Remixing the Web: Tailoring Applications using
Programmable Proxies inside Web Browsers

Leslie Wu, Joel Brandt, Scott Klemmer
Stanford University HCI Group
Computer Science Department

Stanford, CA 94305, USA
[Iwu2, jbrandt, srk] @cs.stanford.edu

ABSTRACT

This note reports on the motivation for and design of an in-
frastructure for presenting tailored web applications as ser-
vices. We conducted a diary study of mobile information
needs, finding that a significant majority of participants’ de-
sired information was available on the web, just not in a mo-
bile-friendly format. This suggests there is latent value in
lightweight tools that tailor web applications for mobile use.
Browser extensions have emerged as perhaps the most
lightweight and intuitive method for enabling end-users to
tailor web applications, likely because browser-side ap-
proaches work fluidly with the logged-in web and because it
most effectively leverages a diverse ecology of existing web
development tools. However, client-side extensions are, well,
client-side — inhibiting their portability, especially to the
stripped-down browsers common to the mobile web. This
note introduces re:mix, an architecture that delivers both the
development benefits of browser-based application tailoring
and the server-side benefits of proxy-based rewriting.

Author Keywords
Software tailoring, mobile web, end-user programming

ACM Classification Keywords

H.5.2. [Information interfaces & presentation]: User Interfac-
es—Graphical user interfaces. H.5.4. [Information interfaces
& presentation]: Hypertext/Hypermedia—Architectures

INTRODUCTION

As more software applications are deployed through the
Web and the diversity of web-enabled devices increases,
there is significant value in support users’ customization
and tailoring of existing web applications. Current tools
such as the Greasemonkey browser extension have gained
significant traction—more than 8,000 Greasemonkey

L —

0 O © O (T . P =
by 1. Where are you starting and
ey e e — e Always use St., Ave._, Bivd., Rd.,
e Pisn Your g etc. if known, for addresses and

e intersections (ex: 101 8th St. or
. . : . Market St. & Grove St.) OR enter

a landmark (ex: Ashby BART,
SFO or Herbst Theatre)

BEE 1 Whare are you starting sad anding yeur trig?

P = . |

Address intersection or
oy ary | land

o o
= = 1
Swieat 11 e ¥ [u
e — - Menu 14:19 Back
2. Whan? 2
e s Transit.511.org - Trip Pla...
= = = = Plan Your Trip

570 foaciic 1. wpefe are you starting and
Iomersry Preserence: iy B0 ending your trip?
[p— waa— B | Starting:
dim S A i \))
Babimmag Tl ete ‘ Address, intersection or
4. Tramsgportaticn Options (spticnsi] 1 land k
- : [123 15t Street]
tnctate: (3 = (===
Excisde: | twen - | City
[= | [Anwown]
Plan your trip! ; ,CA

-or-

1 Select origin from 511 Map

j Menu 1417 Back

Figure 1. When a desktop web page (left) is automatically
transcoded (top right), the result often requires excessive
scrolling. An application tailored with re:mix (bottom right)
can be more concise and support automation, such as form
pre-filling.

scripts are available from the web site userscripts.org [3].
Unfortunately, these existing tools break the service nature
of web applications because their runtime web page rewrit-
ing occurs browser-side. Conversely, server-side tools such
as programmable proxies allow the service nature of appli-
cations to be retained, but are more difficult to program be-
cause they lack the closeness of mapping present in brows-
er-side tools.

Several factors affecting software tailoring have changed
since early computer systems began supporting user-driven
customizations. First, software designers increasingly de-
velop their user interfaces and make their data accessible in
standardized markup languages (such as HTML or XML).
Second, software applications are increasingly deployed as
a “software as a service,” meaning that they are centrally
managed and network-based [7]. The combination of these
two factors—ubiquitous markup and always-on services—
has enabled lead users to recombine elements from existing

applications and services in novel ways, such as in data
mash-ups [10, 15].

This work was motivated by the observation that the web is
available—but not necessarily usable—in an increasing
diversity of situations through mobile computing devices.
We began with a hypothesis that both a large majority of
users’ mobile information access needs go unmet, and that
a large majority of these latent needs could be satisfied by
tailoring existing web applications. In this note we report
on a need-finding study that confirms this hypothesis,
review existing browser-side and server-side tools for
tailoring, and present a new tailoring architecture called
re:mix that combines the benefits of both types of tools.

MOBILE INFORMATION ACCESS NEED-FINDING

To validate this hypothesis, we conducted a two-week long
diary study about mobile information access needs. The
study comprised 23 participants recruited from our univer-
sity campus (14 female, 9 male) with a median age of 20
(range 19 — 28). Participants were asked to complete a
structured diary entry about each information access need
that arose while they were mobile, regardless of whether the
need was met. In addition to the need itself, participants
were asked to record contextual information about the situa-
tion in which the need arose—what time it was, where they
were, and who they were with. They were asked to submit,
on average, at least two needs per day (although this was
not enforced). Participants were asked to err on the side of
“submitting too much” when assessing whether their need
was indeed an “information access” need.

In all, 442 entries were submitted. The second author pared
these entries down to 190 to remove needs that were not in-
formation access needs (e.g. entries such as “I wish my
phone didn’t crash”). Of these, participants stated that 159
(85%) went unmet. The needs were then independently
coded by two researchers (one of whom was external to the
project) with respect to whether it was possible to meet the
need today using existing web applications and a modern
desktop web browser. Possible codings were: “Yes: can
meet need today using desktop web”, “Almost: could
quickly build desktop website to meet need out of existing
websites”, “With Support: could quickly build desktop
website to meet need if appropriate infrastructure services
existed.”, and “No: meeting this need would require signifi-
cant development and/or innovation.”

Both coders reported that the majority, 66%, of mobile in-
formation access needs could be completely met by the cur-
rent desktop-based web (cross-coder correlation of 0.66).
Coder 1 reported that an additional 7% could “almost” be
met, and an additional 14% could be met “with support”.
Coder 2 reported 4% and 14% respectively (with cross-
coder correlations of .40 and .26 respectively). Summing

these values, the coders reported that an average of 82% of
the needs could be met with little or no development or in-
novation (cross-coder correlation=0.42).

An informal survey of the diary entries indicates that both
the information access needs and the contexts in which they
arise are quite diverse. Multiple customizations of a single
web application will often be necessary to satisfy needs that
arise in different contexts. We suggest that this has two im-
plications for tool support. First, tools should allow a diver-
sity of tailored design variants to exist in parallel, and allow
users to build upon existing customizations. Second, tools
should target a broad community of lead users rather than
the service-providing organizations themselves in order to
harness the labor necessary to create this diversity.

REMIXING THE WEB

The reported needs suggest that tailoring existing applica-
tions typically involves two classes of tasks: making user
interface modifications (e.g. reducing visual clutter, or au-
tomating a commonly-performed behavior such as logging
in), and adding functionality by mixing in data from infra-
structure services (e.g. pre-filling a form with current loca-
tion data). We introduce the term remixing to refer to tailor-
ing that involves these classes of modification. To make
this notion more concrete, we introduce a use case drawn
from our need-finding.

Use Case: Remixing Mobile Wayfinding

Elaine is a performer who makes frequent trips to different
venues. She sometimes makes use of Google Maps to find
directions, but often prefers to plan her trip on 511.org, a
service that consolidates public transportation information.

Elaine navigates to 511.org on her mobile device and se-
lects a bookmarklet (a bookmark that executes a JavaScript
function) that redirects her to a list of available remixes for
her current page. She chooses one that mixes in data from
FireEagle [1], a web service that allows a user to share loca-
tion information with other applications. This tailored ap-
plication, is also accessible from any other web-enabled de-
vice. The design variant chosen includes some basic visual
redesigns; it also automatically pre-fills her starting address,
by programmatically querying the FireEagle web service
(see Figure 1, bottom right).

While this improves the mobile wayfinding for Elaine,
Elaine prefers to navigate using visual landmarks rather
than with textual directions. When looking up directions
online she opts to use a remixed version of Google Maps
that mixes in photographs of landmarks from the Flickr web
site, which offers a panoply of geotagged photographs. As
she navigates turn by turn, she sees directions from Google
and photography from Flickr, in one seamless user expe-
rience.

RELATED WORK

Prior work in web tailoring falls into two
areas: browser extensions for client-side tai-
loring and programmable HTTP proxies that
interpose between the web browser and web
servers [4] (see Figure 2).

greasemonkey

Browser-side tools [5, 6, 12, 13], have the
advantage of easily supporting the modern
logged-in and AJAX-enabled web. Addition-

BROWSER

ally, their location inside the browser allows platypus
for a close mapping between the definition adblock

language and the rendered result, which can
lower the amount of expertise required. For
example, Platypus [14] presents a direct-
manipulation interface for visually redesign-
ing pages. Browser-side tools often provide
a mechanism for users to share their custo-
mization with others—the userscripts.org website for shar-
ing Greasemonkey scripts is one such example. However,
these customizations must typically be shared explicitly
(e.g. by one user copying a script file to a server, and then
another user downloading and installing it). Even when the
sharing is made explicit—as is the case with Koala (now
called Co-Scripter)—the customizations only work inside
browsers which have the necessary extensions or features.
This points to the primary disadvantage of current browser-
based tools: tailored applications do not retain their origi-
nal software-as-a-service nature. This means, for example,
that they cannot be used to tailor web pages for mobile de-
vices that have a closed architecture.

SERVER

In contrast, programmable web proxies [2, 9] support tai-
lored applications that retain their software-as-a-service ar-
chitecture. Traditionally, however, these tools have a do not
address the modern web because they do not execute Java-
Script, nor robustly deal with session management. Finally,
programmable proxies currently require a great deal of
technical expertise to program because appropriate devel-
opment and debugging tools have not matured.

A distinct but related form of software customization on the
web is the mash-up, where two or more web services or da-
ta feeds are used as building blocks to create a new applica-
tion. Because mash-up components provide data but not a
user interface—the exception that proves the rule being the
Google Maps API—mash-ups require their developers to
create an interface.

ARCHITECTURE SUPPORT FOR TAILORING

As Bolin points out [4], supporting customizations within
the browser environment allows the customization tool to
access pages as the user sees them, affected by style sheets,
session identifiers, and security restrictions. For the same
reasons, our re:mix architecture implements a programma-
ble proxy on top of the Firefox browser (see Figure 3). We
have implemented the re:mix proxy inside POW[11], a Fire-
fox extension that runs an HTTP server inside the browser.

koala/co-scripter

chickenfoot

mousehole

na kika

sharing modifications
modality supported

programming

authoring expertise required interface

30 _
T O ©
5 Y E
) I
o 5 5 = £ 5 £
= [B 2% B _
T 23 =
S| 2| = | 2| §| x| 8| .|z 285 g 2
3 x 4 o 5 o g 7] = o 2 [0} o
@) s R @ a KA O T B & < g
{] o {] @] o {] [J o (@] o
{] o []
J] O O O [
([J [J O [
@] o @] o
(] [] {] {] [J] [J {] []
{] [] {] [] [] L] o [] L] []

Figure 2. Existing tools for web tailoring. Many browser-based tools require
minimal expertise, but make sharing of tailored applications difficult. Server-
side tools are more powerful, but require a great deal of expertise to program.

At design time, users create remixes using the Firefox
tensions of their choice. At runtime, two browsers are em-
ployed: a server-side browser kernel performs the rewriting,
enabling any browser—even a lightweight one—to be the
client. A web request proceeds as follows: First, the client
browser requests a page from the proxy. The proxy loads
the requested page inside a full-featured browser that has
the appropriate extensions to perform the necessary remix-
ing. After the page is fully loaded and the remixing is com-
plete, the proxy transmits the resulting document object
model (DOM) to the client.

Many mobile browsers and desktop browsers on public
terminals do not allow the user to specify an HTTP proxy. In
order to support such browsers, we use a URL-based ap-
proach similar to that employed by content-caching services
such as CoralCDN [8]. Users simply request a remixed ver-
sion of a page through a small modification to the URL. For
example, a remixed version of 511.org might be available at
http://10.0.0.1:8080/transit.511.org/tripplanner/, where
“10.0.0.1:8080” is the IP address and port of the user’s
re:mix proxy, and the remainder of the URL is the URL to be
remixed.

As discussed earlier, remixing often involves mixing in
small bits of data from other services. Often times, the data
to be mixed in may not be accessible by a cleanly-defined
web API, nor can it easily be scraped, because it only exists
on the logged-in web. In these situations, re:mix can be
used recursively to access the desired information. This is
perhaps made most clear with an example: a user may wish
to mix her contacts’ status information from a social net-
work service into her webmail application. This status in-
formation is not available via an API, and only exists on the
logged-in web. Because re:mix presents itself as a URL-
based proxy, it can be used recursively by the extensions
that do the rewriting. For example, the Greasemonkey
script that rewrites the webmail interface can access the so-
cial network data by requesting a logged-in webpage
through re:mix. Note that it would not be possible to access

this information using Greasemonkey alone. While Grea-
semonkey can modify a page on the logged-in web once it
is loaded in the browser, it cannot explicitly fetch informa-
tion from the logged-in web.

CONCLUSIONS AND FUTURE WORK

The application tailoring described in this paper was im-
plemented without extensive tool support for interface and
interaction redesign. Although the architecture presented
enabled the production of tailored design variants, author-
ing these remixed applications is currently time consuming,
and requires a certain level of technical web expertise. This
suggests the need for better design tools built on top of the
re:mix architecture. For example, a design tool for author-
ing remixes could integrate a demonstrational interface that
allows lead users to combine automation and customization
by demonstration. On a technical level, more work needs to
be done in securing re:mix and in disclosing the nature of a
re:mix script to a user. As it is, managing trust across web
services is not easily done.

Finally, we believe that the open architecture described
could enable tailoring of existing web applications for ac-
cessibility and universal access. Firefox is an accessible
browser, but the application web at large is not universally
accessible. The re:mix architecture may provide a way for
proprietary assistive technology web clients, such as screen
readers, to better integrate with existing proprietary applica-
tions, in such a way that the tailored, more accessible appli-
cations are still available as large-scale services.

We have motivated and presented re:mix, an architecture
for tailoring web applications. This architecture brings to-
gether the benefits of two classes of existing tools. First, it
enables browser-side authoring which allows for greater
closeness of mapping in the development process. Second,
it allows tailored applications to be provided as a service so
they can be used on mobile and lightweight clients.

REFERENCES
1 FireEagle, 2007. http://firceagle.research.yahoo.com

MouseHole, 2007.

http://code.whytheluckystiff.net/mouseHole

Userscripts.org, 2007. http://userscripts.org

4 Bolin, M., End-User Programming for the Web, Massachu-
setts Institute of Technology, Electrical Engineering and
Computer Science, Cambridge, 2005.

w

DESIGN-TIME

Fi

10

11

12

13

14
15

RUN-TIME

client browser

vser—| web [HTTP
core | client

gure 3. The re:mix architecture at design time and runtime.

Bolin, M., M. Webber, P. Rha, T. Wilson, and R. C. Miller.
Automation and Customization of Rendered Web Pages. In
ACM Symposium on User Interface Software and Technolo-
gy. ACM Press, 2005.

Boodman, A., Greasemonkey, 2007.
https://addons.mozilla.org/en-US/firefox/addon/748

Brewer, E. A. Lessons from Giant-Scale Services. Internet
Computing, IEEE 5(4). pp. 46-55, 2001.

Freedman, M. J., E. Freudenthal, and D. Mazi¢res. Democra-
tizing Content Publication with Coral. In Proceedings of
USENIX Symposium on Networked Systems Design and
Implementation, 2004.

Grimm, R., G. Lichtman, et al. Na Kika: Secure Service Ex-
ecution and Composition in an Open Edge-Side Computing
Network. In Proceedings of USENIX Symposium on Net-
worked Systems Design and Implementation. pp. 169-82,
2006.

Hartmann, B., L. Wu, K. Collins, and S. R. Klemmer. Pro-
gramming by a Sample: Rapidly Creating Web Applications
with d.mix. In Proceedings of UIST: ACM Symposium on
User Interface Software and Technology. ACM Press, 2007.
Kellogg, D., POW — Plain Old Webserver, 2007.
https://addons.mozilla.org/en-US/firefox/addon/3002

Little, G., T. A. Lau, A. Cypher, J. Lin, E. M. Haber, and E.
Kandogan. Koala: Capture, Share, Automate, Personalize
Business Processes on the Web. In Proceedings of SIGCHI
Conference on Human Factors in Computing Systems. ACM
Press, 2007.

McDonald, M., Adblock, 2006.
https://addons.mozilla.org/en-US/firefox/addon/10

Turner, S. R., Platypus, 2007. http://platypus.mozdev.org/
Wong, J. and J. I. Hong. Making Mashups with Marmite:
Towards End-User Programming for the Web. In Proceed-
ings of SIGCHI Conference on Human Factors in Computing
Systems. ACM Press, 2007.

