Example-Centric Programming: Integrating Web Search
into the Development Environment

Joel Brandtl’z, Mira Dontchevaz, Marcos Weskampz, Scott R. Klemmer'

Stanford University HCI Group
Computer Science Department
Stanford, CA 94305
{jbrandt, srk} @cs.stanford.edu

ABSTRACT

The ready availability of online source code examples has
changed the cost structure of programming by example modi-
fication. However, current search tools are wholly separate
from editing tools. What benefits might be realized by inte-
grating them? This paper describes the design, implementa-
tion, and evaluation of Blueprint, a tool that integrates Web
search into the Adobe Flex Builder development environment.
Blueprint automatically augments queries with code context,
presents an example-centric view of search results, and retains
a link between copied code and its source. This paper intro-
duces a technique for retrieving relevant example code, de-
scriptions, and running examples for a user’s query. A be-
tween-subjects study found that Blueprint enables participants
to search for and select example code significantly faster than
with a standard Web browser.

ACM Classification: H5.2 [Information interfaces and pres-
entation]: User Interfaces—prototyping. D.2.2 [Software en-
gineering]: Design Tools and Techniques—user interfaces.

General terms: Design, Human Factors

Keywords: Example-centric development, opportunistic
programming, Web search, prototyping

INTRODUCTION

Programmers routinely face the “build or borrow” question
[1]: should they implement a piece of functionality from
scratch, or locate and adapt relevant existing code? Web
search is fundamentally changing the cost structure of this
question [2]. It is now possible to quickly locate example
code that implements nearly any piece of routine functional-
ity [3]. This enables programmers to opportunistically build
applications by searching for, modifying, and combining
short blocks of example code taken from the Web [4-6].

In 1993, Nardi suggested that “programming by example
modification” holds significant latent value. An open ques-
tion at the time was “how users will find appropriate exam-
ple code; for any practical application of example modifica-
tion, many libraries of example code will have to be avail-
able and the information access problems will be signifi-
cant.” [7]. Sixteen years later, finding appropriate code has
become easier: there are many Web sites dedicated to exam-
ple sharing (e.g. the Flex Examples Blog [8]), online open-
source code repositories (e.g. Google Code [9]), and search
interfaces for programmers [10, 11]. However, these search
tools are still wholly separate from editing tools. Current

Advanced Technology Labs
Adobe Systems
San Francisco, CA 94103
{mirad, mweskamp}@adobe.com

Figure 1. The Blueprint plug-in for the Adobe Flex Builder
development environment helps programmers engage in
example-centric development. A hotkey places a search box
(A) at the programmer’s cursor position. Search results are
example-centric; each result contains a brief textual description
(B), the example code (C), and often a running example (D).
Blueprint also provides additional search suggestions (E).

development environments provide little support for exam-
ple-centric development. Instead, they tacitly assume that
programming begins tabula rasa and that code is either writ-
ten by the programmer or imported as a library module.

Several difficulties arise from separate tools for editing and
search. First, the important link between borrowed code
and its source is lost. The programmer may not realize the
code was borrowed from an online source; this can be valu-
able when debugging or modifying code. If they do know it
was borrowed, but not the URL, they may have difficulty
re-finding it if they would like to verify attributes or view
additional code and commentary. Second, if the source
example is later updated (e.g. to fix a bug), the programmer
will never know. Finally, to obtain relevant search results,
programmers must manually specify contextual constraints
in their query, such as languages and frameworks used.

We hypothesize that there is significant value in integrating
Web search with a code editor. More specifically, this pa-
per proposes that automatically augmenting queries with
code context and presenting an example-centric view of
search results increases the speed, quality, and ease of pro-
gramming by example modification. We introduce Blue-

print, an extension to the Adobe Flex Builder development
environment that manifests these ideas (see Figure 1). This
paper makes two contributions.

First, it introduces a user interface that integrates searching
for example code into a development environment. This
search interface presents blocks of example code, aug-
mented with running examples and written descriptions
when available (see Figure 1). In a between-subjects com-
parison with 20 participants, we found that Blueprint en-
ables participants to search for and select example code
significantly faster than with a standard Web browser.

Second, this paper introduces a technique for retrieving
relevant example code from the Web for a user’s query. To
maximize speed, breadth, and ranking quality, the Blueprint
server leverages a general-purpose search engine. Example
code, descriptions, and running examples are then auto-
matically extracted using a series of heuristic classifiers. By
caching the results of this extraction, we are able to respond
to user’s queries at interactive rates.

Brandt and colleagues found that programmers used the
Web with a range of intentions [3]. On one end of the spec-
trum, programmers used the web for just-in-time learning
of skills, such as a new language or programming para-
digm. On the other end of the intention spectrum, pro-
grammers used the Web for highly directed reminders. In
these cases, programmers knew exactly what code needed
to be written but chose to search for and copy examples to
avoid typing. In between these two extremes, Brandt et al.
observed programmers using the web to clarify existing
knowledge. For example, Web search served as a “transla-
tor” when programmers didn’t know the name of a func-
tion. Other times, programmers knew that there were mul-
tiple approaches to a task, and used Web search to quickly
enumerate possibilities.

Blueprint is primarily designed to support reminder and
clarification tasks. In these tasks, the source code is both
the most useful representation when evaluating possible
results and the information that the user desires.

The remainder of this paper proceeds as follows. First, to
motivate Blueprint’s interface choices, we offer back-
ground information on how programmers use the Web to
inform our design. We then present a scenario enabled by
Blueprint, and describe its implementation and evaluation.
Next, we offer a discussion of the design space of tools to
support programmer Web use, and position Blueprint
within this space to better understand its strengths and limi-
tations. We close with a survey of related work and
thoughts on future research directions.

SCENARIO: DEVELOPING WITH BLUEPRINT

Jenny is a web programmer at a power utility that is about
to launch a campaign encouraging individuals to lower
their power consumption. She is prototyping a web applica-
tion for customers to compare their daily power consump-
tion to average levels. Her functional prototype should:
load user data from a server into the client application;

display feedback while the data is being retrieved; and
visualize the data.

First, Jenny’s program needs to retrieve customer-specific
and average power-usage data. The company already has a
Web service that returns XML-formatted power usage data
for a given customer. Jenny has written code to fetch data
from the Web before, and is capable of constructing the nec-
essary code. However, she thinks it will be faster to find and
copy an example than to rewrite the code from scratch. She

O

[[

<?xml version="1.0" encoding="utf-8"?>

<mx:Application xmlns ww..adobe . com/2006/mxm1 "
backgroundColor="
horizontalAlign=
op oationtomTecer

me:Script><! [COATAL

load l

12> cript>
<nx: Appl\camon(ontrowar dock="t:

ton label="load resource” />
</mx:ApplicationControtBar>

" vert\calAhgn center
appComplete();”

mx:Script><! [COATAL

load url l

flash.net.URLLoader

Language Reference
Jret/\RLLoacer el

<7xl version="1.0" encoding="utf-8"?
<me:pplication xmlnsimee 7w adobe . con/2006 /mxml”
backgroundColor=

C <
R dontatA tonc canter verticalAlign="center"
goplicationComplete-"appComplete();

load url |

<uml version="1.0" enco

<nx:Application xmlns :
backgroundColor=" axm(r
hor1zontalAlign="cen erticaldlign="center"
gpplicationComplete= eppComlecets

< SCPipEoc! CCOATAL

8"7>
wav . adobe . com/2006/mxml "

adobe.com/flex yref/flash/net/URLLoader.html

loader:URLLoader = new URLLoader();
configureListenersCloader);

request:URLRequest = new URLRequest("urlLoaderExample.txt");
tr

Loader. load(request);
} catch CerrarcError)
; Unable to load requested document.");

Figure 2. Example-centric programming with Blueprint. To
initiate blueprint, the user press a hotkey to initiate a search;
a search box appears at the cursor location (1). Searches
are performed interactively as the user types; example code
and running examples (when present) are shown
immediately (2). The user browses examples with the
keyboard or mouse, and presses Enterto paste an example
into his project (3). Blueprint automatically adds a comment
containing metadata that links the example to its source (4).

presses a hotkey to invoke the Blueprint search dialog; a
search box appears next to her cursor (see Figure 2, step 1).
This interface extends auto-completion techniques [12] to
presents entire blocks of example code as results instead of
variable and method names. She types URLLoader, the name
of the main class associated with this task. Blueprint knows
the language and framework version she is using, and returns
appropriate examples (step 2) These results are presented
below the search box. She flips through the first few exam-
ples (step 3) and sees one that creates an XML object out of
the data that is returned. She presses Enter, and the code is
pasted in her project (step 4). Along with the code, Blueprint
adds a special machine- and human-readable comment that
records the URL of the source and the date of copy. Every
time Jenny opens this source file in the future, Blueprint will
check this URL to see if the original example has changed
(e.g., if a bug is fixed), and will notify her when it does. She
runs her code in Flex’s debugger to confirm the XML has
loaded and to inspect its format.

Next, she wants to change the user’s mouse cursor to a
busy cursor while the data is being loaded. She does not
know the exact name of the relevant classes or methods
involved, so autocomplete is no help. She places her cursor
inside the function that initiates the data request and in-
vokes Blueprint. This time, she searches for “busy cursor”.
She looks over the code in the first example returned, and
sees the line “CursorManager.setBusyCursor().” She se-
lects this line and presses Enfer to paste it into her project.
Now, knowing that CursorManager is the relevant class,
she’s able to use the standard autocomplete tool to write the
line of code necessary to restore the cursor at the end of the
data transfer.

Finally, Jenny wants to explore different charting compo-
nents to display the data. She invokes Blueprint a third time
and searches for “charting”. Jenny docks the Blueprint re-
sult window as a panel in her development environment so
she can browse the results in a large, persistent view. When
source pages provide a running example, Blueprint presents
this example next to the source code. After browsing and
refining her search, she settles on a line chart. She copies
the example code from the Blueprint panel into her project
and modifies it to bind the chart to the XML data. Her pro-
totype is now complete.

IMPLEMENTATION

Blueprint’s implementation comprises two parts: the client-
side plug-in, which provides the user interface for search-
ing and browsing results, and the Blueprint server, which
executes the searches for example code.

Client-Side Plug-In

The Blueprint client is a plug-in for Adobe Flex Builder
[13]. Flex Builder, in turn, is a plug-in for the Eclipse De-
velopment Environment [14]. The Blueprint client provides
three main pieces of functionality. First, it provides a user
interface for initiating searches and displaying results. Sec-
ond, it augments users’ queries with contextual information
(e.g. programming language and framework version) before

forwarding them to the Blueprint server. Third, it notifies
the user when the Web origin of examples they adapted has
updated (e.g., when a bug is fixed).

User Interface

Much of Blueprint’s interface is implemented using HTML
that is rendered by SWT Browser widgets. Communication
with the Blueprint server occurs over HTTP using the
JSON data format [15]. Creating the interface with HTML
facilitated rapid iteration; JSON’s broad cross-language
support facilitates implementing different components in
different languages.

To facilitate learning, Blueprint employs the same syntax
highlighting and navigational mechanisms as the develop-
ment environment and existing autocomplete tools. Users
can navigate through examples using the Tab key and
copy/paste the selected example by pressing enter.

Augmenting Queries

The Blueprint client augments user queries with contextual
information to increase the results’ relevancy. The current
prototype augments the query with the programming lan-
guage name and version (here, “Flex 3”). In future work, it
would be interesting to explore the benefits of adding addi-
tional contextual information (e.g. the types of local vari-
ables currently in scope.) Holmes and colleagues have ex-
plored this idea in the context of retrieving example code
from a fixed repository [16]; it is not immediately clear
how this would generalize to Web search.

When a user pastes example code into their project, Blue-
print inserts a comment at its beginning — much like a
Javadoc comment [17]. This comment tags the example
code with the URL it was taken from, the date and time it
was inserted, and a unique numerical identifier. This meta-
data is both human and machine-readable, so users can for
example return to the URL. Also, embedding the metadata
in the source file simplifies file management. Blueprint
searches for these example comments each time a file is
opened. For each comment, it queries the Blueprint server
to find out if the original example has been modified since
it was copied.

Blueprint Server

The Blueprint server responds to queries for example code.
To maximize speed, breadth, and ranking quality, the
server leverages a general-purpose search engine. Blueprint
uses the Adobe Community Help search APIs, a Google
search appliance. This appliance indexes Flex-specific con-
tent from across the Web. When Blueprint receives a query,
it hands the query off to this search engine, which returns a
set of URLs. The challenge of this approach is that standard
search engines return URLs of pages, yet Blueprint’s goal
is to return examples. For each URL, Blueprint retrieves the
corresponding page, parses it, and extracts source-code
examples. In order for the Blueprint server to be respon-
sive, processing and transforming the results from the un-
derlying search engine cannot incur significant latency. To
improve response time, the server caches page contents and
parsing results.

The final step of a query is for the server to return a set of
examples to the requesting client. Each example comprises
unformatted and syntax-highlighted versions of the code, a
description of the code, the URL that the code comes from,
and, when possible, the URL of a running example of the
code. Blueprint produces the syntax-highlighted version us-
ing Pygments [18], which outputs model-based markup. The
client transforms this markup into styled code using CSS.

Extracting example code, descriptions, and running examples
To facilitate locating and extracting source code from Web
pages, Blueprint first segments the page. Then, Blueprint
classifies each segment as being source code or not. This
offline processing takes the current Blueprint prototype
about 10 seconds per page.

Since HTML documents often contain errors (e.g., missing
tags or extraneous quotes), Blueprint first transforms them
into proper XHTML documents so that we can leverage
their structure in the segmentation process. We preprocess
the HTML file with the BeautifulSoup library [19], which
generates valid XHTML output for any input.

Next, Blueprint divides the resulting hierarchical XHTML
document into independent segments by examining block-
level elements. Blueprint uses 31 tags to define blocks; the
most common are: P, Hl, DIV, and PRE. We also extract
SCRIPT and OBJECT blocks as block-level elements, because
running examples are usually contained within these tags. To
find block-level elements, Blueprint traverses the document
depth-first. When we reach a leaf element, we backtrack to
the nearest containing block-level element and create a seg-
ment. If the root of the tree is reached before finding a
block-level element, the element immediately before the root
is extracted as a segment. This algorithm keeps segments
ordered exactly as they were in the original document.

Third, Blueprint strips each segment of the majority of its
formatting so that we can reliably determine whether or not
it contains example code. Although formatting, such as
SPAN elements for syntax highlighting, helps with the seg-
mentation process, it complicates source-code recognition.
For readability, Blueprint preserves the original line breaks.
To strip formatting while retaining line breaks, we “render”
each segment to plain text using w3m, a text-based web
browser [20]. Blueprint stores the HTML and plain text
versions of all segments in a database. On average, a Web
page in our dataset contains 161 segments. However, 69%
of these are less than 50 characters long (these are primarily
created by navigational elements). This possible over-
segmenting is not a problem as long as blocks of example
code are being correctly parsed into single segments.

We now have clean, separate segments that are ready for
classification. There are two main approaches for classify-
ing a segment as code or not. The first is to parse each
segment with the languages of interest. Segments that parse
correctly are considered code. For Blueprint, this would be
ActionScript and MXML, the two languages used by
Adobe Flex. In practice, this approach yields many false
negatives. For example, code with line numbers or a single

typo will cause parsing to fail. The alternate approach is
heuristic-based classifiers that look for a high occurrence of
features unique to code, such as curly braces, frequent use
of language keywords, and lines that end with semi-colons
[11]. This approach has many fewer false negatives, but
includes more false positives, such as text that discusses
code. Blueprint uses a heuristic-based approach because, in
this domain, false positives (spurious results) are strongly
preferable to false negatives (missing results).

The next step is to extract descriptions and, where possible,
running examples for each code segment. Informal inspec-
tion of pages containing example code revealed two pat-
terns: the text immediately preceding an example almost
always described the example, and running examples al-
most always occurred after the example code.

To build descriptions, Blueprint iteratively joins the seg-
ments immediately preceding the code until any of three
conditions is met: 1.) we encounter another code segment,
2.) we encounter a segment indicative of a break in content
(those generated by DIV, HR, or heading tags), or 3.) we
reach a length threshold (currently 250 words).

To find running examples, Blueprint analyzes the k seg-
ments following a code example. Because we are con-
cerned with Flex, all examples occur as Flash SWF files.
We search for references to SWF files in OBJECT and
SCRIPT tags. In practice, we have found k=3 works best;
larger values resulted in erroneous content, such as Flash-
based advertisements.

Caching and pre-populating the example database

Blueprint caches the extraction results so that examples can
be returned immediately. Without caching, search response
time would be bounded by the amount of time required to
retrieve the resulting Web pages. URLs returned by the
underlying search engine that are not in our cache are ig-
nored for that query. They are then added to the cache by a
background process so they can be used in future queries.
A future version of Blueprint could return these to users
asynchronously.

To make Blueprint usable initially, we pre-populated the
cache with approximately 50,000 URLs obtained from
search engine query logs. To keep the cache current, Blue-
print crawls the URLs in the cache as a background proc-
ess. Since pages containing examples are relatively static,
the Blueprint prototype re-crawls them weekly.

Keeping track of changes to examples

Each time a page is crawled, Blueprint checks for updates to
the examples (e.g., bug fixes). It compares old and new ex-
amples using the diff tool. Because pages typically contain
fewer than ten examples, Blueprint compares all pairs of
examples on the new page and examples on the old page. If
the examples match exactly, they are deemed the same. If a
new example has more than two-thirds of its lines in com-
mon with an old example, it is recorded as changed. Other-
wise, the new example is deemed new. The database stores
each example with a timestamp, and keeps all previous ver-

sions. Storing examples with timestamps facilitates Blue-
print’s ability to track changes and to return all versions of an
example so that a user can see what has changed.

EVALUATION

We conducted a laboratory study to better understand how
Blueprint affects the example-centric development process.
This study evaluated three hypotheses:

H1: Programmers using Blueprint will complete directed
tasks more quickly than those who do not because they will
find example code faster and bring it into their project
sooner.

H2: Code produced by programmers using Blueprint will
have the same quality as code written by example modifi-
cation using traditional means.

H3: Programmers who use Blueprint produce better de-
signs on an exploratory design task than those using a web
browser for code search.

Directed Task Completion Time

——
o —
——
e —
N W biueprint
[control
& :
< 5
S
Q v
-
—
A
S a
Q .
T DNF
DNF
t DNF
T T T T
0 300 600
time (seconds)

Directed Task Code Quality
EONEEERERERCOO0O0O0CONEO0O0

best worst

Exploratory Task Chart Quality
ERCOCOEECORCOERCOCOROOROON

best worst

Figure 3. Results from the study. The top graph shows
each participant’s completion time on the directed task.
Time of first paste is shown as a tick mark; participants who
used Blueprint are shown in black. The two bottom graphs
show ranking of participant’s code quality (directed task)
and chart quality (exploratory task), respectively. Again,
participants who used Blueprint are shown in black.

Method

Twenty professional programmers (16 men, 4 women) par-
ticipated in this study. We recruited them through an internal
company mailing list and compensated them with a $15 gift
card in exchange. Participants had an average of 11.3 years
of professional experience. Fourteen reported at least one
year of programming experience with Flex; twelve reported
spending at least 25 hours a week programming in Flex.

Participants were given an off-the-shelf installation of Flex
Builder, pre-loaded with three project files. Participants in
the control condition were provided with the Firefox Web
browser; they were asked to use the Adobe Community
Help Search engine to look for example code. Participants
in the treatment condition were provided with Blueprint to
search for code samples; they were not allowed to use a
web browser.

Participants were asked to complete a tuforial, a directed
task, and an exploratory task. Participants were told that
they would be timed and that they should approach all tasks
as though they are prototyping and not writing production-
level code. Participants began each task with a project file
that included a running application, and they were asked to
add additional functionality.

For the rutorial task, the sample application contained an
HTML browsing component and three buttons that navi-
gate the browser to three different Web sites. Participants
received a written tutorial that guided them through adding
fade effects to the buttons and adding a busy cursor. In the
control condition, the participants were asked to use the
web browser to find sample code for both modifications.
The tutorial described which search result would be best to
follow and which lines of code to add to the sample appli-
cation. In the treatment condition, the participants were
asked to use Blueprint to find code samples.

For the directed programming task, the participants were
instructed to use the URLLoader class to retrieve text from
a URL and place it in a text box. They were told that they
should complete the task as quickly as possible. In addition,
the participants were told that the person to complete the
task fastest would receive an additional gift card as a prize.
Participants were given 10 minutes to complete this task.

For the exploratory programming task, participants were
instructed to use Flex Charting Components to visualize an
array of provided data. The participants were instructed to
make the possible best visualization. They were told that
the results would be judged by an external designer and the
best visualization would win an extra gift card. Participants
were given 15 minutes to complete this task.

To conclude the study, we asked the participants a few
questions about their experience with the browsing and
searching interface.

Results

Directed Task

Nine out of ten Blueprint participants and eight out of ten
control participants completed the directed task. Because

not all participants completed the task and completion time
may not be normally distributed, we report all significance
tests using rank-based non-parametric statistical methods
(Wilcoxon-Mann-Whitney test for rank sum difference and
Spearman rank correlation).

We ranked the participants by the time until they pasted the
first example. See Figure 3.

Participants using Blueprint pasted code for the first time
after an average of 57 seconds, versus 121 seconds for the
control group. The rank-order difference in time to first
paste was significant (p < 0.01).

Among finishers, those using Blueprint finished after an
average of 346 seconds, compared to 479 seconds for the
control. The rank-order difference for all participants in
task completion time was not significant (p=0.14). Partici-
pants’ first paste time correlates strongly with task comple-
tion time (#,=0.52, p=0.01). This suggests that lowering the
time required to search for, selecting and copying examples
will speed development.

A professional software engineer external to the project
rank-ordered the participants’ code. He judged quality by
whether the code met the specifications, whether it in-
cluded error handling, whether it contained extraneous
statements, and overall style. Participants using Blueprint
produced significantly higher-rated code (p=0.02). We
hypothesize this is because the example-centric result view
in Blueprint makes it more likely that users will choose a
good example to start from. When searching for
“URLLoader” using the Adobe Community Help search
engine, the first result contains the best code. However, this
result’s snippet had poor scent. For this reason, we specu-
late that some control participants overlooked it in favor of
a result with better scent.

Exploratory Task

A professional designer rank-ordered the participants’
charts. To judge chart quality, he considered the appropri-
ateness of chart type, whether or not all data was visual-
ized, and aesthetics of the chart. The sum of ranks was
smaller for participants using Blueprint (94 vs. 116), but
this result was not significant (p=0.21). While a larger
study may have found significance with the current imple-
mentation of Blueprint, we believe improvements to Blue-
print’s interface (described below) would make Blueprint
much more useful in exploratory tasks.

Suggestions for Inprovement

When asked “How likely would you be to install and use
Blueprint in its current form?” participants responses aver-
aged 5.1 on a 7-point Likert scale (1 = “not at all likely”, 7
= “extremely likely”). Participants also provided several
suggestions for improvement.

The most common requests were for greater control over
result ranking. Two users suggested that they should be
able to rate (and thus affect the ranking of) examples. Three
users expressed interest in being able to filter results on
certain properties such as whether result has a running ex-

ample, the type of page that the result was taken from
(blog, tutorial, API documentation, etc.), and the presence
of comments in the example.

Three participants requested greater integration between
Blueprint and other sources of data. For example, one par-
ticipant suggested that all class names appearing in exam-
ples be linked to their API page.

Finally, three participants requested maintaining a search
history; one also suggested a browseable and searchable
history of examples used.

Discussion

In addition to the participants’ explicit suggestions, we
identified a number of shortcomings as we observed par-
ticipants working.

It is currently difficult to compare multiple examples using
Blueprint. Typically, only one example fits on the screen at
a time. To show more examples simultaneously, one could
use code-collapsing techniques to reduce each example’s
length. Additionally, Blueprint could show all running ex-
amples from a result set in parallel. Finally, visual differ-
encing tools might help users compare two examples.

We assumed that users would only invoke Blueprint once
per task. Thus, each time Blueprint is invoked, the search
box and result area would be empty. Instead, we observed
that users invoked Blueprint multiple times for a single task
(e.g. when a task required several blocks of code to be cop-
ied to disparate locations). Results should be persistent, but
it should be easier to clear the search box: when re-
invoking Blueprint, the terms should be pre-selected so that
typing replaces them.

Finally, we noticed that some participants had difficulty
locating specific lines they were looking for within exam-
ples. Two interface changes could improve this process:
First, search terms should be highlighted within the results.
Second, users should be able to search within the result set.

DESIGN SPACE

This section discusses the important decisions made in
Blueprint’s design, and positions them in a space of alterna-
tive designs (see Figure 4). Positioning Blueprint within
this space helps structure a discussion of Blueprint’s limita-
tions and suggests fruitful areas for future work.

Task: Blueprint is expressly designed to facilitate imple-
menting new functionality. Programming involves many
tasks: planning and design, implementation, and testing and
debugging. For many other tasks—e.g. deciphering a cryp-
tic error message during debugging—it might make more
sense to initiate searches from the program’s output. In
such situations, a code-centric view of results might hide
important information.

Knowledge: Blueprint presents a code-centric view of re-
sults, so programmers must be knowledgeable about the
tools (i.e. languages and frameworks used in the example)
to interpret the results. For any given task, programmers
have a certain amount of knowledge about both the tools

Task PIZ’;:;;E & Implementation dze;:ggif 9
owledge S5 ek oo
Scope minutes hours dayg
ApproaCh :Jirected explorator;
Separability - lots ofl
independent interaction

Figure 4. Design space of tools to aid programmers’ Web
use. Blueprint is designed to address the portion of the
space shown with a shaded background.

they are using (e.g. languages and libraries), and the task
itself (e.g. implementing a piece of functionality).

Scope: We designed Blueprint to make small tasks faster.
Blueprint’s primary interaction behaves similarly to auto-
completion [12] to make inserting small blocks of code
more efficient. The transient nature of this interface makes
it impractical for larger tasks. Blueprint does support dock-
ing of results as a persistent panel. However, this panel
lacks the rich navigational features present in modern Web
browsers, (e.g. tabs, history, bookmarking, and finding text
within a page). This may be useful in completing larger
tasks.

Approach: Currently, Blueprint works best for directed
tasks. There are two reasons for this: First, Blueprint requires
users to search, rather than browse. Users must have a con-
crete notion of what they want to do in order to construct a
query. Second, Blueprint currently contains little support for
comparing results, a crucial part of exploratory tasks. At
times, programmers know exactly what they want to do. At
others, they are interested in exploring a wide range of pos-
sibilities. Providing better support for comparison and
evaluation is an important direction for future work.

Separability: Because Blueprint inserts example code di-
rectly into the user’s project, it provides the most benefit
when example code requires little modification. As such, it
is most useful for tasks that are largely independent from
other pieces of the project. When a piece of code is deeply
intertwined with the larger context it is embedded in, it may
be easier to create the new instance while referring to the
example rather than copying it.

The approach Blueprint introduces leads to broader ques-
tions about example-centric development.

Is enough example code available online?

It seems to depend on both language and task. The most
popular web programming languages have rich online re-
sources. This is likely due to the background of the com-
munity using these languages: it is natural for them to put
code on the web.

Languages that provide a comprehensive standard library
(e.g., Python and Java) seem to have more code online than
those that do not (e.g., C). This is perhaps because it is eas-
ier to write small blocks of code that implement non-trivial
functionality without requiring external libraries. The high
cost of installing and linking external libraries may often
outweigh the benefits associated with co-opting examples
that use them.

Finally, common functionality is more likely to be avail-
able online than rare functionality.

Is the context of an example important?

Blueprint extracts example code from Web pages and pre-
sents it to the user outside of its original context. There are
trade-offs associated with this decision. On the one hand,
presenting all results using a consistent interface may speed
up understanding [21]. On the other hand, programmers
sometimes use a page’s high-level visual features (e.g.
whether a page contains advertisements) to make initial
judgments about the quality of example code [3]. Pro-
grammers most commonly use surface features about the
code’s context when they have difficulty evaluating the
code quality itself [3], e.g. when selecting a tutorial to learn
about a new language or programming paradigm. This is
consistent with general novice/expert distinctions [22].
Blueprint is designed primarily for situations where the
programmer has enough knowledge about the tools he is
using to evaluate the code itself.

RELATED WORK

This research is inspired by prior work on tailoring Web
search interfaces, and providing support for example-
centric development.

Tailoring Web Search for Specific Tasks

Prior work has explored how programmers search the Web
[3, 11] and tailoring Web search to their needs [9-11, 23,
24]. When building Assieme, a search engine for Java pro-
grammers, Hoffmann and colleagues recognized the impor-
tant role that sample code plays in helping a developer se-
lect between APIs [11]. Assieme’s search result view al-
lows the user to view example code for any API by hover-
ing his mouse over individual results. Blueprint carries this
idea further by making example code the primary feature of
the result set. Blueprint also builds on Assieme’s method of
extracting example code from Web pages by using heuris-
tic-based classifiers.

Blueprint’s approach of leveraging an existing commercial
search engine to produce a candidate result set has a num-
ber of advantages over building a complete search engine
from scratch (e.g. [3, 11]). First, it is substantially more
resource-efficient to implement. Keeping a document col-
lection up to date is expensive, and this is handled auto-
matically in our approach. Second, it is an understatement
to say that generating high-quality search results from natu-
ral-language queries is a hard problem. It may be unreason-
able to assume that, even with a restricted search domain,
we can do a better job than commercial search engines.

Finally, using a general-purpose search engine to provide
data has the direct consequence that most examples are
taken from tutorials, blogs, and API pages. We believe this
my be beneficial because these examples are more likely to
be written in a way that is easy to understand than exam-
ples extracted from large source code repositories.

More broadly, there has been recent interest in providing
alternative representations for Web search results [21, 25-
29]. Dontcheva and colleagues’ work on search templates
introduced the idea of creating customized views of Web
pages called “cards” [21]. By defining a set of relations
between Web page elements and elements on the card, us-
ers can then view a diverse collection of Web search results
using a consistent interface. Blueprint works similarly:
common elements (code examples) from diverse Web
pages are automatically extracted and presented in a consis-
tent interface for faster browsing and selection.

Example-Centric Development

Prior work has created tools to assist with example-centric
development [30]. This work has addressed the availability
of example code problem by mining code repositories [31]
or synthesizing example code from API specifications [32].
Blueprint is unique in that it uses regular Web pages (e.g.
forums, blogs, and tutorials) as sources for example code.

Using tutorials and blogs as sources for example code has
two major benefits: First, it may provide better examples.
Code written for a tutorial is likely to contain better com-
ments and be more general purpose than code extracted
from an open source repository. Second, because these
pages also contain text, programmers can use natural lan-
guage to find the code they are looking for.

In the majority of prior work, the programmer must already
have some language- or API-specific “handle” to the code
he wants to retrieve. An exception is the d.mix system; it
enables users to “sample” a Web page’s Ul elements to
yield the API calls necessary to create them. Future work
could explore extending Blueprint so that searches for ex-
ample code could be initiated by direct manipulation of
another program’s interface or output.

Little and Miller’s research introduced techniques for pro-
grammers to write keyword code that is transformed into
syntactically correct statements through a search process
[33]. Future work could combine ideas from Blueprint and
keyword programming.

CONCLUSION AND FUTURE WORK

We have presented a user interface for accessing online
example code from within the development environment.
This interface displays search results in an example-centric
manner to support programming by example modification.
This paper described the implementation of Blueprint, a
lightweight method for using a general-purpose search en-
gine to create code-specific search results that include writ-
ten descriptions and running examples. Empirical results
suggest that Blueprint’s approach of integrating web search

into the development environment helps programmers ac-
quire and adapt online resources more efficiently.

An important avenue for future work is to improve the
modification of example code. Copied code can introduce
bugs when programmers assume that sample code works
and forget to adapt portions of the example. Blueprint users
would benefit from rich refactoring support for pasted
code. This would help users change variable names consis-
tently and reduce the number of errors. It might be valuable
to rethink the character-at-a-time editing paradigm entirely.
Would it be more efficient to navigate pasted code a token
at a time? Perhaps arrow keys should move the user’s cur-
sor between tokens, and typing over top of an existing to-
ken should automatically replace all occurrences of that
token within the pasted region.

While example-centric development is common, there is
little aggregated knowledge about how users adapt exam-
ples. If Blueprint could show users how code has been
changed in the past, perhaps they’ll make fewer errors. For
example, if all ten previous users changed a literal, it is
highly likely that the eleventh user should change this lit-
eral as well. The wisdom of the crowds may enable signifi-
cant advances in online programming tools.

REFERENCES

1. Brooks, F.P., The Mythical Man-Month: Essays on
Software Engineering. 1995: Addison-Wesley.

2. Pirolli, P.L.T., Information Foraging Theory. 2007,
Oxford, England: Oxford University Press.

3. Brandt, J., et al. Two Studies of Opportunistic
Programming: Interleaving Web Foraging, Learning,
and Writing Code. In Proceedings of CHI: ACM
Conference on Human Factors in Computing Systems,
Boston, Massachusetts, 2009.

4. Brandt, J., et al. Opportunistic Programming: How
Rapid Ideation and Prototyping Occur in Practice. In
Proceedings of WEUSE: International Workshop on
End-User Software Engineering, p. 1-5, Leipzig,
Germany, 2008.

5. Hartmann, B., S. Doorley, and S.R. Klemmer.
Hacking, Mashing, Gluing: Understanding
Opportunistic Design. 2008.

6. Clarke, S. What is an End-User Software Engineer? In
End-User Software Engineering Dagstuhl Seminar,
Dagstuhl, Germany, 2007.

7. Nardi, B.A., A Small Matter of Programming:
Perspectives on End User Computing. 1993: The MIT
Press.

8. deHaan, P. Flex Examples.
http://blog.flexexamples.com/

. Google Code Search. http://code.google.com

10. Stylos, J. and B.A. Myers. Mica: A Web-Search Tool
for Finding API Components and Examples. In
Proceedings of VL/HCC 2006: IEEE Symposium on
Visual Languages and Human-Centric Computing, p.
195-202, 2006.

11.

12.

13.
14.
15.
16.

17.
18.
19.

20.
21.

22.

23.

24.
25.

Hoffmann, R., J. Fogarty, and D.S. Weld. Assieme:
Finding and Leveraging Implicit References in a Web
Search Interface for Programmers. In Proceedings of
UIST: ACM Symposium on User Interface Software
and Technology, p. 13-22, Newport, Rhode Island,
2007.

Microsoft IntelliSense.
http://www.microsoft.com/visualstudio/

Adobe Flex. http://www.adobe.com/flex

Eclipse. http://www .eclipse.org

JSON Data-Interchange Format. http://json.org
Holmes, R. and G.C. Murphy. Using Structural
Context to Recommend Source Code Examples. In
Proceedings of ICSE: International Conference on
Software Engineering, p. 117-125, 2005.

Javadoc. http://java.sun.com/j2se/javadoc/

Pygments. http://pygments.org/

Richardson, L. Beautiful Soup.
http://www.crummy.com/software/BeautifulSoup
w3m. http://w3m.sourceforge.net

Dontcheva, M., et al. Relations, Cards, and Search
Templates: User-Guided Web Data Integration and
Layout. In Proceedings of UIST: ACM Symposium on
User Interface Software and Technology, p. 61-70,
Newport, Rhode Island, 2007.

Chi, M.T.H., P.J. Feltovich, and R. Glaser,
Categorization and Representation of Physics
Problems by Experts and Novices. Cognitive Science,
1981.5(2): p. 121-152.

Bajracharya, S., et al. Sourcerer: A Search Engine for

Open Source Code Supporting Structure-Based Search.

In Companion to OOPSLA: ACM SIGPLAN
Symposium on Object-Oriented Programming Systems,
Languages, and Applications, p. 681-682, Portland,
Oregon, USA, 2006.

Krugle. http://www krugle.com

Woodruff, A., et al. Using Thumbnails to Search the
Web. In Proceeding of CHI: ACM Conference on
Human Factors in Computing Systems, p. 198-205,
Seattle, Washington, 2001.

26.

27.

28.

29.

30.

31.

32.

33.

Dontcheva, M., et al. Summarizing Personal Web
Browsing Sessions. In Proceedings of UIST: ACM
Symposium on User Interface Sofiware and
Technology, p. 115-124, Montreux, Switzerland, 2006.
Medynskiy, Y., M. Dontcheva, and S.M. Drucker.
Exploring Websites through Contextual Facets. In
Proceeding of CHI: ACM Conference on Human
Factors in Computing Systems, Boston, Massachusetts,
2009.

Teevan, J., et al. Visual Snippets: Summarizing Web
Pages for Search and Revisitation. In Proceeding of
CHI: ACM Conference on Human Factors in
Computing Systems, Boston, Massachusetts, 2009.
Adar, E., et al. Zoetrope: interacting with the
ephemeral web. In Proceedings of UIST: ACM
Symposium on User Interface Sofiware and
Technology, p. 239-248, Monterey, California, 2008.
Hartmann, B., et al. Programming by a Sample:
Rapidly Creating Web Applications with d.mix. In
Proceedings of UIST: ACM Symposium on User
Interface Software and Technology, p. 241-250,
Newport, Rhode Island, 2007.

Sahavechaphan, N. and K. Claypool. XSnippet:
Mining for Sample Code. In Proceedings of OOPSLA:
ACM SIGPLAN Symposium on Object-Oriented
Programming Systems, Languages, and Applications,
p. 413-430, 2006.

Mandelin, D., et al. Jungloid Mining: Helping to
Navigate the API Jungle. In Proceedings of PLDI:
ACM SIGPLAN Conference on Programming
Language Design and Implementation, p. 48-61,
Chicago, IL, USA, 2005.

Little, G. and R.C. Miller. Translating Keyword
Commands into Executable Code. In Proceedings of
UIST: ACM Symposium on User Interface Software
and Technology, p. 135-144, Montreux, Switzerland,
2006.

