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Abstract SS T— i "
The Web today provides a corpus of design examples unparalleled pa am —
in human history. However, leveraging existing designs to pro- FYTT | f— os Tm

duce new pages 1s currently difficult. This paper introduces the | @ Emee——— co—— oo
Bricolage algorithm for automatically transferring design and con- : tm ert rt mm Co
tent between Web pages. Bricolage introduces a novel structured- : er a :
prediction technique that learns to create coherent mappings be- : a —— :
tween pages by training on human-generated exemplars. The pro-

duced mappings can then be used to automatically transfer the con- : C . :tent from one page into the style and layout of another. We show : Mal Log In :
that Bricolage can learn to accurately reproduce human page map- Lp Sign in with your Google account A Google approach to ema. <..

pings, and that it provides a general, efficient, and automatic tech- Username tox psgeramplecom) Q osms tt
nique for retargeting content between a variety of real Web pages. wih Goce nova techneleay

1 INTRODUCTION I
Lots of space

Designers in many fields rely on examples for inspiration [Herring em @Es metas id coud
et al. 2009], and examples can facilitate better design work [Lee sign | Cestasmagsoumt=
et al. 2010]. Examples can illustrate the space of possible solutions,
and also how to implement those possibilities [Brandt et al. 2009; RRs i .
Buxton 2007]. Furthermore, repurposing successful elements from
prior ideas can be more efficient than reinventing them from scratch
[Gentner et al. 2001; Kolodner and Wills 1993; Hartmann et al.

2007]. Figure 1: Bricolage computes coherent mappings between Web
The Web today provides a corpus of design examples unparalleled pages by matching visually and semantically similarpage elements.
in human history. Unfortunately, this powerful resource is un- The produced mapping can then be used to guide the transfer of
derutilized. While current systems assist with browsing examples contentfrom one page into the design and layout of the other.
[Lee et al. 2010] and cloning individual design elements [Fitzger-
ald 2008], adapting the gestalt structure of Web designs remains a

time-intensive, manual process. Since the mappings collected in our study are highly structured and
Most design reuse today is accomplished via templates, which are hierarchical, Bricolage employs structured prediction techniques to
specially created for this purpose [Gibson et al. 2005]. With tem- make the mapping process tractable. Each page is segmented into
plates’ standardized page semantics, people can render content into a tree of contiguous regions, and mappings are predicted between
predesigned layouts. This strength is also a weakness: templates pages by identifying elements in these trees. Bricolage introduces
homogenize page structure, limit customization and creativity, and a novel tree matching algorithm that allows local and global con-
yield cookie-cutter designs. Ideally, tools should offer both the ease straints to be optimized simultaneously. The algorithm matches
of templates and the diversity of the entire Web. What if any Web similar elements between pages while preserving important struc-
page could be a design template? tural relationships across the trees.

This paper introduces the Bricolage algorithm for automatically This paper presents the page segmentation algorithm, the data col-
transferring design and content between Web pages. Bricolage lection study, the mapping algorithm, and the machine learning
matches visually and semantically similar elements in pages to cre- method. It then shows results demonstrating that Bricolage can
ate coherent mappings between them. These mappings can then be learn to reproduce human mappings with a high degree of accu-
used to transfer the content from one page into the style and layout racy. Lastly, it gives examples of Bricolage being used for creat-
of the other, without any user intervention (Figure 1). ing design alternatives, including rapid prototyping and retargeting

Bricolage learns how to transfer content between pages by train- content to alternate form factors such as mobile devices.
ing on a corpus of exemplar mappings. To generate this corpus, we

created a Web-based crowdsourcing interface for collecting human- 2 PAGE SEGMENTATION
generated mappings. The collector was populated with 50 popular
Web pages, and 39 participants with some Web design experience CL

were recruited to specify correspondences between two to four pairs Creating mappings between Web pages is facilitated by hav-
of pages each. After matching every fifth element, participants also ing some abstract representation of each page’s structure that is
answered a free-response question about their rationale. The result- amenable to matching. One candidate for this representation is the
ing data was used to guide the development of the algorithm, train Document Object Model tree of the page, which provides a direct
Bricolage’s machine learning components, and verify the results. correspondence between each page region and the HTML that com-

prises it. However, the DOM may contain many nodes that have no

* e-mail: {ranju,jtalton,saahmad,srk } @cs.stanford.edu visual effect on the rendered page, and lack other high-level struc-
UNPUBLISHED TECHNICAL REPORT tures that human viewers might expect.



3 ANALYZING HUMAN MAPPINGS

The difficulty of developing automatic methods for generating map-

content pings between Web pages has been noted [Fitzgerald 2008]. Ratherthan attempting to formulate an algorithm for page mapping a pri-
ori, we hypothesize that a more promising approach is to use ma-
chine learning techniques to train on a set of human-generated map-

I u pings.
4Co 4Co ! a To this end, we created the Bricolage Collector, a Web application
IL NYI for gathering human page mappings. We used the collector to so-

licit a corpus of mappings online, constructed between a variety of
different Web pages, and analyzed these mappings to answer ques-
tions about how people map pages. To establish a baseline for the

¥ BORDER WOR SERVICES amour comic algorithm, we examined the consistency of the collected mappings
and tested them for structural and hierarchical patterns. To facil-

- - " itate the selection of discriminative features for the learning, we
I DESIGN beautiful © user-friendly websites, investigated the factors people consider when deciding which page
FOCUSING on small or individual projects. Find elements to match. The corpus of generated mappings was then
out more ABOUT me and GETINTOUCH used to train and test the Bricolage algorithm.

ee— We selected a diverse corpus of 50 popular Web pages chosen from
the Alexa Top 100, recent Webby nominees and award winners,
highly regarded design blogs, and our own personal bookmark col-
lections. The set omits pages which rely heavily on Flash, since

Figure 2: A consistent page segmentation like the ones produced they cannot be segmented effectively. To avoid overwhelming hu-
by our algorithm, and the associated DOM tree. man mappers,it also omits pages which contain more than a hun-

dred or so distinct elements.

Several page segmentation algorithms seek to partition the DOM From this corpus, we preselected a focus set of eight page pairs
in order to decompose Web pages into discrete sets of visually- which seemed like good candidates for content transfer. Each par-
coherent 2D regions [Cai et al. 2003; Chakrabarti et al. 2008; Kang ticipant was asked to match one or two pairs from the focus set,
et al. 2010], These algorithms produce good results as long as the and one or two more chosen uniformly at random from the corpus.
page’s DOM tree closely mirrors its visual hierarchy, which is the In this way, the collector gathered data about how different peo-
case for many simple Web pages. ple map the same pair of pages, and about how people map many

However, these techniques fail on more complex pages. Modern different pairs.
CSS allows content to be arbitrarily repositioned, meaning that the We recruited 39 participants for the study through email lists and
structural hierarchy of the DOM may only loosely approximate the online advertisements. Each reported some prior Web design expe-
page’s visual layout. Similarly, inlined text elements are not as- rience.
signed individual DOM elements, and therefore cannot be separated
from surrounding markup. In practice, these issues render existing
segmentation algorithms poorly suited to real-world Web pages. Map Webpages Forth ighighedsegment on he ethan page,id th bet comespondingsegment on th fightand page (16.0139

Bricolage introduces a novel page segmentation algorithm that “re- = —

DOMSs” the input page in order to produce clean and consistent seg- i b
mentations (Figure 2). The algorithm comprises four stages. First, — a] a |
each inlined element is identified and wrapped inside a <span> oT _— yaii a
tag to ensure that all page content is contained within a leaf node oo RT = TANT
of the DOM tree. Next, the hierarchy is reshuffled so that parent- .... beleih of REESE Y VTTTS
child relationships in the tree correspond to visual containment on — |
the page. Each DOM node is labelled with its rendered page coor- RE
dinates, and the algorithm checks whether each child’s parent is the
smallest region that contains it. When this constraint is violated,

the DOM is adjusted accordingly, taking care to preserve layout de- Figure 3: The Bricolage Collector Web application asks users to
tails when nodes are reshuffled. Third, redundant and superfluous match each highlighted region in the left (content) page to the cor-
nodes that do not contribute to the visual layout of the page are re- responding region in the right (layout) page. Zoom in for detail.
moved. Fourth, the hierarchy is supplemented to introduce missing
structure. This is accomplished by computing a set of VIPS-style
separators across each page region [Cai et al. 2003], and inserting
enclosing DOM nodes accordingly. 3.2 Procedure
At the end of these four steps, all page content is assigned to some Participants were first instructed to watch a tutorial video demon-
leaf node in the DOM tree, and every non-leaf node properly con- strating the Bricolage Collector interface and describing the task
tains its children. In practice, this algorithm can produce standard- (Figure 3). Users were asked to produce mappings to transfer the
ized segmentations even for complex, design-oriented pages. content from the left page into the layout of the right. The tutorial



emphasizes that participants can use any criteria they deem appro- For the first component, the words with the largest projections in-
priate to match elements between pages. Upon completion of the clude: footer, link, menu, description, videos, picture, login, con-
tutorial, participants were redirected to the Collector Web applica- tent, image, title, body, header, search, and graphic. These words
tion, and presented with the first pair. pertain primarily to visual and semantic attributes of page content.

The interface iterates over the segmented regions in the content For the second component, the words with the largest projections
page one at a time, and asks participants to find a matching region include: both, position, about, layout, bottom, one, two, three, sub-
in the layout page. The user selects this region via the mouse or section, leftmost, space, column,from, and horizontal. These words
keyboard, and confirms it by clicking the “match” button at the top are mostly concerned with structural and spatial relationships be-
of the app. If no good match exists for a particular region, the user tween page elements.
clicks the “no match” button.

3.3.3 Structure and Hierarchy
After every fifth match, the interface presents a dialog box ask-

ing,"Why did you choose this assignment?” These rationale re- Two statistics examine the structural and hierarchical properties of
sponses are logged along with the mappings, and submitted to a the 81 collected mappings: one measuring the degree to which
central server. mapped nodes preserve ancestry, and the other measuring the de-

gree to which the mapping keeps groups of siblings together.

3.3 Results We define two matched regions to be ancestry preserving if their
a. parent regions are also matched. The degree of ancestry preser-

In total, the 39 participants generated 117 Mappings between 52 vation in a mapping is the number of ancestry preserving regions
pairs of pages. 73 mappings for the 8 pairs in the focus set, and divided by the total number of matched regions. Participants map-
44 covering the rest of the corpus. The collection also generated pings preserved ancestry 53.3% of the time (02 = 19.6%, min —
rationale explanations for 227 individual region assignments, av- 7.6%, max = 95.5%).
eraging 4.7 words in length. Participants averaged 10.5 seconds

finding a match for each page region (0° = 4.23s, min = 4.42s, Similarly, we define a set of page regions sharing a common parent
max = 25.0s), and about five minutes per pair of pages (u = to be sibling preserving if the regions they are matched to also share
5.38m, 0° = 3.03m, min = 1.52m, max = 20.7m). a common parent. Participants produced mappings that were 83.9%

sibling preserving (6° = 8.13%, min = 58.3%, max = 100%).
3.3.1 Consistency

3.4 Analysis
Given two mappings for a particular pair of pages, we define the

consistency to be the percentage of page regions which are given While users do not map pages in exactly the same way, the map-
identical assignments. For the eight focus pairs, the average inter- pings produced by different people are highly consistent. Addition-
mapping consistency was 78.3% (0 = 10.2%, min = 58.8%, ally, many assignments between pages were unanimous: there is a
max = 89.8%). “method to the madness.”

Moreover, 37.8% of page regions were mapped identically LSA found two factors to be highly predictive of human mappings:
by all participants. For instance, inset is an ordered plot matching visual and semantic counterparts across pages, and pre-
of the frequency of the region assignments used in mappings serving meaningful patterns and arrangements between elements.

forodSoeSaheoP4 10 This analysis helps clarify the kind of machine learning algorithm
and http://3lthree. needed to produce good mappings between pages. It must incorpo-
com. Nearly half of these 0.5 rate semantic and structural constraints, and learn how to balance
assignments were present in between them. It should produce mappings that are consistent with
all of the human mappings. oO— the ones in the training corpus, at least to the degree that those map-

pings are internally consistent themselves.

3.3.2 Rationale

4 COMPUTING PAGE MAPPINGS

To gain intuition about how people map Web pages, we analyzed
the rationale participants provided for the matches they made. One Since the abstract page representation produced by Bricolage’s
of the most popular and effective tools for mining textual data segmentation algorithm is a modified DOM tree, we turn to the
of this sort is Latent Semantic Analysis (LSA) [Deerwester et al. tree matching literature which proposes several efficient methods
1990], which provides an automatic mechanism for extracting con- for computing mappings between trees [Zhang and Shasha 1989;
textual usage of language in a set of documents. Shasha et al. 1994; Zhang 1996]. Unfortunately, by definition,

these algorithms strictly preserve ancestry: once two nodes have
LSA takes a “bag of words” approach to textual analysis: each doc- been placed in correspon-
ument is treated as an unordered collection of words without regard dence, their descendants must
to grammar or punctuation. We followed the standard approach, be matched as well. Rigidly

treating each rationale as a document, forming the term-document enforcing ancestry prevents = Oo
matrix, and extracting is eigenvectors. We used Euclidean nor- semantic considerations from ED

malization to make annotations of different lengths comparable, being balanced with structural |BH |EE
and inverse document-frequency weighting to deemphasize com- ones. For instance, when two
mon words like a and the. The principal components of the term- pages root their navigation el-
document matrix represent the semantic “dimensions” of the ratio- ements differently, mapping the semantics of these regions is prob-
nales, and words with the largest projections onto each component ably more important than preserving the overall page hierarchy (in-
are its descriptors. set).



e

(m’ (n) ®

Figure 4: To determine the ancestry penalty for an edge e = Figure 5: To determine the sibling penalty for an edge m,n), we
im, n|, we count the children of m and n which induce ancestry count the number of siblings ofm that are not mapped to the sib-
violations. Here, only n' induces a cost on e. lings of n, and vice versa. In this example, only n' induces a cost

on [m, nl.

Bricolage introduces a novel optimization algorithm which flexi-

bly balances semantic and structural constraints. The algorithm The sibling cost Cg (+) penalizes edges which fail to preserve sibling
connects the nodes of the two page trees to form a graph, and as- relationships between trees. To calculate this term, we must first
signs a cost to each edge comprised of three terms. The first term define a few tree-related concepts. Let P(m) denote the parent
measures visual and semantic differences between the correspond- of m. Then, the sibling group of a node m is the set S(m) =
ing page elements, the second penalizes edges that violate ancestry {C(P(m))}. Given a mapping M, the sibling invariant subset of
relationships, and the third penalizes edges that break up sibling m is the set
groups. Determining the best page mapping then reduces to finding

a minimum-cost perfect matching of the constructed graph. Brico- I(m) ={m' € S(m) | M(m') € S(M(m))},
lage uses structured prediction to learn a cost function under which

the set of exemplar mappings are minimal [Collins 2002]. and the sibling divergent subset of m is the set

Formally, given two page trees with nodes 17 and 15, we construct _ / /

a complete bipartite graph G between 77 U {®1} and 7% U {®2}, D(m) = im’ € Sm) \ I(m) | M(m') € T2},
where ®1 and @ are no-match nodes. We then define 4 page map- and the distinct sibling groups of m comprise the set G(m) =
ping M to be a set of edges fromGG such that every node in 77 UT U., P(M(m')). We define all corresponding terms for n
is covered by precisely one edge. The rest of this paper uses M(m) m’ eS(m) 1 dth
to denote the image of a node m in the mapping regardless of the symmetrically, and then compute

tree in which m resides | | (fmol) — ( ID(m), . Dn) )To find the best mapping between pages, the algorithm assigns a I(m)||G(m)|  |I(n)||G(n)|)’
cost c(e) to each edge e € GG, and aggregates them to compute the
total mapping cost c(M) = }__,, c(e). Bricolage then searches where ws is a constant sibling violation weighting term. Intuitively,
for the least-cost mapping M* = argmin,, c¢(M). this term balances two important quantities: the degree to which the

siblings of a node are “broken up” by the mapping, and the degree

4.1 Exact Edge Costs to which the node follows its siblings (see Figure 5).

We define the cost of an edge e € Ty x T5 to be the sum of the 4.2 Bounding Edge Costs
visual, ancestry, and sibling costs

While this cost model provides an elegant way to balance semantic,
cle) = cule) + cale) + cs(e). ancestral, and sibling constraints, it cannot be used to search for the

Co Co optimal mapping M™* directly. In particular, while c¢, ([m,n|) can
For the remaining edges in G, all of which involve no-match nodes, be evaluated for an edge by inspecting m and 7, cq (+) and c; (+) re-
we fix the cost c(e) = wn, Where wy, is a constant no-match weight. quire information about the other edges are in the mapping. There-
To compute c, ([m, n]), the algorithm compares visual and seman- fore, to use this model to search for M™ directly, one would have to
tic properties of m and n by inspecting their DOM nodes. We de- know the mapping a priori.

scribe the computation of this term in detail later in the paper. While we cannot evaluate c, (+) and cs (+) precisely, we can compute
The ancestry cost ¢, (+) penalizes edges in the mapping which vio- bounds for them on a per-edge basis [Chawathe and Garcia-Molina
late ancestry relationships between the pages’ elements. Consider 1997]. Moreover, by computing tight upper and lower bounds for
anode m € Ti, and let C'(m) denote the children of m. We define each edge, we can remove some edges from G that are guaranteed
the ancestry-violating children of m to be the set not to appear in AM”. Each time we prune an edge in this way, the

bounds for other nearby edges may be improved. Therefore, to find

V(m) = {m/ cCO(m)| Mm") e Tx \C(M(m))} M™, we iteratively prune and bound edges until we have reduced
the size of GG as much as possible.

and define V' (n) symmetrically. Then, the ancestry cost for an edge
is proportional to the number of ancestry violating children of its To bound the ancestry cost of an edge [m,n] € G, we must con-
terminal nodes sider each child of m and n and answer two questions. First, is it

impossible for this node to induce an ancestry violation? Second, is

ca([m,n]) = wa (|[V(m)| + |V(n)]), it unavoidable that this node will induce an ancestry violation? The
answer to the first question informs the upper bound for c, (+); the

where w, 1s a constant ancestry violation weight (see Figure 4). answer to the second informs the lower.
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Figure 6: To bound ca(|m,n]), observe that neither m' nor n' Figure 7: To bound cs([m, nl), observe that m' is guaranteed to
can induce an ancestry violation. Conversely, m' is guaranteed to be in I(m), and m"" is guaranteed to be in D(m). No guarantees
violate ancestry. No guarantee can be made for n"’. Therefore, the can be made for n' and n"’. Therefore, the lower bound for cs is
lower bound for cg is wa, and the upper bound is 2w,. ws /4, and the upper bound is 3ws JA.

It is possible for anode m’ € C(m) to induce an ancestry violation The bounds for | imilarlv eiven b
as long as there is some edge between it and a node in 1% \ (C'(n)U ¢ bounds for |7(m)] are similarly given by
{®2}). Conversely, the node cannot be guaranteed to induce an 1 if Im’, n'] € Gs.t.n' € S(n)
ancestry violation as long as some edge exists between it and a node 17 (m,n) = 0 else
in C'(n) U{®2} . Accordingly, we define indicator functions y

: ro! / Ur(m,n) =1+ > 17 (m,n),
1Y (mn) = 1 if dm’,nl] € Gst.n Zz C(n)U{®:}t mm! €5(m)0 else

and

cory J 1 if Amn] €Gst.n’€ Cn) U{®:2} c 1 ifV[m',n'] €G, n’ € S(n1mm) = { 0 else 1 (mm) = { 0 I | |
Then, the upper and lower bounds for ¢, (|m, n|) are Lr(m,n)=1+ S 14 (mm).

Us ([m,n]) = m’ eS (m)

For all nonzero sibling costs, the lower bound for |G (m)| is 2 and

Wq > 14 (m/, n) + > 14 (n, m) |, the upper bound is Lp (m,n) + 1. All remaining quantities are de-
m! eC (m) n’€C(n) fined symmetrically. Then, upper and lower bounds for cs ([m, n|)

are given by
and

s (Up(m,n) Up(n,m)La, m,n — Us , p— Ws ZN ZN

Wa > 1~ (m,n) + > 1~= andm’ eC (m) n’eC(n) Ls([m,n]) _

Figure 6 illustrates the computation of these bounds. Observe that Wa (ret) +rt)pruning edges from G will cause the upper bound for ¢, (|m, n]) to Ur(m,n) (Lp(m,n) +1) = Ur(n,m) (Lp(n,m) +1)
decrease, and the lower bound to increase.

Bounds for ¢s(|m, n]) may be obtained in a similar way, by bound- Figure 7 illustrates these computations.
ing each of the three terms |D(-)|, |I(-)|, and |G(-)|. To bound With bounds for the ancestry and sibling terms in place, upper and
|D(m)|, let S(m) = S(m)\{m} and consider anode m’ € S(m). lower bounds for the total edge cost may be trivially computed as
It is possible that m’ is in D(m) as long as some edge exists be- cule) = cue) + Ua(e) + Us(e) and cc(e) = cp(e) + Lae) +
tween it and a node in 7% \ (S(n) U {®2}). Conversely, m’ cannot Ls(e).
be guaranteed to be in D(m) as long as some edge exists between

it and a node in S(n) U {®2}. Then, we have 4.3 Pruning Edges Not In The Optimal Mapping
1 if dm’, n’ t.n' &8

1% (m,n) = { 0 it Sim nl €dst.ng Sn) Ue} ; Under what conditions can an edge be safely removed from GG? An
edge can be pruned whenever it is certain that better choices exist

Up(m,n) = > 1% (m' Mn), for each of the edge’s nodes. More formally, an edge e = [m,n] €
m’€5(m) T1 x T> may be removed whenever there exist edges e2 incident on

m and es incident on n such that
and

_ > 3k 3k
co 1 if Am, n] € Gst.n' € S(n)U{®s} cele) 2 culez) + cules),
1p(m ,N) — 0 else ’ where

Lp(m,n) = > 15(m’,n). « cule) +w, ifeeTi xT;
5 ale) =4 (e) elsem’/ eS (m) U
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Figure 9: Bricolage used for mobile retargeting. (left) The original Web page. (right) The page automatically retargeted to two different
mobile layouts.

5.2 Generalized Perceptron Algorithm To ensure that online Web updates do not interfere with the consis-
tency of the results, all pages in the training corpus are archived us-

To learn a consistent assignment for w under which the set of ex- ing the Mozilla Archive File Format and uploaded to a centralized
emplar mappings are minimal, Bricolage uses the generalized per- page server running Apache. For efficiency, page segmentations
ceptron algorithm for structured prediction [Collins 2002]. and associated DOM node features are computed and cached for

So each page when it is added to the corpus. Each feature has its own
The perceptron begins by initializing wo = 0. In each subsequent dynamic plugin library, allowing the set of features to be extended
iteration, the perceptron randomly selects a pair of page trees and with minimal overhead, and mixed and matched at runtime.
the associated mapping M from the training set. Next, it computes

a new, low-cost mapping M = argmin,, w; Fs for the current The Bricolage Collector is written in CSS, Javascript, and HTML.
page pair. Based on the resultant mapping, a new aggregate feature Mapping results are sent to a centralized Ruby on Rails server as
vector Fy, is calculated, and the weights are updated by w, 11 = they are generated, and stored as XML in a database.
w; + a; (Fy; — Far), where a; = 1/4/47 + 1 is the learning rate.

While the generalized perceptron algorithm is guaranteed to con- 8 RESULTS
verge only if the training set is linearly separable, in practice it pro-
duces good results for many diverse data sets. Since the the weights This section evaluates the efficacy of Bricolage in two ways. First,
may oscillate during the final stages of the learning, the final cost we show several practical examples of Bricolage in action. We also
model is produced by averaging over the last few iterations. evaluate the machine learning components of the system by per-

forming a cross-validation experiment on the gathered human map-

6 CONTENT TRANSFER pings.

Once a mapping has been computed between pages, Bricolage uses 8.1 Examples
it to guide the transfer of content from one page to the other. To
do this, Bricolage searches the content Web page and identifies all We show several practical examples of Bricolage being used for au-
matched nodes which do not have matched descendants. The chil- tomatic retargeting. Figure 8 demonstrates the algorithm in a rapid

dren of these nodes are processed to inline their CSS properties and prototyping scenario, in which an existing page is transformed into
convert all contained URLs to absolute paths. Then, the nodes are several potential replacement designs. This sort of parallel proto-
cloned and inserted into the corresponding page in the locations typing can significantly improve design performance [Dow et al.
indicated by the mapping, replacing any children already residing 2010]. Figure 9 demonstrates that Bricolage can be used to retarget
there. The transfer leaves unmatched regions in the layout page content across form factors, showing a full-size Web page automat-
untouched, preserving its overall structure. ically mapped into two different mobile layouts.

Figure 10 illustrates an ancillary benefit of the cost model learned
7 IMPLEMENTATION by Bricolage. Since Bricolage searches for the optimal mapping be-

tween pages, the returned cost can be interpreted as an approximate
Bricolage comprises several distinct components implemented us- distance metric on the space of page designs. Although the theoret-
ing a wide variety of technologies. The page segmentation, map- ical properties of this metric are not strong (it satisfies neither the
ping, and machine learning libraries are implemented in C++ using triangle inequality nor the identity of indiscernables), in practice it
the Qt framework, and use Qt’s WebKit API in order to interface provides a useful mechanism for automatically differentiating be-
directly with its browser engine. tween pages with similar and dissimilar designs.
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Figure 10: Bricolage can be used to induce a distance metric on the space of Web designs. By mapping the leftmost page onto each of the
pages in the corpus and examining the mapping cost, we can automatically differentiate between pages with similar and dissimilar designs.

8.2 Machine Learning Results 9 CONCLUSIONS AND FUTURE WORK

To test the effectiveness of Bricolage’s machine learning compo- This paper introduced the Bricolage algorithm for automatically
nents, we trained Bricolage on the 44 collected human mappings transferring design and content between Web pages. It demon-
not in the focus set. The perceptron was run for 400 iterations, strated that Bricolage can learn to closely reproduce human map-
and the weight vector averaged over the last 20. Then, the learned pings, and presented examples of Bricolage being used to automat-
cost model was used to predict mappings for each of the 8 pairs in ically retarget real-world Web pages. This work takes a first step
the focus set, and these mappings were compared to the reference towards a powerful new paradigm for example-based Web design,
mappings using three different metrics: average similarity, nearest and opens up exciting areas for future research.
neighbor similarity, and percentage of edges that appear in at least

on© mappin g. Table 1 Lo thoole PP At present, the algorithm employs only about thirty simple visual
and semantic features. Expanding this set to include more com-

The mappings produced by Bricolage are not indistinguishable plex and sophisticated properties—such as those based on computer
from those generated by humans. For a mapping algorithm to con- vision—will likely improve the robustness of the machine learning.
vincingly claim to have learned the space of human mappings, it .. : ,

would have to achieve an average similarity roughly equal to the Additionally, the Bricolage prototype s content transfer implemen-
78% inter-mapping consistency of the focus set. Bricolage does tation cannot handle many of the idiosyncrasies of modern HTML.
about 15% worse Before the system can see widespread use, this situation must be

remedied.

H Bricol Its th f fficient for i : : :
owever, Bricolage produces results t at are often suflicient for it Because Bricolage can only manipulate Web page content that is

to masquerade as a human: the nearest neighbor similarity averages
73%. Moreover, almost all of the edges generated by Bricolage part of the DOM, it cannot retarget pages that are authored entirely

Co ’ in Flash or Java. Extending Bricolage to handle these technologies
appear in some human mapping: with a larger sampling of human OL ) :
behaviors, it is likely that the 83% edge frequency would further remains future work; optimization approaches like Supple [Gajos

’ and Weld 2004] may prove valuable.
increase.

: CL CL : Perhaps most exciting is the potential for creating an integrated

A major motivation for the structured-prediction techniques at the des; p 8 potent Hng £nee esign-based search and retargeting interface using Bricolage tech-
heart of Bricolage was the hypothesis that ancestry and sibling re-

: : LL. : : nology. Properly executed, such a system could have a profound
lationships are crucial to predicting human mappings. To test this :

: : : effect on the Web design status quo.
hypothesis, we also trained a cost model for Bricolage based purely
on the visual and semantic metric. The resulting statistics validate
our hypothesis: predicting mappings based purely on visual and se- References
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