Adaptive Interfaces for Declarative Presentation
of Heterogeneous Content

Brian Lee, Scott R. Klemmer
Stanford University HCI Group
Computer Science Department
Stanford, CA 94305-9035
{balee, srk}@cs.stanford.edu

ABSTRACT

Visibility of work practice is important because it enables
peripheral participation of and facilitates coordination
between colleagues. Moving activities from the physical
world onto the digital desktop has diminished visibility by
consigning the artifacts of work practice to the computer
screen; the serendipity of stumbling across physical
artifacts is lost. One method of reintroducing visibility is
the proactive display of colleagues’ digital work artifacts.
This paper introduces an adaptive content presentation
technique designed to improve the visibility of content for
both ambient awareness and interactive browsing. In this
work, we define the information presentation problem to be
dynamically focusing user attention to a maximally useful
subset of available information. Our technique takes a
decision-theoretic approach to interface generation, using
content metadata as inputs to our algorithm. The data view
is generated dynamically, based on high-level attributes of
the current state and a declarative relationship between the
user’s input and the resulting view. We have evaluated the
technical efficacy of this algorithm by implementing it in
the context of the ButterflyNet browser.

Author Keywords
Adaptive interfaces, decision theory, model-based Uls,
awareness

ACM Classification Keywords

H.5.2. [Information Interfaces]: User Interfaces —
Graphical user interfaces (GUI); Interaction styles;, User
interface management systems (UIMS). D.2.2 [Software
Engineering]: Design Tools and Techniques — user
interfaces. H1.2. [Models and Principles]: User/Machine
Systems.

Ronen Brafman
Stanford University Multiagent Group
Computer Science Department
Stanford, CA 94305
bratman(@cs.stanford.edu

e ——
Figure 1. An adaptively generated view of designers’
sketchbooks. Note the adaptive sidebar (right), which
displays content related to the item currently in focus in the
media browser (/eft).

[| 3

INTRODUCTION

Traditionally, information browsing on PCs has had a pull
model of information access: search. While search is
successful, you can generally only find things that you
know you’re looking for. This is a result of the imperative
query style: to see information, the user specifies the set
and presentation style of information to view. For small
information collections and pragmatic actions (ie.,
browsing to accomplish specific, well-defined tasks),
imperatively specifying the set and presentation style of
information to view is tractable and successful. This is the
pragmatics of information browsers.

Increasingly, however, people use computers not only as
tools for pragmatic action, but as tools for epistemic action
[14]—to support thought processes and provide inspiration.
This behavior is particularly prevalent in creative
professions such as design, where the goal is often not to
produce, but to learn. Some systems, e.g., social networking
and collaborative filtering web sites, have introduced
interfaces designed to proactively inform users and
encourage exploration. Still, most traditional computer tools
include little, if any, support for epistemic activity.

To deal with increasingly large information collections—
and, more importantly, for supporting epistemic tasks—we
suggest that it can be more effective to declaratively specify

Content
Elements

Metadata
Database

content element

metadata
content element .
views Scoring
Manager
relevance current
scores focus

Output Device

Figure 2. Architecture of a prototypical adaptive browsing system.

an information view. A declarative query style does not
require that the user completely specify the results of the
query, only an eventual goal, allowing queries to be made
implicitly and for results similar to those directly requested
to be returned. This opportunistic presentation of data
facilitates epistemic activities, by presenting data of interest
of which the user may not even be aware. Dynamically
focusing user attention to a manageable subset of
information that is “most relevant” at a given situation and
time, and properly displaying this information, may have
profound impacts on the quality and efficiency of the
browsing user experience.

To address this problem, we introduce an adaptive interface
[21] (see Figures 1, 2) that employs a decision-theoretic
approach to selecting information. Unlike traditional static
interfaces, adaptive interfaces are “aware” of both general
and current user tasks, needs, and preferences. Adaptive
interfaces attempt to optimize the presentation of
information by emphasizing those contents which are most
useful in a given context. Additionally, adaptive interfaces
may be proactive: that is, they may display relevant content
even when the user has not explicitly (imperatively)
requested it. The hypothesis manifest in this work is that
proactively presenting information can increase awareness
and serendipitous browsing.

From a technical perspective, this work draws on prior
work on model-based user interfaces [28] and automated
layout [8, 20]. In particular, we draw on the idea of casting
interface generation as constraint-based optimization [3].

display properties

activity inferences \ /
/ current focus \
2 ‘\ et of selocted /

content elements

Adaptive
Interface
Generator

This research has also been partially inspired by
ButterflyNet [34], a mobile capture and access system
targeted at user groups which make use of voluminous and
varied sets of data, such as that of designers and field
biologists. In this paper, we leverage the ButterflyNet
system as a test bed for creating and manipulating
heterogeneous content, and extend it to support adaptive
interfaces.

This work offers four contributions: a precise definition of
the information presentation problem we address, the
various dimensions we use to analyze it, algorithms for
calculating an appropriate rendering, and a technical
evaluation via a manifestation of this adaptive technique in
the ButterflyNet browser.

The rest of this paper is organized as follows. We begin by
defining the adaptive interface problem and describing at a
high level the dimensions that we use to analyze it. We then
present a theoretical framework, with precise mathematical
formulations of the various axes. We discuss the technical
efficacy of our algorithm and outline implementation
decisions. Finally, we present several scenarios of actual
and envisioned use of adaptive interfaces.

ADAPTIVE INTERFACES
The goal of an adaptive interface may be stated as follows:

Given a set of content elements, a relevance measure, a set
of layout constraints, and a user experience goal, show an
interface layout that maximizes the utility of the display for
the specified user experience.

Time People Keywords Media Type
Creation time Owner Labels Text
Last modified time Tags Images
Last viewed time Owner Data

Friend Keyword matching

Temporal proximity Group member Filter matching
Recentness
Familiarity

Views Location Categories
Number of views Location Categories
Popularity Spatial proximity In category

Figure 3. Example categories of content attributes (dark blue), attributes (light blue), and pivot axes derived from those

attributes (white).

In this section, we define various parts of a high-level
conceptual framework for adaptive interfaces.

Content

A content element is a single logical unit of information or
data. Content is heterogeneous; we have identified three
general categories of content:

Text: handwritten notes, text files, emails, articles

Images: photographs, whiteboard captures, other
images

Data: tabular data, graphs, numerical data

The ButterflyNet system features three types of content:
handwritten notes, pictures, and whiteboard captures.

Content has various attributes, or metadata (see Figure 3).
Attributes may be flat or hierarchical. In the current version
of the system, the attribute library comprises creation time,
modification time, ownership, media type, and tags.
Examples of other attributes that may prove valuable
include location, last viewed time, and categories [33].

Relevance

At the heart of our decision-theoretic algorithm is the
determination of relevance: figuring out what information
is “most valuable” in a given situation. To assess relevance,
we first model the user’s desired focus as a pivor: a
collection of content attributes and values that serve as
metrics for what the user wants to see. Pivots may be
explicitly defined (e.g., a keyword search) or implicitly
defined (e.g., inferred based on the content elements the
user is currently viewing). Using pivots, we can define
functions which estimate how useful or relevant a given
content element is in a given situation.

Pivots may involve one or more axes along attribute
dimensions. Some axes for pivoting based on attributes
include keyword matching (matching target keywords
based on textual annotations), temporal proximity
(difference between creation time and focused item creation
time), and spatial proximity (distance between creation
location and focused item creation location); Figure 3 lists
other possible pivot axes. In ButterflyNet, we have
implemented pivots based on linear combinations of
temporal proximity, recentness, keyword matching, and
media type.

Presentation

The goal of the adaptive browser is to produce a
presentation, or visual layout, based on display constraints.
Presentation depends on the properties of both the output
device and the content elements to be displayed.

Visual output devices have the following salient display
characteristics:

e Physical width and height: length, e.g., inches
e Display resolution: pixels per unit length

e Available screen space: number of pixels wide and
high
Similarly, content elements have the following salient
display characteristics:
e Aspect ratio: original shape of the content

e Presentation value: measure of the value of
displaying this content at a given size

ButterflyNet does not currently consider physical properties
of displays; only screen space in pixels and element aspect
ratios are used to evaluate layouts.

Context

Lastly, we consider the role that the adaptive browser plays
in the current activity. What is the user trying to do? What
is the larger task, application, or user experience goal?

e Attentional level [11]: is the adaptive browser the
focus of the interaction, when detail is important,
or an ambient display, when glanceability [18] is
the priority? These situations have very different
implications for layout optimization.

e User preferences: preferences explicitly stated by
the user (e.g., relative weight of keywords versus
temporal proximity)

In this work, we have explored two use modes for the
adaptive browser—main browser and ambient/contextual
sidebar—which feature correspondingly different user
experience goals for the adaptive portion of the interaction.

THEORETICAL FRAMING
We now provide formal mathematical definitions for the
key dimensions of the adaptive interface rendering problem.

Content elements (e) are the basic units of displayable
information in our framework. Every content element has a
media type T.

Input Variables
The adaptive interface receives the following inputs from
the user and environment (see Figure 2):

Display (D): Target output display. For purposes of this
algorithm, a display has a set of layout constraints Cp, e.g.,
available screen space (W X Aygy)-

Pivot (P): A set of zero or more (attribute, value) pairs
representing some measure of interestingness in relation to
the user’s current desired focus.

User experience goal (G): This is an abstract value

o utility

1
~] R
Lo _scale EE -ﬂ

representing the desired user experience (e.g., attentional
level). User experience goals affect evaluation functions.

Evaluation Functions

Content is evaluated among two axes when calculating an
adaptive rendering: presentation and relevance. Both of
these functions are highly subjective—they are merely
estimates of relative utility.

Content presentation value function (p): This function is an
estimate of the value of presenting a given content element
with media type T at a given size (w, h) for a given user
experience goal G, and is written as py(w,h,G). Generally,
smaller sizes will receive lower presentation scores.
However, different types of content may have different
presentation values at the same size; see Figure 4 for an
example of how presentation scores may vary by media

type.

Content relevance function (r): This function is an estimate
of the usefulness of seeing a content element given the
current pivot and user experience goal, and is written as
r(e,G,P). Generally, content elements which are closer to
the pivot (that is, whose attribute values are closer to the
pivot’s attribute values) will receive higher relevance
scores.

Legal Rendering
A rendering, or presentation, is given by a set of tuples of
the form:

(e, X,), W, h>

where e is a content element, x and y are the element’s
position in this rendering, and w and /4 are the width and
height of the element in this rendering.

A legal rendering @ is a rendering in which all objects
satisfy the display constraints Cp (i.e., they do not fall

Figure 4. Example content presentation value functions (CPVF) for recognition of images versus text. Left: Graph of the CPVFs
for pictures (red) and notes (blue). Center: A picture shown at small (1) and large (2) sizes. Right: A page of notes shown at
the same relative dimensions (3 and 4). Note that, though both content elements occupy the same physical area, the picture is
still recognizable at the small size, whereas the page of notes is not readable at all when small. Thus, these two types of
content may have different utility values at the same scale (depending on the user experience goal).

outside the allocated screen area and do not overlap).

Estimated Value of a Content Element

Given a user experience goal G and pivot P, the estimated
value of a content element is a function of its relevance
value (relative to the current pivot) and its presentation
value (at a given size). Our formulation uses a
multiplicative function:

s(e,G,P,¢)=p,(w,h,G)xr(e,G,P)

A more complex model would be one where an element’s
location also affects its value. In such a model, the same
element would get a different score if it appeared in the
center or the side, near the top or near the bottom. In our
formulation, the value of an element does not depend on
location.

Estimated Value of a Presentation

Given a user experience goal G and pivot P, the estimated
value, or score, of a presentation with elements £ is a
function of the estimated values of all elements displayed in
the presentation. We assume that the function is linear,
specifically a sum of the individual values:

S(G,P,¢) = ZS(63G3P9¢)

eeg

We recognize that there may be interactions between
different content elements that may either increase (e.g.,
due to synergies) or decrease (e.g., due to clutter or overlap)
the presentation score. In the current system, we assume
that the contributions of a given content element are
independent of the presence or absence of other content
elements. Relaxing this restriction will be the subject of
future work.

Tradeoffs

Intuitively, the information presentation problem is a
tradeoff between showing a smaller number of more
relevant items at larger sizes and showing a larger number
of less relevant items at smaller sizes. The framework
presented here quantifies this tradeoff neatly and succinctly.
Though simplified in a number of ways, this framing
identifies a quick and efficient way to evaluate potential
adaptive renderings for quality.

To see how tradeoffs might arise, imagine there is some
content element ¢ that has the highest content score, say 5.
The fact that ¢ has a high score motivates us to give it more
screen space. To see this, imagine ¢’ is a similar item that
carries a lower content score, say 3. For any presentation
choice, the total value of ¢ will be higher than that of ¢’ at
the same size. Let us assume that ¢ and ¢’ can be displayed
in small, medium, or large size, with relative values 1, 2,
and 3. Furthermore, suppose that at most two medium but
only one large item can fit on the user’s screen. In that case,
displaying ¢ and ¢’ in medium size has value of 16, which
displaying c in large size only has value 15. However, if the

content value of ¢ was 6, we would prefer to display ¢ in
large size, and not display c'.

Abstract Algorithm

The best rendering is the maximum score over all legal
renderings. We can compute the best rendering using the
following abstract algorithm:

e Compute a value for each possible configuration.
This will be the sum of the values of all elements
displayed in the configuration. (Note that there is
an additional constraint that the same item may
only appear once in a rendering.)

e Return the presentation with the highest score.

Assuming no additional constraints beyond the requirement
to fit all items on the screen, and using the current model of
presentation scores, this problem can be viewed as a two-
dimensional variant of the knapsack problem. This is a
difficult problem, and an active area of research in
operations research [15]. As we anticipate the existence of
additional constraints, we believe that optimization
algorithms for this problem will be an important topic of
research.

IMPLEMENTATION

We have implemented adaptive interface techniques in the
ButterflyNet system, which supports several different types
of content, including handwritten notes, images, and
whiteboard contents. ButterflyNet takes advantage of
digital media and associated metadata to offer a rich
interface for visualizing content. The normal method of
accessing content in the ButterflyNet desktop application is
through a media browser, in which a user browses through
a logical collection of homogeneous content (e.g., a
notebook or photo album). Content elements currently in
focus are displayed in the content panel on the left, while
the context panel on the right presents menus, data, or other
content related to the items in focus.

We apply adaptive interfaces in two modes of use: as a
primary browser, and as a contextual sidebar.

Adaptive Interfaces

The adaptive sidebar (see Figure 1) is a contextual element
that displays content related to whatever the user is
browsing at the moment. As the user browses, the adaptive
pivot changes automatically, reflecting content related to
the elements in focus in the main browser. Users may
double-click a content element in the sidebar to select that
element: the media browser is changed to the appropriate
media type (if necessary), and the selected element is
brought into focus.

The adaptive browser (see Figure 5, left) allows users to
browse all available content using an adaptive interface as
the focal point. Users may pivot about individual elements
by selecting them with a single-click; the adaptive browser
then shows the content elements most closely related to the

selected element. Users may also specify their own pivots
by explicitly selecting attribute values such as keywords
(“objects tagged with the words ‘whiteboard design’”),
creation or modification time (“items created on Tuesday,
August 29, 2006 around 3:45 p.m.”), ownership (“content
from my group members”), media type (“all photographs”),
or combinations of the above (“Erica’s notes and photos
from last Friday”). Users may also double-click an element
to bring the element into focus in a media browser,
switching the adaptive interface into sidebar mode.

Internally, two components drive the adaptive interfaces: an
adaptive interface generator and a scoring manager. The
scoring manager takes a content element, reads metadata
for the element from the ButterflyNet database, and returns
a score relative to the current pivot. The adaptive interface
generator takes a scored set of content elements and returns
a legal rendering (ordered list of elements and sizes) for the
adaptive browser to display.

The ButterflyNet implementation of adaptive interfaces also
offers an interface for modifying properties of the adaptive
algorithms and renderings (see Figure 5, right). Relative
weights of the various metadata facets are user-configurable
via a direct manipulation UL Users may filter based on
media type: content may be grouped by media types (so
that, for example, notes and pictures are displayed in
different sections of the adaptive presentation), or one of
more types of content may be hidden altogether.

Design Decisions
To narrow the presentation search space and keep the user
interface responsive, we make three simplifying design
decisions and assumptions in our implementation of the
adaptive algorithm.

First, though content is heterogeneous and may have a

number of different aspect ratios, we treat every content
element as a quantum unit and allocate a fixed aspect ratio
and size, similar to the PhotoMesa system [1]. This has the
advantage of producing nicely aligned grids of elements,
with the drawback that significant amounts of space may be
wasted for elements that do not align well with the fixed
aspect ratio (e.g., portrait-oriented images in a landscape-
shaped space).

Second, we only perform discrete calculations for layout.
Rather than evaluating every possible element size that fits
the fixed aspect ratio, we only evaluate sizes that result in
an exact integer number of elements across (one across, two
across, three across, efc.), in effect treating element sizes as
discrete, rather than continuous.

Finally, we use a simple algorithm for showing relevance: a
row-major ordering (left-to-right, top-to-bottom) where the
most important items are at the top left. Other possibilities
for displaying importance could include combinations of
position, size (making important items larger), color
(highlighting the closest matches), and other visual
properties.

RESULTS

We have assessed the technical efficacy of the techniques in
two fashions: by measuring adaptive interface generation
times in ButterflyNet, and by exploring how the handles we
have provided enable the specification of different types of
results.

Interface Generation

We tested our algorithms on a Pentium D 3.2 GHz running
Windows XP with 2 GB of RAM. ButterflyNet and the
adaptive browsers were implemented in Java and compiled
using the Java SE 6 Beta 2 runtime. For the qualitative
evaluations below, we used actual data sets from users of

Adaptive View Configuration

Figure 5. Left: An adaptive browser displaying heterogeneous content. Right: Direct manipulation interface for changing
relative weights of metadata. Users can directly affect how the pivot scores content elements by favoring one metadata

attribute or another.

the ButterflyNet system.

Database Access Time

ButterflyNet uses a database to maintain metadata, from
which we draw inputs for our algorithm. On average, it took
approximately four minutes to read 4,000 content elements
(predominantly complex notes files with dozens of strokes)
into an empty embedded database, or approximately 60
milliseconds per content element. This is a one-time cost,
however, and is not incurred every time the rendering is
requested, or even every time the program is run, only
whenever a content element is created or modified.

Scoring and Layout Time

For a dataset of 270 content elements (notes and images
from a group of three students over one quarter), the
running time of the scoring algorithm was 1.21
milliseconds; the layout algorithm, 0.073 milliseconds.

For a dataset of 4,200 content elements (notes and images
from a class of approximately 40 students over one quarter),
the running time of the scoring algorithms was 12.3
milliseconds; the layout algorithm, 0.423 milliseconds.

We expected that scoring time would vary linearly as a
function of the number of content elements, which is what
we found. Similarly, we expected layout time to vary
linearly as a function of screen space but be bounded by the
number of content elements; the latter constraint was
evidenced in our test cases.

Element Rendering Time

The above running times do not count the rendering time
for content elements, which generally ranged in the
hundreds of milliseconds for the most complex sets of
objects in ButterflyNet. While loading and displaying
several complex objects takes time, this is not a part of the
adaptive algorithm.

In practice, overall time to display an adaptive presentation
was dominated by the rendering time of the content
elements, suggesting that the implementation efficacy
problem in adaptive browsers is still predominantly one of
element rendering and not of calculating layouts efficiently.
This result demonstrates that we can effectively produce
adaptive presentations in user-interactive timeframes.

Exploring the Content Space

An important part of our adaptive browsing approach is the
inclusion of direct-manipulation handles that enable users
to retrieve different types of information depending on the
desired goal. Broadly speaking, the ability to change the
relative weights of the five metadata types included in the
current library produced results that we observed to be
relevant and informative. For example, as one author
browsed his notebook in the media browser, we observed
the presented notes and pictures, which came from both his
personal collection and those of other users chosen by the

adaptive sidebar. Changing the relevant facet weights had
intuitive effects on the rendering produced:

Time correlation: An increase in the weight of timestamps
produced a collection of notes and photos from the same
event (e.g., a lecture or field outing).

Content correlation: An increase in the weight of keyword
matching (relative to timestamps) returned a collection of
notes and photos related to the subject of the focused
items (e.g., items labeled with the name of a company
project).

Awareness: A decrease in the weight of content belonging
to the user exposed the user to more content belonging to
other wusers, thereby raising awareness of others’
activities. Conversely, an increase in the weight of
content belonging to the user’s project, or just the user’s
own content, narrowed the scope of the awareness “feed”
to more familiar documents.

SCENARIOS
Drawing on results from longitudinal studies of design
education and practice [17] and observations of use of our
implementation, we have constructed three scenarios that
reflect envisioned uses for adaptive interfaces in designers’
work practice.

In the following scenarios, Ada, Erica, Justin, and Leland
are designing a new interactive web site for players of a
popular online fantasy video game. The website will enable
visitors to read the latest game tips, post messages in online
forums, and learn about upcoming events. Young,
ambitious, and technologically savvy, the four designers
use a company tool for supporting design (ButterflyNet) to
organize, retrieve, and share their project-related
information, including handwritten notes, freehand
sketches, whiteboard captures, photographs, diagrams, and
text documents.

Enhancing Group Design Practice

Erica, Justin, and Leland head down to the studio meeting
room for their weekly brainstorm. Upon entering the studio
meeting room, they notice that the digital whiteboard is in
screensaver mode, displaying a series of pictures and notes
related to the upcoming meeting. The screensaver is
actually an adaptive screensaver; based on knowledge of
users’ calendars, the screensaver has inferred the purpose of
the meeting and is proactively cycling through salient
content from the previous week’s meeting, plus a sprinkling
of related material (based on keyword and -category
attributes) from other designers and teams at the company.
Leland walks up to the whiteboard and selects some of last
week’s notes for review; the three of them usually walk
through the previous week’s notes together to establish
context for this week’s meeting. While at the board, Leland
notices an interesting whiteboard discussion from the game
interaction design team on spell documentation, a hot topic
of debate in his group as well. He moves the capture to the
foreground so that it fills the whiteboard, and sits down to

begin the meeting with the other group’s notes on the board
as a starter for discussion.

Finding the Rationale behind a Decision

Ada missed the design session; she was consulting on
another project at her company, dealing with user forums.
When she returns to her office, she opens her design
browser and requests content from Wednesday at noon, the
time of her group’s weekly design session. As she scans
whiteboard captures and notes from the meeting, she
notices that the group decided to remove certain privacy
options from users’ online profiles. Curious, she does some
searches on keywords she finds on items related to the new
topic of discussion (“privacy,” “opt-out”), looking for the
rationale behind the decision to make this alteration. After
browsing for a bit, she comprehends the reason for the
change but disagrees with it, and prints out a few salient
notes for debate material at the next staff meeting.

Writing a Project Summary

Erica is writing a summary of the work that their group has
done on the web site project over the past year. She begins
by opening her design browser and perusing her own design
notebooks. As she browses her notebooks, related material
comes up in the sidebar, including other team members’
notebook pages, whiteboard captures from group design
sessions, and text documents and emails generated by the
team. The contextual aspect of the adaptive interface allows
her to browse more flexibly: rather than having to seek out
individual documents with explicit searches, she browses
paths of “relatedness,” reviewing associated material,
bringing context elements into focus, looking for important
pieces of information in their collective design repository.
Eventually, she flags ten documents for closer inspection.

RELATED WORK

This research draws on three areas of prior work: model-
based wuser interfaces, automatic layout systems, and
document scoring systems. We discuss each in turn.

Model-Based User Interfaces

The area of model-based user interfaces (e.g., [22, 24])
began with the interest of creating tools for specifying
interfaces declaratively, through high-level semantics,
rather than imperatively, by the pixel-level details of the
implementation. Szekely [28] provides a retrospective
overview of this field. After the initial string of successes
that Szekely identified, this field slowed down in the early
1990s, primarily because the desktop PC did not provide
sufficient diversity to mandate a higher-level
representation: the value of abstraction is derived from the
lower margin costs of repurposing—with one platform,
there was no amortization to be had.

As ubiquitous computing has edged towards reality, the
playing field has changed. We now have Weiser’s
“computing by the inch, foot, and yard” [31], and model-
based interfaces offer significant promise in managing the
diversity of computing platforms. An example of this

success is Pierce’s work on divisible user interfaces [10],
which provides a unified representation for applications
whose interface is partitioned across multiple devices. This
re-emergence of model-based abstractions comes very
much from the same spirit as the current paper. The place
that this current work fits into this larger picture is that it
introduces decision-theoretic techniques for specifying the
display portion of these applications.

Automatic Layout

Several projects have explored the automatic layout of
interfaces and/or information. The most closely related
system in the literature is SUPPLE [8], which examined a
constraint-based optimization approach to interface
adaptation. Another system, the Personal Universal
Controller [20], performed automatic layout of complex
service interfaces on different devices using a different
theoretical model. We apply a decision-theoretic strategy
similar to that of SUPPLE to the area of information
presentation, but with significantly different constraints.
Rather than addressing user widgets, we deal with
information sources. This work has the additional burden of
needing to render layouts in user-interactive timeframes (<
100 milliseconds) in order to keep interactions fluid,
potentially introducing interesting tradeoffs between
optimality and performance.

Image browsing research has proposed many novel
methods of dealing with the problem of laying out large sets
of data. PhotoMesa [1], a zoomable image browser which
encouraged serendipity using a 2D space-filling layout,
inspired several design decisions in our implementation
(e.g., quantum elements). Saliency-based cropping methods
[27] are another innovation that could be applied to later
versions of our adaptive browser, posing interesting
questions regarding content presentation value functions.
Our adaptive interface research extends this body of work
by applying novel techniques in the context of large
heterogeneous data sets. In general, image browsers deal
with a homogenous set of data: pictures.

The selection of what information is visible, and its
arrangement for the user has significant implications for the
cognitive activities that are ready-at-hand [13], and the
effective presentation of personal information has been the
subject of considerable activity. Furnas’s fisheye calendar
[7], an early system in this area, introduced the idea of a
Jfocus+context visualization: the calendar item in focus was
displayed largely and with local detail; non-focus items
would correspondingly shrink. More generally, through this
example, it demonstrated how constraints can be effectively
used to manage screen layout globally, and this present
research is a continuation in that vein. Other research has
explored book-like metaphors for information collections
[4], and facet-based approaches to search [6]. In this work,
we make no particular ideological commitment to
maintaining the navigation affordances of prior
technologies, though certainly the existing “user base” of

paper books would make a compelling case for doing so.
Our approach is more similar to that of faceted search, with
the exception that the displays elements are not constrained
to be only those requested—elements with similarities to
those requested may also be displayed as a means of
providing for serendipity in search and browsing.

Ambient displays have explored the use of spaces and
surfaces for proactive presentation of information [30, 32].
Prior work has attempted to facilitate serendipitous
generation of ideas by peripherally displaying notes [9].
Our research follows up on this work by applying adaptive
techniques to ambient and contextual displays. In particular,
we are exploring the peripheral presentation of notes and
other epistemic artifacts to encourage exploration and
increase visibility of work practice.

Document Scoring

With software architecture and information presentation
addressed, we now turn to the question of the underlying
algorithms and information model. Similar to prior work on
information foraging [23], we seek to improve the
information scent of interfaces. Or, more precisely, the goal
of this paper is to provide “scents” of potentially valuable
information in addition to the specific information has
requested. The use of small steps observed by Teevan et al.
in their study of orienteering behavior [29] points to the
value of providing scent via contextual information.

As the quantity of information we work with increases [16],
and metadata becomes ever more prevalent [2], improved
techniques for sorting this information are required.
Adaptive user interfaces have proven particularly useful in
managing our personal information. Rhodes’ Remembrance
Agent demonstrated the use of richer types of metadata—
most notably location—as a means for retrieving
information [25]. Perhaps most similar to this project is
Horvitz et al.’s email ranking system [26], which employs
decision-theoretic techniques to prioritize and rank emails
that are likely to contain higher value information or be
more urgent; this work was very inspirational in framing
our approach. Haystack [12] takes a highly flexible
approach to data presentation and user interaction that could
easily integrate adaptive techniques to increase visibility.

The information model in this work draws on the idea of
faceted metadata [33], the conceptually distinct dimensions
of the metadata. Of particular value has been the recent
research on lightweight techniques for labeling photographs
with rich metadata [5, 19], and the use of those in
information retrieval. Again, the difference with this work
is that while we employ the same ontological mechanisms,
the contribution lies in the use of this schema to enable
proactive and adaptive display.

CONCLUSION AND FUTURE WORK

This work offers four contributions: a precise definition of
the information presentation problem we address, the
various dimensions we use to analyze it, algorithms for

calculating an appropriate rendering, and a technical
evaluation via a manifestation of this adaptive technique in
the ButterflyNet browser.

The contribution of this paper is largely an existence proof
of the tractability of the approach. We are currently in the
process of planning a study of the benefits of these adaptive
display techniques with design teams as the population.

ACKNOWLEDGEMENTS

We thank Ron Yeh and Yoav Shoham for their insightful
discussions, and the National Science Foundation and the
Wallenberg Global Learning Network for sponsoring this
research (NSF 11S-0534662, KAW 2004.0184). We are also
grateful to Intel for technology donations.

All human subjects research was conducted under Stanford
University IRB approved protocol 3392.

REFERENCES

1 Bederson, B. B. PhotoMesa: a zoomable image browser
using quantum treemaps and bubblemaps. UIST 2001 :
ACM Symposium on User Interface Software and
Technology. pp. 71-80.

2 Berners-Lee, T., J. Hendler, and O. Lassila. The
Semantic Web, Scientific American, May, 2001.

3 Brafman, R. I. and D. Friedman. Presentation
Adaptation for Rich Media Messages. STRIMM
Consortium Working Paper 2003.

4 Card, S. K., L. Hong, J. D. Mackinlay, and E. H. Chi.
3Book: a scalable 3D virtual book. CHI 2004: ACM
Conference on Human Factors in Computing Systems.
pp- 1095-98.

5 Davis, M., S. King, N. Good, and R. Sarvas. From
context to content: leveraging context to infer media
metadata. MM 2004: ACM International Conference on
Multimedia. pp. 188-95.

6 Dumais, S., E. Cutrell, J. J. Cadiz, G. Jancke, R. Sarin,
and D. C. Robbins. Stuff I've seen: a system for
personal information retrieval and re-use. SIGIR 2003:
ACM Conference on Research and Development in
Information Retrieval. pp. 72-79.

7 Furnas, G. W. Generalized fisheye views. CHI 1986
ACM Conference on Human Factors in Computing
Systems. pp. 16-23.

8 Gajos, K. and D. S. Weld. SUPPLE: automatically
generating user interfaces. /Ul 2004: Proceedings of
the 9th international conference on Intelligent user
interface. pp. 93—100.

9 Hsieh, G., K. Wood, and A. Sellen. Peripheral display
of digital handwritten notes. CHI 2006: ACM
Conference on Human Factors in Computing Systems.
pp- 285-88.

10 Hutchings, H. M. and J. S. Pierce. Understanding the
whethers, hows, and whys of divisible interfaces. 4V
2006: Proceedings of the Working Conference on
Advanced Visual Interfaces. pp. 274-717.

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Ju, W., B. Lee, and S. R. Klemmer. Range: Exploring
Implicit Interaction through Electronic Whiteboard
Design. In submission.

Karger, D. R., K. Bakshi, D. Huynh, D. Quan, and V.
Sinha. Haystack: A general-purpose information
management tool for end users based on semistructured
data. Proc. CIDR. pp. 13-26, 2005.

Kirsh, D. The intelligent use of space. Artificial
Intelligence 73(1-2). pp. 31-68, 1995.

Kirsh, D. and P. Maglio. On distinguishing epistemic
from pragmatic action. Cognitive Science 18. pp. 513-
49, 1994.

Lodi, A. and M. Monaci. Integer linear programming
models for 2-staged two-dimensional Knapsack
problems. Mathematical Programming 94(2-3). pp.
257-78, 2003.

Lyman, P. and H. R. Varian, How Much Information?
2003.
http://www2.sims.berkeley.edu/research/projects/how-
much-info-2003/

Maldonado, H., B. Lee, and S. R. Klemmer.
Technology for Design Education: A Case Study. CHI
2006: ACM Conference on Human Factors in
Computing Systems (Extended Abstract).

Matthews, T. Designing and Evaluating Glanceable
Peripheral Displays. DIS 2006: ACM Conference on
Designing Interactive Systems (Doctoral Consortium).
Naaman, M., S. Harada, Q. Y. Wang, H. Garcia-
Molina, and A. Paepcke. Context data in geo-
referenced digital photo collections. MM2004: ACM
International Conference on Multimedia. pp. 196-203.
Nichols, J., B. A. Myers, M. Higgins, J. Hughes, T. K.
Harris, R. Rosenfeld, and M. Pignol. Generating remote
control interfaces for complex appliances. UIST 2002:
ACM Symposium on User Interface Software and
Technology. pp. 161-70.

Norcio, A. F. and J. Stanley. Adaptive human-computer
interfaces: a literature survey and perspective. /EEE
Transactions on Systems, Man and Cybernetics 19(2).
pp- 399-408, 1989.

Paterno, F. Model-based design of interactive
applications. intelligence 11(4). pp. 2638, 2000.
Pirolli, P. and S. K. Card. Information foraging.
Psychological Review 106(4). pp. 64375, 1999.
Puerta, A. R., E. Cheng, T. Ou, and J. Min. MOBILE:
user-centered interface building. CHI 1999: ACM
Conference on Human Factors in Computing Systems.
pp. 426-33.

Rhodes, B. J. The wearable remembrance agent: A
system for augmented memory. Personal Technologies
1(4). pp. 218-24, 1997.

Sahami, M., S. Dumais, D. Heckerman, and E. Horvitz.
A Bayesian approach to filtering junk e-mail. A4A41
1998: Workshop on Learning for Text Categorization.
Suh, B., H. Ling, B. B. Bederson, and D. W. Jacobs.
Automatic thumbnail cropping and its effectiveness.

28

29

30

31

32

33

34

UIST 2003: ACM Symposium on User Interface
Software and Technology. pp. 95—104.

Szekely, P. Retrospective and Challenges for Model-
Based Interface Development. DSV 1996: Design,
Specification, and Verification of Interactive Systems.
pp- 1-27.

Teevan, J., C. Alvarado, M. S. Ackerman, and D. R.
Karger. The perfect search engine is not enough: a
study of orienteering behavior in directed search. CHI
2004: ACM Conference on Human Factors in
Computing Systems. pp. 415-22.

Vogel, D. and R. Balakrishnan. Interactive public
ambient displays: transitioning from implicit to explicit,
public to personal, interaction with multiple users.
UIST 2004: ACM Symposium on User Interface
Software and Technology. pp. 137—46.

Weiser, M. The Computer for the 21st Century.
Scientific American. pp. 94-104, 1991.

Wisneski, C., H. Ishii, A. Dahley, M. Gorbet, S. Brave,
B. Ullmer, and P. Yarin. Ambient Displays: Turning
Architectural Space into an Interface between People
and Digital Information. COBUILD 1998: International
Workshop on Cooperative Buildings. pp. 22-32.

Yee, K.-P., K. Swearingen, K. Li, and M. Hearst.
Faceted Metadata for Image Search and Browsing. CHI
2003: ACM Conference on Human Factors in
Computing Systems. pp. 401-08.

Yeh, R. B, C. Liao, S. R. Klemmer, F. Guimbretiére,
B. Lee, B. Kakaradov, J. Stamberger, and A. Paepcke.
ButterflyNet: A Mobile Capture and Access System for
Field Biology Research. CHI 2006: ACM Conference
on Human Factors in Computing Systems. pp. 571-80.

