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Abstract Computational scalability in three-dimensional envi-
: : : ts, such hysics simulation [4] and hiVirtual worlds seek to provide an online setting where TONILIETLS, SIEM a5 PUySIEs SIntation [4] an STabRIes

: : rendering [20], 1s a well understood problem with ex-
users can interact in a shared environment. Popular vir- CL uti he Timitati bed abtual worlds such as Second Life and World of Warcraft isting solutions. ‘The limitations described above relate

: o. to communication: the range and rate that virtual world
however, rely on share-nothing data and strict partition- h K d d
ing as much as possible. They translate a large world objects such as avatars, skyscrapers, vendors, and pets

: .. ; h data. Imagi “Internet” wh

into many tiny worlds. This partitioning conflicts with JaeJAN-ooaNwu NSA,
the intended goal of a virtual world by greatly limiting 4 J J
: : : ; is the state of virtual worlds today.
interaction and reducing the shared experience. CL
We present Meru. an architecture for scalable. fed. Virtual worlds today impose these limitations because

erated ptual worlds Meru’s kev insioht is that com. their underlying system architectures are based on par-
vid: Ww oo y lg . titioned, shared-nothing designs. Yet like objects in the

pared to traditional distributed object systems, virtual : . : :
: hg : real world — and unlike the original shared-nothing dis-

world objects have the additional property of being em- : : Ce

bedded in a three-dimensional geometry. By leveraging tributed databases [30] — virtual worlds objects reside in
this geometric information in messaging and caching, ) shared, continuous space. A httual world resembles
Meru can allow uncongested virtual world objects to pass date oO SYS sebassIng
messages with 800 times the throughput as Second Life jects. What differentiates virtual worlds from prior sys-

: tems, however, is that these objects and their access lo-
while also gracefully scaling to handle the congestion of calitv are embedded in a three-dimensional eeometr
ten thousand active senders. Unlike virtual worlds today, J oo & Y:
Meru achieves this performance without any partition- The key insight of this paper is that a virtual world sys-
ing, maintaining a single, seamless world tem can leverage this geometric information to provide a

high performance and scalable messaging system with
a much less restrictive communication model than the

1 Introduction worlds of today. Unlike with the fixed-limit approaches

taken by most modern virtual worlds such as Second Life

Three-dimensional virtual worlds are a common feature ~~ and World of Warcraft, any pair of objects can poten-

of futurist visions and science fiction. Today’s systems, tially communicate at speeds greater than 10 Megabits.
however, fall far short of this imagined potential. Rather =~ When the world is heavily congested with ten thousand
than support user applications and a seamless shared ex- senders or more, nearby objects continue to have reason-
perience in enormous, rich worlds, systems like Second able throughput on the order of 30 kilobits.
Life, EVE Online, and World of Warcraft enforce harsh We present evidence that a virtual world can achieve

and disconcerting restrictions, imposing a “fog” past these properties by enforcing analogies to real-world

which an object cannot see or interact with the world. physics. We present a message passing system where

Skyscrapers are invisible until you stand beneath them; message rates are analogous to light propagation, pro-

two spaceships cannot communicate until within a pre- portional to an object’s geometric size and decaying

defined range; a user cannot control something they own with distance. The system guarantees a messaging

unless immediately next to it. Furthermore, unlike some- rate between two objects based on a geometrically de-

thing like the web, users cannot extend system resources: rived falloff function. Although guaranteed rates be-

all code in the world runs on centrally controlled servers. tween nearby and larger objects are greater than between
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smaller and more distant ones, there are no hard restric- cate based on Meru’s communication falloff function.

tions on object communication. If there is excess capac-

ity, distant pairs of objects can communicate at a high ]
rate. This enables the virtual world to scale because, as 2 Virtual Worlds Today
the geometric size of the world grows to infinity, our ap-

proach ensures that communication input and output of a In the context of this paper, virtual worlds are interactive,
server converges to a constant. continuous, and shared 3D spaces. Participants appear

This paper describes the design and implementation of as avatars i the space, which also contains simulated
the message communication layer of Meru, a federated objects — anything from mountains to clocks to Clothing,
virtual world system. It makes three research contribu- All obj ects have aphysical presence and properties, such
tions. The first is the Meru virtual world architecture. as position, geometric shape, and appcarance. The world
Meru’s federated organization permits users to run their can enforce physical laws such as gravity and collisions.
own objects and communicate in a shared world run by a In addition, objects require a mechanism for sending
third party. This feature is unlike existing designs, where Messages to other objects in their world. These messages
one administrative domain controls the world and runs allow objects to dynamically respond to events and con-
all objects. Federation enables extensibility: it opens ditions mn real-time. Without some form of communica-
a Meru world to new services, as users can introduce tion messaging, objects such as avatars and bots would
new objects that run using computational resources they not be able to interact with other users nor any features
own. Meru breaks a virtual world into three parts: space mn their environment: they would not be able to cat a
servers, object hosts, and a resource content distribution virtual apple, SWINE 4 virtual sword, hor plant a virtual
network (CDN). Space servers administer and control the tree. In short, virtual worlds would be little more than
shared geometric space and route object messages: they a boring, static, 3D environment. For this reason, the
are the focus of this paper. correct design and implementation of a virtual world S
The second contribution is a Meru space server’s mes- objcct-messaglHE Pipcline © fundamental to the creation

sage forwarder. We show that by applying a geometric of truly Shgaging and IMMCISIve Spaces for users.
rate control algorithm based in real-world physics, Meru Al a high level, a virtual world resembles a system
is able to dynamically allocate network capacity across a of distributed, TESSAEE PASSE objects. : However, i.
wider range of loads. While worlds like Second Life stat- like typical distributed object systems. which the naming
ically allocate throughput and give a pair of isolated ob- or lookup services, virtual world objects discover each
jects at most 57kbps, Meru dynamic allocation can ded- other through geometric proximity. Where objects In lra-
icate the full server capacity of 47Mbps, an 800-fold in- ditional systems are organized in hierarchies like file SYS
crease. Meanwhile, as contention increases to thousands tems of CORBA compound Dates, organizing objects in
of competing object pairs, Meru is able to gracefully a virtual world is like organizing them in the real world:
scale throughput so no pair is starved and nearby objects they are placed near each other and arranged in a way
receive 30kbps. Meru also cuts object message latency that is easy to browse.
by 96% compared to Second Life (1.2ms vs. 33ms).

The third contribution is OSeg, a chain-replicated key- 2.1 Three Example Worlds
value store that maps objects to space servers. OSeg’s oo

research contribution lies in its geometrically-based least ~~ Numerous virtual worlds today fit our description above.
forwarder weight (LFW) caching algorithm. The geo- We present three canonical examples, describe what re-
metric nature of virtual worlds means that simple popu- ~~ Strictions they impose, and argue how these restrictions
larity metrics do not always apply, and mobility is a ma- prevent these worlds from being effective application
jor concern. Compared to a standard LRU cache, LFW platforms. These limitations commonly arise from their
is up to 75% closer to an optimal oracle cache. architectures based on shared-nothing, partitioned state.

Because virtual worlds are a nascent technology, there Second Life [22] is a general virtual world platform.

are no well-known or well-accepted representative work- Users can create and script new objects which run on

loads. We therefore evaluate Meru using four distinct Second Life servers. Second Life is a single, continu-

workloads, which we believe capture major possible ous world, divided into 256 m x 256 m meter regions.

uses: a social model, where object pairs communicate Regions are statically bound to servers: there is no mi-

with the small-world distributions typical to social net- gration or load-balancing [33]. Because of this limita-

works; a content model, where object pairs communicate tion, most regions can hold only 40 avatars, which of-

using a Zipfian distribution; a graphical model, where ten requires large events to occur at the intersection of 4

object pairs communicate based on ray-tracing visibility; regions [18]. Neighboring regions share only minimal

and a throughput model, where objects pairs communi- state about objects. Because of this, clients never truly
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view the world: they can only see and interact with ob- Open Virtual World Game Company
jects within a small distance. Scripted objects discover Object Hosts (Game Objects)

only 16 nearby objects at a time and interact through c 5 Eshort range “say” messages: longer range communica- . :

tion is via rate limited HTTP requests to handled by ob- CDN rs ‘Space NS.
jects [23]. dot

World of Warcraft (WoW) splits its 11 million users E lL E E Eacross 772 replicas [37, 3]. Each replica is a cluster of CDN, BN ‘Space

servers [38, 39]. Each of the world’s 4 continents is a Eg g E : =
seamless virtual space run on a single server, but most Object Host

core game content is in “instances,” partitioned regions ClientA] Company
that run on separate servers. Spells in WoW reach up to (a) Open Virtual World (b) Game

40 yards, and while terrain can be viewed up to 1,277

yards away, objects can only be seen up to a few hun- Figure 1: Two ways to deploy Meru. In (a), one company

dred yards away, leaving the distant world looking bar- runs the space and CDN for an open social virtual world,

ren. WoW controls all content: it is not possible to add while third parties provide their own objects. In (b), a

new objects. When a replica 1s overloaded, players wait ~~ game company runs all components except for clients.
in login queues as long as 1,000 clients (a few hours).

EVE Online is a multiplayer game set in space. EVE e Scalability: worlds should be able to grow to enor-
has a single shared galaxy, partitioned into isolated SO- mous sizes with huge numbers of objects while
lar systems that are load-balanced on a custom high per- meeting the communication and federation require-
formance cluster. EVE has a complex electronic warfare ments listed above.
system that governs visibility and targeting, with limits

of approximately 100km. Like WoW, users cannot add These are only a subset of the technical challenges in

objects. Popular solar systems (such as Jita) can have sig- a next generation virtual world platform. However, as

nificant latency, which introduces a user feedback loop to they address some of the most fundamental limitations in

prevent overcrowding [12, 10]. Users can notify admin- existing systems, we believe they are the right first step.
istrators of a planned conflict to pre-dedicate a server to

the solar system in question [36]. 3 Federation: The Meru Architecture
WoW, EVE, and other game platforms have paral-

lels with the online access providers of the early 1990s The Meru architecture supports federated, application-
(Prodigy, AOL). They are vertically integrated and cen- rich virtual worlds by separating a virtual world into
trally controlled content platforms. Experience has three individually administered parts: space servers, ob-
shown that open platforms which empower users — such ject hosts, and a content distribution network (CDN).
as the world wide web — lead to innovative applications This section describes the architecture, focusing on space
and technological growth. Second Life supports user servers, which control and govern communication. The
generated content, but scripts are highly constrained and rest of the paper deals with the two core space-server
centrally hosted. Furthermore, its population and dis- communication services, the message forwarder and the
tance limits make it a poor environment for user inter- object-to-server map (OSeg). This section provides the
action [19]. Despite a huge surge in interest a few years context in which these two services execute.

ago, Second Life today is mostly empty, with only a few

fringe groups responsible for most activity. | 3.1 Spaces, Object Hosts, and a CDN
We believe that three properties will enable virtual

worlds to take a critical step closer to rich, shared en- Existing virtual worlds tightly couple system design with
vironments: application-level properties. For example, EVE parti-

tions the universe into solar systems. While suitable for

o Federation: just as anyone can extend the web by closed, commercial products, this integration does not
adding a host to serve pages, users should be able to 1eaq 10 general systems principles that can be applied to
add computational resources to run objects. a wide range of virtual worlds. Although the application-

eo Communication: the world should not have coarse, level properties of a vast desert planet may be vastly dif-

disconcerting distance limitations: any pair of ob- ferent from what we would expect in a world composed

jects should be able to communicate, with reason- of a single megalopolis, both may be built up from the

ably high throughput and low latency. same systems components, primitives, and abstractions.
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The Meru architecture breaks this coupling by separat- "B| [on] objecthosts [or
ing object execution from world simulation. Meru splits : !
a virtual world into space servers, object hosts, and a con- ) 3 x

tent distribution network. A Meru world — a “space” — “fo f-lag} .
1s quite literally an address space: objects have unique

identifiers as well as geometric coordinates. The space is space servers

the final authority on what objects are in it, their location, (a) Logical (b) Physical
and their physical properties. The space also handles ge-

ometric queries for object discovery and routes messages Figure 2: Inter-object messaging. Logically, a message
between objects. A given space is run by One OrMOC from A to B passes through space «; in the system, the
space servers, which segment the geometric coordinates message passes from object host OH, to space server a,
of the 3D world. All of the space servers for a world are to space server a, to OH.
under a single administrative domain.

Responsive and animate objects are key aspects of a SS, Space Server A (SS,)
compelling virtual world: a dog should bark when some- —

, Loc Loc 7 OSeg OSegone attempts to steal from its master’s virtual home; a ---- EESed]flower should grow and blossom; a machine gun should

run out of ammunition as it fires. To provide for such en- PIntO PIntO CSeg CSeg

gaging objects, objects have associated scripts that spec- or 2 gh ~~ify their behavior. Unlike most commercial systems, -
Meru federates object scripting, creating a separate en-

tity, the object host, specifically tasked with executing oT ATA
object code. Object hosts run object scripts while con- hy a" Sa ——
nected to space servers. Space servers in turn route loca- “ rd
tion updates and message traffic back to the object host. oT

Although potentially dynamic and changing places,

virtual worlds still have much large, static content. For Figure 3: Space server internals. Dashed lines show net-
instance, in a rich visual world, an object's mesh/texture work connections.
could easily be several megabytes. Given that many

avatars may access these large meshes and that latency

can have a profound effect on a user’s perceptions [7], the ject goes to the space, while a request to open a door

Meru system incorporates a content distribution net- passes through the space and goes to the door. Because a

work, which serves large data resources. Objects do not space 1s segmented across multiple space servers, a mes-

communicate these large data items directly: they pass sage between objects may pass through two servers. Fig-
references to elements in the CDN. The CDN offloads ure 2(a) shows an example of the logical operation of

high bandwidth communication from space servers and object A sending a message to object B within space a.

object hosts, while providing a natural way to manage Figure 2(b) shows how this can map to servers.

replication and accessibility of commonly used resources A Meru space has four basic responsibilities. First, it

(e.g., a particular vehicle model). routes and forwards messages between objects. Second,

This decomposition allows the Meru architecture to it maintains the authoritative position and other geomet-

support federated worlds as well as more traditional ap- ric properties of objects by handling physics and move-

plications. Users can run objects on hosts they control, ment requests. Third, it answers geometric queries about

yet interact in a neutral space, as in the open world of ~~ what other objects are nearby. Finally, it provides audio

Figure 1(a). Similarly, a game company can run both ob- streams of the environment. Meru space servers handle

ject hosts and space servers, completely controlling the the first three: special audio-mixing hosts handle the last.

code in its world, as in Figure 1(b).

3.3 Example Execution
3.2 Space Server Responsibilities

Figure 3 shows the internals of a Meru space server. To

For two Meru objects to interact, they must be in the demonstrate how these services coordinate to provide a

same space and exchange messages. Space servers me- virtual world with scalable communication, we present

diate all inter-object communication, and objects inter- an example of an object O entering a world and commu-

act with the world by directly sending messages to the nicating with another object. We assume that O has been

space. For example, a movement command from an ob- granted entry to the space and given its initial position.
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O’s object host must find the space server SS author-

itative for O’s position. To accomplish this task, the ob- : :
ject host sends a query to any space server. That space Y PY :

. . destination? . destination? :
server contacts the Coordinate Segmentation (CSeg) ser- : :
vice, issuing a lookup which returns the authoritative N : N

space server ID, SSq, for that position. Y : Y ose :cache? : 9 :

The object host connects to SS and registers O. Reg- N : ;
istering O puts an entry in SSg’s location table (Loc). : N :
SS writes an entry to the Object Segmentation service : :
(OSeg), which maps object identifiers to their authorita- : :’ : retry, drop :

tive space servers. - BR :

O is now present in the world and visible to other ob- oon} :
jects. O registers a standing (streaming) query to dis- invalidation, | :

cover other relevant objects with the Potentially Interest- forward to SS)
ing Object (PIntO) service. PIntO begins streaming ob- Tree
ject identifiers and CDN references to geometric proper-

ties such as meshes. If O represents a user client, it can ~~ Figure 4: Flowchart of the object message forwarding
use these references to start rendering the scene, loading ~~ pipeline in a Meru space server. The bottom of the right
data from the CDN as needed. side is the case when a space server receives message for

Using an object identifier returned from PIntO, O in- a0 object that has moved away.
teracts with it by sending a message. The object host

sends this message to S50 s Forwarder. The Forwarder 4 Scalable Communication: Forwarder
uses Loc (for local objects) and OSeg (for remote ob-

J ects) (0 determine the destination space server. The des- This section describes the design and implementation of
tination space server’s Forwarder forwards the message : oo

: : : Meru’s forwarder. When describing Meru’s forwarder,
to the appropriate object host, which delivers it to the a . > ,y

oo. : we use the terms “object pair” and “flow” interchange-
destination object.

ably.

3.4 Object Messaging 4.1 Basics

This last step — sending a message — presents a basic scal- ~~ Space servers provide a best-effort datagram service be-
ability challenge and is the focus of the rest of this paper. tween objects. Figure 4 shows the flowchart of how a
While a space server can shed query and location update space server forwards messages between objects. A des-
load by reducing the geometric region it covers, message tination is local if the space server is authoritative for that
input and output are not as easy to control. object. The flowchart has three basic outcomes: send
As Section 2 discussed, current virtual worlds scale the message to the destination’s object host, forward the

communication by setting hard distance limits and split- message to another space server, or drop the message.

ting throughput uniformly among communicating ob- A space server assigns each active flow a weight.
jects: a “fog” set at a fixed distance acts as a commu- Using techniques based on weighted fair queueing [8],
nication barrier. While such an approach is tenable for space servers grant each flow a share of the available ca-
closed, tightly controlled worlds such as World of War- pacity proportional to that flow’s weight. For example, if
craft and EVE Online, it poses major problems for virtual a flow has weight 3.5 and the sum of weights is 70, that
worlds as an application platform. Communication in flow will receive at least 3.5/70 = 5% of the network ca-

these worlds has very strange behavior: objects that are pacity. If it is the only active flow, it will receive 100% of
at one moment reachable, cross a distance barrier, and the capacity. Using fair queueing allows Meru to enforce
are suddenly unreachable. Further, very large objects weights while supporting intelligent resource utilization.

just outside the fog are unreachable, while tiny objects To support rich object communication and scale to
just inside are reachable. This model makes all but the enormous worlds, the forwarder models object messag-
most simple applications that only require short bursts of ing between space servers as light. Each object transmits
localized communication difficult or impossible to build. and receives communication proportional to its volume
The Meru architecture takes a different approach, as and inversely proportional to distance. Space servers as-

the next section describes, one which meets the commu- sign each object pairs weight using a simple equation in-

nication and scalability requirements. spired by electromagnetic waves and uses these weights
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to fairly allocate network capacity.

Leveraging geometric information and locality in this SS, SS; Jar
way, space servers can ensure that every object pair Sender: classify to = NUN J. 1 |

can communicate, even as the world grows to enormous or eh 10 dost with = HE === sum of
sizes. The weight — number of photons — of an object across destinations with pede.|, Used
pair may shrink very small, but it remains greater than ~~ sum of senderused |\_~ ents
zero. Furthermore, as the world grows, nearby objects weights. SS.
can maintain reasonable throughput: a large number of SG ST
very distant objects do not outshine a nearby one. Receiver: dequeue with : . plo

sum of receiver used — HH — ss +h
weights. Forward to ~~ _— D pelgns

. . destination object host or oo es
4.2 Computing Flow Weights space server. om Sos

The prior sections gave an intuition for how a space
server scales communication. This section describes the : Ls : :

: oo Figure 5: Fair queueing design. A packet from an ob-
algorithm used. Future sections describe how it is imple- ey , CL

1 ject in region SSp running on OH, to an object in re-
mented. gion SS¢ running on O Hj passes through three queue-
A space server calculates flow weight using a function ing stages, shown by the dark line.

F (source, dest). Suppose we can define F such that
as the world grows, the sum of all weights into a single

server converges to a constant c¢. Such an F' would mean 4.3 Queueing Stages
that the input to a given server converges to a constant : : : :

as the world’s geomefry grows to infinity. Furthermore Equation 1 defines a function which assigns weights to
if all weights computed by F are greater than 0, then object pairs such that every pair can communicate while

LL : F(a,b) ensuring nearby pairs receive significant throughput. To
every pair will be able to communicate, as —— > 0. : Co :
Put another wav. oiven a server's a finite ca ho and actually meet this communication requirement, however,
F(ab) A > & al A p ; the Meru forwarder needs to enforce I, such that indi-
Le > 0, o d pdil alwdys hds d NON-zEro share o vidual object pairs receive their fair share.
that capacity and can communicate. To accomplish this, the Meru forwarder extends fair

Defining 4(source, dest) in terms of a simpler pomt  gyeueing algorithms to give object pairs capacity propor-
pairwise function f (Ps; pa) allows us to define weights (ional to the weights computed by F. Logically, a Meru
solely in terms of distance,as integrals over theregion of pace server enforces fairness across all active inbound
the source 2, and destination 12; account for size: flows, as well as all active outbound flows. However,

using a standard fair queue algorithm [8] to enforce fair-

F(Rs, Ry) = / / F(ps, pa)dads (1) ness on both input and output 1s prohibitively expensive.In terms of state it requires a queue per flow, and in terms

One function close to the maximum bound (slowest of CPU can become expensive, requiring O(log(n)) op-
falloff which meets the convergence and non-zero re- erations per packet, where 7. is the number of flows [24].
uirements) is Furthermore, standard fair queueing algorithms focus onq output, while Meru also requires fairly queueing input.

1 Queueing input is a distributed problem requiring coor-

f(r) = (sr + 0)? Tog (sr + 7) dination between senders and receivers, while standard
algorithms assume centralized information.

where s scales the falloff rate and p is non-zero and indi- To reduce the costs of enforcing [* with fair queues,
rectly controls the maximum weight for an object pair. ~~ Meru splits the task into three stages. Figure 5 shows
In the worlds we evaluate in this paper, s = 0.0085 and this structure. The first stage enforces fairness within a
p = 0.000001. If r is in meters, these settings mean set of flows between a pair of space servers: given an
that a 1 km region around a node receives 80-90% of its inter-server capacity C, it gives each flow its fair share
throughput and the rest of the world receives 10-20%. of C'. The second stage enforces fairness within traffic
The +2 falloff also means that nearby objects are guar- from one source server to all destination servers, fairly
anteed reasonable throughput (e.g., 30kbps) even when allocating output capacity. The third stage enforces fair-
there are over ten thousand communicating object pairs. ~~ Ness Within traffic from any source server to a single des-

tination server, fairly allocating input capacity. The first

!The additional log term over —5 is needed because —5 does not and second stages execute on the sending space server.
account for visibility. The third stage executes on the receiving space server.
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Together, these three stages follow the flow weights com- Meru uses a simple feedback loop to enforce fairness

puted by F', no matter where a bottleneck is. in a distributed fashion. The basic approach is to com-

Using the algorithm described in the next section, this pute each flow’s “used weight,”, u; for flow 7, which

division allows receivers to maintain only per-server, is the fraction of its weighted share it is actively using.

rather than per-flow, state. Further, stages two and three Meru defines u; for a flow 2 as

have only one input per server, rather than per flow. To Ti

further reduce queueing state, Meru space servers build Ug = Wi min GT 1)
on core-stateless fair queueing (CSFQ) [29] for the first where r; is the arrival rate, w; is the weight computed
queues stage. CSFQ dynamically measures per-flow by F', C' is the capacity, and U is total used weight of
arrival rates and uses these rates to calculate message il active flows (> w;). The left term computes what
drop probabilities, which allows it to drop packets with- ; Fits sh fq LL oP
out needing per-flow input queues. In our implementa- A© - are a HOW'S USE 0 N Ui = d
tion, this requires 12 bytes of state per flow (as opposed b Sed WEIS L1s necessary since weights are aggregateefore being used by stages two and three. Otherwise,

0 a separate queue, multiple packets in depth). a high-weight flow with low utilization inflates the ag-
gregate weight, giving other flows more than their fair

4.4 Queueing Implementation Details share. For example, consider the case where there are
two flows, with weights 1 and 100. If the weight 100

This section describes the details of Meru’s implemen- flow is only using quarter of its available share (25 units),
tation, particularly how the queueing stages interact ina hep reporting the two flows as having a weight of 101
feedback loop to enforce fairness. can lead the weight 1 flow to receive the excess capacity

Space servers communicate using TCP. Under load, of 76, much more than its share. The correct aggregate
a Meru space server relies on flow control to explicitly “used weight” to report is 26.
signal when a source should send it messages. As space Each stage one queue computes these u; and generates
servers for a given world are under a single administra- a stream of packets with fairness enforced according to
tive domain (typically on the same or nearby racks), 1a- these u;. The stage one queue reports a single value to
tency is very low. By configuring flow control windows stages two and three, the sum of wu; of its flows. This
to be inversely proportional to weights, a receiving space gum (a single floating point value) is used as the weights
server can keep latencies low when under load. on the inputs of stages two and three. Because stage one

For each flow originating from it, a space server main- has computed the used weights, enforcing fairness on the
tains an estimate of that object pair’s weight. Loc pro- aggregate inputs at stages two and three generates the
vides the source object’s size and position. The server correct ratio of packets from all input streams.
learns the destination’s size from OSeg, as OSeg entries U introduces a feedback loop: stages two and three
include size information (this assumes that size changes compute U in terms of the u; (indirectly via the sums
infrequently). The server approximates the destination’s provided by stage one), and the wu; are computed using U.
position as the center of the region of its authoritative These two computations require sending and receiving
space sever, learned from CSeg. It computes Equation 1 space servers to share state with one another. This state
using these values. We have experimentally determined sharing is embedded in fields of inter-server messages.
in an ns-2 simulation that when this approximation is ap- ~~ The sender tells the receiver the sum of used weights for
plied to fairness on objects arranged uniformly at ran- its flows; the receiver tells the sender its capacity and
dom, messaging each other at random, it leads to a Jain’s the sum of all incoming used weights. This is a simple,
Fairness Index of 0.96+0.03. cross-network control loop, as the values u; and U are
The first queueing stage is a core-stateless fair queue dependent on one another. However, the simplicity of

for each destination space server. Flows in the first stage the function above, combined with the minimum term,

have weights computed by F'. Standard CSFQ assumes means they quickly converge.
that the output rate 1S a constant (i.e., the line rate). In There are several additional edge cases which we do
Meru, this is not the case, as the rate at which a space not describe here for sake of brevity. Our experience is
server can send messages to another space server de- that making fair queueing work correctly in a real, dy-
pends on the load at both servers. Meru uses dynamic namic system 1S much more complex than papers on the
measures of input and output capacity, described below, topic (and their supporting source code) would suggest.
to adapt drop probabilities. Our implementation also nor-

malizes individual flow rate estimations to the total flow 4.5 Object Segmentation (OSeg)
rate estimation since many flows are thin, causing noisy

predictors. This ensures the CSFQ algorithm does not ~~ A key part of the forwarding path is to determine which

drop more packets than it should. space server is authoritative for a message’s destination.
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The forwarder accesses the object segmentation service lected from the closest analogy — Second Life — when-

for this purpose. To improve forwarding performance ever possible, otherwise use models based on real world

and reduce load on OSeg, a space server maintains a ~~ phenomena, and explore multiple possible use cases.

cache of OSeg entries. This section describes OSeg’s Our experiments focus on three variables which can
design and implementation as well the space server's gyongly affect a space server's performance: object lay-
caching policy. Recall from Figure 4 that space servers out/movement, world size, and object messaging pat-
cooperatively invalidate stale cache entries. terns. These variables are important because they ex-
OSeg is a key-value store built on top of CRAQ [31], plore how different parts of Meru’s messaging system

an extension to chain replication [32] that supports both herformg in different kinds of worlds with different ap-
eventual and strong consistency. CRAQ is designed for plication workloads. Object layout and movement af-
read-mostly workloads, which we expect to be the case in fects messaging rates and churn in OSeg entries. World
most virtual worlds. Our measurements of Second Life size (in geometric size and number of objects) affects
show that generally only about 8% of objects move. Cor- (he range of forwarder queueing weights and OSeg cache
respondingly, few objects need to write OSeg updates to gjaq. Finally, the traffic pattern of messages will affect
CRAQ. To spread read and write load, OSeg organizes (he working set for the OSeg cache as well as the fraction
CRAQ nodes into a ring using consistent hashing. A par- of messages which require forwarding.
ticular key’s replica chain are the n nodes succeeding its

value. This approach allows the underlying backing store

to scale with lookup, write, and storage load.

Each space server maintains an cache of recent OSeg 5.1 Data Collection

lookups to improve message latency, reduce distortions

of fairness caused by lookups, and reduce load on OSeg. We draw object data from a modified Second Life client
Given the novel workloads virtual worlds present two that outputs the Second Life data stream. A Second Life
major questions arise: what caching algorithm to use, object is a collection of attached geometric primitives
and how big a cache is needed? called “prims.” As attachment can is also used for be-

Intuitively, much communication in a virtual world havior (e.g., an avatar sitting in a chair), we infer objects
should be local: even though distant objects are visible, by assuming that prims attached for an entire trace con-
interaction 1s mostly with nearby objects. We hypothe- stitute a single object, while prims only attached for part
size that a geometric caching algorithm could be more of a trace constitute separate objects.
effective than standard algorithms such as LRU. We pro- g d Lif timize the view :: econd Life servers optimize the viewing experience

pose a new algorithm, Lowest Forwarder Weight (LFW), bv prioritizing updates in the view frustum. We mitioate
based on the forwarder’s weight function F'. The cache y prioriuzing up : : £

oo ) this by continuously rotating the client. While Second
evaluates an approximation of Equation 1 for each entry Life still prioritizes updates under this workload, rotation
and evicts the lowest weight entry. Since no single source : b b :
Co . on reduces the effect and gaps between updates for moving

object is considered, the space server’s region is used.
o LC : objects on the order of one second.

The destination position may be approximated since lo-

cations are not always available but destination server re-

gions always are, via coordinate segmentation (CSeg).

A space server has an LFW OSeg cache. Cache entries 5.2 World Size
consist of an object identifier, server identifier, and object

radius, a total of 24bytes. A small cache of about 20,000 To cover a representative spectrum of density we col-
entries occupies less than 700KB and provides low miss lected traces over 198 Second Life regions containing
rates. Section 6.4 evaluates this decision. 213,000 objects at various times during March and April

2010. This translates to a density of approximately

S Experimental Methodology 16,000 objects/km?. To generate a large virtual world,
we create 20 million objects by copying objects from the

Section 6 evaluates four properties of a Meru space Second Life data and uniformly distributing them over a

server: raw packet forwarding microbenchmarks, com- 36 km x 36 km world, dimensions consistent with Sec-

munication rate control accuracy, LFW’s effectiveness in ond Life object density. A region this size covers fifteen

OSeg caching, and end-to-end messaging performance. times the area of Manhattan. We originally chose a uni-

This section presents the experimental methodologies we form distribution to avoid motion artifacts introduced by

use to evaluate these properties. Because there are no Second Life’s rigid server boundaries. We found that on

well-known or well-accepted virtual world workloads, a tiled version of the data caching strategies performed

our basic experimental methodology is to use data col- similarly relative to each other.
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served in web sites and peer-to-peer networks. Destina-

tions are drawn from a probability distribution according

3% to a Zipfian distribution. This model ignores geometry
8 and reflects scenarios where objects popularity is inde-
Hos pendent of location. We used a = .8 [5].

6 Evaluation

(a) Social (b) Falloff

) In this section we seek to answer five questions:

fo ART : x i 1. How is the space server implemented?
ate >ase: : 2. What inter-object throughput and latency can a
EA as 'y EYRE space server sustain?
0.0% ee : .

Ete gy i . 3. Does the queueing system enforce the falloff func-
. ER 2 tion and satisfy the communication requirement?

(¢) Graphical (d) Zipf 4. Is LFW a better OSeg caching policy than LRU?
5. Does the space server exhibit good end-to-end ob-

Figure 6: Query patterns for the first 3000 queries issued ject messaging performance when its components
under the four different workloads on a 36km x 36km are integrated?

world. Blue circles indicate locations of queried objects,

with radii showing object size. As most virtual world systems are closed, it is diffi-
cult to measure and compare our system to them. We are

able to perform simple inter-object benchmarks in Sec-

5.3 Object Traffic Pattern ond Life, and show that our system compares favorably.

The final variable is the application traffic pattern. This

data is completely inaccessible from clients and may not 6.1 Implementation

even map directly to our system due to abstraction break- 0 ‘M . ation ;
ing integration of the application into the system design. ur he 34000 Toe Ny mpIoroo
Therefore we rely on four synthetic traffic patterns in our Cort 135 J It Men ) «0 ¢ (measure )
analysis that we believe are representative of different ount | D 15 a Gevelopthetit TOT Tom the open-
uses of a virtual world. In each case, a source object is source Sirikaia platform [38] we help mainiain. Cur-

oe rently, it does not interoperate with Sirikata’s graphical
selected from a uniform distribution; the traffic patterns lent due { ded ch . at }
differ in destination selection. Figure 6 shows these pat- ¢ ol We © or ea ¢ onwe © po p 0”
terns graphically when applied to a Second Life data set. COIS. WE EXPECL TO COMPICLE TE-NLESTAOn WIL a IEW

months, which will allow Sirikata to have worlds running

Falloff selects a destination using probabilities propor- on multiple space servers.
tional to weights computed with Equation 1. To leverage multicore processors, the space is highly

Social network uses a generative social network multithreaded: the current implementation has eight ac-
model [16] with a parameter & = 2 to match the 90th tive threads. To reduce locking overhead and simplify
percentile guild size of 35 in World of Warcraft [9]. The ~~ CONCUIency, each thread handles a separate set of op-
model generates a set of weighted “friends” for each ob- erations and threads pass asynchronous messages. For
ject. An object picks a destination from this distribu- example, message forwarding is one thread, but an OSeg
tion. This captures what might be seen in a social world, ~~ cache miss passes a message to the OSeg request thread.
where communication is mostly between friends, less be-

tween acquaintances, and rare between strangers. 6.2 Microbenchmarks

Graphical selects destinations based on what an object : :
Co : : We evaluate basic forwarding performance by measur-

sees. A source selects a destination object by tracing a : :
: : ing latency, forwarding rate, and throughput between a

random ray to its first intersection. This selects destina- : : : :
) ) pair of object hosts. Latency measures the ping time

tions proportional to their occluded solid angle. Due to Cr
: : : for 64 byte messages with idle space servers. Forward-

the sparsity of Second Life, this model sees some but not : how f d
b seometric locality: rvs often travel far ing rate measures how fast a space server can forwar

much g yo ray 64 byte messages. Throughput measures the maximum
Content popularity mirrors the Zipfian popularity ob- inter-object throughput using 1 kilobyte messages.
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Latency Max Rate Throughput 00 1.00

Local 692 us 41876 pps 82.33 Mbps _ ow 0.98
Remote 1232 us 13747 pps 47.30 Mbps S 40 0.95

Remote Lookup 2672 us 9454 pps 37.60 Mbps 5 30 4 0.03 ©
EE cc -

= 0 ideal, falloff 0.90
Table 1: Space server forwarding performance. £

= weights
10 Ze 0.88

Latency Throughput 0 _ 0.85
EH HHHHHHHHHH—_—_—IIG—=——=— 0 2,000 4,000 6,000 8,000 10,000 12,000
Local Server 12 ms 176 kbps Object pair (sorted by weight)

Remote, distance < 100m 33 ms 57 kbps (a) All senders send as fast as possible

Remote, distance > 100m 480 ms 15 kbps _ 1.00

Table 2: Second life message performance between two 7 _ ideal 0:98
objects. S N JF] 0.95

5 6 . _
2 \ 0.93
< N :

. o < weights
We measure three forwarding paths. In the local path, 3 4 Nh 0.90

the two objects are on the same space server. In the re- = hE
mote path, the two objects are on different space servers ’ = 0.88
and the destination is in the OSeg cache. In the remote 0 — 0.85

oo , 0 2,000 4,000 6,000 8,000 10,000 12,000

lookup path ihe destination reduires an OSeg lookup. Re- Obiect pair (sorted by weight)mote takes longer than loca because it passes through (b) High weight object pairs send less than their share.
inter-server queues, has an additional network hop, and

requires a thread context switch.

Table 1 shows the results. For local messages, Meru as [sss [sss |
can process over 40,000 messages per second and has a :

. . (¢) Linear world topology
ping time below 700us. An OSeg lookup more than dou-
bles message latency, cuts the forwarding rate by 40% :

8 y AES Y 0 Figure 7: Flow throughput under two workloads.
and reduces throughput by 21%: this demonstrates the

need for an OSeg cache.

Table 2 shows results from similar experiments in a yate two traffic patterns. In the first, objects flood the
deserted and near-empty Second Life region where there system with messages; this tests whether the space server
are no visibility or physics computations. Local Server can give all pairs some capacity while giving closer pairs
and proximate messaging uses 1IShout() and IlListen(); reasonable throughput. In the second, objects send at a
remote uses 1lEmail(). Despite requiring fewer network constant rate so high weight pairs use less than their fair
hops since object and space simulation occur on the same share: this tests whether the space server can maintain
server in Second Life, latency and throughput are signif- high utilization. Experiments run for 15 minutes.
icantly orders of magnitude worse than in Meru. These Figures 7(a) and 7(b) show the results. The space
tremendous differences are due to the fact that Second servers follow Equation 1 and meet the communica-
Life explicitly rate-limits traffic to ensure a smooth ex- jon requirement: nearby object pairs receive significant
perience. Meru’s weighted rate control makes this un- throughput (30 kbps), yet distant pairs can still exchange
necessary, permitting high utilization. messages. Each graph shows four values for all 12,000

flows, sorted by weight. The first three show through-

6.3 Communication Rate Control put (left axis): the actual received throughput, the falloff
throughput (if the object used its entire fair share), and

To validate whether the forwarder enforces Equation 1 the ideal throughput (if the system enforced fairness per-

and achieves good utilization, we constructed a simple fectly). In the flooding experiment, the falloff and ideal

linear world of nine square regions, shown in Figure 7(c). are the same. The fourth value shows the JFI (right axis)

Each region is a separate space server and contains 1,500 of received throughput for the n highest weight pairs.

objects. Each object in servers s; — sg is paired with a The right-most data point shows the overall JFI.

random object on server d. Objects have bounding vol- The received throughput closely follows the ideal

umes of 4-270 m? (spheres with radii of 1-8m). We eval- throughput. In Figure 7(a), the JFI remains high until
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Figure 8: Evaluation of LFW’s cache miss rate compared > [= —————"=Ulocal Forwarding
. C

. . . . . 0.0

the tail: this is because in core stateless fair queueing a 10° 10°

flow’s first packet is always accepted. If the flow is for # communicating objects, sorted by distance from center
two tiny, distant objects, then under load a single packet
may be much more than their share. The important point ~~ Figure 10: Average message latency in end to end exper-
is that outside this noisy tail, JFI remains at 0.99. In Fig- ~~ iment. Percentage show cache miss rates.
ure /(b), JFI is much higher because space servers give
the unused capacity of high weight flows to lower ones,

reducing thisFANRi 2.7ms to 1.5ms. When the working set is small, as in
the social world traffic, LFW and LRU perform similarly,

and a small 1MB (30,000 entry) cache suffices for a 20

6.4 OSeg million object world 15 times the size of Manhattan.

We evaluate OSeg cache algorithms by simulating the 20 We omit data for the content and ray tracing traffic
million object world and traffic patterns described in Sec- patterns because with their low locality, large datasets are
tion 5. We measure the center space server as a represen- effectively uncacheable. For example, with content and
tative cache. Objects within this server’s region generate ~~ 9 tracing traffic, a 20,000 entry cache has a miss rate
30,000 messages per second: the portion of these that of approximately 70% with the oracle algorithm. Worlds
require OSeg lookups is workload dependent. with such workloads must either optimize OSeg lookups

Figures 8(a) and 8(b) show cache miss rates for three further or have very large OSeg caches.
cache algorithms: LRU, Lowest Falloff Weight (LFW),

and an oracle optimal cache which has perfect knowl- 6.5 End-to-End Evaluation
edge of future requests. The percentage values show

LFW’s improvement over LRU as a fraction of LRU’s We recreate a subset of the Second Life data described in

misses over the oracle. For example, 75% means that Section 5.2, using a 16 space server grid covering a 1km?
LFW has one quarter as many additional misses as LRU. region with 19,000 objects, shown in Figure 9. The mi-
When messaging has geometric locality, LFW can re- crobenchmarks show that messaging rate and bandwidth

duce cache misses by 57-85%. In the communication are largely independent of caching effects. As the pur-
falloff workload, a 20,000 entry cache has a 21% miss pose of these tests is to evaluate how caching and queue-
rate. Assuming the performance results in Table 1, an ing interact, we focus our end-to-end tests on latency.
LFW cache reduces the average message latency from To measure how latency scales as the world grows,
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we progressively increase the number of objects in incre- we consider including such an approach a critical future

ments of 250 every 420 seconds. Objects join the world step: they can, for example, aggregate thousands of tiny

radiating out in increasing distance from the center of the trees into a large forest. Exactly who in Meru’s federated

marked region in Figure 9. Senders are random samples architecture is responsible for such aggregation remains

from the marked region, and destination selection fol- an open research problem.

lows the social traffic pattern. The aggregate send rate is RedDwarf Server [21, 34], previously known as Dark-
33 one kilobyte messages per second. The OSeg cache is star, implements virtual world logic as small transac-
256 entries to evaluate what happens when the working tional tasks distributed across servers. Chen et al. [6]

set exceeds the cache size. manage load in a virtual world by remapping highly ac-
Figure 10 shows the contributing factors to message tive regions to lightly loaded servers, in a manner sim-

latency as the number of objects increases. Latency in- ilar to early MMORPGs such as Asheron’s Call. An-
creases at two major inflection points. The first occurs other recent approach proposing pushing computation to
at 750 objects: this is when objects begin appearing on clients, exploiting spatial properties to maintain consis-
other servers and require forwarding. The “Local, For- tency [11]. While the precise approach runs contrary to
warding” portion of the plot begins increasing slightly as decades of experience in distributed simulation [25, 26],
messages hit in the OSeg cache. the core idea of federating computation is one Meru
The second inflection point is at 1,750 objects. Net- shares.

work and sender queue latencies increase past this point There is a rich literature within the computer graphics
as a greater fraction of objects are remote. At 1,750 community that use convergent falloff functions to guar-
objects, the working set exceeds the cache size, caus-  aptee quality [17, 14]. Such algorithms, however, focus
ing OSeg misses to dominate message latency. The miss on narrow, centralized solutions to solve very difficult,
rate increases until 12,000 objects, when it stabilizes at domain-specific scalability challenges. In contrast, Meru
82%. Its rate stabilizes because the social workload se- is a distributed, federated system.
lects new, further objects with very low probability.

These results demonstrate the importance of the OSeg

cache and its eviction algorithm to message latency. 8 (Conclusion
Least forwarder weight can achieve good hit rates, but

even social traffic models require reasonable cache sizes. This paper presents the Meru virtual world architec-
However, even when the working set exceeds the cache ture and describes the forwarding path that enables
size or the workload is uncachable (as in graphical traf- application-level messaging. Our architecture allows
fic), a space server forwards well: cache misses add only 50h component to be scaled independently. Meru takes
a millisecond to ping times, which remain below 3ms. advantage of the inherent geometry of virtual worlds to

gracefully scale throughput between objects. A single

7 Related Work on Virtual Worlds pair can use the whole system capacity if available. Un-
der heavy congestion of tens of thousands of object pairs,

Section 4 discussed prior work that Meru builds on, such ~~ Meru can guarantee every pair a non-zero throughput
as fair queueing [8], core stateless fair queueing [29], while simultaneously giving nearby objects 30kbps. An
chain replication [32], and CRAQ [31], while Section 2 object lookup cache can greatly reduce messaging laten-
described techniques worlds use to limit communication. ~~ cies, and the geometry-aware Least Forwarder Weight
This section presents related work on virtual worlds. (LFW) algorithm outperforms LRU significantly.

Research on how to restrict communication has exam- Meru is a first step towards open, federated worlds

ined using a radius around the object [2, 13], including with rich application communication. Many challenges

orientation and recent interactions to leverage limitations still remain before our goal of large, dense virtual worlds

of human attention [1], or partitioning the world into dis- becomes truly practical: among them, the datastructures

joint regions [15]. These approaches all seek to trade off ~~ in PIntO to supply objects’ standing queries with other

user experience for increased data partitioning. Second important objects; the design and implementation of an

Life, for example, does not display the world outside a addressable CDN to store object data and meshes; dy-

user’s view range. Meru takes the completely opposite namic segmentation of the world across space servers for

approach: it allows arbitrary communication and inter- load-balancing; system-wide fault-tolerance; object host

action, scaling it to be more local only when under load. design; and designing an object execution environment

PARADISE exploits perceptual limitations by aggre- that encourages programmability. To realize this goal,

gating uninteresting objects and providing three variable- we are currently working actively on several of the re-

resolution channels to support near-, mid-, and far-range search directions mentioned above and integrating them

viewers [27, 25]. Given Meru’s communication model, into the Meru architecture.
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