Programming by a Sample:
Rapidly Prototyping Web Applications with d.mix

Bjorn Hartmann, Leslie Wu, Kevin Collins, Scott R. Klemmer
Stanford University HCI Group
Gates Computer Science
Stanford, CA 94305
[bjoern, Iwu2, kevinc, srk]@cs.stanford.edu

ABSTRACT

As an increasing number of web sites provide APIs, sig-
nificant latent value for supporting developers’ use of these
APIs lies in the site-service correspondence: the site and its
APl offer complementary representations of equivalent
functionality. We introduce d.mix, a tool that realizes this
latent value, lowering the threshold for creating web
mash-ups. With d.mix, users browse annotated web sites and
perform a parametric copy of elements of interest. While a
traditional copy contains web page elements, a parametric
copy performs proxy-based rewriting of pages to select the
underlying programmatic calls that yield those elements.
Developers can paste this code and edit, execute, and share
scripts on d.mix’s wiki-based authoring environment. This
approach speeds the creation of web applications while
preserving the flexibility and high ceiling of script-based
programming. An initial study with eight participants found
d.mix to enable rapid experimentation, and suggested ave-
nues for improving its annotation mechanism.

ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces—Graphical user interfaces.

General terms: Design, Human Factors

Keywords: programming by example modification,
mash-ups, web services, prototyping

INTRODUCTION

With the advent of Service-Oriented Architectures (SOA)
[7], the number and diversity of application building blocks
that are openly available as web service APIs is growing
rapidly. The web site programmableweb.com, which tracks
availability and use of web APIs, reports 1720 different
available APIs as of March 2007. These APIs promise de-
velopers a cornucopia of interface elements and data
sources. Many of these web APIs are the programmatic in-
terface to successful web sites, where the site and the asso-
ciated API offer complementary views of the same under-
lying functionality. In essence, the web site is the largest,
Sfunctional example of what can be accomplished with an
API. To date, the potential value to developers that could be
achieved by coordinating these representations has largely
remained latent.

While web services have seen particular growth in the en-
terprise sector, rapid access to rich features and data also
make web APIs a promising tool for prototyping and the
creation of situated software: “software designed in and for a

http://site-with-api.com/

opy as lastest img
@Ry as thisimg

URL: [http://pbas-wiki.com/...

.......................... Image Parameters
#in stream

SELECT +
api.getRecentimage(id=29384..)
CO PY Image.get_html()

PASTE+EDIT

BROWSE

Figure 1. When programming by a sample, users first
browse web sites that offer APIs through a proxy that adds
annotations. They then select pieces they wish to copy and
send them to the d.mix editor, where they can change pa-
rameters graphically or edit the underlying API source code.

particular social situation or context” [31]. The small audi-
ence of situated software applications limits developer re-
sources. As such, enabling faster and lower-threshold [25]
authoring of these applications provides a catalyst for
broader creation.

As the number and scale of APIs and web services increase,
and as programming entertains an ever-widening audience,
more software is written by opportunistically combining
pre-existing, high-level blocks of functionality. In these
mash-ups, the program design resides in the glue layers that
combine the different chunks of functionality. We define a
web mash-up as a web application that recombines elements
from at least two or more external web applications.
Mash-ups are instances of the long tail [8] of software—the
large numbers of small applications that cumulatively have a
big impact. One of the broad shifts introduced in the
mash-up paradigm is that the designer’s effort and creativity
are reallocated: less time is spent building an application up
brick by brick, while more time and ingenuity is spent
finding and selecting components, and then creating and
shaping the “glueware” that interfaces them [16].

Two factors are currently hampering broader use of web
APIs: the complexity of installing web application envi-
ronments and the complexity of understanding and using
web service APIs.

To enable flexible and rapid authoring of API-based web
applications, this paper introduces d.mix (see Figure 1), a
browser-based design tool with two notable attributes. The
first is a programmable proxy system employing a

site-to-service map that establishes the correspondence
between elements shown on the site and the web service
calls needed to replicate these data programmatically. This
system enables users to create code that invokes web APIs by
browsing the respective web site and visually specifying the
web site elements they wish to use in their own application.
The second contribution is a server-side active wiki that
hosts scripts generated by the proxy. As a
browser-accessible authoring tool, the active wiki provides a
configuration-free environment for authoring and sharing of
both source code and working applications. Together, these
two components offer a perspective of how web developers
could use the surface structure and social structure of the
web as a means to democratize the tools of production [8].

The d.mix approach targets the growing group of web de-
signers and developers that are familiar with HTML and
scripting languages (e.g., JavaScript and ActionScript), lo-
wering the experience threshold required to build and share
mash-ups. d.mix offers a completely graphical interaction
path, from selecting samples to pasting them into a new page
and changing their attributes using property sheets. Addi-
tionally, by virtue of displaying the actual underlying code
to users, d.mix allows developers with sufficient technical
expertise to drill down into code as needed.

To create a system that is felicitous with the practices of web
developers, we employed a mixed-methods approach. First,
each week for eight weeks, we met with web developers,
using the d.mix prototype as a probe to elicit discussion on
mash-up design. Second, to gauge the first-use experience of
d.mix, we conducted a preliminary lab study with eight web
developers. Third, we built example applications using our
tool to explore a broader range of interaction designs.

The rest of this paper is structured as follows. To motivate
the d.mix approach, we first present a short summary of
research in information foraging and programming by
demonstration. The next section introduces the main inter-
action techniques of our system through a scenario, followed
by the implementation of d.mix. We then describe the two
forms of evaluation undertaken: iterative feedback from web
professionals and an initial laboratory study. We conclude
with a discussion of related research and commercial sys-
tems, limitations of the current implementation, and an
outlook to future work.

BACKGROUND

Our work draws on models of information foraging and re-
search in programming by demonstration. We present a brief
introduction to both areas here.

Information foraging

As the number and size of programming libraries swells,
locating and understanding documentation and examples is
playing an increasingly prominent role in developers’ ac-
tivities [32]. d.mix assists users with information foraging
by shortening the time spent hunting for information
patches. It co-locates two different kinds of information on
one page: examples of what functionality and data a web site
offers, together with information how one would obtain this
information programmatically. Because problems often cut

across package and function boundaries, example-based
documentation provides value by aiding knowledge crys-
tallization and improving information scent [29].

For this reason, examples and code snippets, such as those in
the Java Developers Almanac, are a popular resource. This
approach of documentation through example complements
more traditional, index-based documentation. d.mix com-
bines dynamic example generation with browsing of what
the examples would look like based on the most complete
example there is.

Programming by a Sample, or by Example?

d.mix’s approach draws on prior work in programming by
example, also known as programming by demonstration [12,
21, 27]. In these systems, the user demonstrates a set of ac-
tions on a concrete example—such as a sequence of image
manipulation operations—and the system infers application
logic through generalization from that example. The logic
can then be re-applied to other similar cases.

The class of applications that d.mix addresses are those that
employ web services. Through d.mix’s site-to-service map,
a designer can sample a portion of an extant web page; d.mix
then replaces the surface attributes of that sample with the
web service calls that generated the sample. While d.mix
shares much of its motivation with programming-
by-example systems, the approach is quite distinct. Instead
of providing the computer with an example that the system
then generalizes, designers specify logic through locating
and parameterizing found examples. In this way, the task is
more one of programming by example modification, which
Nardi highlights as a successful strategy for end-user de-
velopment [27]. Modification of a working example also
speeds development because it provides stronger scaffolding
than writing code tabula rasa.

HOW TO PROGRAM BY A SAMPLE

A scenario will help introduce the main interaction tech-
niques. We also encourage readers to watch the accompa-
nying video, on the web at http://hci.stanford.edu/mashups.

Jane is an amateur rock climber who frequently travels to
new climbing spots with friends. Jane would like to create a
page that serves as a lightweight web presence for the group.
The page should show photos and videos from the latest
outings. She wants content to update dynamically so she
doesn’t have to maintain the page. She is familiar with HTML
and has some JavaScript experience, but does not consider
herself an expert programmer.

Jane starts by browsing the photo and video sharing sites her
friends use. Scott uses the photo site Flickr and marks his
pictures with the tag “climbing.” Drew also uses Flickr, but
uses an image set instead. Karen shares her climbing videos
on the video site YouTube. In short, this content spans
multiple sites and multiple organizational approaches.

To start gathering content, Jane opens Scott’s Flickr profile
in her browser and navigates to the page listing all his tags
(see Figure 2a). She then presses the j" sample this” button
in her browser bookmark bar. This reloads the Flickr page,
adding dashed borders around the elements that she can

Images klemmer tagged with climbing
Send to wiki page:

climbersportal

raduation: andre! Gdiedt afionuevo
i pecki ey therkeley: barn
blair blocparty

6 ichinesenewyean 'climbing: [iubs,

CSCW! [anielbc danielnora

(a) Browse

(c) Send to wiki (d) Wiki executes copied script

\

perpage 'y

= 1

e | 50

(f) Edit properties in wiki

[Welcome to the wiki studio. go home, list all pages

Toi[Scott, drew

Add Cc | Add Bee
Subject:[Check out our new group portall
SAttach a file
Rich formatting » Che:

climbersportal

]

3

Our new portalis online - see for yourself at:
hitp:/Nalparaiso:3704 Repeelclimbersportal

-Jane

</div>

(g) Edit source code in wiki (h) Share URL

Figure 2. With d.mix, users switch between foraging for content and editing copies of that content in an active wiki environment.

copy into her sampling bin.

Jane right-clicks on the on tag “climbing,” opening a context
menu which offers her the choice to copy the set of images
Scott tagged with that word (see Figure 2b). The copied item
appears in her sampling bin, a repositionable floating layer
on top of the page.

She selects Send to Wiki and enters a new page name,
“ClimbersPortal” (see Figure 2c¢). Her browser now displays
this newly created page in the d.mix programmable wiki.
The visual representation dynamically requests the specified
images; the textual representation contains the correspond-
ing API call to the Flickr web service (see Figure 2d).

Continuing her information gathering, Jane samples Sam’s
climbing photo set on Flickr (see Figure 2e). Her wiki page
now displays both Scott’s photos and several images from
Sam. Jane would like the page to display only the latest three
images from each person. She right-clicks on Sam’s images
to invoke a property sheet which shows that the content
came from a Flickr photo set and gives parameters for the
user id associated with the set and for the number of images
to show (see Figure 2f). Changing the parameters reloads the
page and applies the changes.

Jane then opens Karen’s YouTube video page. For Karen’s
latest video, d.mix offers two choices: copy this particular
file, or copy the most recent video in Karen’s stream. Be-
cause Jane wants the video on her page to update whenever
Karen posts a new file, she chooses the latter option.

Next Jane would like to layout the images and add some
text. She clicks on “edit source,” which displays an HTML
document, in which each of the three samples she inserted
corresponds to a few lines of Ruby script, enclosed by a
structuring <div> tag (see Figure 2g). She adds text and a
table structure around the images. Remembering that Scott
also sometimes tags his images with “rocks,” she modifies
the query string in the corresponding script accordingly.

When she is satisfied with the rendered view of her active
wiki page, she emails the URL of the wiki page to her group

members to let them see the page (see Figure 2h).

IMPLEMENTATION
In this section, we describe d.mix’s implementation for
sampling, parametric copying, editing, and sharing.

“Sample This” button rewrites pages

d.mix provides two buttons, sample
this and stop sampling, that can be 5o E& fen Hsow ool
added to a browser’s bookmark bar to < - - & f
enable or disable sampling mode. 7 smplethis 3 stop samping
Sample this is implemented as a -
bookmarklet—a bookmark containing Vau BT
JavaScript instead of a URL—that sends the current browser
location to our active wiki. This invokes the d.mix proxy,
combining the target site’s original web markup with an-
notations found using our site-to-service map (see Figure 3).

It is important to note that the original web site need not
provide any support for d.mix. The active wiki maintains a
collection of site-to-service maps, contributed by knowl-
edgeable developers. The site-to-service map describes the
programmatically accessible components that are associated
with a particular set of URLs (see Figure 4). For example, on
the Flickr web site, pages of the form
http://flickr.com/photos/<username>/tags contain a list of
image tags for a particular user, displayed as a tag cloud. A
user’s tags can be accessed by calling the API method
flickr.tags.getListUser and passing in a user id. Similarly,
photos corresponding to tags for a given user can be re-

Original page Proxy Rewritten page with
Server APl annotations
= e
i
oA

Tt 0. Site-to-Service Map

(written in the d.mix wiki)

Figure 3. d.mix annotates web pages using an HTTP proxy.

trieved by a call to :a/ -XG G B o (o0 i conpas st [-[p) [Cfeere /| Corresponding
. sample this ¥ stop sampin .
Slickr.photos.Search. flicke ww wome o swon 2| Flickr API calls

Home You Organize Contacts

When the user is in sampling mode,

Groups Explore

Search

d.mix’s programmable HTTP proxy

Colory Cover for Why's (Poignant)(__
AL o) wvhluckystin

flickr.photos.getInfo(
photo_id = “298655528").title
Return the current photo’s title.

rewrites the viewed web page, adding
JavaScript annotations. These
annotations serve two functions. First,
d.mix uses the site-to-service map to
derive the set of web service compo-
nents which may be sampled from the
current page. It does so by searching
for known markup patterns—using
XPath and CSS selectors — and
recording the metadata that will be
passed on to web services as parame-
ters, such as a user or photo ID, a
search term, or a page number.

Guide to Ruby

pehythelUEkyStTE {0 info = flickr.photos.getinfo(

photo_id = “298655528")
URL = “http://farm”
+ info.farm-id
+ “.static.flickr.com/”
+ info.server-id
+/"
+ info.attributed["id"]
o
+ info.secret
Tags +"jpg”
Return the static URL for this image.

This photo also belongs to!

flickr.tags.getListPhoto(
photo_id = “298655528")
Get the tag list for a given photo.

2006 flickr.photos.search(tags = “poignant ...")

Senat e =l Return allist of photos for this

Second, d.mix’s annotation visually o=
augments the elements that can be
sampled with a dashed border as an
indication to the user.

In the other direction, the “stop sampling” bookmarklet
takes a proxy URL, extracts the client site URL and sets it as
the new browser location, ending access through the proxy.

d.mix is implemented in the Ruby programming language.
We chose Ruby to leverage the freely available
programmable proxy, the mouseHole [4] and Ruby’s
metaprogramming libraries.

Parametric copy is achieved by generating web API code
An annotation of an HTML
element (e.g., an image on a
photo site) comprises a set of
action options. For each op-
tion, a right-click context
menu entry is generated.
Associated with each menu entry is a block of source code,
which in d.mix is Ruby script. The code generation routines
draw both upon the structure of the page (to know what class
of items are there) as well as the content of the page (which
specific items are there).

CIMG3012

Sample '5th image in bpunkts photostream’

As an example of how d.mix’s source-code generation
works, consider a “tag cloud” page found on Flickr. All tags
are found inside the following structure:

<p id="TagCloud”>

Tagl
Tag2..
</p>

The site-to-service mapping script to find each element and
annotate it is:
@user_id=doc.at ("input [@name='w']") ["value"]

doc.search("//pl@id='TagCloud'] /a") .each do |link]|
tag = link.inner html
src = generate_source (:tags=>tag, :user id=>@user id)
annotations += context_menu(link, “tag description”, src)
end

In this code example, the Ruby code makes use of the
Hpricot library [3] to extract the user’s id from a hidden
form element. It then iterates over the set of links within the
tag cloud, extracts the tag name, generates source code by

['@ & opentotebook | @ | P : .
user, matching the given tags.

Figure 4. The site-to-service map defines a correspondence between HTML elements
and web service API calls. This graphic highlights this mapping for three items on Flickr.

parameterizing a source code stub for flickr.photos.search
and generates the context menu for the element.

In essence, the d.mix mapping code is performing on-the-fly
web scraping of pages the developer is visiting to extract the
needed information for code generation. While scraping can
be brittle—matching expressions can break when site op-
erators change class or ID attributes of their pages, it is also
common practice in web development [16] since it is often
the only way to extract data without cooperation of site op-
erators. An important design decision in d.mix is to scrape at
authoring-time, when the designer is creating pages such as
the Flickr-and-YouTube mash-up in the scenario. By
scraping parameters first, d.mix’s user-created pages can in
turn make API calls at run-time, which tend to be more stable
than the HTML format of the initial example pages.

We acknowledge that building these rewrite rules is
time-intensive and requires expertise with DOM querying
through XPath or CSS. However, Ul tools such as Solvent
[19] that support building DOM selectors visually could al-
low much of it to happen by demonstration. Providing a
smooth process for creating the site-to-service maps is
important, but is somewhat orthogonal to the contributions
of this paper. As such, we leave it to future work. For this
paper, the salient attribute is that the site-to-service map
need be created only once per web site. This can be per-
formed by a somewhat expert developer, and then all de-
signers wishing to use that site can leverage that effort.

Server-side active wiki hosts and executes scripts

d.mix’s active wiki is a space where developers can freely
mix text, HTML, and CSS to determine document structure,
as well as Ruby script to express program logic. Whenever a
developer enters a new page name in the “Send to Wiki”
dialog on a sampled page, a new wiki page of that name is
created (if needed) and the generated source code is pasted
into that wiki page. The developer is then shown the ren-
dered version of the wiki page, in which the web API calls

that d.mix generated are executed and their result is shown.

To see the associated web markup (HTML / CSS) and Ruby
code, a user can click on the “edit” button as in any other
kind of wiki. The markup and snippets of script are then
shown in a browser-based text editor, which has rudimen-
tary syntax highlighting and line numbering. When the user
clicks on the “save” button, the wiki source is saved, as a
new revision, and the user is redirected to the rendered ver-
sion of the wiki page. In this rendered version, HTML, CSS,
and JavaScript tags take effect, and the embedded Ruby
code is evaluated by a templating engine, which returns a
single string for each snippet of Ruby code.

When evaluating Ruby code, the active wiki does so in a
sandbox, to reduce the security risks involved. The sandbox
has limited access to objects such as the File class, but can
maintain application state in a database or make web service
calls through SOAP, REST, or other web service protocols.

In traditional web interface design, the user interface de-
signers create a mockup in HTML which is later thrown over
the wall to the front-end engineers (or vice versa). By con-
trast, the active wiki allows web UI designers to quickly
switch between rendered view, markup, (meta)data, and
application logic, with less cognitive friction involved in
keeping the mappings between the Model, View, and Con-
troller—the active wiki keeps track of this for them.

Pasted material can be re-parameterized and edited

In comparison to a standard copy-and-paste operation, the
notable advantage of our parametric copy is that an ele-
ment’s properties can be changed after the fact. To provide
rapid editing of the most common parameters of a pasted
element—namely those passed to a web service, our wiki
offers graphical editing of parameters through property
sheets, implemented as floating layers in JavaScript.

Widget-based wiki platforms (e.g., [10]) also offer pa-
rameter-based editing of their widgets —but typically do not
offer access to the underlying widgets’ source-code repre-
sentation. In contrast, d.mix generates Ruby script, which
can be edited directly.

Like other development environments, the active wiki offers
versioning and importing of code living elsewhere on the
wiki. It does not yet support WYSIWYG wiki editing, but
such functionality could be supported in the future.

As a test of the complexity of code that can be written in a
wiki environment, we implemented all site-to-service map-
ping scripts as wiki nodes. This means the wiki scripts used
to drive the programmable proxy and thus create new wiki
pages are, themselves, wiki pages. To allow for modulari-
zation of code, a wiki page can import code or libraries from
other wiki pages (analogous to “#include” in C or import in
Java).

The generated code makes calls into Ruby modules that we
define, which broker communication between the active
wiki script and the web services. For example, users’ Ruby
scripts must reference working API keys, which are often
needed to make web service calls to popular web APIs.

While using a small static number of web API keys would be

a problem for large scale deployment (many sites limit the
number of requests you can issue in an hour), we believe our
solution works well for prototyping and for deploying situ-
ational applications with a limited number of users.

Sharing is built-in as applications are hosted server-side.

An important attribute of the d.mix wiki is that public
sharing is the default and encouraged state. An end-user can
contribute their own site-to-service mapping for a web site
they may or may not own, or simply submit small fixes to
these mappings as a web site evolves. If an end-user makes
use of d.mix to remix content from multiple data sources,
another end-user can just as easily remix the remix—copy-
ing, pasting, and parameterizing the elements from one ac-
tive wiki page to another.

ADDITIONAL APPLICATIONS
In this section we review additional applications of d.mix
beyond the use case demonstrated in the scenario.

Existing web pages can be virtually edited

The same wiki-scripted programmable HTTP proxy that
d.mix employs to annotate API-enabled web sites can also be
used to remix, rewrite, or edit any web page, document, or
web application to improve a site’s usability, aesthetics, or
accessibility, enabling a sort of recombinant web. As an
example, we have created a rewriting script on our wiki that
provides a connection between a popular event listing site
and a third-party calendaring web application. By parsing
the event’s microformat on the event site and injecting a
graphical button, users can copy events directly to their
personal calendar. Because this remix is hosted on our active

Another example is reformatting of web content to fit the
smaller screen resolution and lower bandwidth of mobile
devices. Using d.mix, we wrote a script that extracts only
essential information—movie names and show times—from
a cluttered web page. This leaner page can be accessed
through its wiki URL from any cell phone browser (see
Figure 5). Note that the reformatting work is executed on the
server and only the small text page is transmitted to the
phone. d.mix’s server-side infrastructure made it possible to
develop, test, and deploy this service in 30 minutes. In con-
trast, client-side architectures such as Greasemonkey [2] do
not work outside the desktop environment, while server-side
proxies can only be configured by administrators.

Movies playing at my
local theater

215

Figure 5. The rewriting technology in d.mix can be used to
tailor content to mobile devices. Here, essential information
is extracted from a movie listings page.

Beyond web-only applications

The scenario presented in this paper focused on data-centric
APIs from successful websites with large user bases. While
such applications present the dominant use case of mash-ups
today, we also see opportunity for d.mix to enable de-
velopment of situated ubiquitous computing applications. A
wide variety of ubicomp sensors and actuators are equipped
with embedded web servers and publish their own web ser-
vices. This enables d.mix's fast iteration cycle to extend the
“remix” functionality into physical space. To explore d.mix
design opportunities in web-enabled ubicomp applications,
we augmented two smart devices available in our lab to
support API sampling: a camera that publishes a feed of lab
activity, and a web-controlled power outlet. Combining
elements from both servers, we created a wiki page that al-
lows remote monitoring of lab occupancy to turn off room
lights if they were left on at night (see Figure 6).

More important than the utility of this particular example is
the architectural insight gained: since the web services of the
camera and power outlet were open to us, we were able to
modify their web pages and embed API annotations with the
services. This proof of concept demonstrated that web ser-
vice providers can integrate support for API sampling di-
rectly into their pages, obviating the need for a separate
site-to-service map on the d.mix server.

FEEDBACK FROM WEB PROFESSIONALS

As d.mix matured, we met weekly with web designers to
obtain feedback for a period of eight weeks. Some of these
meetings were with individuals, others were with groups;
the largest group was 12. We mostly recruited informants at
professional events; informants included attendees of sev-
eral Ruby programming language user groups, web devel-
opers at startup companies in Silicon Valley, and researchers
at industrial research labs interested in web technologies.

Perhaps the most important issue raised by informants was
one of scale. An early informant was a web developer at a
Bay Area calendaring startup. He was most interested in the
technology to allow rewriting of third party pages through
scripts shared on a wiki. He saw performance as well as
legal hurdles to grow our approach to many simultaneous
users. Another team voiced similar concerns, particularly
about scaling issues arising from the limits imposed by web
services as to how many API calls a user can make. Scaling
concerns are clearly central to the question of whether a
mash-up approach can be used to create wide-distribution
web applications; however, they are less critical for tools
such as d.mix that are primarily designed for prototyping
and situated software.

As the reach of mash-ups expands, informants were inter-
ested in how users and developers might locate relevant
services. Several informants, including a JavaScript devel-
oper at a web-based instant-messaging startup, suggested
that it was important to consider how tools might aid users in
finding new components. They noted that while services are
rapidly proliferating, there is a dearth of support for search
and sensemaking in this space. Mackay [23] and MacLean
[24] have explored the social side of end-user-created
software—and the recent Koala work has made strides in

Gates 390 Light Control

Turn On Light
Turn Off Light

—

Turn On Light [Turn ('{XH ight|

Figure 6. An example of a d.mix ubicomp mashup: web
services provide video monitoring and lighting control.

this direction for the web [22]—we believe further efforts in
this direction to be a promising avenue for future work.

Informants saw the merits of the d.mix approach to extend
beyond the PC-based web browser. A researcher at an in-
dustrial research lab expressed interest in creating an “elastic
office,” where web-based office software is adapted for
mobile devices. This focus on mobile interaction encour-
aged our interest in using a mash-up approach to tailoring
web applications for mobile devices (see Figure 5).

Informants also raised the broader implications of a mash-up
approach to design. A user experience designer and a plat-
form engineer at the offices of a browser vendor raised
end-user security as an important issue to consider. At a
fashion-centered web startup, a web developer brought our
attention to the legal issues involved in annotating sites in a
public and social way.

Our recruiting method yielded informants with more exper-
tise than d.mix’s target audience; consequently, they asked
questions about—and offered suggestions for raising—the
ceiling of the tool. In a group meeting with 12 web designers
and developers, informants expressed interest in creating
annotations for a new API, and asked how time-consuming
this process was. We explained that annotation in d.mix
requires 5 to 10 lines per element; this was met with a posi-
tive response. A suggestion they offered for future work was
for d.mix to fall back to HTML scraping when sites lack APIs.

EVALUATION

We conducted a first-use evaluation study with eight par-
ticipants: seven were male, one female; their ages ranged
from 25 to 46. We recruited participants with at least some
web development experience. All participants had some
level of college education; four had completed graduate
school. Four participants had a computer science education;
one was an electrical engineer; three came from the life
sciences. As recruiting developers with Ruby experience
proved difficult, only 4 participants had more than a passing
knowledge of this scripting language. Everyone was familiar
with HTML; six participants were familiar with JavaScript;
and six with at least one other high-level scripting language.
Four participants had some familiarity with web APIs, but

only two had previously attempted to build a mash-up.

Study Protocol

Study sessions took approximately 75 minutes. We made
three web sites with APIs available for sampling—Yahoo!
web search, the Flickr photo sharing site, and YouTube, a
video sharing site. For each site, d.mix supported annota-
tions for a subset of the site’s web API. For example, with
Flickr, participants could perform full-text or tag searches
and copy images with their metadata, but they could not
extract user profile information. Participants were seated at a
single-screen workstation with a standard web browser. We
first demonstrated d.mix’s interface for sampling from web
pages, sending content to the wiki, and editing those pages.
Next, we gave participants three tasks to perform.

The first task tested the overall usability of our approach—
participants were asked to sample pictures and videos, send
that content to the wiki, and change simple parameters of
pasted elements, e.g., how many images to show from a
photo stream. The second design task was similar to our
scenario—it asked participants to create an information
dashboard for a magazine’s photography editor. This re-
quired combining data from multiple users on the Flickr site
and formatting the results. The third task asked participants
to create a meta-search engine—using a text input search
form, participants should query at least two different web
services and combine search results from both on a single
page. This task required generalizing a particular example
taken from a website to a parametric form by editing the
source code d.mix generated. Figure 7 shows two pages that
one participant produced using d.mix. After completing the
tasks, participants filled out a qualitative questionnaire on
their experience and were also debriefed verbally.

Successes

On a high level, all participants understood and successfully
used the workflow of browsing web sites for desired content
or functionality, sampling from the sites, sending sampled
items to the wiki, and editing items. Given that less than one
hour of time was allocated to three tasks, it is notable that all
participants successfully created dynamic pages for the first
two tasks. In task 3, five participants created working me-
ta-search engines (see Figure 7). However, for three of the
participants without Ruby experience, its syntax proved a
hurdle; they only partially completed the task.

Our participants were comfortable with editing the gener-
ated source code directly, without using the graphical
property editor. Making the source accessible to participants
allowed them to leverage their web design experience. For
example, multiple participants leveraged their knowledge of
CSS styles to change formatting and alignment of our gen-
erated code to better suit their aesthetic sensibility. Copy and
paste within the wiki also allowed participants to reuse their
work from a previous task in a later one.

In their post-test responses, participants highlighted three
main advantages that d.mix offered to them compared to
their existing toolset: elimination of setup and configuration
barriers; enabling of rapid creation of functional web ap-
plication prototypes; and lowering of expertise threshold.

First, participants commented on the advantage of having a
browser-based editing environment. There was “minimum
setup hassle,” since “you don’t need to set up your own
server.” One participant’s comments sum up this point suc-
cinctly: “I don’t know how to set up a Ruby/API environ-
ment on my web space. This lets me cut to the chase.”

Second, participants also highlighted the gain in develop-
ment speed. Participants perceived code creation by select-
ing examples and then modifying them to be faster than
writing new code or integrating third party code snippets.

Third, participants felt that d.mix lowered the expertise
threshold required to work with web APIs because they were
not required to search or understand an API first. A web
development consultant saw value in d.mix because he felt it
would enable his clients to update their sites themselves.

Shortcomings

We also discovered a range of challenges our participants
faced when working with d.mix. Universally, participants
wished for a larger set of supported sites. This is a not a tri-
vial request since annotation of web pages requires devel-
oper work. A longer public deployment is needed to gauge
whether d.mix users can and will generate their own site-
to-service maps on the wiki.

Other shortcomings discovered can be categorized into
conceptual problems related to the action of sampling; dif-
ficulty of multi-language development; insufficient er-
ror-handling support in the wiki; and lack of documentation.

Inconsistent model of our sampling implementation

Participants were confused by limitations in what source
elements were “sampling-aware.” For example, to specify a
query for a set of Flickr images in d.mix, the user currently
must sample from the /ink to the image set, not the results.
This suggests that the d.mix architecture should always
enable sampling from both the source and from the target
page. Also, where there is a genuine difference in effect,
distinct highlighting treatments could be used to convey this.

Participants complained about a lack of visibility whether a
given page would support sampling or not. Since rewriting
pages through the d.mix proxy introduces a page-load delay,

ations with their stay.
farmation, and local links.

2ach-CA.US, Welcome to
NevwportBeach-Ch, Your community spirt by getting a
custom NewporlBeach-CA US email address.

id video and images for free. . YDM
n - Commercials by anonymeus. Views.

lating and match making service
Vet Verified Local Singles Now. Contact

Figure 7. Two pages a participant created during our user
study. Left image: Information dashboard for a magazine
editor, showing recent relevant images of magazine pho-
tographers. Right image: Meta-search engine showing both
relevant web pages and image results for a search term.

participants browsed the web sites normally, and only turned
on the sampling proxy when they had found elements they
wished to sample. Only after this action were they able to
find out whether the page was enhanced by d.mix. One
means of addressing this is to provide feedback within the
browser as to whether the page may be sampled; another
would be to minimize the latency overhead introduced
through the proxy so that users can always leave their
browser in sampling mode.

Multi-language scripting

Dynamic web pages routinely use at least three different
notation systems: HTML for page structuring, JavaScript for
client-side interaction logic, and a scripting language such as
Ruby for server-side logic. This mixing of multiple pro-
gramming languages in a single web page introduces both
flexibility and confusion for web developers.

d.mix’s property sheets implementation exacerbated this
complexity. It wrapped the generated Ruby code in a HTML
<div> element whose attributes were used to construct the
graphical editor, but were also read by the Ruby code inside
the tag to parameterize web API calls. Participants were
confused by this wrapping and unsuccessfully tried to insert
Ruby variables into the <div> tag.

Lack of documentation & insufficient error handling

Many participants requested more complete documentation.
One participant asked for more comments in the code ex-
plaining the format of API parameters. For example, two
participants struggled to modify an image-search call to
support multiple parameters. A related request was to pro-
vide structured editors in the graphical property sheets that
offered alternative values and validated data entry.

Participants also complained that debugging their wiki
pages was hard. Several participants complained about the
“incomprehensible error messages” that syntax and execu-
tion errors generated. d.mix currently catches and displays
Ruby sandbox exceptions, along with the source code that
generated the exception.

How to go beyond the wiki environment?

Participants valued the active wiki for its support of rapid
prototyping. However, because of a perceived lack of secu-
rity, robustness and performance, participants did not regard
the wiki as a viable platform for larger deployment. One
participant remarked, “I’d be hesitant to use it for anything
other than prototyping” and two others expressed similar
reservations. Our motivation was to target situational ap-
plications with a small number of users. A real-world de-
ployment would be needed to determine if the wiki is a
suitable platform for deploying situational web applications.

Usability problems

Two smaller usability problems that disrupted participants’
work were also discovered: from experience with shopping
carts on commerce web sites, participants expected the
sampling bin to be persistent across different pages within a
web site. Participants also wished that the “send to wiki”
dialog offered a drop-down list of existing wiki pages in-
stead of requiring them to enter a full page name each time.

RELATED WORK

d.mix draws on existing work in three areas. First, it draws
on research for end-user modification of the web. Second, it
relates to tools that lower the threshold of synthesizing web
applications. Third, d.mix relates to projects that deal with
locating, copying, and modifying program documentation
and examples. We discuss each area in turn.

Tools for end-user modification of web experiences
Greasemonkey [2], Chickenfoot [9] and Koala [22] are cli-
ent-side Firefox browser extensions that enable users to re-
write web pages and automate browsing activities.
Greasemonkey enables the use of scripts that alter web
pages as they are loaded; users create these scripts manually,
generally using JavaScript to modify the page’s Document
Object Model (DOM). Chickenfoot builds on Greasemon-
key, contributing an informal syntax based on keyword
pattern matching; the primary goal of this more flexible
syntax was to enable users with less scripting knowledge to
create scripts. Koala further lowers the threshold, bringing to
the web the approach of creating scripts by generalizing the
demonstrated actions of users (e.g., [11, 26]).0f this prior
work, Koala and d.mix are the most similar. d.mix shares
with Koala the use of programming-by-demonstration
techniques and the social-software mechanism of sharing
scripts server-side on a wiki page. d.mix distinguishes itself
in three important ways. First, Chickenfoot and Koala are
end-user technologies that shield users from the underlying
representation. d.mix’s approach is more akin to visual web
development tools such as Adobe Dreamweaver [1], using
visual representations when they are expedient, yet also
providing access to the code. Supporting direct editing of
source enables experts to perform more complex operations;
it also avoids some of the “round-trip” errors that can arise
when users iteratively edit an intermediate representation.
Second, prior work focuses on automating web browsing
and rewriting web pages using the DOM in the page source—
they do not interact with web service APIs directly. In con-
trast, d.mix leverages the web page as the site for users to
demonstrate content of interest; d.mix’s generalization step
maps this to a web service API, and stores API calls as its
underlying representation. Third, with d.mix, the code is
actually executed server-side, in addition to being stored
server-side. In this way, d.mix takes an infrastructure service
approach to support end-user remixing of web pages. This
approach obviates the need for users to install any software
on their client machine, and the increasing use of the web as
a software platform provides evidence as to the merit of this
approach.

Tools for end-user synthesis of web experiences

In addition to tools that support modification of a web page’s
DOM, there are several tools that lower the expertise thre-
shold required to create web applications that synthesize data
from multiple pre-existing sources. Most notably, Yahoo!
Pipes [6], Open Kapow [5], and Marmite [34] are tools that
employ a dataflow approach for working with web services.

Yahoo! Pipes also offers a visual node-and-link editor for
manipulating web data sources. It focuses on visually re-
writing RSS feeds. Open Kapow offers a desktop-based

visual editing environment for creating new web services by
combining data from existing sites through API calls and
screen scraping. Services are deployed on a remote
“mash-up server.” The main difference between these sys-
tems and d.mix is that Kapow and Pipes are used to create
web services meant for programmatic consumption, not
applications or pages intended directly for users.

The Marmite browser extension draws on the dataflow ap-
proach manifest in Unix pipes and more recent visual tools,
such as Apple’s Automator. The sources in Marmite consist
of calls to web services and the use of Marmite’s screen
scraper. Perhaps Marmite’s strongest contribution to
end-user programming for the web lies in its linked repre-
sentation of program implementation and state: the imple-
mentation is represented through visual data flow and the
current state is visualized as a spreadsheet. The user ex-
perience benefit of this linked view is an improved under-
standing of application behavior. Unlike d.mix, Marmite
applications run client side. An additional distinction from
d.mix is that the end-user approach of Marmite is based on
visual dataflow. One of the challenges of data flow, as the
Marmite authors note, is that users have “a hard time
knowing what operation to select’—we suggest that the
direct manipulation embodied in d.mix’s program-
ming-by-demonstration ~ approach ameliorates this
gulf-of-execution [18] challenge.

IBM’s QEDWiki uses a widget-based approach to con-
structing web applications in a hosted wiki environment.
QEDWiki’s widgets are similar to Marmite’s data sinks. This
approach suggests two distinct communities—those that
create the widget library elements, and those that use the
library elements—echoing prior work on a “tailoring cul-
ture” within Xerox Lisp Buttons [24]. d.mix shares QED-
Wiki’s interest in supporting different “tiers” of develop-
ment, with two important distinctions. First, d.mix does not
interpose the additional abstraction of creating graphical
widgets; with d.mix, users directly browse the source site as
the mechanism for specifying interactive elements. Second,
d.mix better preserves the underlying modifiability of re-
mixed applications by exposing script code on demand.

Finding and appropriating documentation and code

The literature has shown [13, 16, 20] that programmers often
create new functionality by finding an example online or in a
source repository—Iless code is created tabula rasa than
might be imagined. Recent research has begun to more fully
embrace this style of development. The Mica system [32]
augments existing web search tools with navigational
structure specifically designed for finding API documenta-
tion and examples. While Mica and d.mix both address the
information foraging issues [29] involved in locating ex-
ample code, their approaches are largely complementary.

Several tools have supported mechanisms for copying web
content and interface widgets in a structured manner [14, 28,
30]. Most related to d.mix, Citrine [33] introduced tech-
niques for structured copy and paste between desktop ap-
plications, including web browsers. Citrine parses copied
text, creating a structured representation that can be pasted

in rich format, e.g., as a contact record into Microsoft Out-
look. d.mix extends idea of structured copy into the domain
of source code. With d.mix however, the structuring is
performed by the extensible site-to-service map as opposed
to through a hard-coded set of templates.

LIMITATIONS AND FUTURE WORK
This section discusses limitations of the current implemen-
tation of d.mix and implications for future work.

The primary concern of this paper is an exploration of the
approach of authoring by sampling, not with the details of a
public deployment of such a tool. As such, there are security
and authentication issues that a widely-released tool would
need to address. Most notably, the current d.mix HTTP proxy
does not handle cookies of remote sites as a client browser
would. This precludes sampling from the “logged-in web”
—pages that require authentication beyond basic API keys.

A second limitation is that using d.mix is currently limited to
sites that are amenable to web scraping—i.e., those that
generate static HTML, as opposed to sites that rely heavily on
AJAX or Flash for their interfaces.

Third, a comprehensive tool should offer support both for
working with content that is accessible through APIs and
content that is not [16]. d.mix could be combined with ex-
isting techniques for scraping by demonstration.

Lastly, while d.mix is built on wikis, a social editing tech-
nology, we have not yet evaluated how use by multiple de-
velopers would change the d.mix design experience. Prior
work on desktop software customization has shown that
people do share their customization scripts [23]. It would be
worthwhile to study to what extent this holds to rewriting the
web, and what characteristic differences there are in this
domain. It is our goal to have an open deployment in the
future to study these questions.

CONCLUSIONS

We have introduced the technique of programming by a
sample through d.mix, a tool that embodies this technique.
d.mix addresses the challenge of becoming familiar with a
web service API and provides a rapid prototyping solution
structured around the acts of sampling content from an
API-providing web site and then working with the sampled
content in an active wiki. Our system is enabled on a con-
ceptual level by a mapping from HTML pages to the API calls
that would produce similar output. On a technical level, our
system is enabled by a programmable proxy server and a
sandbox execution model for running scripts within a wiki.
Together with our past work [15, 17] we regard d.mix as a
building block towards new authoring environments that
facilitate prototyping of rich data and interaction models.

ACKNOWLEDGMENTS

We thank Leith Abdulla for programming and video
production help, whytheluckystiff for Ruby support, and
Wendy Ju for comments on this paper.

REFERENCES
1 Dreamweaver, 2007. Adobe Inc.
http://www.adobe.com/products/dreamweaver

2 Greasemonkey, 2007. http://greasemonkey.mozdev.org

3 Hpricot, a fast and delightful HTML parser, 2007.
http://code.whytheluckystiff.net/hpricot

4 The MouseHole scriptable proxy, 2007.
http://code.whytheluckystiff.net/mouseHole

S Open Kapow, 2007. Kapow Technologies.
http://www.openkapow.com

6 Pipes, 2007. Yahoo! http://pipes.yahoo.com

7 Service-oriented computing. Communications of the
ACM, M.P. Papazoglou and D. Georgakopoulos, ed.
Vol. 46.

8 Anderson, C., The Long Tail: Random House Business.
2006.

9 Bolin, M., M. Webber, P. Rha, T. Wilson, and R. C.
Miller, Automation and customization of rendered web
pages, in UIST 2005: ACM Symposium on User Interface
Software and Technology. 2005.

10 Curtis, B., W. Vicknair, and S. Nickolas, QEDWiki,
2007. IBM Alphaworks.
http://services.alphaworks.ibm.com/gedwiki/

11 Cypher, A., EAGER: programming repetitive tasks by
example, in CHI: ACM Conference on Human Factors
in Computing Systems. 1991.

12 Cypher, A., ed. Watch What I Do - Programming by
Demonstration. MIT Press: Cambridge, MA.
652 pp., 1993.

13 Fairbanks, G., D. Garlan, and W. Scherlis, Design
fragments make using frameworks easier, in Proceed-
ings of the 2 1st annual ACM SIGPLAN conference on
Object-oriented programming systems, languages, and
applications. 2006.

14 Fujima, J., A. Lunzer, K. Hornb, and Y. Tanaka, Clip,
connect, clone: combining application elements to build
custom interfaces for information access, in UIST 2004:
ACM Symposium on User Interface Software and
Technology. 2004.

15 Hartmann, B., L. Abdulla, M. Mittal, and S. R. Klemmer.
Authoring Sensor Based Interactions Through Direct
Manipulation and Pattern Matching. In Proceedings of
CHI 2007: ACM Conference on Human Factors in
Computing Systems, 2007.

16 Hartmann, B., S. Doorley, and S. R. Klemmer, Hacking,
Mashing, Gluing: A Study of Opportunistic Design and
Development. Technical Report, Stanford University
Computer Science Department, October 2006.

17 Hartmann, B., S. R. Klemmer, M. Bernstein, L. Abdulla,
B. Burr, A. Robinson-Mosher, and J. Gee. Reflective
physical prototyping through integrated design, test, and
analysis. In Proceedings of UIST 2006: ACM Symposium
on User Interface Software and Technology, 2006.

18 Hutchins, E. L., J. D. Hollan, and D. A. Norman. Direct
Manipulation Interfaces. Human-Computer Interaction
1(4). pp. 311-38, 1985.

19 Huynh, D. and S. Mazzocchi, Solvent Firefox Extension,
2007. http://simile.mit.edu/wiki/Solvent

20 Kim, M., L. Bergman, T. Lau, and D. Notkin, An Eth-
nographic Study of Copy and Paste Programming Prac-
tices in OOPL, in Proceedings of the 2004 International
Symposium on Empirical Sofiware Engineering. 2004,
IEEE Computer Society.

21 Lieberman, H., ed. Your Wish is my Command. ed.
Morgan Kaufmann. 416 pp., 2001.

22 Little, G., T. A. Lau, J. Lin, E. Kandogan, E. M. Haber,
and A. Cypher. Koala: Capture, Share, Automate, Per-
sonalize Business Processes on the Web. In Proceedings
of CHI 2007:ACM Conference on Human Factors in
Computing Systems, 2007.

23 Mackay, W. E., Patterns of sharing customizable soft-
ware, in CSCW 1990:ACM conference on Com-
puter-supported cooperative work. 1990.

24 MacLean, A., K. Carter, L. Lovstrand, and T. Moran,
User-tailorable systems: pressing the issues with buttons,
in CHI 1990: ACM Conference on Human Factors in
Computing Systems. 1990.

25 Myers, B., S. E. Hudson, and R. Pausch. Past, Present,
and Future of User Interface Software Tools. ACM
Transactions on Computer-Human Interaction 7(1). pp.
3-28, 2000.

26 Myers, B. A., Peridot: Creating User Interfaces by De-
monstration, in Watch What I Do: Programming by
Demonstration. MIT Press. pp. 125-53, 1993.

27 Nardi, B. A., 4 Small Matter of Programming: Per-
spectives on End User Computing. Cambridge, MA:
MIT Press. 1993.

28 Ozzie, R., Live Clipboard, 2007.
http://www.liveclipboard.org/

29 Pirolli, P. and S. Card. Information Foraging. Psycho-
logical Review 106(4). pp. 643-75, 1999.

30 schraefel, m. c., Y. Zhu, D. Modjeska, D. Wigdor, and S.
Zhao. Hunter Gatherer: Interaction support for the crea-
tion and management of within-web-page collections. In
Proceedings of International World Wide Web Confer-
ence. pp. pp- 172-81, 2002.

31 Shirky, C., Situated Software, 2004.
http://www.shirky.com/writings/situated software.html

32 Stylos, J. and B. Myers. A Web-Search Tool for Finding
API Components and Examples. In Proceedings of /[EEE
Symposium on Visual Languages and Human-Centric
Computing. pp. 195-202, 2006.

33 Stylos, J., B. A. Myers, and A. Faulring, Citrine: pro-
viding intelligent copy-and-paste, in UIST 2004: ACM
Symposium on User Interface Sofiware and Technology.
2004.

34 Wong, J. and J. Hong. Making Mashups with Marmite:
Re-purposing. In Proceedings of CHI 2007:ACM Con-
ference on Human Factors in Computing Systems, 2007.

