
Example-Centric Programming: Integrating Web Search
into the Development Environment

Joel Brandt'?, Mira Dontcheva’, Marcos Weskamp®, Scott R. Klemmer"
Stanford University HCI Group Advanced Technology Labs

Computer Science Department Adobe Systems
Stanford, CA 94305 San Francisco, CA 94103

{jbrandt, srk} @cs.stanford.edu {mirad, mweskamp}@adobe.com

ABSTRACT

The ready availability of online source code examples has noera
changed the cost structure of programming by example modi- phegraundtotorcSaitcceca ee

o applicationComplete="appComplete();">

fication. However, current search tools are wholly separate onTabet Sot Sot FIL" /»

from editing tools. What benefits might be realized by inte- chart |®
grating them? This paper describes the design, implementa- T—
tion, and evaluation of Blueprint, a tool that integrates Web Tovcam te CR Lor cles10on re

search into the Adobe Flex Builder development environment. re ees amen, (E) ®
Blueprint automatically augments queries with code context, Cg pe er
presents an example-centric view ofsearch results, and retains ET,So
a link between copied code and its source. This paper intro- 1SE——

duces a technique for retrieving relevant example code, de- BPTe

scriptions, and running examples for a user’s query. A be- EE" ©

tween-subjects study found that Blueprint enables participants —

to search for and select example code significantly faster than

with a standard Web browser. Figure 1. The Blueprint plug-in for the Adobe Flex Builder

ACM Classification: H5.2 [Information interfaces and pres- development environment helps programmers engage in
entation]: User Interfaces—proforyping. D.2.2 [Software en- example-centric development. A hotkey places a search box

: : 1 Desien Tools and Techni Co) (A) at the programmer’s cursor position. Search results aregineering): Design Tools and Techniques—user interfaces. example-centric; each result contains a brief textual description
General terms: Design, Human Factors (B), the example code (C), and often a running example (D).

Keywords: Example-centric development, opportunistic Blueprint also provides additional search suggestions (E).
programming, Web search, prototyping

development environments provide little support for exam-

ITRODUGTION face the “build or borrow” question ple-centric development. Instead, they tacitly assume that
Lshould they im oe 2 biece of PAR, from programming begins tabula rasa and that code is either writ-y mp p ty ten by the programmer or imported as a library module.
scratch, or locate and adapt relevant existing code? Web Co

search is fundamentally changing the cost structure of this Several difficulties arise from separate tools for editing and
question [2]. It is now possible to quickly locate example search. First, the important link between borrowed code
code that implements nearly any piece of routine functional- and its source is lost. The programmer may not realize the
ity [3]. This enables programmers to opportunistically build code was borrowed from an online source; this can be valu-
applications by searching for, modifying, and combining able when debugging or modifying code. If they do know it
short blocks of example code taken from the Web [4-6]. was borrowed, but not the URL, they may have difficulty
In 1993, Nardi suggested that “programming by example re-finding it if they would like to verify attributes or view
SIT aed additional code and commentary. Second, if the source

modification holds ; nificant jatent value An oo ques- example is later updated (e.g. to fix a bug), the programmer
; " Ce © was or use ; wi ¢ app or ate pi will never know. Finally, to obtain relevant search results,

Con. many. Horie of examale codepeon ey programmers must manually specify contextual constraints’) in their query, such as languages and frameworks used.
able and the information access problems will be signifi- 1 > S S oo
cant.” [7]. Sixteen years later, finding appropriate code has We hypothesize that there is significant value in integrating
become easier: there are many Web sites dedicated to exam- Web search with a code editor. More specifically, this pa-
ple sharing (e.g. the Flex Examples Blog [8]), online open- per proposes that automatically augmenting queries with
source code repositories (e.g. Google Code [9]), and search code context and presenting an example-centric view of
interfaces for programmers [10, 11]. However, these search search results increases the speed, quality, and ease of pro-
tools are still wholly separate from editing tools. Current gramming by example modification. We introduce Blue-

1

print, an extension to the Adobe Flex Builder development display feedback while the data is being retrieved; and

environment that manifests these ideas (see Figure 1). This visualize the data.

paper makes two contributions. First, Jenny’s program needs to retrieve customer-specific
First, it introduces a user interface that integrates searching and average power-usage data. The company already has a

for example code into a development environment. This Web service that returns XML-formatted power usage data

search interface presents blocks of example code, aug- for a given customer. Jenny has written code to fetch data

mented with running examples and written descriptions from the Web before, and is capable of constructing the nec-

when available (see Figure 1). In a between-subjects com- essary code. However, she thinks it will be faster to find and

parison with 20 participants, we found that Blueprint en- copy an example than to rewrite the code from scratch. She

ables participants to search for and select example code

significantly faster than with a standard Web browser. I

Second, this paper introduces a technique for retrieving al EEE eam ane. com zo mn
_applicationComplete="appComplete();">

relevant example code from the Web for a user’s query. To ame: Script><! [COATAL

maximize speed, breadth, and ranking quality, the Blueprint Load |
server leverages a general-purpose search engine. Example

code, descriptions, and running examples are then auto- Appt cottoncontrolbor. dock-rtruets
matically extracted using a series of heuristic classifiers. By ms fppicaniontontrotsar
caching the results of this extraction, we are able to respond

to user’s queries at interactive rates.

Brandt and colleagues found that programmers used the | 2)
Web with a range of intentions [3]. On one end of the spec- Tea 5. 0 one. com 200s man
trum, programmers used the web for just-in-time learning DLicationtcapletercompleted; L
of skills, such as a new language or programming para-

digm. On the other end of the intention spectrum, pro- Loadurl ©)
grammers used the Web for highly directed reminders. In ory a Remy Hard Language Refeenca)
these cases, programmers knew exactly what code needed NY
to be written but chose to search for and copy examples to SS

avoid typing. In between these two extremes, Brandt et al. ELE

observed programmers using the web to clarify existing (3)
knowledge. For example, Web search served as a “transla- I

tor” when programmers didn’t know the name of a func- hnln me Ep a adobe. con/2006 mont
tion. Other times, programmers knew that there were mul- Se appcimpteter
tiple approaches to a task, and used Web search to quickly

enumerate possibilities. load url __Q)
flash.net.URLLoader (Flex 3 Language Reference)

Blueprint is primarily designed to support reminder and 171;JegI CHA REY

clarification tasks. In these tasks, the source code is both mA Be IO
the most useful representation when evaluating possible HELEC
results and the information that the user desires.

The remainder of this paper proceeds as follows. First, to | 0
motivate Blueprint’s interface choices, we offer back- Et e570 one. com 200s wen
ground information on how programmers use the Web to caoete ocomptete 2
inform our design. We then present a scenario enabled by ot hep vecioce adobe. com flex/ 2 anor ef flash net /URL Loader hin
Blueprint, and describe its implementation and evaluation. : Gia 5726387634 ooo DT 2009

Next, we offer a discussion of the design space of tools to var Loader URLLoader = new URLLoader();
support programmer Web use, and position Blueprint {ar request:URLRequest = new URLRequest("urlLoaderExanple.txt");
within this space to better understand its strengths and limi- CN
tations. We close with a survey of related work and i

thoughts on future research directions. Figure 2. Example-centric programming with Blueprint. To
SCENARIO: DEVELOPING WITH BLUEPRINT initiate blueprint, the user press a hotkey to initiate a search;

Jenny is a web programmer at a power utility that is about a search box appears at the cursor location (1). Searches
to launch a campaign encouraging individuals to lower are performed interactively as the user types; example code
their power consumption. She is prototyping a web applica- and running examples (when present) are shown
tion for customers to compare their daily power consump- immediately (2). The user browses examples with the
tion to average levels. Her functional prototype should: keyboard oF molise, and presses Enterto paste an example
load user data from a server into the client application; into his project (3). Blueprint automatically adds a comment

containing metadata that links the example to its source (4).

2

presses a hotkey to invoke the Blueprint search dialog; a forwarding them to the Blueprint server. Third, it notifies

search box appears next to her cursor (see Figure 2, step 1). the user when the Web origin of examples they adapted has

This interface extends auto-completion techniques [12] to updated (e.g., when a bug is fixed).

presents entire blocks of example code as results instead of User Interface
variable and method names. She types URLLoader, the name Much of Blueprint’s interface is implemented using HTML
of the main class associated with this task. Blueprint knows that is rendered by SWT Browser widgets. Communication
the language and framework version she is using, and returns with the Blueprint server occurs over HTTP using the
appropriate examples (step 2) These results are presented JSON data format [15]. Creating the interface with HTML
below the search box. She tlips through the first few exdin- facilitated rapid iteration; JSON’s broad cross-language
ples (step 3) and sees one that creates an XML object out of support facilitates implementing different components in
the data that is returned. She presses Enter, and the code is different languages.
pasted in her project (step 4). Along with the code, Blueprint nN
adds a special machine- and human-readable comment that To facilitate learning, Blueprint employs the same syntax
records the URL of the source and the date of copy. Every highlighting and navigational mechanisms as the develop-
time Jenny opens this source file in the future, Blueprint will ment environmen and existing autocomplete tools. Users
check this URL to see if the original example has changed can navigate through examples using the Tab key and
(e.g, if a bug is fixed), and will notify her when it does. She ~~ copy/paste the selected example by pressing enter.
runs her code in Flex’s debugger to confirm the XML has Augmenting Queries
loaded and to inspect its format. The Blueprint client augments user queries with contextual

Next, she wants to change the user’s mouse cursor to a information to increase the results’ relevancy. The current
busy cursor while the data is being loaded. She does not prototype augments the query with the programming lan-
know the exact name of the relevant classes or methods guage name and version (here, “Flex 37). In future work, it
involved, so autocomplete is no help. She places her cursor would be interesting to explore the benefits of adding addi-
inside the function that initiates the data request and in- tional contextual information (e.g. the types of local vari-
vokes Blueprint. This time, she searches for “busy cursor”. ables currently in scope.) Holmes and colleagues have ex-
She looks over the code in the first example returned, and plored this idea in the context of retrieving example code
sees the line “CursorManager.setBusyCursor().” She se- from a fixed repository [16]; it is not immediately clear
lects this line and presses Enter to paste it into her project. how this would generalize to Web search.
Now, knowing that CursorManager is the relevant class, When a user pastes example code into their project, Blue-
she’s able to use the standard autocomplete tool to write the print inserts a comment at its beginning — much like a
line of code necessary to restore the cursor at the end of the Javadoc comment [17]. This comment tags the example
data transfer. code with the URL it was taken from, the date and time it

Finally, Jenny wants to explore different charting compo- was inserted, and a unique numerical identifier. This meta-
nents to display the data. She invokes Blueprint a third time data is both human and machine-readable, so users can for
and searches for “charting”. Jenny docks the Blueprint re- example return to the URL. Also, embedding the metadata
sult window as a panel in her development environment so in the source file simplifies file management. Blueprint
she can browse the results in a large, persistent view. When searches for these example comments each timea file is
source pages provide a running example, Blueprint presents opened. For each comment, 1t queries the Blueprint server
this example next to the source code. After browsing and to find out if the original example has been modified since
refining her search, she settles on a line chart. She copies it was copied.
the example code from the Blueprint panel into her project Blueprint Server
and modifies it to bind the chart to the XML data. Her pro- The Blueprint server responds to queries for example code.
totype is now complete. To maximize speed, breadth, and ranking quality, the
IMPLEMENTATION server leverages a general-purpose search engine. Blueprint
Blueprint’s implementation comprises two parts: the client- uses the Adobe Community Help search APIs, a Google
side plug-in, which provides the user interface for search- search appliance. This appliance indexes Flex-specific con-
ing and browsing results, and the Blueprint server, which tent from across the Web. When Blueprint receives a query,
executes the searches for example code. it hands the query off to this search engine, which returns a

set of URLs. The challenge of this approach is that standard

Client-Side Plug-In search engines return URLs of pages, yet Blueprint’s goal
The Blueprint client is a plug-in for Adobe Flex Builder is to return examples. For each URL, Blueprint retrieves the
[13]. Flex Builder, in turn, is a plug-in for the Eclipse De- corresponding page, parses it, and extracts source-code
velopment Environment [14]. The Blueprint client provides examples. In order for the Blueprint server to be respon-
three main pieces of functionality. First, it provides a user sive, processing and transforming the results from the un-
interface for initiating searches and displaying results. Sec- derlying search engine cannot incur significant latency. To
ond, it augments users’ queries with contextual information improve response time, the server caches page contents and
(e.g. programming language and framework version) before parsing results.

3

The final step of a query is for the server to return a set of typo will cause parsing to fail. The alternate approach is

examples to the requesting client. Each example comprises heuristic-based classifiers that look for a high occurrence of

unformatted and syntax-highlighted versions of the code, a features unique to code, such as curly braces, frequent use

description of the code, the URL that the code comes from, of language keywords, and lines that end with semi-colons

and, when possible, the URL of a running example of the [11]. This approach has many fewer false negatives, but

code. Blueprint produces the syntax-highlighted version us- includes more false positives, such as text that discusses

ing Pygments [18], which outputs model-based markup. The code. Blueprint uses a heuristic-based approach because, in

client transforms this markup into styled code using CSS. this domain, false positives (spurious results) are strongly

Extracting example code, descriptions, and running examples preferable to false negatives (missing results).
To facilitate locating and extracting source code from Web The next step is to extract descriptions and, where possible,

pages, Blueprint first segments the page. Then, Blueprint running examples for each code segment. Informal inspec-

classifies each segment as being source code or not. This tion of pages containing example code revealed two pat-

offline processing takes the current Blueprint prototype terns: the text immediately preceding an example almost

about 10 seconds per page. always described the example, and running examples al-

Since HTML documents often contain errors (e.g., missing most always occurred after the example code.
tags or extraneous quotes), Blueprint first transforms them To build descriptions, Blueprint iteratively joins the seg-

into proper XHTML documents so that we can leverage ments immediately preceding the code until any of three

their structure in the segmentation process. We preprocess conditions is met: 1.) we encounter another code segment,

the HTML file with the BeautifulSoup library [19], which 2.) we encounter a segment indicative of a break in content

generates valid XHTML output for any input. (those generated by DIV, HR, or heading tags), or 3.) we

Next, Blueprint divides the resulting hierarchical XHTML reach a length threshold (currently 250 words).
document into independent segments by examining block- To find running examples, Blueprint analyzes the k seg-
level elements. Blueprint uses 31 tags to define blocks; the ments following a code example. Because we are con-
most common are: P, Hl, DIV, and PRE. We also extract cerned with Flex, all examples occur as Flash SWF files.
SCRIPT and OBJECT blocks as block-level elements, because We search for references to SWF files in OBJECT and

running examples are usually contained within these tags. To SCRIPT tags. In practice, we have found k=3 works best;

find block-level elements, Blueprint traverses the document larger values resulted in erroneous content, such as Flash-

depth-first. When we reach a leaf element, we backtrack to based advertisements.

the nearest containing block-level element and create a seg- Caching and pre-populating the example database
ment. If the root of the tree 15 reached before finding a Blueprint caches the extraction results so that examples can
block-level element, the element immediately before the root be returned immediately. Without caching, search response
is extracted as a segment. This algorithm keeps segments time would be bounded by the amount of time required to
ordered exactly as they were in the original document. retrieve the resulting Web pages. URLs returned by the
Third, Blueprint strips each segment of the majority of its underlying search engine that are not in our cache are ig-

formatting so that we can reliably determine whether or not nored for that query. They are then added to the cache by a

it contains example code. Although formatting, such as background process so they can be used in future queries.

SPAN elements for syntax highlighting, helps with the seg- A future version of Blueprint could return these to users

mentation process, it complicates source-code recognition. asynchronously.

For readability, Blueprint preserves the original line breaks. To make Blueprint usable initially, we pre-populated the
To strip formatting while retaining line breaks, we “render” cache with approximately 50,000 URLs obtained from
each segment to plain text using w3m, a text-based web search engine query logs. To keep the cache current, Blue-
browser [20]. Blueprint stores the HTML and plain text print crawls the URLs in the cache as a background proc-
versions of all segments na database. On average, a Web ess. Since pages containing examples are relatively static,
page in our dataset contains 161 segments. However, 69% the Blueprint prototype re-crawls them weekly.
of these are less than 50 characters long (these are primarily

created by navigational elements). This possible over- Keeping track of changes to examples
segmenting is not a problem as long as blocks of example Each time a page is crawled, Blueprint checks for updates to
code are being correctly parsed into single segments. the examples (e.g., bug fixes). It compares old and new ex-

amples using the diff tool. Because pages typically contain

We now have clean, separate segments that are ready for fewer than ten examples, Blueprint compares all pairs of
classification. There are two main approaches for classify- examples on the new page and examples on the old page. If
ing 4 segment as code or not. The first is to parse each the examples match exactly, they are deemed the same. If a
segment with the languages of interest. Segments that parse new example has more than two-thirds of its lines in com-
correctly are considered code. For Blueprint, this would be mon with an old example, it is recorded as changed. Other-
ActionScript and MXML, the two languages used by wise, the new example is deemed new. The database stores
Adobe Flex. In practice, this approach yields many false each example with a timestamp, and keeps all previous ver-
negatives. For example, code with line numbers or a single

4

sions. Storing examples with timestamps facilitates Blue- Method

print’s ability to track changes and to return all versions of an Twenty professional programmers (16 men, 4 women) par-
example so that a user can see what has changed. ticipated in this study. We recruited them through an internal

EVALUATION company mailing list and compensated them with a $15 gift
card in exchange. Participants had an average of 11.3 years

We conducted a laboratory study to better understand how : :
: : of professional experience. Fourteen reported at least one

Blueprint affects the example-centric development process. : : :

This study evaluated three hypotheses: year of programming experience with Flex; twelve reported
spending at least 25 hours a week programming in Flex.

Hi: Programmers using Blueprint will complete directed Participants were given an off-the-shelf installation of Flex
tasks more quickly than those who do not because they will : : : .

find example code faster and bring it into their project Builder, pre-loaded with three pro] ect files. Participants in
<ooner the control condition were provided with the Firefox Web

browser; they were asked to use the Adobe Community

H2: Code produced by programmers using Blueprint will Help Search engine to look for example code. Participants
have the same quality as code written by example moditi- in the treatment condition were provided with Blueprint to
cation using traditional means. search for code samples; they were not allowed to use a

H3: Programmers who use Blueprint produce better de- web browser.
signs on an exploratory design task than those using a web Participants were asked to complete a tutorial, a directed
browser for code search. task, and an exploratory task. Participants were told that

they would be timed and that they should approach all tasks

Directed Task Completion Time as though they are prototyping and not writing production-
level code. Participants began each task with a project file

that included a running application, and they were asked to

—— add additional functionality.

—— For the tutorial task, the sample application contained an

J — Bl blueprint HTML browsing component and three buttons that navi-
—_— [] control gate the browser to three different Web sites. Participants
i received a written tutorial that guided them through adding

13) fade effects to the buttons and adding a busy cursor. In the
2 —_— control condition, the participants were asked to use the
2 — web browser to find sample code for both modifications.
S |c—— The tutorial described which search result would be best to
— follow and which lines of code to add to the sample appli-

- cation. In the treatment condition, the participants were
—_————— asked to use Blueprint to find code samples.

—_— io For the directed programming task, the participants were
VvDNF instructed to use the URLLoader class to retrieve text from

i 200 00 a URL and place it in a text box. They were told that they

time (seconds) should complete the task as quickly as possible. In addition,
the participants were told that the person to complete the

task fastest would receive an additional gift card as a prize.

Directed Task Code Quality Participants were given 10 minutes to complete this task.
BEOEEBEEEREEEREEROOOO0O0O0ORBOO0O For the exploratory programming task, participants were
best worst instructed to use Flex Charting Components to visualize an

array of provided data. The participants were instructed to

make the possible best visualization. They were told that

Exploratory Task Chart Quality the results would be judged by an external designer and the
BEREOCOBBOBROBRBROOBROORCOLO MWR best visualization would win an extra gift card. Participants

best worst were given 15 minutes to complete this task.

Figure 3. Results from the study. The top graph shows To conclude the study, we asked the participants a few
each participant’s completion time on the directed task. questions about their experience with the browsing and
Time of first paste is shown as a tick mark; participants who searching interface.
used Blueprint are shown in black. The two bottom graphs Results

show ranking of participant’s code quality (directed task) Directed Task

ana chart quality (exploretory ask) respectively. fain, Nine out of ten Blueprint participants and eight out of ten
P P Used Blueprint are shown In black. control participants completed the directed task. Because

5

not all participants completed the task and completion time ample, the type of page that the result was taken from

may not be normally distributed, we report all significance (blog, tutorial, API documentation, etc.), and the presence

tests using rank-based non-parametric statistical methods of comments in the example.

(Wilcoxon-Mann-Whitney test for rank sum difference and Three participants requested greater integration between
Spearman rank correlation). Blueprint and other sources of data. For example, one par-
We ranked the participants by the time until they pasted the ticipant suggested that all class names appearing in exam-

first example. See Figure 3. ples be linked to their API page.

Participants using Blueprint pasted code for the first time Finally, three participants requested maintaining a search

after an average of 57 seconds, versus 121 seconds for the history; one also suggested a browseable and searchable

control group. The rank-order difference in time to first history of examples used.
CL _

paste was significant (p < 0.01). Discussion
Among finishers, those using Blueprint finished after an In addition to the participants’ explicit suggestions, we
average of 346 seconds, compared to 479 seconds for the identified a number of shortcomings as we observed par-
control. The rank-order difference for all participants in ticipants working.

task completion time was not significant (p=0.14). Partici- It is currently difficult to compare multiple examples using
pants’ first paste time correlates strongly with task comple- BI : :oo. : ueprint. Typically, only one example fits on the screen at
tion time (r,=0.52, p=0.01). This suggests that lowering the :

: : : a time. To show more examples simultaneously, one could
time required to search for, selecting and copying examples : : ,
1 soeed development use code-collapsing techniques to reduce each example’s

WISP velop length. Additionally, Blueprint could show all running ex-
A professional software engineer external to the project amples from a result set in parallel. Finally, visual differ-
rank-ordered the participants’ code. He judged quality by encing tools might help users compare two examples.

whether the code met the specifications, whether it ‘in- We assumed that users would only invoke Blueprint once
cluded error handling, whether it contained extraneous : RO

.) : per task. Thus, each time Blueprint is invoked, the search
statements, and overall style. Participants using Blueprint

CL box and result area would be empty. Instead, we observed
produced significantly higher-rated code (p=0.02). We : : : :

: .. ; : that users invoked Blueprint multiple times for a single task
hypothesize this is because the example-centric result view :
: : : : (e.g. when a task required several blocks of code to be cop-
in Blueprint makes it more likely that users will choose a : :

: ied to disparate locations). Results should be persistent, but
good example to start from. When searching for :

- : it should be easier to clear the search box: when re-
URLLoader” using the Adobe Community Help search : :

: : invoking Blueprint, the terms should be pre-selected so that
engine, the first result contains the best code. However, this)

; : : typing replaces them.
result’s snippet had poor scent. For this reason, we specu-
late that some control participants overlooked it in favor of Finally, we noticed that some participants had difficulty
a result with better scent. locating specific lines they were looking for within exam-

Expl Task ples. Two interface changes could improve this process:
xploratory Tas : . , First, search terms should be highlighted within the results.
A professional designer rank-ordered the participants ey

: Second, users should be able to search within the result set.
charts. To judge chart quality, he considered the appropri-

ateness of chart type, whether or not all data was visual- DESIGN SPACE
ized, and aesthetics of the chart. The sum of ranks was This section discusses the important decisions made in
smaller for participants using Blueprint (94 vs. 116), but Blueprint’s design, and positions them in a space of alterna-
this result was not significant (p=0.21). While a larger tive designs (see Figure 4). Positioning Blueprint within
study may have found significance with the current imple- this space helps structure a discussion of Blueprint’s limita-
mentation of Blueprint, we believe improvements to Blue- tions and suggests fruitful areas for future work.

print’s interface (described below) would make Blueprint Task: Blueprint is expressly designed to facilitate imple-
much more useful in exploratory tasks. menting new functionality. Programming involves many
Suggestions for Improvement tasks: planning and design, implementation, and testing and
When asked “How likely would you be to install and use debugging. For many other tasks—e.g. deciphering a cryp-
Blueprint in its current form?” participants responses aver- tic error message during debugging—it might make more
aged 5.1 on a 7-point Likert scale (1 = “not at all likely”, 7 sense to initiate searches from the program’s output. In
= “extremely likely”). Participants also provided several such situations, a code-centric view of results might hide
suggestions for improvement. important information.

The most common requests were for greater control over Knowledge: Blueprint presents a code-centric view of re-
result ranking. Two users suggested that they should be sults, so programmers must be knowledgeable about the
able to rate (and thus affect the ranking of) examples. Three tools (i.e. languages and frameworks used in the example)
users expressed interest in being able to filter results on to interpret the results. For any given task, programmers
certain properties such as whether result has a running ex- have a certain amount of knowledge about both the tools

6

Languages that provide a comprehensive standard library

Task ion & Implementation doa (e.g., Python and Java) seem to have more code online than
those that do not (e.g., C). This is perhaps because it is eas-

Kn led Novice with Knowledable about tools, Knowledgable about ICT to write small blocks of code that implement non-trivial
owledge task & tools novice with task task & tools functionality without requiring external libraries. The high

cost of installing and linking external libraries may often

Scope ios oe days outweigh the benefits associated with co-opting examples
that use them.

Approach SI exploraton Finally, common functionality is more likely to be avail
able online than rare functionality.

Separability © _-————1 Is the context of an example important?
mostly lots of .
independent interaction Blueprint extracts example code from Web pages and pre-

sents it to the user outside of its original context. There are
Figure 4. Design space of tools to aid programmers’ Web trade-offs associated with this decision. On the one hand,

use. Blueprint is designed to address the portion of the presenting all results using a consistent interface may speed
space shown with a shaded background. up understanding [21]. On the other hand, programmers

sometimes use a page’s high-level visual features (e.g.

they are using (e.g. languages and libraries), and the task Whether a page contains advertisements) to make initial
itself (e.g. implementing a piece of functionality). judgments about the quality of example code [3]. Pro-

: : rammers most commonly use surface features about the
Scope: We designed Blueprint to make small tasks faster. S , 4 :

CL : : : .. code’s context when they have difficulty evaluating the
Blueprint’s primary interaction behaves similarly to auto- Co

: : : code quality itself [3], e.g. when selecting a tutorial to learn
completion [12] to make inserting small blocks of code : : ..

: .. about a new language or programming paradigm. This is
more efficient. The transient nature of this interface makes : : Lo.
. : : consistent with general novice/expert distinctions [22].
it impractical for larger tasks. Blueprint does support dock- CL : Co CL
: : : Blueprint is designed primarily for situations where the
ing of results as a persistent panel. However, this panel :

: . programmer has enough knowledge about the tools he is
lacks the rich navigational features present in modern Web :

: : using to evaluate the code itself.
browsers, (e.g. tabs, history, bookmarking, and finding text

within a page). This may be useful in completing larger RELATED WORK
tasks. This research is inspired by prior work on tailoring Web

Approach: Currently, Blueprint works best for directed search jerfaces, and providing support for example-
tasks. There are two reasons for this: First, Blueprint requires centric development.
users to search, rather than browse. Users must have a con- Tailoring Web Search for Specific Tasks

crete notion of what they want to do in order to construct a Prior work has explored how programmers search the Web
query. Second, Blueprint currently contains little support for [3, 11] and tailoring Web search to their needs [9-11, 23,
comparing results, a crucial part of exploratory tasks. At 24]. When building Assieme, a search engine for Java pro-
times, programmers know exactly what they want to do. At grammers, Hoffmann and colleagues recognized the impor-
others, they are interested in exploring a wide range of pos- tant role that sample code plays in helping a developer se-
sibilities. Providing better support for comparison and lect between APIs [11]. Assieme’s search result view al-

evaluation is an important direction for future work. lows the user to view example code for any API by hover-

Separability: Because Blueprint inserts example code di- ing his mouse over individual results. Blueprint carries this
rectly into the user’s project, it provides the most benefit idea further by making example code the primary feature of
when example code requires little modification. As such, it the result set. Blueprint also builds on Assieme’s method of
is most useful for tasks that are largely independent from extracting example code from Web pages by using heuris-
other pieces of the project. When a piece of code is deeply tic-based classifiers.
intertwined with the larger context it is embedded in, it may Blueprint’s approach of leveraging an existing commercial
be easier to create the new instance while referring to the search engine to produce a candidate result set has a num-
example rather than copying it. ber of advantages over building a complete search engine

The approach Blueprint introduces leads to broader ques- from scratch (e.g 3, 11]). First, it 1S substantially more
tions about example-centric development. resource-efficient to implement. Keeping a document col-

lection up to date is expensive, and this is handled auto-

Is enough example code available online? matically in our approach. Second, it is an understatement
It seems to depend on both language and task. The most to say that generating high-quality search results from natu-
popular web programming languages have rich online re- ral-language queries is a hard problem. It may be unreason-
Sources. This is likely due to the background of the com- able to assume that, even with a restricted search domain,
munity using these languages: it is natural for them to put we can do a better job than commercial search engines.
code on the web.

7

Finally, using a general-purpose search engine to provide into the development environment helps programmers ac-

data has the direct consequence that most examples are quire and adapt online resources more efficiently.

taken from tutorials, blogs, and API pages. We believe this An important avenue for future work is to improve the
my be beneficial because these examples are more likely to modification of example code. Copied code can introduce
be written in a way that is easy to understand than exam- bugs when programmers assume that sample code works
ples extracted from large source code repositories. and forget to adapt portions of the example. Blueprint users
More broadly, there has been recent interest in providing would benefit from rich refactoring support for pasted

alternative representations for Web search results [21, 25- code. This would help users change variable names consis-

29]. Dontcheva and colleagues’ work on search templates tently and reduce the number of errors. It might be valuable

introduced the idea of creating customized views of Web to rethink the character-at-a-time editing paradigm entirely.

pages called “cards” [21]. By defining a set of relations Would it be more efficient to navigate pasted code a token

between Web page elements and elements on the card, us- at a time? Perhaps arrow keys should move the user’s cur-

ers can then view a diverse collection of Web search results sor between tokens, and typing over top of an existing to-

using a consistent interface. Blueprint works similarly: ken should automatically replace all occurrences of that

common elements (code examples) from diverse Web token within the pasted region.

pages are automatically extracted and presented in a consis- While example-centric development is common, there is
tent interface for faster browsing and selection. little aggregated knowledge about how users adapt exam-
Example-Centric Development ples. If Blueprint could show users how code has been
Prior work has created tools to assist with example-centric changed in the past, perhaps they’ll make fewer errors. For
development [30]. This work has addressed the availability example, if all ten previous users changed a literal, it is
of example code problem by mining code repositories [31] highly likely that the eleventh user should change this lit-
or synthesizing example code from API specifications [32]. eral as well. The wisdom of the crowds may enable signifi-
Blueprint is unique in that it uses regular Web pages (e.g. cant advances in online programming tools.

forums, blogs, and tutorials) as sources for example code. REFERENCES
Using tutorials and blogs as sources for example code has 1. Brooks, F.P., The Mythical Man-Month: Essays on

two major benefits: First, it may provide better examples. Software Engineering. 1995: Addison-Wesley.

Code written for a tutorial is likely to contain better com- 2. Pirolli, P.L.T., Information Foraging Theory. 2007,

ments and be more general purpose than code extracted Oxford, England: Oxford University Press.

from an open source repository. Second, because these 3. Brandt, J., et al. Two Studies of Opportunistic

pages also contain text, programmers can use natural lan- Programming: Interleaving Web Foraging, Learning,

guage to find the code they are looking for. and Writing Code. In Proceedings ofCHI: ACM

In the majority of prior work, the programmer must already Conference on Human Factors in Computing Systems,
have some language- or API-specific “handle” to the code Boston, Massachusetts, 2009.
he wants to retrieve. An exception is the d.mix system; it 4. Brandt, L, et al. Opportunistic Programming: How
enables users to “sample” a Web page’s UI elements to Rapid Ideation and Prototyping Occur in Practice. In
yield the API calls necessary to create them. Future work Proceedings ofWEUSE: International Workshop on
could explore extending Blueprint so that searches for ex- End-User Software Engineering, p. 1-5, Leipzig,
ample code could be initiated by direct manipulation of Germany, 2008.
another program’s interface or output. 5. Hartmann, B., S. Doorley, and S.R. Klemmer.

Hacking, Mashing, Gluing: Understanding

Little and Miller’s research introduced techniques for pro- Opportunistic Design. 2008.
grammers to write keyword code that is transformed into 6. Clarke, S. What is an End-User Software Engineer? In
syntactically correct statements through a search process End-User Software Engineering Dagstuhl Seminar,
[33]. Future work could combine ideas from Blueprint and Dagstuhl, Germany, 2007.
keyword programming. 7. Nardi, B.A., 4 Small Matter ofProgramming:
CONCLUSION AND FUTURE WORK Perspectives on End User Computing. 1993: The MIT

We have presented a user interface for accessing online Press.
example code from within the development environment. 8. deHaan, P. Flex Examples.
This interface displays search results in an example-centric http://blog.flexexamples.com/
manner to support programming by example modification. 9. Google Code Search. http://code.google.com
This paper described the implementation of Blueprint, a 10. Stylos, J. and B.A. Myers. Mica: A Web-Search Tool
lightweight method for using a general-purpose search en- for Finding API Components and Examples. In
gine to create code-specific search results that include writ- Proceedings of VL/HCC 2006: IEEE Symposium on
ten descriptions and running examples. Empirical results Visual Languages and Human-Centric Computing, p.
suggest that Blueprint’s approach of integrating web search 195-202, 2006.

8

11. Hoffmann, R., J. Fogarty, and D.S. Weld. Assieme: 26. Dontcheva, M., et al. Summarizing Personal Web

Finding and Leveraging Implicit References in a Web Browsing Sessions. In Proceedings of UIST: ACM

Search Interface for Programmers. In Proceedings of Symposium on User Interface Software and

UIST: ACMSymposium on User Interface Software Technology, p. 115-124, Montreux, Switzerland, 2006.

and Technology, p. 13-22, Newport, Rhode Island, 27. Medynskiy, Y., M. Dontcheva, and S.M. Drucker.

2007. Exploring Websites through Contextual Facets. In

12. Microsoft IntelliSense. Proceeding ofCHI: ACM Conference on Human

http://www.microsoft.com/visualstudio/ Factors in Computing Systems, Boston, Massachusetts,
13. Adobe Flex. http://www.adobe.com/flex 2009.

14. Eclipse. http://www.eclipse.org 28. Teevan, J., et al. Visual Snippets: Summarizing Web

15. JSONData-Interchange Format. http://json.org Pages for Search and Revisitation. In Proceeding of

16. Holmes, R. and G.C. Murphy. Using Structural CHI: ACM Conference on Human Factors in

Context to Recommend Source Code Examples. In Computing Systems, Boston, Massachusetts, 2009.

Proceedings ofICSE: International Conference on 29. Adar, E., et al. Zoetrope: interacting with the

Software Engineering, p. 117-125, 2005. ephemeral web. In Proceedings of UIST: ACM

17. Javadoc. http://java.sun.com/j2se/javadoc/ Symposium on User Interface Software and

18. Pygments. http://pygments.org/ Technology, p. 239-248, Monterey, California, 2008.

19. Richardson, L. Beautiful Soup. 30. Hartmann, B., et al. Programming by a Sample:

http://www.crummy.com/software/Beautiful Soup Rapidly Creating Web Applications with d.mix. In
20. wim. http://w3m.sourceforge.net Proceedings of UIST: ACMSymposium on User

21. Dontcheva, M., et al. Relations, Cards, and Search Interface Software and Technology, p. 241-250,

Templates: User-Guided Web Data Integration and Newport, Rhode Island, 2007.

Layout. In Proceedings of UIST: ACMSymposium on 31. Sahavechaphan, N. and K. Claypool. XSnippet:

User Interface Software and Technology, p. 61-70, Mining for Sample Code. In Proceedings ofOOPSLA:

Newport, Rhode Island, 2007. ACMSIGPLAN Symposium on Object-Oriented

22. Chi, M.T.H., P.J. Feltovich, and R. Glaser, Programming Systems, Languages, and Applications,

Categorization and Representation ofPhysics p. 413-430, 2006.

Problems by Experts and Novices. Cognitive Science, 32. Mandelin, D., et al. Jungloid Mining: Helping to

1981. 5(2): p. 121-152. Navigate the API Jungle. In Proceedings ofPLDI:

23. Bajracharya, S., et al. Sourcerer: A Search Engine for ACMSIGPLAN Conference on Programming

Open Source Code Supporting Structure-Based Search. Language Design and Implementation, p. 48-61,

In Companion to OOPSLA: ACMSIGPLAN Chicago, IL, USA, 2005.

Symposium on Object-Oriented Programming Systems, 33. Little, G. and R.C. Miller. Translating Keyword

Languages, andApplications, p. 681-682, Portland, Commands into Executable Code. In Proceedings of

Oregon, USA, 2006. UIST: ACMSymposium on User Interface Software

24. Krugle. http://www krugle.com and Technology, p. 135-144, Montreux, Switzerland,

25. Woodruff, A., et al. Using Thumbnails to Search the 2006.

Web. In Proceeding ofCHI: ACM Conference on

Human Factors in Computing Systems, p. 198-203,

Seattle, Washington, 2001.

9

