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Abstract

Virtual worlds seek to provide an online setting where
users can interact in a shared environment. Popular vir-
tual worlds such as Second Life and World of Warcraft,
however, rely on share-nothing data and strict partition-
ing as much as possible. They translate a large world
into many tiny worlds. This partitioning conflicts with
the intended goal of a virtual world by greatly limiting
interaction and reducing the shared experience.

We present Meru, an architecture for scalable, fed-
erated virtual worlds. Meru’s key insight is that, com-
pared to traditional distributed object systems, virtual
world objects have the additional property of being em-
bedded in a three-dimensional geometry. By leveraging
this geometric information in messaging and caching,
Meru can allow uncongested virtual world objects to pass
messages with 800 times the throughput as Second Life
while also gracefully scaling to handle the congestion of
ten thousand active senders. Unlike virtual worlds today,
Meru achieves this performance without any partition-
ing, maintaining a single, seamless world.

1 Introduction

Three-dimensional virtual worlds are a common feature
of futurist visions and science fiction. Today’s systems,
however, fall far short of this imagined potential. Rather
than support user applications and a seamless shared ex-
perience in enormous, rich worlds, systems like Second
Life, EVE Online, and World of Warcraft enforce harsh
and disconcerting restrictions, imposing a “fog” past
which an object cannot see or interact with the world.
Skyscrapers are invisible until you stand beneath them:;
two spaceships cannot communicate until within a pre-
defined range; a user cannot control something they own
unless immediately next to it. Furthermore, unlike some-
thing like the web, users cannot extend system resources:
all code in the world runs on centrally controlled servers.
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Computational scalability in three-dimensional envi-
ronments, such as physics simulation [4] and graphics
rendering [20], is a well understood problem with ex-
isting solutions. The limitations described above relate
to communication: the range and rate that virtual world
objects such as avatars, skyscrapers, vendors, and pets
can exchange data. Imagine an “Internet” where you can
only talk on your LAN and you cannot add a host. This
is the state of virtual worlds today.

Virtual worlds today impose these limitations because
their underlying system architectures are based on par-
titioned, shared-nothing designs. Yet like objects in the
real world — and unlike the original shared-nothing dis-
tributed databases [30] — virtual worlds objects reside in
a shared, continuous space. A virtual world resembles
a large-scale distributed system of message-passing ob-
jects. What differentiates virtual worlds from prior sys-
tems, however, is that these objects and their access lo-
cality are embedded in a three-dimensional geometry.

The key insight of this paper is that a virtual world sys-
tem can leverage this geometric information to provide a
high performance and scalable messaging system with
a much less restrictive communication model than the
worlds of today. Unlike with the fixed-limit approaches
taken by most modern virtual worlds such as Second Life
and World of Warcraft, any pair of objects can poten-
tially communicate at speeds greater than 10 Megabits.
When the world is heavily congested with ten thousand
senders or more, nearby objects continue to have reason-
able throughput on the order of 30 kilobits.

We present evidence that a virtual world can achieve
these properties by enforcing analogies to real-world
physics. We present a message passing system where
message rates are analogous to light propagation, pro-
portional to an object’s geometric size and decaying
with distance. The system guarantees a messaging
rate between two objects based on a geometrically de-
rived falloff function. Although guaranteed rates be-
tween nearby and larger objects are greater than between



smaller and more distant ones, there are no hard restric-
tions on object communication. If there is excess capac-
ity, distant pairs of objects can communicate at a high
rate. This enables the virtual world to scale because, as
the geometric size of the world grows to infinity, our ap-
proach ensures that communication input and output of a
server converges to a constant.

This paper describes the design and implementation of
the message communication layer of Meru, a federated
virtual world system. It makes three research contribu-
tions. The first is the Meru virtual world architecture.
Meru’s federated organization permits users to run their
own objects and communicate in a shared world run by a
third party. This feature is unlike existing designs, where
one administrative domain controls the world and runs
all objects. Federation enables extensibility: it opens
a Meru world to new services, as users can introduce
new objects that run using computational resources they
own. Meru breaks a virtual world into three parts: space
servers, object hosts, and a resource content distribution
network (CDN). Space servers administer and control the
shared geometric space and route object messages: they
are the focus of this paper.

The second contribution is a Meru space server’s mes-
sage forwarder. We show that by applying a geometric
rate control algorithm based in real-world physics, Meru
is able to dynamically allocate network capacity across a
wider range of loads. While worlds like Second Life stat-
ically allocate throughput and give a pair of isolated ob-
jects at most 57kbps, Meru dynamic allocation can ded-
icate the full server capacity of 47Mbps, an 800-fold in-
crease. Meanwhile, as contention increases to thousands
of competing object pairs, Meru is able to gracefully
scale throughput so no pair is starved and nearby objects
receive 30kbps. Meru also cuts object message latency
by 96% compared to Second Life (1.2ms vs. 33ms).

The third contribution is OSeg, a chain-replicated key-
value store that maps objects to space servers. OSeg’s
research contribution lies in its geometrically-based least
forwarder weight (LFW) caching algorithm. The geo-
metric nature of virtual worlds means that simple popu-
larity metrics do not always apply, and mobility is a ma-
jor concern. Compared to a standard LRU cache, LFW
is up to 75% closer to an optimal oracle cache.

Because virtual worlds are a nascent technology, there
are no well-known or well-accepted representative work-
loads. We therefore evaluate Meru using four distinct
workloads, which we believe capture major possible
uses: a social model, where object pairs communicate
with the small-world distributions typical to social net-
works; a content model, where object pairs communicate
using a Zipfian distribution; a graphical model, where
object pairs communicate based on ray-tracing visibility;
and a throughput model, where objects pairs communi-

cate based on Meru’s communication falloff function.

2 Virtual Worlds Today

In the context of this paper, virtual worlds are interactive,
continuous, and shared 3D spaces. Participants appear
as avatars in the space, which also contains simulated
objects — anything from mountains to clocks to clothing.
All objects have a physical presence and properties, such
as position, geometric shape, and appearance. The world
can enforce physical laws such as gravity and collisions.

In addition, objects require a mechanism for sending
messages to other objects in their world. These messages
allow objects to dynamically respond to events and con-
ditions in real-time. Without some form of communica-
tion messaging, objects such as avatars and bots would
not be able to interact with other users nor any features
in their environment: they would not be able to eat a
virtual apple, swing a virtual sword, nor plant a virtual
tree. In short, virtual worlds would be little more than
a boring, static, 3D environment. For this reason, the
correct design and implementation of a virtual world’s
object-messaging pipeline is fundamental to the creation
of truly engaging and immersive spaces for users.

At a high level, a virtual world resembles a system
of distributed, message-passing objects. However, un-
like typical distributed object systems, which use naming
or lookup services, virtual world objects discover each
other through geometric proximity. Where objects in tra-
ditional systems are organized in hierarchies like file sys-
tems or CORBA compound names, organizing objects in
a virtual world is like organizing them in the real world:
they are placed near each other and arranged in a way
that is easy to browse.

2.1 Three Example Worlds

Numerous virtual worlds today fit our description above.
We present three canonical examples, describe what re-
strictions they impose, and argue how these restrictions
prevent these worlds from being effective application
platforms. These limitations commonly arise from their
architectures based on shared-nothing, partitioned state.

Second Life [22] is a general virtual world platform.
Users can create and script new objects which run on
Second Life servers. Second Life is a single, continu-
ous world, divided into 256 m x 256 m meter regions.
Regions are statically bound to servers: there is no mi-
gration or load-balancing [33]. Because of this limita-
tion, most regions can hold only 40 avatars, which of-
ten requires large events to occur at the intersection of 4
regions [18]. Neighboring regions share only minimal
state about objects. Because of this, clients never truly



view the world: they can only see and interact with ob-
jects within a small distance. Scripted objects discover
only 16 nearby objects at a time and interact through
short range “say” messages: longer range communica-
tion is via rate limited HTTP requests to handled by ob-
jects [23].

World of Warcraft (WoW) splits its 11 million users
across 772 replicas [37, 3]. Each replica is a cluster of
servers [38, 39]. Each of the world’s 4 continents is a
seamless virtual space run on a single server, but most
core game content is in “instances,” partitioned regions
that run on separate servers. Spells in WoW reach up to
40 yards, and while terrain can be viewed up to 1,277
yards away, objects can only be seen up to a few hun-
dred yards away, leaving the distant world looking bar-
ren. WoW controls all content: it is not possible to add
new objects. When a replica is overloaded, players wait
in login queues as long as 1,000 clients (a few hours).

EvE Online is a multiplayer game set in space. EVE
has a single shared galaxy, partitioned into isolated so-
lar systems that are load-balanced on a custom high per-
formance cluster. EVE has a complex electronic warfare
system that governs visibility and targeting, with limits
of approximately 100km. Like WoW, users cannot add
objects. Popular solar systems (such as Jita) can have sig-
nificant latency, which introduces a user feedback loop to
prevent overcrowding [12, 10]. Users can notify admin-
istrators of a planned conflict to pre-dedicate a server to
the solar system in question [36].

WoW, EVE, and other game platforms have paral-
lels with the online access providers of the early 1990s
(Prodigy, AOL). They are vertically integrated and cen-
trally controlled content platforms. Experience has
shown that open platforms which empower users — such
as the world wide web — lead to innovative applications
and technological growth. Second Life supports user
generated content, but scripts are highly constrained and
centrally hosted. Furthermore, its population and dis-
tance limits make it a poor environment for user inter-
action [19]. Despite a huge surge in interest a few years
ago, Second Life today is mostly empty, with only a few
fringe groups responsible for most activity.

We believe that three properties will enable virtual
worlds to take a critical step closer to rich, shared en-
vironments:

e Federation: just as anyone can extend the web by
adding a host to serve pages, users should be able to
add computational resources to run objects.

e Communication: the world should not have coarse,
disconcerting distance limitations: any pair of ob-
jects should be able to communicate, with reason-
ably high throughput and low latency.
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Figure 1: Two ways to deploy Meru. In (a), one company
runs the space and CDN for an open social virtual world,
while third parties provide their own objects. In (b), a
game company runs all components except for clients.

e Scalability: worlds should be able to grow to enor-
mous sizes with huge numbers of objects while
meeting the communication and federation require-
ments listed above.

These are only a subset of the technical challenges in
a next generation virtual world platform. However, as
they address some of the most fundamental limitations in
existing systems, we believe they are the right first step.

3 Federation: The Meru Architecture

The Meru architecture supports federated, application-
rich virtual worlds by separating a virtual world into
three individually administered parts: space servers, ob-
ject hosts, and a content distribution network (CDN).
This section describes the architecture, focusing on space
servers, which control and govern communication. The
rest of the paper deals with the two core space-server
communication services, the message forwarder and the
object-to-server map (OSeg). This section provides the
context in which these two services execute.

3.1 Spaces, Object Hosts, and a CDN

Existing virtual worlds tightly couple system design with
application-level properties. For example, EvVE parti-
tions the universe into solar systems. While suitable for
closed, commercial products, this integration does not
lead to general systems principles that can be applied to
a wide range of virtual worlds. Although the application-
level properties of a vast desert planet may be vastly dif-
ferent from what we would expect in a world composed
of a single megalopolis, both may be built up from the
same systems components, primitives, and abstractions.



The Meru architecture breaks this coupling by separat-
ing object execution from world simulation. Meru splits
a virtual world into space servers, object hosts, and a con-
tent distribution network. A Meru world — a “space” —
is quite literally an address space: objects have unique
identifiers as well as geometric coordinates. The space is
the final authority on what objects are in it, their location,
and their physical properties. The space also handles ge-
ometric queries for object discovery and routes messages
between objects. A given space is run by one or more
space servers, which segment the geometric coordinates
of the 3D world. All of the space servers for a world are
under a single administrative domain.

Responsive and animate objects are key aspects of a
compelling virtual world: a dog should bark when some-
one attempts to steal from its master’s virtual home; a
flower should grow and blossom; a machine gun should
run out of ammunition as it fires. To provide for such en-
gaging objects, objects have associated scripts that spec-
ify their behavior. Unlike most commercial systems,
Meru federates object scripting, creating a separate en-
tity, the object host, specifically tasked with executing
object code. Object hosts run object scripts while con-
nected to space servers. Space servers in turn route loca-
tion updates and message traffic back to the object host.

Although potentially dynamic and changing places,
virtual worlds still have much large, static content. For
instance, in a rich visual world, an object’s mesh/texture
could easily be several megabytes. Given that many
avatars may access these large meshes and that latency
can have a profound effect on a user’s perceptions [7], the
Meru system incorporates a content distribution net-
work, which serves large data resources. Objects do not
communicate these large data items directly: they pass
references to elements in the CDN. The CDN offloads
high bandwidth communication from space servers and
object hosts, while providing a natural way to manage
replication and accessibility of commonly used resources
(e.g., a particular vehicle model).

This decomposition allows the Meru architecture to
support federated worlds as well as more traditional ap-
plications. Users can run objects on hosts they control,
yet interact in a neutral space, as in the open world of
Figure 1(a). Similarly, a game company can run both ob-
ject hosts and space servers, completely controlling the
code in its world, as in Figure 1(b).

3.2 Space Server Responsibilities

For two Meru objects to interact, they must be in the
same space and exchange messages. Space servers me-
diate all inter-object communication, and objects inter-
act with the world by directly sending messages to the
space. For example, a movement command from an ob-

OH,| object hosts |OHg

space servers

(a) Logical

(b) Physical

Figure 2: Inter-object messaging. Logically, a message
from A to B passes through space «; in the system, the
message passes from object host OHy to space server g,
to space server as, to OHg.

SSg Space Server A (SS,)
Loc Loc & OSeg % || |OSeg
g cache b0
PIntO PIntO CSeg [ | CSeg
cache | |[] [T m
Forw. Forwarder @
/' [8s¢] [on |[on |[oH

.,
e .

Figure 3: Space server internals. Dashed lines show net-
work connections.

ject goes to the space, while a request to open a door
passes through the space and goes to the door. Because a
space is segmented across multiple space servers, a mes-
sage between objects may pass through two servers. Fig-
ure 2(a) shows an example of the logical operation of
object A sending a message to object B within space «.
Figure 2(b) shows how this can map to servers.

A Meru space has four basic responsibilities. First, it
routes and forwards messages between objects. Second,
it maintains the authoritative position and other geomet-
ric properties of objects by handling physics and move-
ment requests. Third, it answers geometric queries about
what other objects are nearby. Finally, it provides audio
streams of the environment. Meru space servers handle
the first three: special audio-mixing hosts handle the last.

3.3 Example Execution

Figure 3 shows the internals of a Meru space server. To
demonstrate how these services coordinate to provide a
virtual world with scalable communication, we present
an example of an object O entering a world and commu-
nicating with another object. We assume that O has been
granted entry to the space and given its initial position.



O’s object host must find the space server SSg author-
itative for O’s position. To accomplish this task, the ob-
ject host sends a query to any space server. That space
server contacts the Coordinate Segmentation (CSeg) ser-
vice, issuing a lookup which returns the authoritative
space server ID, SSq, for that position.

The object host connects to SSp and registers O. Reg-
istering O puts an entry in SSg’s location table (Loc).
SSo writes an entry to the Object Segmentation service
(OSeg), which maps object identifiers to their authorita-
tive space servers.

O is now present in the world and visible to other ob-
jects. O registers a standing (streaming) query to dis-
cover other relevant objects with the Potentially Interest-
ing Object (PIntO) service. PIntO begins streaming ob-
ject identifiers and CDN references to geometric proper-
ties such as meshes. If O represents a user client, it can
use these references to start rendering the scene, loading
data from the CDN as needed.

Using an object identifier returned from PIntO, O in-
teracts with it by sending a message. The object host
sends this message to SSg’s Forwarder. The Forwarder
uses Loc (for local objects) and OSeg (for remote ob-
jects) to determine the destination space server. The des-
tination space server’s Forwarder forwards the message
to the appropriate object host, which delivers it to the
destination object.

3.4 Object Messaging

This last step — sending a message — presents a basic scal-
ability challenge and is the focus of the rest of this paper.
While a space server can shed query and location update
load by reducing the geometric region it covers, message
input and output are not as easy to control.

As Section 2 discussed, current virtual worlds scale
communication by setting hard distance limits and split-
ting throughput uniformly among communicating ob-
jects: a “fog” set at a fixed distance acts as a commu-
nication barrier. While such an approach is tenable for
closed, tightly controlled worlds such as World of War-
craft and EVE Online, it poses major problems for virtual
worlds as an application platform. Communication in
these worlds has very strange behavior: objects that are
at one moment reachable, cross a distance barrier, and
are suddenly unreachable. Further, very large objects
just outside the fog are unreachable, while tiny objects
just inside are reachable. This model makes all but the
most simple applications that only require short bursts of
localized communication difficult or impossible to build.

The Meru architecture takes a different approach, as
the next section describes, one which meets the commu-
nication and scalability requirements.
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Figure 4: Flowchart of the object message forwarding
pipeline in a Meru space server. The bottom of the right
side is the case when a space server receives message for
an object that has moved away.

4 Scalable Communication: Forwarder

This section describes the design and implementation of
Meru’s forwarder. When describing Meru’s forwarder,
we use the terms “object pair” and “flow” interchange-
ably.

4.1 Basics

Space servers provide a best-effort datagram service be-
tween objects. Figure 4 shows the flowchart of how a
space server forwards messages between objects. A des-
tination is local if the space server is authoritative for that
object. The flowchart has three basic outcomes: send
the message to the destination’s object host, forward the
message to another space server, or drop the message.

A space server assigns each active flow a weight.
Using techniques based on weighted fair queueing [8],
space servers grant each flow a share of the available ca-
pacity proportional to that flow’s weight. For example, if
a flow has weight 3.5 and the sum of weights is 70, that
flow will receive at least 3.5/70 = 5% of the network ca-
pacity. If it is the only active flow, it will receive 100% of
the capacity. Using fair queueing allows Meru to enforce
weights while supporting intelligent resource utilization.

To support rich object communication and scale to
enormous worlds, the forwarder models object messag-
ing between space servers as light. Each object transmits
and receives communication proportional to its volume
and inversely proportional to distance. Space servers as-
sign each object pairs weight using a simple equation in-
spired by electromagnetic waves and uses these weights



to fairly allocate network capacity.

Leveraging geometric information and locality in this
way, space servers can ensure that every object pair
can communicate, even as the world grows to enormous
sizes. The weight — number of photons — of an object
pair may shrink very small, but it remains greater than
zero. Furthermore, as the world grows, nearby objects
can maintain reasonable throughput: a large number of
very distant objects do not outshine a nearby one.

4.2 Computing Flow Weights

The prior sections gave an intuition for how a space
server scales communication. This section describes the
algorithm used. Future sections describe how it is imple-
mented.

A space server calculates flow weight using a function
F(source,dest). Suppose we can define F' such that
as the world grows, the sum of all weights into a single
server converges to a constant ¢. Such an F' would mean
that the input to a given server converges to a constant
as the world’s geometry grows to infinity. Furthermore,
if all weights computed by F' are greater than 0, then

F(a,b)

every pair will be able to communicate, as —= > 0.

Put another way, given a server’s a finite capacity, and
@ > 0, then a pair always has a non-zero share of
that capacity and can communicate.

Defining F'(source, dest) in terms of a simpler point
pairwise function f(ps,pq) allows us to define weights
solely in terms of distance, as integrals over the region of

the source R, and destination R, account for size:

F(RsaRd) = //f(psapd)ddds (D

One function close to the maximum bound (slowest
falloff which meets the convergence and non-zero re-
quirements) is

1
(sr+ p)2 - log?(sr + p)

fr) =

where s scales the falloff rate and p is non-zero and indi-
rectly controls the maximum weight for an object pair.'
In the worlds we evaluate in this paper, s = 0.0085 and
p = 0.000001. If r is in meters, these settings mean
that a 1 km region around a node receives 80-90% of its
throughput and the rest of the world receives 10-20%.
The r2 falloff also means that nearby objects are guar-
anteed reasonable throughput (e.g., 30kbps) even when
there are over ten thousand communicating object pairs.

The additional log term over T% is needed because T% does not

account for visibility.
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Figure 5: Fair queueing design. A packet from an ob-
ject in region SSp running on O H, to an object in re-
gion S.S¢ running on O Hs passes through three queue-
ing stages, shown by the dark line.

4.3 Queueing Stages

Equation 1 defines a function which assigns weights to
object pairs such that every pair can communicate while
ensuring nearby pairs receive significant throughput. To
actually meet this communication requirement, however,
the Meru forwarder needs to enforce F', such that indi-
vidual object pairs receive their fair share.

To accomplish this, the Meru forwarder extends fair
queueing algorithms to give object pairs capacity propor-
tional to the weights computed by F'. Logically, a Meru
space server enforces fairness across all active inbound
flows, as well as all active outbound flows. However,
using a standard fair queue algorithm [8] to enforce fair-
ness on both input and output is prohibitively expensive.
In terms of state it requires a queue per flow, and in terms
of CPU can become expensive, requiring O(log(n)) op-
erations per packet, where n is the number of flows [24].
Furthermore, standard fair queueing algorithms focus on
output, while Meru also requires fairly queueing input.
Queueing input is a distributed problem requiring coor-
dination between senders and receivers, while standard
algorithms assume centralized information.

To reduce the costs of enforcing F’ with fair queues,
Meru splits the task into three stages. Figure 5 shows
this structure. The first stage enforces fairness within a
set of flows between a pair of space servers: given an
inter-server capacity C, it gives each flow its fair share
of C. The second stage enforces fairness within traffic
from one source server to all destination servers, fairly
allocating output capacity. The third stage enforces fair-
ness within traffic from any source server to a single des-
tination server, fairly allocating input capacity. The first
and second stages execute on the sending space server.
The third stage executes on the receiving space server.



Together, these three stages follow the flow weights com-
puted by F', no matter where a bottleneck is.

Using the algorithm described in the next section, this
division allows receivers to maintain only per-server,
rather than per-flow, state. Further, stages two and three
have only one input per server, rather than per flow. To
further reduce queueing state, Meru space servers build
on core-stateless fair queueing (CSFQ) [29] for the first
queueing stage. CSFQ dynamically measures per-flow
arrival rates and uses these rates to calculate message
drop probabilities, which allows it to drop packets with-
out needing per-flow input queues. In our implementa-
tion, this requires 12 bytes of state per flow (as opposed
to a separate queue, multiple packets in depth).

4.4 Queueing Implementation Details

This section describes the details of Meru’s implemen-
tation, particularly how the queueing stages interact in a
feedback loop to enforce fairness.

Space servers communicate using TCP. Under load,
a Meru space server relies on flow control to explicitly
signal when a source should send it messages. As space
servers for a given world are under a single administra-
tive domain (typically on the same or nearby racks), la-
tency is very low. By configuring flow control windows
to be inversely proportional to weights, a receiving space
server can keep latencies low when under load.

For each flow originating from it, a space server main-
tains an estimate of that object pair’s weight. Loc pro-
vides the source object’s size and position. The server
learns the destination’s size from OSeg, as OSeg entries
include size information (this assumes that size changes
infrequently). The server approximates the destination’s
position as the center of the region of its authoritative
space sever, learned from CSeg. It computes Equation 1
using these values. We have experimentally determined
in an ns-2 simulation that when this approximation is ap-
plied to fairness on objects arranged uniformly at ran-
dom, messaging each other at random, it leads to a Jain’s
Fairness Index of 0.9640.03.

The first queueing stage is a core-stateless fair queue
for each destination space server. Flows in the first stage
have weights computed by F. Standard CSFQ assumes
that the output rate is a constant (i.e., the line rate). In
Meru, this is not the case, as the rate at which a space
server can send messages to another space server de-
pends on the load at both servers. Meru uses dynamic
measures of input and output capacity, described below,
to adapt drop probabilities. Our implementation also nor-
malizes individual flow rate estimations to the total flow
rate estimation since many flows are thin, causing noisy
predictors. This ensures the CSFQ algorithm does not
drop more packets than it should.

Meru uses a simple feedback loop to enforce fairness
in a distributed fashion. The basic approach is to com-
pute each flow’s “used weight,”, u; for flow ¢, which
is the fraction of its weighted share it is actively using.
Meru defines u; for a flow i as

U; = w; 'min(er—;/U, 1)
where r; is the arrival rate, w; is the weight computed
by F, C is the capacity, and U is total used weight of
all active flows (3" w;). The left term computes what
fraction of its share a flow is using: 0 < u; < w;.

Used weight is necessary since weights are aggregated
before being used by stages two and three. Otherwise,
a high-weight flow with low utilization inflates the ag-
gregate weight, giving other flows more than their fair
share. For example, consider the case where there are
two flows, with weights 1 and 100. If the weight 100
flow is only using quarter of its available share (25 units),
then reporting the two flows as having a weight of 101
can lead the weight 1 flow to receive the excess capacity
of 76, much more than its share. The correct aggregate
“used weight” to report is 26.

Each stage one queue computes these u; and generates
a stream of packets with fairness enforced according to
these u;. The stage one queue reports a single value to
stages two and three, the sum of u; of its flows. This
sum (a single floating point value) is used as the weights
on the inputs of stages two and three. Because stage one
has computed the used weights, enforcing fairness on the
aggregate inputs at stages two and three generates the
correct ratio of packets from all input streams.

U introduces a feedback loop: stages two and three
compute U in terms of the u; (indirectly via the sums
provided by stage one), and the u; are computed using U.
These two computations require sending and receiving
space servers to share state with one another. This state
sharing is embedded in fields of inter-server messages.
The sender tells the receiver the sum of used weights for
its flows; the receiver tells the sender its capacity and
the sum of all incoming used weights. This is a simple,
cross-network control loop, as the values u; and U are
dependent on one another. However, the simplicity of
the function above, combined with the minimum term,
means they quickly converge.

There are several additional edge cases which we do
not describe here for sake of brevity. Our experience is
that making fair queueing work correctly in a real, dy-
namic system is much more complex than papers on the
topic (and their supporting source code) would suggest.

4.5 Object Segmentation (OSeg)

A key part of the forwarding path is to determine which
space server is authoritative for a message’s destination.



The forwarder accesses the object segmentation service
for this purpose. To improve forwarding performance
and reduce load on OSeg, a space server maintains a
cache of OSeg entries. This section describes OSeg’s
design and implementation as well the space server’s
caching policy. Recall from Figure 4 that space servers
cooperatively invalidate stale cache entries.

OSeg is a key-value store built on top of CRAQ [31],
an extension to chain replication [32] that supports both
eventual and strong consistency. CRAQ is designed for
read-mostly workloads, which we expect to be the case in
most virtual worlds. Our measurements of Second Life
show that generally only about 8% of objects move. Cor-
respondingly, few objects need to write OSeg updates to
CRAQ. To spread read and write load, OSeg organizes
CRAQ nodes into a ring using consistent hashing. A par-
ticular key’s replica chain are the n nodes succeeding its
value. This approach allows the underlying backing store
to scale with lookup, write, and storage load.

Each space server maintains an cache of recent OSeg
lookups to improve message latency, reduce distortions
of fairness caused by lookups, and reduce load on OSeg.
Given the novel workloads virtual worlds present two
major questions arise: what caching algorithm to use,
and how big a cache is needed?

Intuitively, much communication in a virtual world
should be local: even though distant objects are visible,
interaction is mostly with nearby objects. We hypothe-
size that a geometric caching algorithm could be more
effective than standard algorithms such as LRU. We pro-
pose a new algorithm, Lowest Forwarder Weight (LFW),
based on the forwarder’s weight function F'. The cache
evaluates an approximation of Equation 1 for each entry
and evicts the lowest weight entry. Since no single source
object is considered, the space server’s region is used.
The destination position may be approximated since lo-
cations are not always available but destination server re-
gions always are, via coordinate segmentation (CSeg).

A space server has an LFW OSeg cache. Cache entries
consist of an object identifier, server identifier, and object
radius, a total of 24bytes. A small cache of about 20,000
entries occupies less than 700KB and provides low miss
rates. Section 6.4 evaluates this decision.

5 Experimental Methodology

Section 6 evaluates four properties of a Meru space
server: raw packet forwarding microbenchmarks, com-
munication rate control accuracy, LFW’s effectiveness in
OSeg caching, and end-to-end messaging performance.
This section presents the experimental methodologies we
use to evaluate these properties. Because there are no
well-known or well-accepted virtual world workloads,
our basic experimental methodology is to use data col-

lected from the closest analogy — Second Life — when-
ever possible, otherwise use models based on real world
phenomena, and explore multiple possible use cases.

Our experiments focus on three variables which can
strongly affect a space server’s performance: object lay-
out/movement, world size, and object messaging pat-
terns. These variables are important because they ex-
plore how different parts of Meru’s messaging system
performs in different kinds of worlds with different ap-
plication workloads. Object layout and movement af-
fects messaging rates and churn in OSeg entries. World
size (in geometric size and number of objects) affects
the range of forwarder queueing weights and OSeg cache
sizes. Finally, the traffic pattern of messages will affect
the working set for the OSeg cache as well as the fraction
of messages which require forwarding.

5.1 Data Collection

We draw object data from a modified Second Life client
that outputs the Second Life data stream. A Second Life
object is a collection of attached geometric primitives
called “prims.” As attachment can is also used for be-
havior (e.g., an avatar sitting in a chair), we infer objects
by assuming that prims attached for an entire trace con-
stitute a single object, while prims only attached for part
of a trace constitute separate objects.

Second Life servers optimize the viewing experience
by prioritizing updates in the view frustum. We mitigate
this by continuously rotating the client. While Second
Life still prioritizes updates under this workload, rotation
reduces the effect and gaps between updates for moving
objects on the order of one second.

5.2 World Size

To cover a representative spectrum of density we col-
lected traces over 198 Second Life regions containing
213,000 objects at various times during March and April
2010. This translates to a density of approximately
16,000 objects/km?. To generate a large virtual world,
we create 20 million objects by copying objects from the
Second Life data and uniformly distributing them over a
36 km x 36 km world, dimensions consistent with Sec-
ond Life object density. A region this size covers fifteen
times the area of Manhattan. We originally chose a uni-
form distribution to avoid motion artifacts introduced by
Second Life’s rigid server boundaries. We found that on
a tiled version of the data caching strategies performed
similarly relative to each other.
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Figure 6: Query patterns for the first 3000 queries issued
under the four different workloads on a 36km x 36km
world. Blue circles indicate locations of queried objects,
with radii showing object size.

5.3 Object Traffic Pattern

The final variable is the application traffic pattern. This
data is completely inaccessible from clients and may not
even map directly to our system due to abstraction break-
ing integration of the application into the system design.
Therefore we rely on four synthetic traffic patterns in our
analysis that we believe are representative of different
uses of a virtual world. In each case, a source object is
selected from a uniform distribution; the traffic patterns
differ in destination selection. Figure 6 shows these pat-
terns graphically when applied to a Second Life data set.

Falloff selects a destination using probabilities propor-
tional to weights computed with Equation 1.

Social network uses a generative social network
model [16] with a parameter & = 2 to match the 90th
percentile guild size of 35 in World of Warcraft [9]. The
model generates a set of weighted “friends” for each ob-
ject. An object picks a destination from this distribu-
tion. This captures what might be seen in a social world,
where communication is mostly between friends, less be-
tween acquaintances, and rare between strangers.

Graphical selects destinations based on what an object
sees. A source selects a destination object by tracing a
random ray to its first intersection. This selects destina-
tions proportional to their occluded solid angle. Due to
the sparsity of Second Life, this model sees some but not
much geometric locality: rays often travel far.

Content popularity mirrors the Zipfian popularity ob-

served in web sites and peer-to-peer networks. Destina-
tions are drawn from a probability distribution according
to a Zipfian distribution. This model ignores geometry
and reflects scenarios where objects popularity is inde-
pendent of location. We used oo = .8 [5].

6 Evaluation
In this section we seek to answer five questions:

1. How is the space server implemented?

2. What inter-object throughput and latency can a
space server sustain?

3. Does the queueing system enforce the falloff func-
tion and satisfy the communication requirement?

4. Is LFW a better OSeg caching policy than LRU?

5. Does the space server exhibit good end-to-end ob-
ject messaging performance when its components
are integrated?

As most virtual world systems are closed, it is diffi-
cult to measure and compare our system to them. We are
able to perform simple inter-object benchmarks in Sec-
ond Life, and show that our system compares favorably.

6.1 Implementation

Our current Meru space server implementation is ap-
proximately 34,000 lines of code (measured by SLOC-
Count [35]). It is a development fork from the open-
source Sirikata platform [28] we help maintain. Cur-
rently, it does not interoperate with Sirikata’s graphical
client due to needed changes to communication proto-
cols. We expect to complete re-integration within a few
months, which will allow Sirikata to have worlds running
on multiple space servers.

To leverage multicore processors, the space is highly
multithreaded: the current implementation has eight ac-
tive threads. To reduce locking overhead and simplify
concurrency, each thread handles a separate set of op-
erations and threads pass asynchronous messages. For
example, message forwarding is one thread, but an OSeg
cache miss passes a message to the OSeg request thread.

6.2 Microbenchmarks

We evaluate basic forwarding performance by measur-
ing latency, forwarding rate, and throughput between a
pair of object hosts. Latency measures the ping time
for 64 byte messages with idle space servers. Forward-
ing rate measures how fast a space server can forward
64 byte messages. Throughput measures the maximum
inter-object throughput using 1 kilobyte messages.



Latency Max Rate Throughput
Local 692 us 41876 pps 82.33 Mbps
Remote 1232 us 13747 pps  47.30 Mbps
Remote Lookup 2672 us 9454 pps  37.60 Mbps

Table 1: Space server forwarding performance.

Latency Throughput
Local Server 12 ms 176 kbps
Remote, distance < 100m 33 ms 57 kbps
Remote, distance > 100m 480 ms 15 kbps

Table 2: Second life message performance between two
objects.

We measure three forwarding paths. In the local path,
the two objects are on the same space server. In the re-
mote path, the two objects are on different space servers
and the destination is in the OSeg cache. In the remote
lookup path the destination requires an OSeg lookup. Re-
mote takes longer than local because it passes through
inter-server queues, has an additional network hop, and
requires a thread context switch.

Table 1 shows the results. For local messages, Meru
can process over 40,000 messages per second and has a
ping time below 700us. An OSeg lookup more than dou-
bles message latency, cuts the forwarding rate by 40%
and reduces throughput by 21%: this demonstrates the
need for an OSeg cache.

Table 2 shows results from similar experiments in a
deserted and near-empty Second Life region where there
are no visibility or physics computations. Local Server
and proximate messaging uses 11Shout() and IlListen();
remote uses 1lEmail(). Despite requiring fewer network
hops since object and space simulation occur on the same
server in Second Life, latency and throughput are signif-
icantly orders of magnitude worse than in Meru. These
tremendous differences are due to the fact that Second
Life explicitly rate-limits traffic to ensure a smooth ex-
perience. Meru’s weighted rate control makes this un-
necessary, permitting high utilization.

6.3 Communication Rate Control

To validate whether the forwarder enforces Equation 1
and achieves good utilization, we constructed a simple
linear world of nine square regions, shown in Figure 7(c).
Each region is a separate space server and contains 1,500
objects. Each object in servers s; — sg is paired with a
random object on server d. Objects have bounding vol-
umes of 4-270 m? (spheres with radii of 1-8m). We eval-
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Figure 7: Flow throughput under two workloads.

uate two traffic patterns. In the first, objects flood the
system with messages; this tests whether the space server
can give all pairs some capacity while giving closer pairs
reasonable throughput. In the second, objects send at a
constant rate so high weight pairs use less than their fair
share: this tests whether the space server can maintain
high utilization. Experiments run for 15 minutes.

Figures 7(a) and 7(b) show the results. The space
servers follow Equation 1 and meet the communica-
tion requirement: nearby object pairs receive significant
throughput (30 kbps), yet distant pairs can still exchange
messages. Each graph shows four values for all 12,000
flows, sorted by weight. The first three show through-
put (left axis): the actual received throughput, the falloff
throughput (if the object used its entire fair share), and
the ideal throughput (if the system enforced fairness per-
fectly). In the flooding experiment, the falloff and ideal
are the same. The fourth value shows the JFI (right axis)
of received throughput for the n highest weight pairs.
The right-most data point shows the overall JFL.

The received throughput closely follows the ideal
throughput. In Figure 7(a), the JFI remains high until
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Figure 8: Evaluation of LFW’s cache miss rate compared
with LRU and an oracle

the tail: this is because in core stateless fair queueing a
flow’s first packet is always accepted. If the flow is for
two tiny, distant objects, then under load a single packet
may be much more than their share. The important point
is that outside this noisy tail, JFI remains at 0.99. In Fig-
ure 7(b), JFI is much higher because space servers give
the unused capacity of high weight flows to lower ones,
reducing this discretization error.

6.4 OSeg

We evaluate OSeg cache algorithms by simulating the 20
million object world and traffic patterns described in Sec-
tion 5. We measure the center space server as a represen-
tative cache. Objects within this server’s region generate
30,000 messages per second: the portion of these that
require OSeg lookups is workload dependent.

Figures 8(a) and 8(b) show cache miss rates for three
cache algorithms: LRU, Lowest Falloff Weight (LFW),
and an oracle optimal cache which has perfect knowl-
edge of future requests. The percentage values show
LFW’s improvement over LRU as a fraction of LRU’s
misses over the oracle. For example, 75% means that
LFW has one quarter as many additional misses as LRU.

When messaging has geometric locality, LFW can re-
duce cache misses by 57-85%. In the communication
falloff workload, a 20,000 entry cache has a 21% miss
rate. Assuming the performance results in Table 1, an
LFW cache reduces the average message latency from
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(b) Second Life screenshot

(a) Object layout.

Figure 9: 4x4 Second Life object distribution map and
Second Life screen shot captured from highlighted space
server. a) Sample Second Life data for a 4x4 server grid.
b) Screen shot from server in row 3 and column 2.
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Figure 10: Average message latency in end to end exper-
iment. Percentage show cache miss rates.

2.7ms to 1.5ms. When the working set is small, as in
the social world traffic, LFW and LRU perform similarly,
and a small IMB (30,000 entry) cache suffices for a 20
million object world 15 times the size of Manhattan.

We omit data for the content and ray tracing traffic
patterns because with their low locality, large datasets are
effectively uncacheable. For example, with content and
ray tracing traffic, a 20,000 entry cache has a miss rate
of approximately 70% with the oracle algorithm. Worlds
with such workloads must either optimize OSeg lookups
further or have very large OSeg caches.

6.5 End-to-End Evaluation

We recreate a subset of the Second Life data described in
Section 5.2, using a 16 space server grid covering a 1km?
region with 19,000 objects, shown in Figure 9. The mi-
crobenchmarks show that messaging rate and bandwidth
are largely independent of caching effects. As the pur-
pose of these tests is to evaluate how caching and queue-
ing interact, we focus our end-to-end tests on latency.
To measure how latency scales as the world grows,



we progressively increase the number of objects in incre-
ments of 250 every 420 seconds. Objects join the world
radiating out in increasing distance from the center of the
marked region in Figure 9. Senders are random samples
from the marked region, and destination selection fol-
lows the social traffic pattern. The aggregate send rate is
33 one kilobyte messages per second. The OSeg cache is
256 entries to evaluate what happens when the working
set exceeds the cache size.

Figure 10 shows the contributing factors to message
latency as the number of objects increases. Latency in-
creases at two major inflection points. The first occurs
at 750 objects: this is when objects begin appearing on
other servers and require forwarding. The “Local, For-
warding” portion of the plot begins increasing slightly as
messages hit in the OSeg cache.

The second inflection point is at 1,750 objects. Net-
work and sender queue latencies increase past this point
as a greater fraction of objects are remote. At 1,750
objects, the working set exceeds the cache size, caus-
ing OSeg misses to dominate message latency. The miss
rate increases until 12,000 objects, when it stabilizes at
82%. lIts rate stabilizes because the social workload se-
lects new, further objects with very low probability.

These results demonstrate the importance of the OSeg
cache and its eviction algorithm to message latency.
Least forwarder weight can achieve good hit rates, but
even social traffic models require reasonable cache sizes.
However, even when the working set exceeds the cache
size or the workload is uncachable (as in graphical traf-
fic), a space server forwards well: cache misses add only
a millisecond to ping times, which remain below 3ms.

7 Related Work on Virtual Worlds

Section 4 discussed prior work that Meru builds on, such
as fair queueing [8], core stateless fair queueing [29],
chain replication [32], and CRAQ [31], while Section 2
described techniques worlds use to limit communication.
This section presents related work on virtual worlds.
Research on how to restrict communication has exam-
ined using a radius around the object [2, 13], including
orientation and recent interactions to leverage limitations
of human attention [1], or partitioning the world into dis-
joint regions [15]. These approaches all seek to trade off
user experience for increased data partitioning. Second
Life, for example, does not display the world outside a
user’s view range. Meru takes the completely opposite
approach: it allows arbitrary communication and inter-
action, scaling it to be more local only when under load.
PARADISE exploits perceptual limitations by aggre-
gating uninteresting objects and providing three variable-
resolution channels to support near-, mid-, and far-range
viewers [27, 25]. Given Meru’s communication model,
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we consider including such an approach a critical future
step: they can, for example, aggregate thousands of tiny
trees into a large forest. Exactly who in Meru’s federated
architecture is responsible for such aggregation remains
an open research problem.

RedDwartf Server [21, 34], previously known as Dark-
star, implements virtual world logic as small transac-
tional tasks distributed across servers. Chen et al. [6]
manage load in a virtual world by remapping highly ac-
tive regions to lightly loaded servers, in a manner sim-
ilar to early MMORPGs such as Asheron’s Call. An-
other recent approach proposing pushing computation to
clients, exploiting spatial properties to maintain consis-
tency [11]. While the precise approach runs contrary to
decades of experience in distributed simulation [25, 26],
the core idea of federating computation is one Meru
shares.

There is a rich literature within the computer graphics
community that use convergent falloff functions to guar-
antee quality [17, 14]. Such algorithms, however, focus
on narrow, centralized solutions to solve very difficult,
domain-specific scalability challenges. In contrast, Meru
is a distributed, federated system.

8 Conclusion

This paper presents the Meru virtual world architec-
ture and describes the forwarding path that enables
application-level messaging. Our architecture allows
each component to be scaled independently. Meru takes
advantage of the inherent geometry of virtual worlds to
gracefully scale throughput between objects. A single
pair can use the whole system capacity if available. Un-
der heavy congestion of tens of thousands of object pairs,
Meru can guarantee every pair a non-zero throughput
while simultaneously giving nearby objects 30kbps. An
object lookup cache can greatly reduce messaging laten-
cies, and the geometry-aware Least Forwarder Weight
(LFW) algorithm outperforms LRU significantly.

Meru is a first step towards open, federated worlds
with rich application communication. Many challenges
still remain before our goal of large, dense virtual worlds
becomes truly practical: among them, the datastructures
in PIntO to supply objects’ standing queries with other
important objects; the design and implementation of an
addressable CDN to store object data and meshes; dy-
namic segmentation of the world across space servers for
load-balancing; system-wide fault-tolerance; object host
design; and designing an object execution environment
that encourages programmability. To realize this goal,
we are currently working actively on several of the re-
search directions mentioned above and integrating them
into the Meru architecture.
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