow de-
cisions, we fork execution and go down both paths. This

section sketches how we can symbolically execute code.
For ease of exposition, we initially assume that all the
variables in a program are symbolic; Section 3.2 shows
how we can intermix symbolic and concrete execution in
order to efficiently process real code.

Assignment: v = e. We symbolically do an assign-
ment of an expression e to a variable v by generating the
constraint that v = e. For example, v = x + y gener-
ates the constraint that v = x + y; other arithmetic and
logical operators are similar.

The complication is that v may have been involved in
previous constraints. We must distinguish the newly as-
signed value of v from its use in any already generated
constraints. For example, assume we have two assign-
ments: (1) x = y and then (2) y = 3. The first as-
signment will generate the constraint that x = y. The
second will generate the constraint y = 3. At this point,
the constraints imply x = 3, which is obviously nonsen-
sical. This new value for y after its assignment y = 3
has nothing to do with any prior constraints involving y
and should have no impact on them. Thus, an assign-
ment v = e must have two parts. First, generate a new
location for v and only then generate the constraint that
v=y. !

If-statements. We symbolically execute an if-
statement as follows: (1) fork execution at the condi-
tional, (2) on the true path add the constraint that the
conditional expression e is true (e = true) and con-
tinue, (3) on the false path add the constraint that e is
false (e = false) and continue. For example:

concrete | symbolic
if(e) | if(fork() == child)
sl; | add_constraint(e == true);
| s1;
else | else
s2; | add_constraint(e == false);
| s2;

Loops. We transform loops into if-statements with
goto’s so they are handled as above. One danger is that it-
erating on a symbolic loop variable can continue forever,
forking a new execution on each evaluation of the loop
condition. The usual practical hack is to only iterate a
fixed number of times or for a fixed amount of time (we
do the latter). Neither solution is perfect. However, in
our context almost any solution is preferable to manual
test generation.

Function calls: f (x). There are three differences
between a symbolic function call and an imperative, call-
by-value call. First, control can return multiple times into
the caller, once for each fork-branching that occurs. Sec-
ond, constraints placed on x in the body of £ must prop-

! Alternatively, ignoring aliasing, we could have equivalently gone
through all existing constraints involving v and relabeled them to use a
new, fresh name.

/[initial constraints:
I x >= INT_MIN /\ x <= INT_MAX
int symbolic_bad_abs(int x) {

// holds the return expression.

ret = new symbol;

/I fork execution at each branch point.
if(fork() == child)
add_constraint(x < 0);
add_constraint(ret = —x);

// first return, final constraints:
// x >= INT_-MIN /\ x <= INT_-MAX
N\ x <0/\ ret = —x
return ret;
else
add_constraint(x >= 0);

/I fork execution

if(fork() == child)
add_constraint(x = 12345678);
add_constraint(ret = —x);

// second return, final constraints:

/! x >= INT_-MIN /\ x <= INT_-MAX
I N\ x>=0
/I I\ x = 12345678 /\ ret = —x
return ret;
else

add_constraint(x != 12345678);

add_constraint(ret = x);
// last return final constraints:

/! x >= INT_MIN /\ x <= INT_-MAX
I\ x>=0

/I I\ x = 12345678 /\ ret = x

return ret;

Figure 1: A symbolic translation of bad_abs.

agate up to the caller. For example, the concrete code:
int foo(int x) {
if(x == 3)
return 1;
else
return 2;
}
will generate a symbolic execution that returns twice into
the caller, since the branch will cause a forked execution.
On the true branch we want to propagate the constraint
that z = 3 back to the caller and on the false that x #
3. The final difference is that at the exit point from a
function, we create a temporary symbolic variable and
return that as the function’s expression value.

Figure 1 gives a symbolic translation of bad_abs

based on the above rules.

2.2 What is correctness?

EGT, like all testing approaches, needs to have some no-
tion of what “bad” behavior is so that it can flag it. We
use three approaches to do so.

First, and unsurprisingly, check for program inde-
pendent properties, such as segmentation faults, storage
leaks, memory overflows, division by zero, deadlocks,
uses of freed memory, etc.

Second, do cross-checking. If a piece of code imple-
ments an important interface, then there are likely to be
several implementations of it. These implementations
can be cross-checked against each other by running the
test cases generated from one implementation (or both)
on both implementations and flagging differences. One
important usage model: after modifying a new version of
a system, cross-check it against the old version to make
sure any change was intended. This approach works es-
pecially well for complex interfaces.

Third, specification-by-example. While writing speci-
fications to state what exactly code must do in general is
hard, it is often much easier to take the specific test cases
our tool generates and specify what the right answers are
just for these cases. For example, for the bad_abs rou-
tine, the EGT system generates the three concrete values:
-3, 12345677, 12345678. Thus, for testing we would just
do:

assert(bad_abs(—3) == 3);
assert(bad_abs(12345677) == 12345677);
assert(bad_abs(12345678) == 12345678);

3 Implementation Issues

This section discusses some of EGT’s implementation
aspects more concretely.

3.1 Transformations to the input CFG

We use the CIL tool [24], designed for writing program
analyses and source-to-source transformations of C pro-
grams to instrument the code of tested programs. The
main benefit of using CIL is that it compiles C to a high-
level representation that is then “lowered” to a repre-
sentation that has fewer constructs than C, reducing the
number of cases we would have to handle in a stock com-
piler.

In addition to CIL’s default lowering, we did several
simplifying transformations of our own. Both CIL’s and
our transformations occur before we do any instrumenta-
tion (described in the next subsection).

First, all higher-level constructs such as while loops,
for loops and switch statements are translated so that

all variables in the program appear only in assignments
and 1if branches. Once this is accomplished, we start
transforming each assignment and branch in the modi-
fied program. Assignments are reduced to one of two
general forms: function calls, and assignments which
contain only variables and primitive operators (a single
binary or unary operator) on the right hand side.

For example, the following assignment:

int a = max_abs(max_abs(b, ¢), d) + e;
is broken down to the following three assignments:
int tmpl = max_abs(b, c);
int tmp2 = max_abs(tmpl, d);
int a = tmp2 + e¢;

The C transformer also rewrites each 1 f clause to con-
tain only simple conditions, that is conditions with no
logical and or logical or. The ? operator is also rewrit-
ten as an 1f clause.

After these transformations, the program representa-
tion is then fed to our instrumentation code. We sketch
the rewrite rules in the next subsection along with some
of the practical details.

3.2 Mixed symbolic and concrete execution

Ignoring memory and solver-limitations, we can run any
code entirely symbolically until it interacts with the out-
side, concrete world. For example, if it calls external
code, or sends a packet on a real network to a machine
running concrete code, or prints output to be read by a
real person. At this point you must either make the inputs
to the external code concrete (e.g, you must send data
rather than a symbolic constraint in a network packet),
or, alternatively, make a model of the world to pull it into
the simulation.

In practice, constraint solvers are not as robust as one
might hope and so without care overzealous constraint
generation will blow them up, sometimes for good theo-
retic reasons, sometimes for unimpressive practical ones.
Further, symbolic-only execution is expensive in both
speed and space. Thus, we do a hybrid approach that
intermixes concrete and symbolic execution. The basic
approach is that before every operation we dynamically
check if the values are all concrete. If so, we do the oper-
ation concretely. Otherwise, if at least one value is sym-
bolic we do the operation symbolically (using the logic
described in Section 2.1.

We sketch how to conceptually rewrite source con-
structs for a C-like language so that they can run on ei-
ther concrete or symbolic values, mentioning some of the
more important practical details.

Our first transformation conceptually changes each
variable or expression v to have two instances: a
concrete one (denoted v.concrete) and a sym-
bolic one (denoted v.symbolic). If v is con-

assign_rule(T &v, T e) {
if(e is concrete)
// equivalent to v.concrete = e.concrete;
I v.symbolic = <invalid>;
v = (concrete=e.concrete, symbolic=<invalid>);
else
/I equivalent: v.symbolic = e.symbolic

v = (concrete=<invalid>, symbolic=new symbolic var T);

constraint(v.symbolic = e.symbolic);

}

Figure 2: Rewrite rule for assignment v = e for any
variable v and expression e of type T.

crete, v.concrete holds its concrete value and
v.symbolic contains the special token (invalid).
Conversely, if v is symbolic, v.symbolic holds its
symbolic value and v. concrete is set to (invalid).

In practice, we track the v.symbolic field using a
table lookup that takes the address of a the variable v
(which gives it a unique name) and returns v’s associ-
ated “shadow” symbolic variable v. symbolic (if it is
symbolic) or null (if it is concrete). In the latter case, the
variable v contains the concrete value (v.concrete)
and can just be used directly. The following examples
assume explicit concrete and symbolic fields for clarity.

The most basic operation is assignment. Figure 2
gives the basic assignment rule. If the right hand vari-
able e is a concrete expression or variable, just assign
its concrete value to the left-hand side v and mark v’s
symbolic component as invalid. If e is symbolic,
then as explained in the previous section, we must al-
locate a fresh symbolic variable to be used in any new
constraints that are generated. After that, we first set
v.concrete to be invalid and then add the con-
straint that v. symbolic equals e.symbolic.

It may not be immediately obvious but the same effect
could have been achieved by simple assignment, since
two symbolic variables constrained to be equal can just
be the same variable. E.g.,

v = (concrete=<invalid>, symbolic=e.symbolic);
or even

vV = e
since e already has its concrete component set to
invalid.

Roughly as simple are basic binary arithmetic opera-
tors. Figure 3 gives the rewrite rule for binary addition;
other binary arithmetic operators are similar. If both x
and y are concrete, we just return an expression whose
concrete part is just their addition and symbolic part is
invalid. Otherwise we build a symbolic constraint s and
then return an expression that has s as its symbolic com-
ponent and invalid for its concrete.

The rewrite rule for if-statements is a straight-forward

/I rule for x + y
T plus_rule(T x, T y) {
if(x and y are concrete)

return (concrete=x.concrete + y.concrete, <invalid>);

s = new symbolic var T;
if(x is concrete)

constraint(s = x.concrete + y.symbolic);
else if y is concrete

constraint(s = x.symbolic + y.concrete);
else

constraint(s = x.symbolic + y.symbolic);
return (concrete=<invalid>, symbolic=s);

}

Figure 3: Rewrite rule for “x + y” where variables x
and y are of type T.

/I rule for *p
T deref_rule(T* p) {
if(*p is concrete)
return (concrete=*p, symbolic=<invalid>);
else
s = new symbolic var T,
if(p is concrete)
constraint(s = (*p).symbolic);
else
/I symbolic dereference of p
constraint(s = deref(p.symbolic));
return (concrete=<invalid>, symbolic=s);

}

Figure 4: Rewrite rule for dereference “*p” of any
pointer p of type T. The main complication occurs when
we dereference a symbolic pointer: in this case we must
add a symbolic constraint on the dereferenced value.

combination of the purely symbolic rule for if-statements
with the similar type of concrete-symbolic checking that
occurs in binary relations. There are two practical issues.
First, our current system will happily loop on symbolic
values — the parent process of a child doing such loop-
ing will terminate it after a timeout period expires. Sec-
ond, we use the Unix fork system call to clone the exe-
cution at every symbolic branch point. Naively this will
quickly lead to an exponential number of processes ex-
ecuting. Instead we have the parent process wait for the
child to finish before continuing to execute on its branch
of the conditional. This means we essentially do depth-
first search where there will only be one active process
and a chain of its predecessors who are sleeping waiting
for the active process to complete.

Because dereference deals with storage locations, it is
one of the least intuitive rewrite rules. Figure 4 gives
the rewrite rule for dereferencing *p. A concrete deref-
erence works as expected. A dereference of a concrete

pointer p that points to a symbolic value also works as
expected (i.e., just like assignment, except that the rvalue
is dereferenced). However, if p itself is symbolic, then
we cannot actually dereference it to get what it points to
but instead must generate a funny constraint that says that
the result of doing so equals the symbolic dereference of
p.

At an implementation level, CVCL currently does not
handle symbolic dereferences so we do not either. Fur-
ther, in the short term we do not really do the right thing
with any pointer dereference that involves a symbolic
value (such as a symbolic offset off of a concrete pointer
or a symbolic index into a symbolic array). In such cases
we will generate a concrete value, which may be illegal.

One happy result of this limitation is that, when com-
bined with the the way the implementation uses a lookup
table to map variables to their shadow symbolic values,
it makes handling address-of trivial. For example, given
the assignment p = &v we simply do the assignment,
always, no matter if v is a symbolic or concrete. A
lookup of p will return the same symbolic variable (if
any) that lookup of &v does. Thus any constraints on it
are implicitly shared by both. Alternatively, if there is
no symbolic, then p will point directly at the concrete
variable and dereference will work as we want with no
help.

Conceptually, function calls are rewritten similarly to
the previous section. The implementation is slightly
more messy since we essentially rewrite the signature to
add an additional parameter for each original parameter
and use this to pass the symbolic variable associated with
each parameter (or null if there is none). For example:

concrete
void (T x) {

| rewritten
| wvoid f(T x, T *x_symbolic) {
| bind(&x, x_symbolic);

.)

And the caller becomes:
f(x, lookup(x));

3.3 Constraint solving issues

CVCL has two engines. An “integer” engine that works
well with integer arithmatic, including the non-linear op-
erations multiplication and division, but does not handle
modulo or bitwise operations (and, or, xor). The other
is a “bitvector” engine that works well with bitwise log-
ical operations and arithmetic except for modulo and di-
vision. Additionally, they have a variety of exponential
and doubly-exponential algorithms buried inside, which
means that they differ dramatically and unpredictably in
terms of solution time and ability to generate concrete
values from constraints.

Thus, we represent all constraints in our own solver-

independent form which is translated to a solver-
dependent form only when communicating to the solver.
This lets us translate between either engine or, in the fu-
ture, to an entirely different solver.

Additionally, to isolate the effects of the constraint
solver we run it in its own child Unix process so that (1)
we can kill it if it does not terminate and (2) any prob-
lems it runs into in terms of memory or exceptions are
isolated.

3.4 Creating a model for speed

Not all the code in the program under testing should be
given the same level of attention. For example, many of
our benchmarks make intensive use of the string library,
but we don’t want to generate test cases that exercise the
code in these string routines.

More precisely, imagine a program which uses
strcmp to compare two of its symbolic strings. Most
implementations of strcmp would traverse one of the
strings, and would compare each character in the first
string with the corresponding character in the second
string and would return a value when the two characters
differ or when the end of a string has been reached. Thus,
the routine would return to the caller approximately 2n
times, each time with a different set of constraints. How-
ever, most applications use a routine such as st rcmp as
a black box, which could return only one of the following
three values: 0, when the strings are equal, -1 when the
first string is lexicographically smaller than the second
one, and 1 otherwise. Returning the same value multiple
times does not make any difference for the caller of the
black box.

Instead of instrumenting routines such as those in the
string library, we could instead provide models for them.
A model for st remp would return three times, once for
each possible return value. After each fork, the model
would add a series of constraints which would make the
outcome of that branch symbolically true: for example,
on the branch which returns 0, the model would add con-
straints setting the two strings equal. Of course, certain
branches may be invalid; e.g. if the two string have dif-
ferent lengths, st rcmp could not return 0. In this case,
the corresponding branch is simply terminated.

We implemented models for the routines in the string
library, and used them in generating tests for our bench-
marks. Adding these specifications has two main bene-
fits. On the one hand, it removes useless test cases from
the generated test suites (by removing tests which would
only improve code coverage in the string routines), and
on the other hand it significantly improves performance.
For the WsMp3 benchmark that we evaluate in Section 6,
the test suites are generated approximately seven times
faster.

3.5 Discussion

Currently we do lazy evaluation of constraints, deferring
solving them until the last possible moment. We could
instead of eager evaluation, where as soon as we use a
symbolic value we make up a concrete one. This elim-
inates the need to execute code symbolically. However,
committing to a concrete value immediately precludes
the ability to pick a different concrete value later, which
will often be necessary to execute both paths of any
subsequent branch based on the variable’s value (since
the concrete value will either satisfy the true or false
branches, but not both). For exmample assume x is sym-
bolic in the following code:

// assume x is symbolic

y = X; // make up concrete value for x (e.g., 4)

if(x == 4)
foo();
else
bar();

When we assign x to y we would have to make up a
concrete. Assume we set x equal to 4. Then, we will
not be able to execute the following false branch of the
conditional. And, of course, we if make it to not be 4 we
will not hit the true branch. To handle this problem we
would have to checkpoint execution at each point where
we made a value concrete and, if this decision precluded
subsequent code paths, roll back, changing the concrete
value and go back forward. A hybrid approach might be
best, where we make up concrete values immediately and
then only do full symbolic execution on code paths that
this misses.

4 Micro-case study: Mutt’s UTF8 routine

As the first micro-benchmark to evaluate EGT, we ap-
plied it to a routine used by the popular Mutt email client
to convert strings from the UTF-8 to the UTF-7 format.
As reported by Securiteam, this routine in Mutt versions
up to version 1.4 have a buffer overflow vulnerability
which may allow a malicious IMAP server to execute
arbitrary commands on the client machine [23].

We selected this paper in part because it has been one
of the examples in a recent reliability paper [25], which
used a carefully hand-crafted input to exploit it.

We extracted the UTF8 to UTF7 conversion routine
from Mutt version 1.4, ran the code through our tool, and
generated test cases for different lengths of the UTF-8
input string. Running these generated tests immediately
found the error.

The paper we took the code from suggested a fix
of increasing the memory allocation ratio from n*2 to
n*7/3. We applied this change to the code, and reran

the EGT generated test cases, which immediately flagged
that the code still has an overflow. The fact that the
adjusted ratio was still incorrect highlights the need for
(and lack of) automated, comprehensive testing.

Table 1 presents our results. For each input size, we
report the size of the generated test suite and the time
it took to generate it, the cumulative statement cover-
age achieved up to and including that test suite, and
the largest output size that we generated for that input
size. These results (and all our later results), were gener-
ated on a Intel Pentium 4 Mobile CPU at 1.60GHz, with
512MB RAM.

Input | Generation | Test Suite | Statement | Largest
Size Time Size Coverage | Output
1 16s 10 84.0% 5
2 1m35s 38 94.2% 8
3 Tm26s 132 94.2% 11
4 34m12s 458 95.6% 15
5 2h35m 1569 95.6% 19

Table 1: Test suites generated for utf8_to_utf7

5 Case study: printf

This section applies EGT to three different print £ im-
plementations. The print £ routine is a good example
of real systems code: a highly complex, tricky interface
that necessitates an implementation with thickets of cor-
ner cases. Its main source of complexity is the output
format string it takes as its first argument. The semantics
of this single string absorb the bulk of the 234 lines the
ANSI C99 standard devotes to defining print f; these
semantics define an exceptionally ugly and startling pro-
gramming language (which even manages to include it-
eration!).

Thus, printf is a best-case scenario for EGT. The
standard and code complexity create many opportuni-
ties for bugs. Yet the inputs to test this complexity
can be readily derived from printf’s parsing code,
which devolves to fairly simple, easily solved equality
checks. Further, the importance of print £ means there
are many different implementations, which we can use
to finesse the need for a specification by cross-checking
against each other.

We checked the following three printf implemen-
tations; all of them (intentionally) implemented only a
subset of the ANSI C90 standard:

1. The Pintos instructional operating systems
printf; the implementation intentionally elides
floating point. This implementation is a stern test
of EGT, since the developer (the co-author of a

" %lle" n %#Of" n %G%." " % +l"

" %#he" " soQ." " %+jf" "oggm

"no_J]fN w %#hf" LN " %#.E"

" %OO n n % c " n %#l" n %S%O"

L #C" " %_# nonmogogrmom %C%j"

" %# pll L L Y e LSRR |

" %I O" " %u" n %p% " " %9d"
"ot " " oo_9g" " g (" " %1]1lc"

" %Og n n %#+_" n %O u" " %95%"

Figure 5: A representative subset of the format strings
EGT generated from the Pintos implementation.

widely-read C book) had intimate knowledge of the
standard.

2. The gccfast printf, which implements a ver-
sion of printf in terms of fprintf.?2

3. A reduced-functionality printf implementation

for embedded devices. 3

We used EGT to generate test suites by making the
format string the single symbolic argument to print £.
We set the size of this symbolic string to a fixed length
and generated test cases from the resultant constraints.
We describe our measurements below and then discuss
the bugs and differences found.

Measurements. We generated test cases for format
strings of length 2, 3, 4, and 128. Table 2 shows the test
suite size that we generated for each format length and
the time it took to generate the test suite. We allowed
a maximum of 30 seconds per CVCL query; there were
only two queries killed after spending more than 30 sec-
onds. For format lengths of 128 long, we terminated the
test generation after approximately two hours.

Figure 5 gives a representative set of format strings of
length 4. Note that while almost all look fairly bizarre,
because they are synthesized from actual comparisons in
the code, many are legal (and at some level “expected”
by the code).

Results. After generating test suites, we checked the
output for each print £ in two ways. First, we took the
tests each implementation generated and cross-checked
its output on these tests against the output of glibc’s
printf. Each of of the three implementations attempts
to implement a subset of the ANSI C99 standard, while
glibc intends to fully implement it. Thus, any differ-
ence is a potential bug. EGT discovered lots of such dif-
ferences automatically: 426 in Pintos, 146 in the Em-
bedded printf and 7 in GCCfast’s printf (which

2http://www.opensource.apple.com/
darwinsource/WWDC2004/gccfast-1614/

3http://www.menie.org/georges/embedded/index.
html

/* Performs an integer conversion, writing
output to OUTPUT with auxiliary data AUX.
The integer converted has absolute value
VALUE. If NEGATIVE is true the value is
negative, otherwise positive. The output
will use the given DIGITS, with strlen(DIGITS)
indicating the output base. Details of the
conversion are in C. */
static void
format_integer (uintmax_t value, bool negative,
const struct integer_base *b,
const struct printf_conversion *c,
void (*output) (char, void *), void *aux)

VA

// [BUG 1: hard—to—spot bug in conversion
/I of large ints into comma—seperated form.]
cp = buf;
group_cnt = 0;
while (value > 0) {
if((c—>thgs & GROUP)
&& group_cnt++ == b—>group) {
epr+ = 1,7
group_cnt = 0;

*cp++ = b—>digits[value % b—>base];
value /= b—>base;

¥
s

/I [BUG 2: appending sign always, should
// only do if format specifier is signed!]
if (c—>fhgs & PLUS)

*cp++ = negative ? ' -7 I '+,
else if (c—>fhgs & SPACE)

*cp++ = negative ? ' -7 1’ 7}
else if (negative)

epr+ = -7
VA

Figure 6: Pintos’ format_integer routine: contains two,
difficult to find errors immediately detected using EGT.

Format | Pintos” Embedded | GCCfast

Length | printf printf printf

2 34 17 30
21s 2s 15s

3 356 75 273
4m0s 1m48s 3m10s

4 3234 337 2105
40m47s 21mbs 87m36s

128 590 72 908
123m56s | 119m38s 120m19s

Table 2: Test suites generated for print £, the first row
of each size gives the number of generated tests, the sec-
ond row the time required to do so.

Pintos” Embedded | GCCfast
printf printf printf
Mismatches 426 146 7
self tests of 4214 of 501 of 3316
Mismatches 624 6395 91
all tests of 8031 of 8031 of 8031
Statement 95% 95% 98%
Coverage (172 lines) | (101 lines) | (63 lines)

Table 3: Mismatches found in the printf implementa-
tions.

was surprising since it only does minimal parsing and
then just calls fprintf, which then calls glibc’s
printf). Since we had access to the implementor of
Pintos we focused on these; we discuss these below.

Second, we took the tests generated by all implemen-
tations and cross-checked their output against each other.
Since they intentionally implement different subsets of
the standard, we expect them to have different behavior.
This experiment tests whether EGT can find such dif-
ferences automatically. It can: 624 in Pintos, 6395 in
Embedded and 91 in GCCfast.

Note that in both experiments, the Pintos and the GC-
Cfast print f routines print an error message and abort
when they receive a format string that they cannot han-
dle. Since they only intend to handle a subset of the
standard, this is correct behavior, and we do not report
a mismatch in this case. In contrast, the Embedded
printf instead fails silently when it receives a format
string which it cannot handle. This means that we can-
not differentiate between an incorrect output of a handled
case and an unhandled case, and thus we report all these
cases as mismatches.

Table 3 also shows the statement coverage achieved
by these test suites; all printf’s achieve more than
95% coverage. Most of the lines that were not cov-

ered are unreachable. For example, Pintos’ printf
has a NOT_REACHED statement which should never be
reached as long as Pintos treats all possible format
strings. Similarly, for the Embedded print £, we don’t
reach the lines which redirect the output to a string buffer
instead of stdout; these lines are used by sprintf,
and never by printf£. Some lines however where not
reached because our system treats only the format string
as symbolic, while the rest of the arguments are concrete.
Finally, two of the three print £ implementations use
non-standard implementations for determining whether
a character is a digit, which our system does currently
not handle correctly. The number of lines reported in Ta-
ble 3 are real lines of code, that is lines which have at
least one instruction.

We reported all mismatches from Pintos to its devel-
oper, Ben Pfaff. We got confirmation and fixes of the
following bugs.

Incorrect grouping of integers into groups of thou-
sands.

“Dammit. I thought I fixed that... Its quite ob-
viously incorrect in that case.” — Ben Pfaff,
unsolicited exclamation, 3/23/05, 3:11pm.

The code mishandled the “’” specifier that says to
comma-separate integer digits into groups of three. The
exact test case was:

/I correct: —155,209,728

/I pintos : —15,5209,728

printf("%” d", —155209728);

Amusingly enough, the bug had been fixed in the de-
veloper’s tree, but he had forgotten to push this out to the
released version (which we were testing).

Incorrect handling of the space and plus flags.

“That case is so obscure I never would have
thought of it.”” — Ben Pfaff, unsolicited excla-
mation, 3/23/05, 3:09pm.

The character “%” can be followed by a space flag, which
means that “a blank should be left before a positive num-
ber (or empty string) produced by a signed conversion”
(man printf (3)). Pinto incorrectly leaves a blank
before an unsigned conversion too. We found a similar
bug for the plus flag.

This bug and the previous error both occurred in the
same routine, format _integer, which deals with for-
mating integers. The routine is shown is Figure ??. The
complexity of the specification of even this one small
helper function is representative of the minutia-laden
constraints placed on many systems interfaces and their
internals. The bugs are labeled BUG 1 and BUG 2 re-
spectively. The only thing clear from their associated
code fragments is that the cause of each error is not clear
at all.

We now give a more cursory description of the remain-
ing errors.

Incorrect alignment of strings. Pintos incorrectly
handles width fields with strings, although this feature
works correctly for integers (which got better testing).

Incorrect handling of the t and z flags. When
the flag t is used, the unsigned type corresponding to
ptrdiff_t should be used. This is a detail of the stan-
dard which was overseen by the developer. We found a
similar bug for the z flag, which specifies that the signed
type corresponding to size_t should be used.

No support for wide strings and chars. Pintos does
not support wide string and wide chars, but fails silently
in this case with no error message.

Undefined behavior. We found several bugs which
are caused by underspecified features. An example of
suchacaseis “printf (*'%$hi’’, v), whose output
is undefined if v cannot be represented as a short.

6 Case study: WsMp3

This section applies our technique to the WsMp3 web
server designed for transferring MP3 files [28]. We use
WsMp3 version 0.0.5 which, uninstrumented contains
about 2,000 lines of C code; instrumented about 40,000.
This version contains a security vulnerability that allows
attackers to execute arbitrary commands on the host ma-
chine [26, 27]. Our technique automatically generated
test cases that found this security hole. In addition, it
found three other memory overflows and an infinite loop
caused by bad network input (which could be used for a
DoS attack).

We first discuss how we set up test generation, cover-
age results, and then the most direct method of effective-
ness: bugs found.

6.1 Setting up WsMp3

WsMp3 has the typical web server core: a main loop
that listens for connections using accept, reads packet
from the connection using recv, and then does opera-
tions based on the packet value. It also has a reasonably
rich interaction with the operating system. As a first cut
we only made the network packet’s returned by recv
be symbolic, but made the packet size be concrete. We
did so by replacing calls to recv with calls to a model
of it (recv_model) that just “returned” a symbolic ar-
ray of bytes of a specific length. Figure 7 gives this
code. It “reads in” a message of length msg_len by
telling the system the address range between buf and
buf+msg_len should be treated as symbolic. We then
generated test cases for one byte packet, two bytes, and
so forth by changing msg_len to the desired length.

// [model does not generate failures; msg_len is fi xed]
ssize_t recv_model(int s, char *buf, size_t len, int fhgs) {
make_bytes_symbolic(buf, msg_len);
return msg_len;

}

Figure 7: Model for the recv system call to symboli-
cally “receive” a packet of (fixed) size msg_len.

After the webserver finishes processing a message, we
inserted a call into the system to emit concrete values
associated with the message’s constraints. We then emit
these into a test file and run it on it.

One subtlety is that after the webserver processes a
single message we exit it. Recall that at every conditional
on a symbolic value (roughly) we fork execution. Thus,
the webserver will actually create many different chil-
dren, one for each branch point. Thus, even processing
a “single” message will generate many many test mes-
sages. In the context of this server, one message has little
to do explicitly with another and thus we would not get
any more test cases by doing additional ones. However,
for a more stateful server, we could of course do more
than one.

Finally, it was not entirely unheard of for even the
symbolic input to cause the code to crash during test gen-
eration. We handle segmentation faults by installing a
handler for the SIGSEGV signal and, if it is invoked,
generate a concrete test case for the current constraints
and then exit the process.

Since WsMp3 makes intensive use of the standard
string library, we used our own string.h library de-
scribed in Section 3.4. In our tests, using this library
improves performance by roughly seven-fold.

6.2 Test generation measurements

Packet | Unfinished | Execution | Test Suite

Size Queries Time (s) Size

1 0 Os 1

2 0 Os 1

3 0 57s 18

4 0 10m28s 90

5 8 16m13s 97

12 134 14h15m 1173
128 63 14h15m 165

Table 4: Test suites generated for WsMp3. We stopped
test generation for size 12 and 128 after roughly 14
hours.

We used EGT testing to generate tests for packets of
size 1, 2, 3, 4, 5, 12, and 128. Table 4 gives (1) the

number of tests generated for each size, (2) the time it
took (user time), and (3) the number of times the CVCL
constraint solver failed to generate a concrete test from a
set of constraints within 30 seconds.

Given our naive implementation, the test generation
time was non-trivial. For packets of size 12 and 128 we
stopped it after 14 hours (they were running on a laptop
that we wanted to write this paper on). However, note
that in some sense high test generation cost is actually
not so important. First, test generation happens infre-
quently. The frequent case, running the generated tests,
takes less than a minute (while to test all the random tests
generated it takes about two hours and half). Second, test
generation is automatic. The time to manually generate
tests that would get similar amounts types of path cov-
erage would be enormous. Further, manual generation
easily misses cases silently. Finally, as far as we know,
there was no test suite for WsMp3. Clearly the EGT al-
ternative is much better.

Packet 10 1000 | 100,000 | EGT
Size tests tests tests Testing
1 13.3% | 13.3% | 133% | 13.3%
2 13.3% | 13.3% | 13.3% | 13.3%
3 23.0% | 23.1% | 23.1% | 23.1%
4 23.1% | 23.1% | 23.1% | 28.1%
5 23.1% | 23.1% | 23.1% | 29.6%
128 | 23.1% | 23.1% | 23.4% | 31.2%
256 | 23.1% | 23.1% | 23.3%
512 | 23.1% | 23.1% | 23.4%
Total 11s 143s 2h24m 52s
Time

Table 5: Statement coverage of EGT versus random test-
ing. Random testing quickly reaches its asymtotic limit.

We compare coverage from EGT to random testing.
We use state statement coverage generated using gcc
and gcov. We would have preferred a more insight-
ful metric than line coverage, but were not able to find
adaquate tools. We generated random tests by modify-
ing recv_model routine to request messages filled with
random data of a given size. For each packet size, we
generate 10, 1000, and 100,000 random tests. Table 5
presents the time it takes to do a given number of random
tests and statement coverage achieved by it and EGT.

The statement coverage reported for random testing is
cumulative: each data point reports the statement cover-
age achieved by all the test cases of that message size and
smaller.

EGT hits roughly 9% more lines of code than random;
this is almost certainly a dramatic underreporting of the
number of distinct paths it hits. More importantly, these
lines appear out of reach of random testing no matter how

many more random tests we do.

We manually examined the code to see why EGT
missed the other statements. We discuss the reasons be-
low:

1. Debugging and logging code: we did not enable ei-
ther debugging or logging code, which respectively
account for roughly 5% and 10% of code statements.

2. Error messages: WsMp?3 tests whether various re-
source allocation functions fail, and if so, it termi-
nates with an error message. Most of the code in
this category checks the return statement value from
malloc. These checks account for approximately

% of the code.

3. Arguments to main: The code which processes
the command-line arguments accounts for approxi-
mately 4% of the code. We are currently not treating
command-line arguments as symbolic inputs.

However, the rest of approximately 45% of the code is
not reached because the request messages that we fabri-
cate do not refer to valid files on the disk, or because we
fail to capture several timing constraints.

As an example from the first category, when a GET re-
quest is received, the web server extracts the file name
from the request packet, and then it checks if the file ex-
ists by using fopen. If the file does not exist, WsMp3
sends a corresponding error message to the client. If the
file is valid, the file name is passed through various pro-
cedures for further processing. Since we don’t have any
files on our server, and since almost all the files being
fabricated by our system would be invalid anyway, the
code which process files and file names is never invoked.

The right way to solve this problem is to provide mod-
els for functions such as fopen, fread, and stat.
However, even without these models, we find interesting
errors, as the next subsection describes.

6.3 Errors Found

We have identified five errors in the code which parses
the request messages received by WsMp3. All were
caused by a series of incorrect assumptions that WsMp3
makes about the request being processed. We describe
three illustrative bugs below.

Figure 8 gives the first bug. Here WsMp3 assumes that
the first part of the request message (held in buf) holds
the type of the client request, such as GET or POST, sep-
arated from the rest of the message by a space. After a
request is received, WsMp3 copies this action type in an
auxiliary buffer by copying all the characters from the
original request, until a space is encountered. Unfor-
tunately, it assumes the request is legal rather than po-
tentially malicious and allocates only ten bytes for this

/I [buf holds network message]
char* get_op(char *buf) {
char* op;
int i;

if((op=(char *)malloc(10))==NULL) {
printf("Not enough memory!\n");
exit(1);
}
// [note: buf is 7 0’ terminated]
if(buf!l=NULL && strlen(buf)>=3) {
/Istrnepy(op,buf,3);
i=0;
while(buffi]!l=" ") {
op[i]=buf[i;
i++4]

opli]="\0";
}
else op=NULL,;

return op;

}

Figure 8: WsMp?3 buffer overflow bug: occurs if received
message (held in buf) has more than 10 characters be-
fore the first space.

buffer. Thus, if it receives an invalid request which does
not contain a space in the first ten characters, than buffer
overflows and WsMp3 usually terminates with a seg-
mentation fault. Amusingly, there is a (commented out)
attempt to instead do some sort of copy using the safe
strncpy routine which will only up to a pre-specified
length.

This routine is involved in a second bug. As part of
the checking it does do, it will return NULL if the input
is NULL or if the size of the incoming message is less
than three characters. However, the caller of this routine
does not check for a NULL return and always passes the
buffer to st rcmp, causing a remote-triggered segmen-
tation fault.

The third final bug was interesting: for certain rare re-
quest messages (where the sixth character is either a pe-
riod or a slash, and is followed by zero or more periods
or slashes, which are immediately followed by a zero),
WsMp3 goes into an infinite loop. Our EGT system au-
tomatically generates the very unusual message required
to hit this bug. Figure 9 gives the problematic code.

7 Related Work

We compare EGT to past test generation work and then
to bug finding methods.

while (cp[0] == 7.7 [] cp[0] == " /")
for (i=1; cpli] = " \0"; i++) {
cpli—1] = cplil;
if (cpli+1] == " \0”)
cplil = "\0”";
}

Figure 9: The WsMp3 infinite loop error. cp points to
the sixth character in the message buffer.

7.1 Test and input generation

To the best of our knowlege, while there has been work
related to test generation and synthesis of program inputs
to reach a given program point, there is no approach that
effectively generates comprehensive tests automatically
from a real program. There certainly exists no tool that
can handle systems code. We first compare to static and
then dynamic techniques below.

Static techniques. There has been a long stream of
research that attempts to use static techniques to gener-
ate inputs that will cause execution to reach a specific
program point or path.

One of the first papers to attack this problem, Boyer at
al. [6], proposes the use of symbolic execution to follow
a given path was in the context of a system, SELECT, in-
tended to assist in debugging programs written in a sub-
set of LISP. The usage model was that the programmer
would manually mark each decision point in the path that
they wanted executed and the system would incremen-
tally attempt to satisfy each predicate.

More recently, researchers have tended to use static
analysis to extract constraints which they then use vari-
ous methods to try to solve.

One example is Gotlieb et al [17], who statically ex-
tracted constraints which they tried to solve using (nat-
urally) a constraint solver. More recently, Ball [1] stati-
cally extracted predicates (i.e., constraints) using “pred-
icate abstraction” [2] and then used a model checker to
try to solve these predicates for concrete values.

There are many other similar static efforts. In gen-
eral, static techniques are vastly weaker than dynamic at
gathering the type of information needed to generate real
test cases. They can deal with limited amounts of fairly
straightforward code that does not interact much (or at
all) with the heap or complex expressions, but run into
intractable problems fairly promptly.

Dynamic techniques. Much of the test generation
work relies on the use of a non-trivial manually-written
specification of some kind. This specification is used to
guide the generation of testing values ignoring the de-
tails of a given implementation. One of the most inter-
esting examples of such an approach is Korat [5], which
takes a specification of a data-structure (such as a linked

list or binary tree) and exhaustively generates all non-
isomorphic data structures up to a given size, with the
intention of testing a progrem using them. They use sev-
eral optimizations to prune data structure possibilities,
such as ignoring any data struture field not read by a pro-
gram. EGT differs from this work by attempting to avoid
any manual specification and targetting a much broader
class of tested code.

Past automatic input generation techniques appear to
focus primarily on generating an input that will reach a
given path, typically motivated by the (somewhat con-
trived) problem of answering programmer queries as to
whether control can reach a statement or not.

Ferguson and Korel[14] iteratively generate tests cases
with the goal of hitting a specified statement. They start
with an initial random guess, and then iteratively refine
the guess to discover a path likely to hit the desired state-
ment.

Gupta et al. [18] use a combination of static analy-
sis and generated test cases to hit a specified path. They
define a loss function consisting of “predicate residuals”
which roughly measures by “how much” the branch con-
ditions for that path were not satisifed. By generating a
series of test cases, they use a numerical solver to find
test case values that can trigger the given path. Gupta’s
technique combines some symbolic reasoning with dy-
namic execution, mitigating some of the problems in-
herit in either approach but not in both. Unfortunately,
the scalability of the technique has more recently been
called into question, where small systems can require the
method to take an unbounded amount of time to generate
a test case [12].

In EGT differs from this work by focusing on the prob-
lem of comphrehensively generating tests on all paths
controlled by input. This prior work appears to be much
more limited in this regard.

7.2 Bug finding

Software Model Checking. Model checkers have been
previously used to find errors in both the design and the
implementation of software systems [19, 16, 20, 7, 9, 3,
16]. These approaches tend to require significant man-
ual effort to build testing harnesses. However, to some
degree the approaches are complementary: the tests our
approach generates could be used to drive the model
checked code.

Generic bug finding. There has been much recent
work on bug finding [11, 3, 10, 8]. Roughly speak-
ing [13], because static analysis can examine all paths
and only needs to compile code in order to check it, it
is relatively better at finding errors in surface properties
visible in the source (“lock is paired with unlock”)
than dynamic techniques. In contrast, because dynamic

checking runs code it is limited to just executed paths,
but can more effectively check deeper properties implied
by code. For example that the code will infinite loop on
bad inputs, that a formatting command is not obeyed cor-
rectly. Many of the errors in this paper would be difficult
to get with that approach. However, we view static anal-
ysis as complementary to EGT testing — it is lightweight
enough that there is no reason not to apply it and then use
EGT.

8 Conclusion

This paper has proposed a simple method of automat-
ically generating test cases by executing code on sym-
bolic inputs called execution generated testing. We build
a prototype EGT system and applied it to real code. We
found numerous corner-case errors ranging from simple
memory overflows and infinite loops to subtle issues in
the interpretation of language standards.

These results, and our experience dealing with and
building systems suggests that EGT will work well on
systems code, with its often complex requirements and
tangled logic.

References

[1] T.Ball. A theory of predicate-complete test coverage and genera-
tion. In FMCO’2004: Symp. on Formal Methods for Components
and Objects. SpringerPress, 2004.

[2] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Auto-
matic predicate abstraction of ¢ programs. In PLDI ’01: Pro-
ceedings of the ACM SIGPLAN 2001 conference on Program-
ming language design and implementation, pages 203-213. ACM
Press, 2001.

[3] T. Ball and S. Rajamani. Automatically validating temporal
safety properties of interfaces. In SPIN 2001 Workshop on Model
Checking of Software, May 2001.

[4] C. Barrett and S. Berezin. CVC Lite: A new implementation of
the cooperating valid ity checker. In R. Alur and D. A. Peled, ed-
itors, CAV, Lecture Notes in Computer Science. Springer, 2004.

[5]1 C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated
testing based on Java predicates. In Proceedings of the Inter-
national Symposium on Software Testing and Analysis (ISSTA),
pages 123—133, July 2002.

[6] R.S.Boyer, B. Elspas, and K. N. Levitt. Select —a formal system
for testing and debugging programs by symbolic execution. ACM
SIGPLAN Notices, 10(6):234-45, June 1975.

[71 G. Brat, K. Havelund, S. Park, and W. Visser. Model checking
programs. In [EEE International Conference on Automated Soft-
ware Engineering (ASE), 2000.

[8] W. Bush, J. Pincus, and D. Sielaff. A static analyzer for fi nding
dynamic programming errors. Software: Practice and Experi-
ence, 30(7):775-802, 2000.

[9] J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach, C. Pasareanu,

Robby, and H. Zheng. Bandera: Extracting fi nite-state models
from java source code. In ICSE 2000, 2000.

SWAT: the Coverity software analysis toolset.
coverity.com.

[10] http://

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

M. Das, S. Lerner, and M. Seigle. Path-sensitive program verifi -
cation in polynomial time. In Proceedings of the ACM SIGPLAN
2002 Conference on Programming Language Design and Imple-
mentation, Berlin, Germany, June 2002.

J. Edvardsson and M. Kamkar. Analysis of the constraint solver
in una based test data generation. In ESEC/FSE-9: Proceedings
of the 8th European software engineering conference held jointly
with 9th ACM SIGSOFT international symposium on Founda-
tions of software engineering, pages 237-245. ACM Press, 2001.

D. Engler and M. Musuvathi. Static analysis versus software
model checking for bug fi nding. In Invited paper: Fifth Interna-
tional Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAIO4), pages 191-210, Jan. 2004.

R. Ferguson and B. Korel. The chaining approach for software
test data generation. ACM Trans. Softw. Eng. Methodol., 5(1):63—
86, 1996.

V. Ganesh, S. Berezin, and D. L. Dill. A decision procedure for
fi xed-width bit-vectors. Unpublished Manuscript, 2005.

P. Godefroid. Model Checking for Programming Languages us-
ing VeriSoft. In Proceedings of the 24th ACM Symposium on
Principles of Programming Languages, 1997.

A. Gotlieb, B. Botella, and M. Rueher. Automatic test data gen-
eration using constraint solving techniques. In ISSTA ’98: Pro-
ceedings of the 1998 ACM SIGSOFT international symposium on
Software testing and analysis, pages 53—62. ACM Press, 1998.

N. Gupta, A. P. Mathur, and M. L. Soffa. Automated test data
generation using an iterative relaxation method. In SIGSOFT
"98/FSE-6: Proceedings of the 6th ACM SIGSOFT international
symposium on Foundations of software engineering, pages 231—
244. ACM Press, 1998.

G. J. Holzmann. The model checker SPIN. Software Engineering,
23(5):279-295, 1997.

G. J. Holzmann. From code to models. In Proc. 2nd Int. Conf.
on Applications of Concurrency to System Design, pages 3—10,
Newcastle upon Tyne, U.K., 2001.

B. Miller, D. Koski, C. P. Lee, V. Maganty, R. Murthy, A. Natara-
jan, and J. Steidl. Fuzz revisited: A re-examination of the relia-
bility of UNIX utilities and services. Technical report, University
of Wisconsin - Madison, 1995.

B. P. Miller, L. Fredriksen, and B. So. An empirical study of the
reliability of UNIX utilities. Communications of the Association
for Computing Machinery, 33(12):32-44, 1990.

Mutt exploit reported by Securitteam. http://www.
securiteam.com/unixfocus/5FPOTOU9FU.html.

G. C. Necula, S. McPeak, S. Rahul, and W. Weimer. Cil: Inter-
mediate language and tools for analysis and transformation of ¢
programs. In International Conference on Compiler Construc-
tion, March 2002.

M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, and
J. William S. Beebee. Enhancing server availability and security
through failure-oblivious computing. In Symposium on Operat-
ing Systems Design and Implementation, December 2004.

WsMp3 exploit reported by Computer Associates. http:
//www3.ca.com/securityadvisor/vulninfo/
Vuln.aspx?ID=156009.

WsMp3 exploit reported by Secunia. http://secunia.
com/product/801/.

WsMp3 webpage. http://wsmp3.sourceforge.net/.

