CDE: Using System Call Interposition to Automatically Create
Portable Software Packages

Philip J. Guo and Dawson Engler
Stanford University

April 5, 2011
(This technical report is an extended version of our 2011 USENIX ATC paper)

Abstract

It can be painfully difficult to take software that runs on
one person’s machine and get it to run on another ma-
chine. Online forums and mailing lists are filled with
discussions of users’ troubles with compiling, installing,
and configuring software and their myriad of dependen-
cies. To eliminate this dependency problem, we created
a system called CDE that uses system call interposition to
monitor the execution of x86-Linux programs and pack-
age up the Code, Data, and Environment required to run
them on other x86-Linux machines. The main benefits
of CDE are that creating a package is completely auto-
matic, and that running programs within a package re-
quires no installation, configuration, or root permissions.
Hundreds of people throughout both academia and in-
dustry have used CDE to distribute software, demo pro-
totypes, make their scientific experiments reproducible,
run software natively on older Linux distributions, and
deploy experiments to compute clusters.

1 Introduction

Most programmers want other people to run their soft-
ware. Unfortunately, the path from having a piece of
software running on the programmer’s own machine to
getting it running on someone else’s machine is fraught
with potential pitfalls. For instance, the programmer
might have forgotten to document a crucial step in the
magic incantation needed during the installation process.
Or forgotten to list a library version dependency, leading
to mysterious run-time errors when the wrong version
gets silently run on the user’s machine. Or listed the right
library version, but one which is either hard to obtain
or conflicts with a library needed by a different program
on the user’s machine. Or the software itself might re-
quire libraries that depend on many other libraries, which
themselves need to be transitively obtained and installed
by the user, leading to an aggravating experience known

as dependency hell. Or the user might lack permissions
to install software packages in the first place, a common
occurrence on corporate machines and compute clusters
that are administered by IT departments. Finally, the
user (recalling bitter past experiences) may be reluctant
to perturb a working environment by upgrading or down-
grading library versions just to try out new software.

As a testament to the ubiquity of software deployment
problems, consider the prevalence of online forums and
mailing list discussions dedicated to troubleshooting in-
stallation and configuration issues. For example, almost
half of the messages sent to the mailing lists of two ma-
ture research tools, the graph-t ool mathematical graph
analysis library [10] and the PADS system for processing
ad-hoc data [17], were questions about how to compile
and install them: 47% of 289 emails for graph-tool,
and 44% of 87 emails for PADS. As an example from
commercial software, the Google Chrome help forum for
“install/uninstall issues” has 4501 threads (in Apr. 2011).

We have created a system named CDE that eases the
pain of software deployment. CDE automatically pack-
ages up the Code, Data, and Environment required to
run a set of x86-Linux programs on other x86-Linux ma-
chines without any installation. It works as follows:

1. Prepend any Linux command with the cde exe-
cutable. cde executes your command and uses
ptrace system call interposition to collect all the
code, data files, and environment variables used
during execution into a self-contained package.

2. Copy the resulting package to any modern x86-
Linux machine.

3. Change into the package directory and prepend the
original command with the cde-exec executable.
cde-exec loads the stored environment variables
and then uses pt race to redirect file-related system
calls so that executables and libraries can load the
required dependencies from within the package.



The main benefits of CDE are that creating a package is
completely automatic, and that running programs within
a package requires no installation, configuration, or root
permissions, thereby eliminating dependency hell.

Our experiments show that CDE packages created on a
modern x86-Linux distribution (distro) can run on a va-
riety of popular x86-Linux distros from the past 5 years.
Although CDE only works on Linux, both the software
dependency problem it addresses and the ideas embodied
in our solution are relevant across all operating systems.

Contributions: This paper’s main contribution is a novel
use of system call interposition to automatically create
portable software packages (§3). We validate our CDE
system on packages that our users created (§4.1), show-
ing that they are portable across Linux distros (§4.2),
that disk space (§4.3) and performance (§4.4) overheads
are acceptable, and that dynamic dependency tracking is
necessary (§4.5) and works well in practice (§4.6).

1.1 Example real-world use cases

Since its initial release in Nov. 2010, over 2,000 people
have downloaded CDE [2], and we have exchanged hun-
dreds of emails with users in both academia and industry.
Here are some representative use cases:

Reproducible research: A fundamental tenet of science
is that colleagues should be able to reproduce the results
of one’s experiments. In the past few years, science jour-
nals and CS conferences (e.g., SIGMOD, FSE) have en-
couraged authors of published papers to put their code
and datasets online, so that others can independently re-
run, verify, and build upon their experiments. However,
it can be hard for people to set up all of the (often-
undocumented) dependencies required to re-run exper-
iments. In fact, it can even be difficult to re-run one’s
own experiments in the future, due to inevitable OS and
library upgrades. For example, to ensure that he could
later re-run and adjust experiments in response to re-
viewer critiques for a paper submission [15], our group-
mate Cristian took the hard drive out of his computer at
paper submission time and archived it in his drawer.

With CDE, scientists can run the experiment once on
their machine under CDE supervision to create a pack-
age, and colleagues can run that package on any modern
Linux machine to repeat the experiment. For example, a
robotics researcher used CDE to package up his experi-
ments from a motion planning paper [26]. We were able
to run his experiments and reproduce his results on six
popular Linux distros from the past 5 years.

Distributing software: The website for graph-tool,
a Python/C++ module for analyzing graphs, lists these
(direct) dependencies: “GCC 4.2 or above, Boost li-
braries, Python 2.5 or above, expat library, NumPy and

SciPy Python modules, GCAL C++ geometry library,
and Graphviz with Python bindings enabled.” [10] Un-
surprisingly, lots of people had trouble compiling it:
47% of all messages on its mailing list (137 out of 289)
were questions related to compilation woes. The au-
thor of graph-tool used CDE to automatically create
a portable package (containing 149 shared libraries and
1909 total files) and uploaded it to his website so that
users no longer needed to suffer through compiling it.
We were able to download and run his package on six
popular Linux distros from the past 5 years.

Running software without perturbing the OS: A sys-
tem administrator working with a proprietary firewall
product used CDE to package up some network moni-
toring utilities on his desktop machine and ran them on
a production server without the risk of breaking a live
system by installing new software. He told us via email:

“The reason I did not want to install additional
libraries on the server in question was that it is
a highly customized version of RedHat and we
simply did not have the knowledge required to
determine if this installation would somehow
interfere with the proprietary software running
on it. It was simply not worth disturbing a pro-
duction system, and I was sure there had to be
a better way of doing it. Luckily I found CDE
and gave it a try.”

Deploying computations to a cluster: People devel-
oping computational experiments on their desktop ma-
chines often want to run them on a cluster for greater
performance and parallelism, but they might not have
permission from the sysadmin to install anything on the
cluster. A security analyst at McAfee used CDE to pack-
age up a CPU-intensive experiment on his desktop ma-
chine and deployed it to run on a compute cluster without
needing to install dependencies on the cluster. He told us
about the effort he saved by using CDE:

“The most aggravating dependency that was
missing [on the cluster machines] was the
mongo client library which, to get it installed
properly on the target systems, would require
me to install an entire build environment (G++,
scons, automake, etc) which is something CDE
allowed me to successfully avoid.”

Demoing a prototype to clients: An engineering con-
tractor was creating a prototype analytics GUI for an en-
terprise database. His clients wanted to try running his
prototype on their office machines, but it depended on a
myriad of difficult-to-install GUI libraries (e.g., wxWid-
gets, PLplot). The engineer ran his prototype using CDE



on his machine to create a package and was able to have
his clients run it without installing anything on their ma-
chines. He told us afterward that he estimated it might
take a knowledgeable Linux user 2 to 3 days of trial-and-
error to set up the same environment as his development
machine so that they could install and run his prototype.
That would have been too much effort for the clients to
undertake, so they might not have agreed to demo his
prototype if he had not used CDE.

Running software on an incompatible OS version:
Even production-quality software might not run on some
OS variants, most commonly due to library incompati-
bilities. For example, one user told us that the popular
Google Earth 3D map application could not run on some
Linux distros that seemed to meet its stated minimum
system requirements. Thus, we installed Google Earth
on our local distro, ran it once under CDE supervision to
create a portable package, and sent that package to the
user. He was able to run our package on distros on which
Google Earth was not normally able to run.

1.2 Comparison to related work

We know of no published system that automatically cre-
ates portable software packages in situ from a live run-
ning machine like CDE does. Existing tools for creating
self-contained applications all require the user to manu-
ally specify dependencies. For example, Mac OS X pro-
grammers can create self-contained application bundles
using Apple’s developer tools [7]. Mac OS X bundles
are structurally similar to CDE packages, encapsulating
all dependencies within an ordinary filesystem hierarchy.
VMware ThinApp is a commercial tool that automat-
ically creates self-contained portable Windows applica-
tions. However, a user can only create a package by
having ThinApp monitor the installation of new soft-
ware [11]. Unlike CDE, ThinApp cannot be used to cre-
ate packages from existing software already installed on
a live machine, which is our most common use case.
Virtual machine snapshots achieve CDE’s main goal
of capturing all dependencies required to execute a set of
programs on another machine. However, they require the
user to always be working within a VM from the start of
a project (or else re-install all of their software within a
new VM). Also, VM snapshot disk images are (by defini-
tion) larger than the corresponding CDE packages, often
by an order of magnitude, since they must also contain
the OS kernel and other extraneous applications. CDE is
a more lightweight solution because it enables users to
create and run packages natively on their own machines
rather than through a VM. Virtual machines are com-
plementary to CDE, though, because a user can create
a package using CDE and copy that package into a Linux
VM image to make it portable across operating systems.

System call interposition using ptrace is a well-
known technique that researchers have used for imple-
menting tools such as secure sandboxes [19, 20], record-
replay systems [21], and user-level filesystems [25].

Record-replay systems [14, 21, 24] are loosely related
to CDE because both strive to reproduce program exe-
cution on other machines. However, CDE does not try to
deterministically replay one exact execution path. Unlike
record-replay, CDE is intended to let users easily run mul-
tiple paths in packaged programs without installation.

2 CDE system overview

We will use an example to introduce the core features of
CDE. Suppose that Alice is a climate scientist whose ex-
periment involves running a Python weather simulation
script on a Tokyo dataset using this Linux command:

python weather_sim.py tokyo.dat

Alice’s script (weather_sim.py) imports some 3rd-
party Python extension modules, which consist of opti-
mized C++ numerical analysis code compiled into shared
libraries. If Alice wants her colleague Bob to run and
build upon her experiment, then it is not sufficient to just
send her script and tokyo.dat data file to him. Even if
Bob has a compatible version of Python on his machine,
he will not be able to run her script until he compiles,
installs, and configures the extension modules that she
used (and all of their transitive dependencies).

2.1 Creating a new package with cde

To create a self-contained package with all dependencies
required to run her experiment on another machine, Alice
prepends her command with the cde executable:

cde python weather_ sim.py tokyo.dat

cde runs her command normally and uses the Linux
ptrace mechanism to monitor all files it accesses
throughout execution. cde creates a new sub-directory
called cde-package/cde-root/ and copies all of
those accessed files into there, mirroring the original
directory structure. For example, if her script dy-
namically loads an extension module (shared library)
named /usr/lib/weather.so, then cde will copy it
to cde-package/cde-root/usr/lib/weather.so
(see Figure 1). cde also saves the values of environment
variables in a file within cde-package/.

When execution terminates, the cde—package/ sub-
directory (which we call a ‘CDE package’) contains all of
the files required to run Alice’s original command.



Alice's computer
(1) cde <command>

open()
cde-package/
; cde-root/
/usr/llb/weather.so| usr/

lib/

Bob's computer
(3) cde-exec <command>

cde-package/
cde-root/

weather.so

Figure 1: Example use of CDE: 1.) Alice runs her com-
mand with cde to create a package, 2.) Alice sends
package to Bob’s computer, 3.) Bob runs command with
cde-exec, which redirects file accesses into package.

2.2 Executing a package with cde—exec

Alice zips up the cde-package/ directory and transfers
it to Bob’s Linux machine. Now Bob can run Alice’s ex-
periment without installing anything on his machine. He
unzips the package, changes into the sub-directory con-
taining the script, and prepends the original command
with the cde-exec executable (also in the package):

cde-exec python weather_sim.py tokyo.dat

cde—exec sets up the environment variables saved
from Alice’s machine and executes the version of
python and its extension modules from within the pack-
age. cde—exec uses ptrace to monitor all system
calls that access files and rewrites their path arguments
to the corresponding paths within the cde-package/
cde-root/ sub-directory. For example, when her script
requests to load the /usr/lib/weather.so extension
library using an open system call, cde-exec rewrites
the path argument of the open call to cde-package/
cde-root/usr/lib/weather. so (see Figure 1). This
path redirection is essential, because /usr/lib/
weather. so probably does not exist on Bob’s machine.

Not only can Bob reproduce Alice’s exact experiment,
but he can also edit her script and dataset and then re-
run to explore variations and alternative hypotheses, as

program

kernel

open file

cde

>
copy file into package

Figure 2: Timeline of control flow between target pro-
gram, kernel, and cde process during an open syscall.

long as he does not cause the script to import new Python
extension modules that are not in the package.

3 Design and implementation

CDE uses the Linux ptrace system call to monitor the
target program’s processes and threads, read/write to its
memory, and modify its system call arguments, all with-
out requiring root permission. We implemented CDE
by adding 2500 lines of C code to the strace system
call monitoring tool. Our implementation only works
on x86-based Linux machines (32-bit and 64-bit) but
should be straightforward to extend to other hardware ar-
chitectures. Although implementation details are Linux-
specific, the same ideas could be used to implement CDE
for another OS such as Mac OS X or Windows.

3.1 Creating a new package with cde

Primary action: The main job of cde is to use ptrace
to monitor the target program’s system calls and copy all
of its accessed files into a self-contained package. cde
only cares about the subset of syscalls that take a file path
string as an argument, which are listed in the ‘File path
access’ category in Table 1. After the kernel finishes ex-
ecuting one of these syscalls and is about to return to the
target program, cde wakes and observes the return value.
If the return value signifies that the indicated file exists,
then cde copies that file into the package (Figure 2).
Note that many syscalls operate on files but take a file
descriptor as an argument rather than a file path (e.g.,
mmap); cde does not need to track those, since it already
tracks the calls that create file descriptors from file paths.

Copying files into package: Prior to copying a file into
the package, cde creates all necessary sub-directories
and symbolic links to mirror the original file’s location.
In our example, cde will copy /usr/lib/weather.so
into the package as cde-package/cde-root/usr/
lib/weather.so (Figure 1). For efficiency, copies are
done via hard links if possible.

If a file is a symlink, then both it and its target must
be copied into the package. Multiple levels of symlinks,



Category

Linux syscalls cde action

cde-exec action

File path access

openlat],mknod[at], fstatat64d
access, faccessat, readlink[at]
truncate([64], stat[64], creat

lstat[64], oldstat, oldlstat
chown[32], lchown[32]
fchownat, chmod, fchmodat
utime, utimes, futimesat

Local sockets bind, connect

Mutate filesystem link[at], symlink[at]
rename [at],unlink[at]

mkdir[at], rmdir

Get current dir. getcwd
Change directory  chdir, fchdir
Spawn child fork, vfork, clone

Execute program  execve

Copy binary into package

Copy file into package Redirect path into package

none Redirect path into package'

Repeat in package Redirect path into package

Update current dir. Spoof current dir.
Update current working directory
Track child process or thread

Maybe run dynamic linker

Table 1: The 48 Linux system calls intercepted by cde and cde-exec, and actions taken for each category of syscalls.
Syscalls with suffixes in [brackets] include variants with/without the suffix: e.g., open[at] means open and openat.
tFor bind and connect, cde-exec only redirects the path if it is used to access a file-based socket for local IPC.

to both files and directories, must be properly handled.
More subtly, any component of a path may be a sym-
link to a directory, so the exact directory structure must
be replicated within the package. For example, we once
encountered a path /usr/lib/gcc/4.1.2/1ibgcc. a,
where 4.1.2 is a symlink to a directory named 4.1.1.
We observed that some programs are sensitive to exact
filesystem layout, so cde must faithfully replicate sym-
links within the package, or else those programs will fail
with cryptic errors when run from within the package.
Finally, if the file being copied is an ELF binary (ex-
ecutable or library code), then cde searches through the
binary’s contents for constant strings that are filenames
and then copies those files into the package. Although
this hack is simplistic, it works well in practice to par-
tially overcome CDE’s limitation of only being able to
gather dependencies on executed paths. It works be-
cause many binaries dynamically load libraries whose
filenames are constant strings. For example, we encoun-
tered a Python extension library that dynamically loads
one of a few versions of the Intel Math Kernel Library
based on the current CPU’s capabilities. Without this
hack, any given execution will only copy one version of
the Intel library into the package, so packaged execution
will fail when running on another machine with differ-
ent CPU capabilities. Finding and copying all versions
of the Intel library into the package makes the program
more likely to run on machines with different hardware.

Here is how cde handles the other syscalls in Table 1:

Mutate filesystem: After each call that mutates the
filesystem, cde repeats the same action on the corre-
sponding copies of files in the package. For example,
if a program renames a file from foo to bar, then cde
also renames the copy of foo in the package to bar.

Updating current working directory: At the comple-
tion of getcwd, chdir, and fchdir, cde updates its
record of the monitored process’s current working direc-
tory, which is necessary for resolving relative paths.

Tracking sub-processes and threads: If the target pro-
gram spawns sub-processes, cde also attaches onto those
children with ptrace (it attaches onto spawned threads
in the same way). cde keeps track of each monitored
process’s current working directory and shared memory
segment address (needed for §3.2). cde remains single-
threaded and responds to events queued by ptrace.
This feature is useful for packaging up workflows con-
sisting of multiple program invocations, like a compila-
tion job. For example, running “cde make” will track
all sub-processes that the Makefile spawns and package
up the source files and compiler toolchain. Now you
can edit and compile the given project on another Linux
machine by simply running “cde-exec make”, without
needing to install any compilation tools or header files.

execve: cde copies the executable’s binary into the pack-
age. For a script, cde finds the name of its interpreter
binary from the shebang (#!) line. If the binary is
dynamically-linked, cde also finds its dynamic linker
(e.g., 1d-1linux.so.2) and copies it into the package.



program

open() f
kernel @ ~—— >
open file
from package
cde-exec

*—>
rewrite open() argument

Figure 3: Timeline of control flow between target pro-
gram, kernel, and cde—exec during an open syscall.

3.2 Executing a package with cde—exec

Primary action: The main job of cde-exec is to use
ptrace to redirect file paths that the target program re-
quests into the package. Before the kernel executes most
syscalls listed in Table 1, cde-exec rewrites their path
argument(s) to refer to the corresponding path within
cde-package/cde-root/ (Figure 3). By doing so,
cde-exec creates a chroot-like sandbox that fools the
target program into ‘believing’ that it is executing on the
original machine. Unlike chroot, this sandbox does not
require root access to set up, and it is user-customizable
(see Section 3.3).

In our example, suppose that Alice runs her experi-
ment within the /expt directory on her computer:

cd /expt
cde python weather_sim.py tokyo.dat

She then sends the package to Bob’s computer. If Bob
unzips it into his home directory (/home/bob), then he
can run these commands to execute her Python script:

cd /home/bob/cde-package/cde-root/expt
cde-exec python weather_sim.py tokyo.dat

Note that Bob needs to first change into the /expt
sub-directory within the package, since that is where
Alice’s scripts and data files reside. When cde-exec
starts, it finds Alice’s python executable within the
package (with the help of $PATH) and launches it.
Now if her program requests to open, say, /usr/
lib/weather.so, cde—-exec rewrites the path argu-
ment of the open call to /home/bob/cde-package/
cde-root/usr/lib/weather.so, so that the kernel
opens the version within the package.

Implementing syscall rewriting: Since ptrace allows
cde-exec to directly read and write into the target pro-
gram’s memory, the easiest way to rewrite a syscall’s ar-
gument is to simply override its buffer with a new string.
However, this approach does not work because the new
path string is always longer than the original, so it might

program

/"_/‘ ®

|cde-package/cde-root/usr/lib/weather.so|

- |- |

1
1
cde-exec
1
1
1

@

|cde-package/cde-root/usr/lib/weather.so|

Figure 4: Example address spaces of target program and
cde—-exec when rewriting path argument of open. The
two boxes connected by dotted lines are shared memory.

overflow the buffer. Also, if the program makes a system
call with a constant string, the buffer would be read-only.
Instead, what cde-exec does is redirect the pointer
to the buffer. When the target program (or one of its sub-
processes) first makes a syscall, cde—exec forces it to
make another syscall to attach a 16KB shared memory
segment (a trick from [25]). Now cde-exec can write
data into that shared segment and have it be visible in the
target program’s address space. The two large rectangles
in Figure 4 show the address spaces of the target pro-
gram and cde-exec, respectively. Figure 4 illustrates
the three steps involved in syscall argument rewriting:

1. cde-exec uses ptrace to read the original argu-
ment from the program’s address space.

2. cde—-exec creates a new string representing the
path redirected inside of the package and writes it
into the shared memory buffer. This value is imme-
diately visible in the target program’s address space.

3. cde-exec uses ptrace to mutate the syscall’s ar-
gument to point to the start of the shared memory
buffer (in the target program’s address space). x86-
Linux syscall arguments are stored in registers, so
ptrace mutates the target program’s registers prior
to executing the call. Most syscalls only take one
filename argument, which is stored in $ebx on 1386
and $rdi on x86-64. 1ink, symlink, and rename
take two filename arguments; their second argument
is stored in $ecx on 1386 and $rsi on x86-64.

Spoofing current working directory: At the comple-
tion of the getcwd syscall, cde-exec mutates the re-
turn value string to eliminate all path components up to
cde-root /. For example, when Bob runs Alice’s script:

cd /home/bob/cde-package/cde-root/expt
cde-exec python weather_sim.py tokyo.dat



If her Python script requests its current working directory
using getcwd, the kernel will return the true full path:
/home/bob/cde-package/cde-root/expt. Then
cde-exec will truncate that string so that it becomes
/expt, which is the value it would have returned if it
were running on Alice’s machine. We have encountered
many programs that break when get cwd is not spoofed.

There is no danger of buffer overflow here since the
new string is always shorter, and the buffer cannot be
read-only, since the kernel must be able to mutate it.
Some programs call readlink ("/proc/self/cwd")
to get current working directory, so we also spoof the
return value for that particular syscall instance.

execve:  When the target program executes a
dynamically-linked binary, cde-exec rewrites the
execve syscall arguments to execute the dynamic
linker stored in the package (with the binary as its first
argument) rather than directly executing the binary.

Here is why cde-exec needs to explicitly execute the
dynamic linker: When a user executes a dynamically-
linked binary, Linux first executes the system’s default
dynamic linker to resolve and load its shared libraries.
However, we have found that the dynamic linker on
one Linux distro might not be compatible with binaries
created on another distro, due to minor differences in
ELF binary formats. Therefore, to maximize portabil-
ity across machines, cde copies the dynamic linker into
the package, and cde-exec executes the dynamic linker
from the package rather than having Linux execute the
system’s version. Without this hack, we have noticed
that even a trivial “hello world” binary compiled on one
distro (e.g., Ubuntu with Linux 2.6.35) will not run on an
older distro (e.g., Knoppix with Linux 2.6.17).

A side-effect of rewriting execve to call the dy-
namic linker is that when a target program in-
spects its own executable name, the kernel will re-
turn the name of the dynamic linker, which is in-
correct. Thus, cde-exec spoofs the return val-
ues of calls to readlink ("/proc/self/exe") and
readlink ("/proc/<SPID>/exe™) to return the orig-
inal executable’s name. This spoofing is necessary be-
cause some narcissistic programs crash with cryptic er-
rors if their own names are not properly identified.

3.3 Ignoring files and environment vars

By convention, Linux directories like /dev, /proc, and
/sys contain pseudo-files (e.g., device files) that do not
make sense to include in a CDE package. Also, environ-
ment variables like $XAUTHORITY and the correspond-
ing .Xauthority file (for X Window authorization) are
machine-specific. Informed by our debugging experi-
ences and user feedback, we have manually created a
(customizable) blacklist of a dozen directories, files, and

environment variables for CDE to ignore, so that pack-
ages can be portable across machines [1]. By ‘ignore’ we
mean that cde will not copy those files (or variables) into
a package, and cde-exec will not redirect their paths
and instead access the real versions on the machine.
CDE also allows users to customize which paths it
should ignore (leave alone) and which it should redi-
rect into the package, thereby making its sandbox ‘semi-
permeable’. For example, one user chose to have CDE
ignore a directory that mounts an NFS share containing
huge data files, because he knew that the machine on
which he was going to execute the package also mounts
that NFS share at the same path. Therefore, there was no
point in bloating up the package with those data files.
This user-customizable blacklist is implemented as an
options file. Figure 5 shows this file’s default contents.

3.4 Non-goals

CDE only intercepts 14% of all Linux 2.6 syscalls (48 out
of 338), but those are sufficient for creating portable self-
contained Linux packages. CDE does not need to inter-
cept more syscalls because it is not designed to perform:

e Deterministic replay: CDE does not try to exactly
replay the original execution paths. Thus, it does
not need to capture sources of randomness, thread
scheduling, and other non-determinism [21, 24].

e OS/hardware emulation: CDE does not spoof the
OS or hardware. Thus, programs that require spe-
cialized hardware or device drivers will not be
portable across machines. Also, CDE cannot cap-
ture remote (network-based) dependencies.

e Security: Although CDE isolates target programs
in a chroot-like sandbox, it does not guard against
attacks to circumvent such sandboxes [18]. Users
should only run CDE packages from trusted sources.

3.5 Limitations

Executing a command within a CDE package will fail if:

o the Linux kernel or hardware architecture is incom-
patible with the binaries in the package. Only virtu-
alization or emulation can overcome this limitation.

o the arguments or input change to make the program
load a new shared library that the original execution
did not load. We show in Section 4.6 that in the
typical case, programs load the majority of their li-
braries at start-up, so the inputs can change a lot be-
fore the program needs to load additional libraries.

o the arguments or input change to make the program
load another file that is not in the package. Since



# These directories often contain pseudo-files that shouldn’t be tracked

ignore_prefix=/dev/
ignore_prefix=/proc/
ignore_prefix=/sys/
ignore_prefix=/var/cache/
ignore_prefix=/var/lock/
ignore_prefix=/var/log/
ignore_prefix=/var/run/
ignore_prefix=/var/tmp/
ignore_prefix=/tmp/
ignore_exact=/tmp

ignore_substr=.Xauthority

# Ignore to allow X Window programs to work

ignore_exact=/etc/resolv.conf # Ignore so networking can work properly

# These environment vars might lead to ’'overfitting’

ignore_environment_var=XAUTHORITY
ignore_environment_var=DISPLAY
ignore_environment_var=SESSION_MANAGER
ignore_environment_var=0RBIT_SOCKETDIR

and hinder portability

ignore_environment_var=DBUS_SESSION_BUS_ADDRESS

Figure 5: The default CDE options file, which specifies the file paths and environment variables that CDE should ignore.
ignore_exact matches an exact file path, ignore_prefix matches a path’s prefix string (e.g., directory name), and
ignore_substr matches a substring within a path. Users can customize this file to tune CDE’s sandboxing policies.

a CDE package is just an ordinary directory tree, it
is easy for users to directly add more files into the
package if necessary. Also, if the user runs multiple
commands in the same directory, cde will simply
add additional files into the same cde-package/.

Note that a user who manually creates software pack-
ages by bundling together executables, libraries, and
other files will face these exact same limitations, so CDE
never performs worse than this manual approach. Of
course, an expert user with the proper domain knowledge
can create a more complete package than any automatic
tool can (see Section 4.6); CDE can still aid these experts
by creating a partially-complete package and then allow-
ing them to manually fill in the remaining files.

In addition, CDE is limited by the limitations of
ptrace and of executing binaries by explicitly invok-
ing the dynamic linker: pt race can cause subtle differ-
ences in the semantics of traced processes, most notably
that a process being monitored by ptrace cannot itself
ptrace another process, which precludes the use of CDE
alongside applications like symbolic debuggers. Also,
there is a known bug on certain Ubuntu distros where the
bash shell non-deterministically crashes when invoked
explicitly with a dynamic linker; a workaround is to have
CDE use the machine’s native bash shell on those distros.

4 Evaluation

To show that CDE is a practical and effective system, our
evaluation addresses the following questions:

e How are people using CDE (§4.1)?

e How portable are CDE packages (§4.2)?

e How large are CDE packages (§4.3)?

e How much run-time slowdown is there (§4.4)?

e Is dynamic dependency tracking necessary (§4.5)?

e When running programs within a package, how
much can inputs differ from the originals (§4.6)?

4.1 Use cases and benchmark packages

Since we released the first version of the CDE executable
online on Nov 9, 2010, it has been downloaded at least
2,000 times (as of April 2011) [2]; we cannot track how
many people have directly checked out its source code,
though. We have exchanged hundreds of emails with
CDE users and discovered six salient real-world use cases
as a result of these discussions.

Table 2 summarizes the 16 CDE packages we used as
benchmarks in our experiments. They contain software
written in diverse programming languages. We have put



Package name Description

Distributing research software

Dependencies Creator

arachni ‘Web app. security scanner framework [9] Ruby (+ extensions) security researcher
graph-tool Lib. for manipulation & analysis of graphs [10] Python, C++, Boost math researcher
pads Language for processing ad-hoc data [17] Perl, ML, Lex, Yacc self
saturn Static program analysis framework [13] Perl, ML, Berkeley DB self

Running production software on incompatible distros

meld Interactive visual diff and merge tool for text Python, GTK+ software engineer
bio-menace Classic video game within a MS-DOS emulator DOSBox, SDL game enthusiast
google-earth 3D interactive map application by Google shell scripts, OpenGL self
Creating reproducible computational experiments

kpiece Robot motion planning algorithm [26] C++, OpenGL robotics researcher
gadm Genetic algorithm for social networks [22] C++, make, R self
Deploying computations to cluster or cloud

ztopo Batch processing of topological map images C++, Qt graduate student
klee Automatic bug finder & test case generator [15]  C++, LLVM, uClibc self
Submitting executable bug reports

cog-bug-2443 Incorrect output by Coq proof assistant [3] ML, Coq bug reporter

gcc-bug-46651
1lvm-bug-8679

Collaborating on class programming projects

Causes GCC compiler to segfault [4]
Runs LLVM compiler out of memory [6]

gce bug reporter
C++, LLVM bug reporter

email-search
vr—osg

Natural language semantic email search
3D virtual reality modeling of home appliances

Python, NLTK, Octave
C++, OpenSceneGraph

college student
college student

Table 2: CDE packages used as benchmarks in our experiments, grouped by use cases. ‘self’ in the ‘Creator’ column
means package created by first author; all other packages created by CDE users (mostly people we have never met).

all benchmark packages online, along with the command
lines required to execute them [1]. We now summarize
the use case categories and benchmarks (shown in bold).

Distributing research software: The creators of two
research tools found CDE online and used it to create
portable binary packages that they uploaded to their web-
sites: arachni, a Ruby-based tool that audits web ap-
plication security [9], requires six hard-to-compile Ruby
extension modules, some of which depend on versions
of Ruby and libraries that are not available in the pack-
age managers of most modern Linux distributions. Its
creator, a security researcher, uploaded CDE packages
and sent us a grateful email describing how much ef-
fort CDE saved him: “My guess is that it would take
me half the time of the development process to create a
self-contained package by hand; which would be an un-
acceptable and truly scary scenario.” In Section 1.1, we
already described how the creator of the graph-tool
library used CDE to create portable Linux packages.

In addition, we used CDE to create portable binary

packages for two of our Stanford colleagues’ research
tools, which were originally distributed as tarballs of
source code: pads [17] and saturn [13]. 44% of
the messages on the pads mailing list (38 / 87) were
questions related to troubles with compiling it (22% for
saturn). Once we successfully compiled these projects
(after a few hours of improvising our own hacks since the
instructions were outdated), we created CDE packages by
running their regression test suites, so that others do not
need to suffer through the compilation process.

Running software on incompatible distros: Even
production-quality software might be hard to install on
Linux distros with older kernel or library versions, espe-
cially when system upgrades are infeasible. For exam-
ple, an engineer at Cisco wanted to run some new open-
source tools on his work machines, but the IT department
mandated that those machines run an older, more secure
enterprise Linux distro. He could not install the tools
on those machines because that older distro did not have
up-to-date libraries, and he was not allowed to upgrade.



Therefore, he installed a modern distro at home, ran CDE
on there to create packages for the tools he wanted to
port, and then ran the tools from within the packages
on his work machines. He sent us one of the packages,
which we used as a benchmark: the me1d visual diff tool.

Hobbyists applied CDE in a similar way: A game en-
thusiast could only run a classic game (bio-menace)
within a DOS emulator on one of his Linux machines,
so he used CDE to create a package and can now play the
game on his other machines. We also helped a user create
a portable package for the Google Earth 3D map applica-
tion (google-earth), so he can now run it on older dis-
tros whose libraries are incompatible with Google Earth.

Reproducible computational experiments: In Sec-
tion 1.1, we described how CDE can make it easier for
scientists to package up their experiments so that their
colleagues can re-run and build upon them. In our ex-
perience, the results of many computational science ex-
periments can be reproduced within CDE packages since
the programs are output-deterministic [14], always pro-
ducing the same outputs (e.g., statistics, graphs) for a
given input. For instance, a robotics researcher used CDE
to make the experiments for his motion planning paper
(kpiece) [26] fully-reproducible. Similarly, we helped a
social networking researcher create a reproducible pack-
age for his genetic algorithm paper (gadm) [22].

Deploying computations to cluster or cloud: It can be
difficult to get root access to cluster machines. Instead,
a user can create a self-contained package using CDE on
their desktop machine and then execute that package on
the cluster or cloud (possibly many instances in paral-
lel), without needing to install any dependencies or to
get root access on the remote machines. For instance, our
colleague Peter wanted to use a department-administered
100-CPU cluster to run a parallel image processing job
on topological maps (ztopo). However, since he did not
have root access on those older machines, it was nearly
impossible for him to install all of the dependencies re-
quired to run his computation, especially the image pro-
cessing libraries. Peter used CDE to create a package by
running his job on a small dataset on his desktop, trans-
ferred the package and the complete dataset to the cluster,
and then ran 100 instances of it in parallel there.
Similarly, we worked with lab-mates to use CDE to de-
ploy the CPU-intensive klee [15] bug finding tool from
the desktop to Amazon’s EC2 cloud computing service
without needing to compile Klee on the cloud machines.
Klee can be hard to compile since it depends on LLVM,
which is very picky about specific versions of GCC and
other build tools being present before it will compile.

Submitting executable bug reports: Bug reporting is a
tedious manual process: Users submit reports by writing

10

down the steps for reproduction, exact versions of exe-
cutables and dependent libraries, and maybe attaching an
input that triggers the bug. Developers often have trouble
reproducing bugs based on these hand-written descrip-
tions and end up closing reports as “not reproducible.”

CDE offers an easier and more reliable solution: The
bug reporter can simply run the command that triggers
the bug under CDE supervision to create a CDE package,
send that package to the developer, and the developer can
re-run that same command on their machine to reproduce
the bug. The developer can also modify the input file and
command-line parameters and then re-execute, in order
to investigate the bug’s root cause.

To show that this technique works, we asked peo-
ple who recently reported bugs to popular open-source
projects to use CDE to create executable bug reports.
Three volunteers sent us CDE packages, and we were
able to reproduce all of their bugs: one that causes
the Coq proof assistant to produce incorrect output
(cogq-bug-2443) [3], one that segfaults the GCC com-
piler (gece-bug-46651) [4], and one that makes the
LLVM compiler allocate an enormous amount of mem-
ory and crash (11vm-bug-8679) [6].

Since CDE is not a record-replay tool, it is not guar-
anteed to reproduce non-deterministic bugs. However, at
least it allows the developer to run the exact versions of
the faulting executables and dependent libraries.

Collaborating on class programming projects: Two
users sent us CDE packages they created for collaborat-
ing on class assignments. Rahul, a Stanford grad student,
was using NLTK [23], a Python module for natural lan-
guage processing, to build a semantic email search en-
gine (email-search) for a machine learning class. De-
spite much struggle, Rahul’s two teammates were unable
to install NLTK on their Linux machines due to conflict-
ing library versions and dependency hell. This meant
that they could only run one instance of the project at a
time on Rahul’s laptop for query testing and debugging.
When Rahul discovered CDE, he created a package for
their project and was able to run it on his two teammates’
machines, so that all three of them could test and debug
in parallel. Joshua, an undergrad from Mexico, emailed
us a similar story about how he used CDE to collaborate
on and demo his virtual reality class project (vr-osg).

4.2 CDE package portability

To demonstrate that CDE packages can successfully ex-
ecute on a wide range of Linux distros and kernel ver-
sions, we tested our benchmark packages on popular dis-
tros from the past 5 years. We installed fresh copies of
these distros (listed with the versions and release dates of
their kernels) on a 3GHz Intel Xeon x86-64 machine:



Sep 2006 Oct 2007 Oct 2008 Sep 2009 Feb2010  Aug 2010

Size | CentOS Fedora openSUSE Ubuntu Mandriva Linux Mint

Package name Origin (MB) 2.6.18 2.6.23 2.6.27 2.6.31 2.6.33 2.6.35

32-bit packages (tested on 32-bit Linux distributions)
bio-menace 2.633P 14 28% 29% 36% 48% 31% 43%
pads 2.6.24U 23 14% 10% 29% 28% 20% 23%
arachni 2635U 27 47% 20% 20% 26% 22% 64%
ztopo 2635U 46 20% 15% 20% 21% 17% 31%
klee 2632D 61 3% 3% 3% 7% 3% 6%
graph-tool 2.6.26D 192 15% 8% 17% 20% 22% 20%
google-earth 2.6.24 U 220 5% 4% 3% 2% 2% 2%
64-bit packages (tested on 64-bit Linux distributions)

cog-bug-2443 2632D 18 7% 7% 7% 9% 9% 9%
vVr-0sg 26350 24 27%  FAILED 28% 35% 35% 43%
llvm-bug-8679 2.6.35U 30 7% 7% 7% 10% 8% 12%
kpiece 2635U 38 12% 13% 13% 15% 16% 18%
arachni 2635U 41 17% 17% 15% 20% 20% 41%
saturn 2.6.18C 79 9% 8% 10% 10% 10% 72%
meld 2635U 82 20% 21% 25% 32% 31% 44%
gcc-bug-46651 2.6.36G 125 10% 10% 33% 33% 62% 34%
graph-tool 2.6.26D 209 15% 8% 17% 19% 25% 20%
gadm 2.6.18C 281 3% 2% 2% 2% 2% 20%
email-search  2.632U 476 4% 3% 5% 6% 10% 6%

Table 3: CDE benchmark packages, uncompressed package sizes, and percentage of disk space savings due to data
deduplication. The ‘Origin’ column shows the kernel version and distro where a package was created: Ubuntu, Debian,
CentOS, Gentoo, Puppy Linux. Creators of arachni and graph-tool provided both 32-bit and 64-bit packages.

Sep 2006 — CentOS 5.5 (Linux 2.6.18)

Oct 2007 — Fedora Core 8 (Linux 2.6.23)

Oct 2008 — openSUSE 11.1 (Linux 2.6.27)

Sep 2009 — Ubuntu 9.10 (Linux 2.6.31)

Feb 2010 — Mandriva Free Spring (Linux 2.6.33)
Aug 2010 — Linux Mint 10 (Linux 2.6.35)

We installed 32-bit and 64-bit versions of each distro
and executed our 32-bit benchmark packages (those cre-
ated on 32-bit distros) on the 32-bit versions, and our
64-bit packages on the 64-bit versions. Although all of
these distros reside on one physical machine, none of our
benchmark packages were created on that machine: CDE
users created most of the packages, and we made sure
to create our own packages on other machines. The ‘Ori-
gin’ column of Table 3 shows that packages were created
on a variety of distros and kernel versions.

Results: Table 3 shows that out of the 108 configura-
tions we tested (18 CDE packages each run on 6 distros),
all executions succeeded except for one (vr-osg failed
on Fedora Core 8 with a known error related to graph-

ics drivers'). By ‘succeeded” we mean that the programs
ran correctly: Batch programs generated identical out-
puts across distros, regression tests passed, we could in-
teract normally with the GUI programs, and we could
reproduce the symptoms of the executable bug reports.

In addition, we were able to successfully execute all
of our 32-bit packages on the 64-bit versions of CentOS,
Mandriva, and openSUSE (the other 64-bit distros did
not support executing 32-bit binaries).

In sum, we were able to use CDE to successfully exe-
cute a diverse set of programs (Table 2) ‘out of the box’
on a variety of Linux distributions from the past 5 years,
without performing any installation or configuration.

Comparison against binary installer: To show that the
level of portability that CDE enables is substantive, we
compare CDE against a representative binary installer for
a commercial application. We tried installing and run-
ning Google Earth (Version 5.2.1, Sep 2010) on our 6
test distros using the official 32-bit binary installer from
Google. Here is what happened on each distro:

1OpenSceneGraph online forum discussion: http://forum.
openscenegraph.org/viewtopic.php?t=5653

11



e CentOS (Linux 2.6.18) — installs fine but Google
Earth crashes upon start-up with variants of this
error message repeated several times, because the
GNU Standard C++ Library on this OS is too old:

/usr/lib/libstdc++.s0.6:
version ‘GLIBCXX_3.4.9’ not found
(required by ./libgoogleearth_free.so)

e Fedora (Linux 2.6.23) — same error as CentOS
e openSUSE (Linux 2.6.27) — installs and runs fine
e Ubuntu (Linux 2.6.31) — installs and runs fine

e Mandriva (Linux 2.6.33) — installs fine but Google
Earth crashes upon start-up with this error message
because a required graphics library is missing:

error while loading shared libraries:
1ibGL.so.1l: cannot open shared object
file: No such file or directory

e Linux Mint (Linux 2.6.35) — installer program
crashes with this cryptic error message because the
XML processing library on this OS is foo new and
thus incompatible with the installer:

setup.data/setup.xml:1: parser error
Document is empty

setup.data/setup.xml:1: parser error
Start tag expected, <’ not found

Couldn’t load ’setup.data/setup.xml’

To recap, on 4 out of our 6 test distros, a binary
installer for the fifth major release of Google Earth
(v5.2.1), a popular commercial application developed by
a well-known software company, failed in its sole goal
of allowing the user to run the application, despite adver-
tising that it should work on any Linux 2.6 machine.

In contrast, once we were able to install Google
Earth on just one machine (Dell desktop running Ubuntu
8.04), we ran it under CDE supervision to create a self-
contained package, copied the package to all 6 test dis-
tros, and successfully ran Google Earth on all of them
without any installation or configuration.

Absolute limit of portability: A CDE package can only
run on a machine whose hardware architecture and Linux
kernel version are compatible with the executables and
shared libraries within the package. Every Linux exe-
cutable and library indicates the architecture and mini-
mum kernel version on which it can run (the file com-
mand shows this information). These hard limits are set
at compile-time and cannot be overcome by anything ex-
cept for emulation of the outdated ABI and system calls.

Some libraries (on distros like Gentoo) are compiled
with aggressive machine-specific optimizations that hin-
der portability. However, most Linux distros our users

12

have encountered contain libraries compiled with fairly
generic and portable x86 optimizations. We have shown
that CDE allows diverse types of programs to run on a va-
riety of popular Linux distros within a 5-year range. Al-
though we cannot predict the future, our intuition is that
packages created today will continue to run fine on Linux
distros from several years in the future, since kernel de-
velopers place high priority on maintaining backwards
compatibility in the kernel-to-user ABI [5]. For refer-
ence, the saturn and gadm packages were created on
2006 Linux kernels and run fine on 2010 kernels. Users
who desire greater portability or ‘future-proofing’ can
pair CDE with a virtual machine or processor emulator.

4.3 CDE package size & data deduplication

The ‘Size’ column of Table 3 shows that our benchmark
packages range from 14 to 476 MB uncompressed (file
compression can make them 2X—5X smaller). Since disk
space is plentiful on modern desktop machines and our
users have not yet complained about package sizes, we
have not attempted to optimize CDE for space usage.

However, to allay potential concerns about package
sizes, we implemented a data deduplication algorithm
and evaluated its impact on our benchmarks. Each CDE
package contains all files the enclosed program needs in
order to run on any contemporary x86-Linux machine,
but intuitively, some of those files must already exist on
any given target machine. For example, almost all CDE
packages contain 1ibc (GNU Standard C Library), and
some variant of 1ibc must exist on a target machine.

Our data deduplication algorithm searches for files
that exist in both the CDE package and the target ma-
chine’s system directories (e.g., /1ib, /usr). For ev-
ery pair of identical files, our algorithm deletes the copy
within the CDE package and replaces it with a hard link
to the copy in the system directory. For non-identical
files with similar filenames (e.g., 1ibc-2.5.s0 and
libc-2.8.so are both variants of 1ibc), our algorithm
takes a binary diff using bsdi £ £, deletes the copy within
the CDE package, and replaces it with the delta. bsdiff
is an efficient binary diff algorithm optimized for exe-
cutable files; the Google Chrome team uses it as the basis
for creating binary security patches [12].

Results: Table 3 shows that disk space savings range
widely from 2% to 72%, depending on how many files
each Linux distro happens to share in common with the
package’s contents. The mean disk space savings was
18% (median was 15%), which indicates that the major-
ity of package contents are files that do not already exist
on most modern Linux systems. Deduplication can only
be done after a package arrives on a particular target ma-
chine, not at package creation time, since each machine
contains different files. In sum, deduplication might be



Native CDE slowdown  Syscalls
Command time pack exec  per sec
gadm (algorithm) ~ 4187s 0% 0% 19
pads (inferencer) 18.6s 3% 1% 478
klee 79s  31% 2% 260
gadm (make plots) 72s 8% 2%* 544
gadm (C++ comp) 8.5 17% 5% 1459
saturn 222.7s  18% 18% 6477
google-earth 12.5s  65% 19% 7938
pads (compiler) 1.7s  59% 28% 6969

Table 4: Quantifying run-time slowdown of CDE
package creation and execution within a package. Each
entry reports the mean taken over 5 runs; standard devi-
ations are negligible. Slowdowns marked with T are not
statistically significant at p < 0.01 according to a t-test.

useful for space-conscious users, especially those who
wish to run multiple CDE packages on one machine.

4.4 CDE run-time slowdown

To quantify the slowdown that CDE incurs, we measured
running times for executing these commands in the five
CDE packages that we created (first column in Table 4):

e pads — Compile a PADS [17] specification into C
code (the ‘compiler’ row in Table 4), and infer a
specification from a data file (the ‘inferencer’ row).

e gadm — Reproduce the GADM experiment [22]:
Compile its C++ source code (‘C++ comp’), run ge-
netic algorithm (‘algorithm’), and use the R statis-
tics software to visualize output data (‘make plots’).

® google-earth — Measure startup time by
launching it and then quitting as soon as the initial
Earth image finishes rendering and stabilizes.

e klee — Use Klee [15] to symbolically execute a
C target program (a STUN server) for 100,000 in-
structions, which generates 21 test cases.

e saturn — Run the regression test suite, which con-
tains 69 tests (each is a static program analysis).

‘We measured the following on a Dell desktop (2GHz
Intel x86, 32-bit) running Ubuntu 8.04 (Linux 2.6.24):
number of seconds it took to run the original command
(‘Native time’), percent slowdown vs. native when run-
ning a command with cde to create a package (‘pack’),
and percent slowdown when executing the command
from within a CDE package with cde-exec (‘exec’). We
ran each benchmark five times under each condition and
report mean running times. We used an independent two-
group t-test [16] to determine whether each slowdown

13

was statistically significant (i.e., whether the means of
two sets of runs differed by a non-trivial amount).

Results: Table 4 shows that the more system calls a pro-
gram issues per second, the more CDE causes it to slow
down. This makes sense because the kernel must context
switch to the CDE process during every syscall. Creating
a CDE package (‘pack’ column) is slower than execut-
ing a program within a package (‘exec’ column) because
CDE must create new sub-directories and copy files into
the package. The ‘exec’ column slowdowns are shown
in bold since they are more important for our users: A
package is only created once but executed multiple times.

CDE execution slowdowns ranged from negligible (not
statistically significant) to ~30%, depending on system
call frequency. As expected, CPU-bound workloads like
the gadm genetic algorithm and the pads inferencer ma-
chine learning algorithm had almost no slowdown, while
those that were more I/O-intensive (e.g., the pads com-
piler) had the largest slowdowns.

When using CDE to run GUI applications, we did not
notice any loss in interactivity due to the slowdowns.
When we navigated around the 3D maps within the
google-earth GUI, we felt that the CDE-packaged ver-
sion was just as responsive as the native version. When
we ran GUI programs from CDE packages that users sent
to us (the bio-menace game, meld visual diff tool, and
vr-osg), we also did not perceive any visible lag.

4.5 Importance of dynamic tracking

To show the importance of dynamic (run-time) depen-
dency tracking, we compare CDE against a simple but
representative static analysis. We wrote a script that runs
the Linux 1dd and strings utilities on an executable
file to find all string constants representing shared li-
braries on which it depends, and then recursively runs
1dd and strings on those libraries and their dependen-
cies until the set of files converges. Although this basic
static technique only finds libraries named by constant
strings, it represents what people actually do in practice,
since it automates the tedious manual process of “chas-
ing down and copying over dependent libraries” that
folk wisdom (e.g., blog posts and forums) suggests as
the way to transport Linux binaries across machines [8].
It is difficult in general for a static analysis to model
dynamically-generated strings; we know of no static de-
pendency gathering tool that works in this way.

In contrast, since CDE actually executes the target ex-
ecutable in addition to statically searching for constant
strings, CDE can find dependencies on shared libraries
(and all other files) named by dynamically-generated
strings, in addition to those that a static technique finds.



# shared library files # total
Package name Total Statically found files
google-earth 82 3 (4%) 243
graph-tool 149 9 (6%) 1909
meld 93 8 9%) 507
arachni 48 6 (13%) 381
gcc—bug-46651 13 2 (15%) 114
email-search 138 28 (20%) 3052
gadm 18 4 (22%) 268
saturn 16 8 (50%) 455
pads 9 5 (56%) 150
ztopo 59 35 (59%) 164
vVr—osg 39 28 (72%) 57
bio-menace 27 26 (96%) 107
cog-bug-2443 3 3 (100%) 29
klee 6 6 (100%) 18
11vm-bug-8679 8 8 (100%) 14
kpiece 30 30 (100%) 45

Table 5: Number of total shared library files in each CDE
package, and number (and percent) of those found by
a simple static analysis of binaries and dependent libs.
Rightmost column is number of total files in package.

Results: Table 5 shows that in all but four bench-
marks, the static technique found fewer libraries than
CDE. Thus, it cannot be used to create a portable package
since the program will fail if even one library is missing.
(For similar reasons, static linking when compiling will
not work either.) Even on the four benchmarks where the
static technique found all required libraries, a user would
still have to manually insert all input, configuration, and
other data files into the package. The ‘# total files’ col-
umn in Table 5 shows that packages contain dozens to
thousands of files, often scattered across many directo-
ries, so this process can be tedious and error-prone.
Table 5 also shows why it is necessary for CDE to
dynamically track dependencies, since most benchmarks
load libraries that are not named by constant strings. At
one extreme, the four benchmarks where the static tech-
nique performed worst (google-earth, graph-tool,
meld, arachni) consist of scripts written in interpreted
languages. The interpreter dynamically loads libraries
and invokes other executables based on the contents of
those scripts. A static analysis of the interpreter’s exe-
cutable (e.g., Python) can only find the libraries needed
to start up the interpreter; however, the majority of li-
braries that each script requires are indirectly specified
within the script itself. For example, executing a simple
line of Python code “import numpy” in graph-tool
causes the Python interpreter to import the NumPy nu-
merical analysis module, which consists of 23 shared
libraries scattered across 7 sub-directories. The inter-

14

preter dynamically generates the pathnames of those 23
libraries by processing strings read from environment
variables and config files, so it is unlikely that any static
analysis could ever generate those 23 pathnames and find
the corresponding libraries. CDE easily finds those li-
braries since it monitors actual execution.

4.6 Running on different inputs

Since users create CDE packages by executing the tar-
get program on one or a few inputs, one might wonder
how far programs executed from within packages can
diverge from their original execution paths before they
fail. In general, no automatic tool (static or dynamic) can
find all the dependencies required to execute all possible
program paths, since that problem is undecidable. Simi-
larly, it is also impossible to automatically quantify how
‘complete’ a CDE package is or what files are missing,
since every file-related system call instruction could be
invoked with complex or non-deterministic arguments.
For example, the Python interpreter executable has only
one dlopen call site for dynamically loading extension
modules, but that dlopen could be called many times
with different dynamically-generated string arguments.

Despite the lack of formal guarantees, we feel that ex-
ecution within CDE packages can diverge from their orig-
inal path(s) to a degree that our users find to be practical.
Packaged execution can diverge as long as it does not
load any new libraries (or configuration files) that were
not loaded by the original execution(s). We observed that
many programs load the majority of required libraries at
start-up, regardless of what paths are executed later.

Most of our benchmark packages were created by run-
ning one representative command (or a regression test
suite); we list all the commands on our benchmark web-
page [1]. Here are our experiences with executing those
packages on different inputs using cde-exec:

e We can make compiler-like programs (e.g., pads,
saturn, coq, gcc, 11vm) process any legal input
file, not just the files used to create the packages.

e We can reproduce the original results of com-
putational experiments (e.g., gadm, kpiece,
email-search), but more importantly, we can ad-
just parameters, recompile, and execute variants of
those experiments to explore related hypotheses.

e We can interact normally with GUI applications like
google-earth, meld, and vr-osg. Of course, it
is possible that clicking some obscure nested sub-
menu option causes these programs to load libraries
not in the package, but common use cases work fine.

e We can play the bio-menace game following any
path we wish, not just the path taken by its package
creator, since the game contents are in a single file.



e We can use the arachni security tool to scan ar-
bitrary URLs and the graph-tool Python library
to do graph operations. Their creators had enough
confidence in CDE to make those packages available
for download on their respective project websites.

Since a CDE package is just an ordinary directory tree,
it is easy for a creator to directly add more files into the
package. A more convenient way to add files is to simply
execute the program additional times using cde to exer-
cise more paths that users might want to run. In sum,
although it is impossible for any automatic tool to cre-
ate complete self-contained binary packages, CDE works
well in practice and makes it convenient for creators to
augment their packages with additional files as needed.

5 Conclusion

We presented CDE, an open-source tool [2] that auto-
matically packages up the Code, Data, and Environment
required to run a set of x86-Linux programs on other
x86-Linux machines without any installation or config-
uration. Hundreds of people in both academia and in-
dustry have used CDE to avoid the usual pains associated
with software distribution and installation.

Our experiments showed that CDE packages are
portable across popular Linux distros from the past 5
years, that size and run-time overheads are acceptable,
and that dynamic dependency tracking is necessary and
works well in practice. All of the benchmark packages
used in our experiments are available online [1].

Acknowledgments

Thanks to Fernando Perez for the serendipitous discus-
sion of reproducible research that planted the seeds of the
idea for CDE, to Richard Spillane for sharing his Goanna
code [25], to Imran Haque for the Slashdot publicity, to
our users for bug reports and feedback, to {ridddilr,
paboonst, cbird, TomZ, ewencp, ihaque, daramos}
for editorial help, and to the NSF fellowship for funding
Philip’s graduate studies.

References
[11 CDE benchmark packages and documentation, http: //www.
stanford.edu/-pgbovine/cde-usenix.html.

[2] CDE public source code repository, https://github.com/

pgbovine/CDE.

[3] Coq proof assistant: Bug 2443, http://cog.inria.fr/

bugs/show_bug.cgi?id=2443.

GCC compiler: Bug 46651, http://gcc.gnu.org/
bugzilla/show_bug.cgi?id=46651.

[4]

[5] Linux: Ensuring Binary = Compatibility,

kerneltrap.org/node/4006.

http://

15

[6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

LLVM compiler: Bug 8679, http://llvm.org/bugs/
show_bug.cgi?id=8679.

Mac OS X Bundle Programming Guide: Introduction,
http://developer.apple.com/library/mac/
#documentation/CoreFoundation/Conceptual/
CFBundles/Introduction/Introduction.html.

Tutorial: Static, Shared Dynamic and Loadable Linux Li-
braries, http://www.yolinux.com/TUTORIALS/
LibraryArchives-StaticAndDynamic.html.

arachni project home page,
Zapotek/arachni.

https://github.com/

graph-tool project home page,
skewed.de/graph-tool/.

http://projects.

VMware ThinApp User’s Guide, http://www.vmware.
com/pdf/thinapp46_manual.pdf.

Google Chrome software updates: Courgette, http://www.
chromium.org/developers/design-documents/
software-updates-courgette.

AIKEN, A., BUGRARA, S., DILLIG, 1., DILLIG, T., HACK-
ETT, B., AND HAWKINS, P. An overview of the Saturn project.
PASTE °07, ACM, pp. 43-48.

ALTEKAR, G., AND STOICA, I. ODR: output-deterministic re-
play for multicore debugging. SOSP *09, ACM, pp. 193-206.

CADAR, C., DUNBAR, D., AND ENGLER, D. KLEE: unassisted
and automatic generation of high-coverage tests for complex sys-
tems programs. OSDI *08, USENIX Association, pp. 209-224.

CHAMBERS, J. M. Statistical Models in S. CRC Press, Inc.,
Boca Raton, FL, USA, 1991.

FISHER, K., AND GRUBER, R. PADS: a domain-specific lan-
guage for processing ad hoc data. PLDI *05, ACM, pp. 295-304.

GARFINKEL, T. Traps and pitfalls: Practical problems in system
call interposition based security tools. NDSS ’03.

GARFINKEL, T., PFAFF, B., AND ROSENBLUM, M. Ostia:
A delegating architecture for secure system call interposition.
NDSS *04.

JAIN, K., AND SEKAR, R. User-level infrastructure for system
call interposition: A platform for intrusion detection and confine-
ment. NDSS °00.

LAADAN, O., VIENNOT, N., AND NIEH, J. Transparent,
lightweight application execution replay on commodity multipro-
cessor operating systems. SIGMETRICS ’10, pp. 155-166.

LAHIRI, M., AND CEBRIAN, M. The genetic algorithm as a
general diffusion model for social networks. In Proc. of the 24th
AAAI Conference on Artificial Intelligence (2010), AAAI Press.

LoOPER, E., AND BIRD, S. NLTK: The Natural Language
Toolkit. In In ACL Workshop on Effective Tools and Method-
ologies for Teaching NLP and Computational Linguistics (2002).

SAITO, Y. Jockey: A user-space library for record-replay debug-
ging. In AADEBUG (2005), ACM Press, pp. 69-76.

SPILLANE, R. P., WRIGHT, C. P., SIVATHANU, G., AND
ZADOK, E. Rapid file system development using ptrace. In Ex-
perimental Computer Science (2007), USENIX Association.

SucAN, I. A., AND KAVRAKI, L. E. Kinodynamic motion plan-
ning by interior-exterior cell exploration. In Int’l Workshop on the
Algorithmic Foundations of Robotics (2008), pp. 449-464.



