
CDE: Using System Call Interposition to Automatically Create

Portable Software Packages

Philip J. Guo and Dawson Engler

Stanford University

April 5, 2011

(This technical report is an extended version of our 2011 USENIXATCpaper)

Abstract as dependency hell. Or the user might lack permissions
to install software packages in the first place, a common

It can be pamnfully difficult to take software that runs on occurrence on corporate machines and compute clusters
ONE person machine and get 1t to fun-on another a= that are administered by IT departments. Finally, the
chine. Online forums and mailing lists are filled with user (recalling bitter past experiences) may be reluctant
discussions of users’ troubles with compiling, installing, to perturb a working environment by upgrading or down-
and configuring software and their myriad of dependen- grading library versions just to try out new software.
cies. To eliminate this dependency problem, we created LL

i. As a testament to the ubiquity of software deployment
a system called CDE that uses system call interposition to :

: : : problems, consider the prevalence of online forums and
monitor the execution of x86-Linux programs and pack- ce eo : oo.

: mailing list discussions dedicated to troubleshooting in-
age up the Code, Data, and Environment required to run LL.

]) : stallation and configuration issues. For example, almost
them on other x86-Linux machines. The main benefits ce

) : half of the messages sent to the mailing lists of two ma-
of CDE are that creating a package is completely auto- :

; 4 that ih K ture research tools, the graph—t ool mathematical graph
atic, anc that TUANINg programs Withii & package 1e- analysis library [10] and the PADS system for processing
quires no installation, configuration, or root permissions.

ad-hoc data [17], were questions about how to compile
Hundreds of people throughout both academia and in-

> and install them: 47% of 289 emails for graph-tool,
dustry have used CDE to distribute software, demo pro- :

CL) : and 44% of 87 emails for PADS. As an example from
totypes, make their scientific experiments reproducible, :

N vel Ider 1. distributi 4 commercial software, the Google Chrome help forum for
oro ware nd Ne ono - I. Istributions, an “install/uninstall issues” has 4501 threads (in Apr. 2011).
CPIOY EAPEHINEHLS 16 COMplite CTUSIELS. We have created a system named CDE that eases the

pain of software deployment. CDE automatically pack-

1 Introduction ages up the Code, Data, and Environment required to
run a set of x86-Linux programs on other x86-Linux ma-

Most programmers want other people to run their soft- chines without any installation. It works as follows:
ware. Unfortunately, the path from having a piece of

software running on the programmer’s own machine to I. Prepend any Linux command with the cde exe-

getting it running on someone else’s machine is fraught cutable. cde executes your command and uses

with potential pitfalls. For instance, the programmer ptrace system call interposition to collect all the

might have forgotten to document a crucial step in the code, data files, and environment variables used

magic incantation needed during the installation process. during execution into a self-contained package.

Or forgotten to list a library version dependency, leading 2. Copy the resulting package to any modern x86-
to mysterious run-time errors when the wrong version Linux machine
gets silently run on the user’s machine. Or listed the right

library version, but one which is either hard to obtain 3. Change into the package directory and prepend the

or conflicts with a library needed by a different program original command with the cde-exec executable.

on the user’s machine. Or the software itself might re- cde-exec loads the stored environment variables

quire libraries that depend on many other libraries, which and then uses ptrace to redirect file-related system

themselves need to be transitively obtained and installed calls so that executables and libraries can load the

by the user, leading to an aggravating experience known required dependencies from within the package.

1

The main benefits of CDE are that creating a package is SciPy Python modules, GCAL C++ geometry library,

completely automatic, and that running programs within and Graphviz with Python bindings enabled.” [10] Un-

a package requires no installation, configuration, or root surprisingly, lots of people had trouble compiling it:

permissions, thereby eliminating dependency hell. 47% of all messages on its mailing list (137 out of 289)

Our experiments show that CDE packages created on a were questions related to compilation woes. The au-

modern x86-Linux distribution (distro) can run on a va- thor of graph-tool used CDE to automatically create

riety of popular x86-Linux distros from the past 5 years. a portable package (containing 149 shared libraries and

Although CDE only works on Linux, both the software 1909 total files) and uploaded it to his website so that

dependency problem it addresses and the ideas embodied users no longer needed to suffer through compiling it.

in our solution are relevant across all operating systems. We were able to download and run his package on six

Contributions: This paper’s main contribution is anovel ~~ Popular Linux distros from the past 5 years.
use of system call interposition to automatically create Running software without perturbing the OS: A sys-
portable software packages (33). We validate our CDE (em administrator working with a proprietary firewall
system on packages that our users created (84.1), show- product used CDE to package up some network moni-
mg that they are portable across Linux distros (84.2), toring utilities on his desktop machine and ran them on
that disk space (§4.3) and performance (84.4) overheads a production server without the risk of breaking a live
are acceptable, and that dynamic dependency tracking is system by installing new software. He told us via email:
necessary (84.5) and works well in practice (54.6).

“The reason I did not want to install additional

1.1 Examole real-world use cases libraries on the server in question was that it is
) P a highly customized version of RedHat and we

Since its initial release in Nov. 2010, over 2,000 people simply did not have the knowledge required to
have downloaded CDE [2], and we have exchanged hun- determine if this installation would somehow
dreds of emails with users in both academia and industry. interfere with the proprietary software running
Here are some representative use cases: on it. It was simply not worth disturbing a pro-

R . Af F sl duction system, and I was sure there had to be| eproducible research: A fundamental tenet of science a better way of doing it. Luckily I found CDE
1s that colleagues should be able to reproduce the results and gave it a try.”
of one’s experiments. In the past few years, science jour-

nals and CS conferences (e.g., SIGMOD, FSE) have en- Deolovi . I . People devel
couraged authors of published papers to put their code cploying computations to ac ster: : or evel
and datasets online, so that others can independently re- Opihg computational experiments on their deskiop ma-

: : : : chines often want to run them on a cluster for greater
run, verify, and build upon their experiments. However,
: performance and parallelism, but they might not have
it can be hard for people to set up all of the (often- Cl : :

: : permission from the sysadmin to install anything on the
undocumented) dependencies required to re-run exper-

: , cluster. A security analyst at McAfee used CDE to pack-iments. In fact, it can even be difficult to re-run one’s)
: : Co age up a CPU-intensive experiment on his desktop ma-

own experiments in the future, due to inevitable OS and)
: chine and deployed it to run on a compute cluster without
library upgrades. For example, to ensure that he could

: : : needing to install dependencies on the cluster. He told us
later re-run and adjust experiments in response to re-

: i. oo about the effort he saved by using CDE:
viewer critiques for a paper submission [15], our group-

mate Cristian took the hard drive out of his computer at “The most aggravating dependency that was
paper submission time and archived it in his drawer. missing [on the cluster machines] was the

With CDE, scientists can run the experiment once on mongo client library which, to get it installed
their machine under CDE supervision to create a pack- properly on the target systems, would require
gc, and colleagues can run that package on any modern me to install an entire build environment (G++,
Linux machine to repeat the experiment. For example, a scons, automake, etc) which is something CDE
robotics researcher used CDE to package up his experi- allowed me to successfully avoid.”
ments from a motion planning paper [26]. We were able

to run his experiments and reproduce his results on six))
: Demoing a prototype to clients: An engineering con-

popular Linux distros from the past 5 years. : :
tractor was creating a prototype analytics GUI for an en-

Distributing software: The website for graph-tool, terprise database. His clients wanted to try running his

a Python/C++ module for analyzing graphs, lists these prototype on their office machines, but it depended on a

(direct) dependencies: “GCC 4.2 or above, Boost li- myriad of difficult-to-install GUI libraries (e.g., wxWid-

braries, Python 2.5 or above, expat library, NumPy and gets, PLplot). The engineer ran his prototype using CDE

2

on his machine to create a package and was able to have System call interposition using ptrace is a well-

his clients run it without installing anything on their ma- known technique that researchers have used for imple-

chines. He told us afterward that he estimated it might menting tools such as secure sandboxes [19, 20], record-

take a knowledgeable Linux user 2 to 3 days of trial-and- replay systems [21], and user-level filesystems [25].

error to set up the same environment as his development Record-replay systems [14, 21, 24] are loosely related
machine so that they could install and run his prototype. to CDE because both strive to reproduce program exe-
That would have been too much effort for the clients to cution on other machines. However, CDE does not try to
undertake, so they might not have agreed to demo his deterministically replay one exact execution path. Unlike
prototype if he had not used CDE. record-replay, CDE is intended to let users easily run mul-

Running software on an incompatible OS version: tiple paths in packaged programs without installation.
Even production-quality software might not run on some

0S variants, most commonly due to library incompati- 2 CDE system overview
bilities. For example, one user told us that the popular

Google Earth 3D map application could not run On Some We will use an example to introduce the core features of
Linux distros that seemed to meet its stated minimum CDE. Suppose that Alice is a climate scientist whose ex-
system requirements. Thus, we installed Google Earth periment involves running a Python weather simulation
on our local distro, ran it once under CDE supervision to script on a Tokyo dataset using this Linux command:
create a portable package, and sent that package to the

user. He was able to run our package on distros on which python weather sim.py tokyo.dat
Google Earth was not normally able to run.

Alice’s script (weather_sim.py) imports some 3rd-

1.2 Comparison to related work party Python extension modules, which consist of opti-
: : mized C++ numerical analysis code compiled into shared

We know of no published system that automatically cre- oY : Y p
LL libraries. If Alice wants her colleague Bob to run and

ates portable software packages in situ from a live run- : : .. :
Co _y build upon her experiment, then it is not sufficient to just

ning machine like CDE does. Existing tools for creating :
: Co : send her script and tokyo .dat data file to him. Even if

self-contained applications all require the user to manu- : :
Bob has a compatible version of Python on his machine,

ally specify dependencies. For example, Mac OS X pro- :
Co he will not be able to run her script until he compiles,

grammers can create self-contained application bundles :
: : installs, and configures the extension modules that she

using Apple’s developer tools [7]. Mac OS X bundles : ol :
oo. used (and all of their transitive dependencies).

are structurally similar to CDE packages, encapsulating

all dependencies within an ordinary filesystem hierarchy.

VMware ThinApp is a commercial tool that automat- 2.1 Creating a new package with cde
ically creates self-contained portable Windows applica-

tions. However, a user can only create a package by To create a self-contained package with all dependencies
having ThinApp monitor the installation of new soft- required to run her experiment on another machine, Alice
ware [11]. Unlike CDE, ThinApp cannot be used to cre- ~~ prepends her command with the cde executable:
ate packages from existing software already installed on
a live machine, which 1s our most common use case. cde python weather _sim.py tokyo.dat

Virtual machine snapshots achieve CDE’s main goal

of capturing all dependencies required to execute a set of cde runs her command normally and uses the Linux
programs on another machine. However, they require the ~~ ptrace mechanism to monitor all files it accesses
user to always be working within a VM from the start of ~~ throughout execution. cde creates a new sub-directory
a project (or else re-install all of their software within a called cde-package/cde—-root/ and copies all of
new VM). Also, VM snapshot disk images are (by defini- those accessed files into there, mirroring the original
tion) larger than the corresponding CDE packages, often ~~ directory structure. For example, if her script dy-
by an order of magnitude, since they must also contain namically loads an extension module (shared library)
the OS kernel and other extraneous applications. CDE is ~~ named /usr/lib/weather. so, then cde will copy it
a more lightweight solution because it enables users to to cde-package/cde-root/usr/lib/weather. so

create and run packages natively on their own machines (see Figure 1). cde also saves the values of environment
rather than through a VM. Virtual machines are com- variables in a file within cde-package/.
plementary to CDE, though, because a user can create When execution terminates, the cde-package/ sub-

a package using CDE and copy that package into a Linux directory (which we call a ‘CDE package’) contains all of

VM image to make it portable across operating systems. the files required to run Alice’s original command.

3

Alice's computer program

(1) cde <command> open()
filesystem | kernel

open() ,J cde-package/ ___openfile = I
cde-root/ cde

lib/ copy file into package

copy Figure 2: Timeline of control flow between target pro-

gram, kernel, and cde process during an open syscall.

Bob's computer (2)
3) cde-exec <command> long as he does not cause the script to import new Python

; extension modules that are not in the package.

filesystem> redirect open()
y cde-package/ 3 Design and implementation

/usr/lib/weather.so cde-root/ :usr/ CDE uses the Linux ptrace system call to monitor the

lib/ target program’s processes and threads, read/write to its

memory, and modify its system call arguments, all with-

out requiring root permission. We implemented CDE

Figure 1: Example use of CDE: 1.) Alice runs her com- by adding 2500 lines of C code to the strace system
mand with cde to create a package, 2.) Alice sends call monitoring tool. Our implementation only works
package to Bob’s computer, 3.) Bob runs command with on x86-based Linux machines (32-bit and 64-bit) but
cde—-exec, which redirects file accesses into package. should be straightforward to extend to other hardware ar-

chitectures. Although implementation details are Linux-

specific, the same ideas could be used to implement CDE

2.2 Executing a package with cde-exec for another OS such as Mac OS X or Windows.

Alice zips up the cde-package/ directory and transfers 3.1 Creating a new package with cde
it to Bob’s Linux machine. Now Bob can run Alice’s ex-

periment without installing anything on his machine. He ~~ Primary action: The main job of cde is to use ptrace
unzips the package, changes into the sub-directory con- to monitor the target program’s system calls and copy all
taining the script, and prepends the original command of its accessed files into a self-contained package. cde
with the cde-exec executable (also in the package): only cares about the subset of syscalls that take a file path

string as an argument, which are listed in the ‘File path

cde—exec python weather sim.py tokyo.dat access’ category in Table 1. After the kernel finishes ex-
ecuting one of these syscalls and is about to return to the

cde-exec seis up (he environment variables saved target program, cde wakes and observes the return value.
from Alice’s machine and executes the version of If the return value signifies that the indicated file exists,

: : C1 then cde copies that file into the package (Figure 2).
python and its extension modules from within the pack-

age. cde-exec uses pirace [© monior all sysiem Note that many syscalls operate on files but take a file
descriptor as an argument rather than a file path (e.g.,

calls that access files and rewrites their path arguments Cn

to the corresponding paths within the cde—package/ mmap); cde does not need to track those, since it already
: tracks the calls that create file descriptors from file paths.

cde-root/ sub-directory. For example, when her script

requests to load the /usr/lib/weather. so extension Copying files into package: Prior to copying a file into
library using an open system call, cde-exec rewrites the package, cde creates all necessary sub-directories
the path argument of the open call to cde-package/ and symbolic links to mirror the original file’s location.
cde-root/usr/lib/weather.so (see Figure 1). This In our example, cde will copy /usr/lib/weather.so
path redirection is essential, because /usr/lib/ into the package as cde-package/cde-root/usr/
weather. so probably does not exist on Bob’s machine. lib/weather. so (Figure 1). For efficiency, copies are

Not only can Bob reproduce Alice’s exact experiment, done via hard links if possible.

but he can also edit her script and dataset and then re- If a file 1s a symlink, then both it and its target must

run to explore variations and alternative hypotheses, as be copied into the package. Multiple levels of symlinks,

4

Category Linux syscalls cde action cde-exec action

File path access openlat], mknod[at], fstatat64
access, faccessat, readlink [at]

truncate[64], stat [64], creat

lstat [64], oldstat, oldlstat Copy file into package Redirect path into package
chown [32], lchown[32]

fchownat,chmod, fchmodat

utime, utimes, futimesat

Local sockets bind, connect none Redirect path into package!

Mutate filesystem link[at], symlink [at] Repeat in package Redirect path into package
rename[at], unlink [at]

mkdir[at], rmdir

Get current dir. getcwd Update current dir. Spoof current dir.

Change directory chdir, fchdir Update current working directory

Spawn child fork, vfork, clone Track child process or thread

Execute program execve Copy binary into package = Maybe run dynamic linker

Table 1: The 48 Linux system calls intercepted by cde and cde—exec, and actions taken for each category of syscalls.

Syscalls with suffixes in [brackets] include variants with/without the suffix: e.g., open [at] means open and openat.

"For bind and connect, cde-exec only redirects the path if it is used to access a file-based socket for local IPC.

to both files and directories, must be properly handled. Mutate filesystem: After each call that mutates the
More subtly, any component of a path may be a sym- filesystem, cde repeats the same action on the corre-y, any P p y y y p

link to a directory, so the exact directory structure must sponding copies of files in the package. For example,

be replicated within the package. For example, we once if a program renames a file from foo to bar, then cde

encountered a path /usr/1lib/gcc/4.1.2/1ibgcc. a, also renames the copy of foo in the package to bar.

where 4.1.2 is a symlink to a directory named 4.1.1. Updating current working directory: At the comple-
We observed that some programs are sensitive to exact tion of getcwd, chdir, and fchdir, cde updates its

plosystem layout cde me faithiully eplicateWe record of the monitored process’s current working direc-
ipteopI.orese iXoe pcan al tory, which is necessary for resolving relative paths.

Finally, if the file being copied is an ELF binary (ex- Tracking sub-processes and threads: If the target pro-
ecutable or library code), then cde searches through the gram spawns sub-processes, cde also attaches onto those
binary’s contents for constant strings that are filenames chu dren with ptrace (it attaches ono SPaed threads
and then copies those files into the package. Although nthe SAME ay) oo po> oo ol A. ore
this hack is simplistic, it works well in practice to par- Process s ree Co op pe oy and Share Ca
tially overcome CDE’s limitation of only being able to amen Fh (nee . or) 2). mam SISle-
gather dependencies on executed paths. It works be- Thi t anc respon Japie ySPA
cause many binaries dynamically load libraries whose Ls cature 15 USCIULIOT packaging Up WOTKHOWS con-
filenames are constant strings. For example, we encoun- sisting of multiple program invocations, like a compila-
tered a Python extension library that dynamically loads tion job. For example, running “cde make” will track
one of a few versions of the Intel Math Kernel Library all sub-processes that the Makefile spawns and package
based on the current CPU’s capabilities. Without this up the Source files and compiler toolchain. Now you
hack, any given execution will only copy one version of can edit and compile the given project on another Linux
the Intel library into the package, so packaged execution machine by simply running cde-exec make”, without
will fail when running on another machine with differ- needing to install any compilation tools or header files.
ent CPU capabilities. Finding and copying all versions execve: cde copies the executable’s binary into the pack-
of the Intel library into the package makes the program age. For a script, cde finds the name of its interpreter
more likely to run on machines with different hardware. binary from the shebang (#!) line. If the binary is

dynamically-linked, cde also finds its dynamic linker

Here is how cde handles the other syscalls in Table 1: (e.g., 1d-1inux.so.2) and copies it into the package.

5

program program Esre RK /usr/lib/weather.so
open() ~

kernel *————> —open file

~~ __________ [|from package cde-package/cde-root/usr/lib/weather.so
cde-exec i

r—————> i i i

rewrite open() argument 2 : ,
Figure 3: Timeline of control flow between target pro- 3 = Ted t re ohgram, kernel, and cde-exec during an open syscall. cde-package/cde-rool/usr/lib/Weatner.5o

Figure 4: Example address spaces of target program and

3.2 Executing a package with cde—-exec cde-exec when rewriting path argument of open. The
two boxes connected by dotted lines are shared memory.

Primary action: The main job of cde—exec is to use
t to redirect file paths that the target program re- :

prrace p s¢t Prog overflow the buffer. Also, if the program makes a system
quests into the package. Before the kernel executes most :

: : : call with a constant string, the buffer would be read-only.
syscalls listed in Table 1, cde—exec rewrites their path

Co Instead, what cde—exec does is redirect the pointer
argument(s) to refer to the corresponding path within ;

: : to the buffer. When the target program (or one of its sub-
cde-package/cde-root/ (Figure3). Bydoingso,

processes) first makes a syscall, cde—exec forces it tocde-exec creates a chroot-like sandbox that fools the
RE oo : make another syscall to attach a 16KB shared memory

target program into ‘believing’ that it is executing on the
hy segment (a trick from [25]). Now cde-exec can write

original machine. Unlike chroot, this sandbox does not J
: .. data into that shared segment and have it be visible in the

require root access to set up, and it is user-customizable :
target program’s address space. The two large rectangles

(see Section 3.3). LZ
: : in Figure 4 show the address spaces of the target pro-

In our example, suppose that Alice runs her experi- : :
rs gram and cde-exec, respectively. Figure 4 illustrates

ment within the /expt directory on her computer: : a.
the three steps involved in syscall argument rewriting:

cd /expt ..
cde python weather sim.py tokyo.dat I. cde—exec uses ptrace to read the original argu-

ment from the program’s address space.

She then sends the package to Bob’s computer. If Bob 2. cde-exec creates a new string representing the
unzips it into his home directory (/home/bob), then he path redirected inside of the package and writes it
can run these commands to execute her Python script: into the shared memory buffer. This value is imme-

diately visible in the target program’s address space.
cd /home/bob/cde-package/cde-root/expt

cde-exec python weather_sim.py tokyo.dat 3. cde—-exec uses ptrace to mutate the syscall’s ar-
gument to point to the start of the shared memory

Note that Bob needs to first change into the /expt buffer (in the target program’s address space). x86-
sub-directory within the package, since that is where Linux syscall arguments are stored in registers, so
Alice’s scripts and data files reside. When cde-exec pt race mutates the target program’s registers prior
starts, it finds Alice’s python executable within the to executing the call. Most syscalls only take one

package (with the help of $PATH) and launches it. filename argument, which is stored in $ebx on 1386
Now if her program requests to open, say, /usr/ and $rdi on x86-64. 1ink, symlink, and rename
lib/weather.so, cde-exec rewrites the path argu- take two filename arguments; their second argument
ment of the open call to /home/bob/cde-package/ is stored in $ecx on i386 and %rsi on x86-64.
cde-root/usr/lib/weather.so, so that the kernel

opens the version within the package. . .
Spoofing current working directory: At the comple-

Implementing syscall rewriting: Since pt race allows tion of the getcwd syscall, cde-exec mutates the re-

cde—exec to directly read and write into the target pro- turn value string to eliminate all path components up to

gram’s memory, the easiest way to rewrite a syscall’s ar- cde-root/. For example, when Bob runs Alice’s script:
gument is to simply override its buffer with a new string.

However, this approach does not work because the new cd /home/bob/cde-package/cde-root/expt
path string is always longer than the original, so it might cde—-exec python weather_sim.py tokyo.dat

6

If her Python script requests its current working directory environment variables for CDE to ignore, so that pack-

using getcwd, the kernel will return the true full path: ages can be portable across machines [1]. By ‘ignore’ we

/home/bob/cde-package/cde-root/expt. Then mean that cde will not copy those files (or variables) into

cde—-exec will truncate that string so that it becomes a package, and cde-exec will not redirect their paths

/expt, which is the value it would have returned if it and instead access the real versions on the machine.

were running on Alice’s machine. We have encountered CDE also allows users to customize which paths it

many programs that break when get cwd is not spoofed. should ignore (leave alone) and which it should redi-

There 1s no danger of buffer overflow here since the rect into the package, thereby making its sandbox ‘semi-

new string is always shorter, and the buffer cannot be ~~ permeable’. For example, one user chose to have CDE

read-only, since the kernel must be able to mutate it. ignore a directory that mounts an NFS share containing

Some programs call readlink ("/proc/self/cwd") huge data files, because he knew that the machine on

to get current working directory, so we also spoof the which he was going to execute the package also mounts

return value for that particular syscall instance. that NFS share at the same path. Therefore, there was no

execve: When the target program executes a pointin bloating upthe package with those data files.
dynamically-linked binary, cde-exec rewrites the This user-customizable blacklist is implemented as an

: options file. Figure 5 shows this file’s default contents.
execve syscall arguments to execute the dynamic

linker stored in the package (with the binary as its first

argument) rather than directly executing the binary. 3.4 Non-goals
Here is why cde—exec needs to explicitly execute the

dynamic linker: When a user executes a dynamically- CDE only intercepts 14% of all Linux 2.6 syscalls (48 out
linked binary, Linux first executes the system’s default of 338) , but those are sufficient for creating portable self-
dynamic linker to resolve and load its shared libraries. contained Linux packages. CDE does not need to inter-
However, we have found that the dynamic linker on cept more syscalls because it is not designed to perform:
one Linux distro might not be compatible with binaries eye

created on another distro, due to minor differences in * Deterministic replay: CDE does not try to exactly
: oo . : replay the original execution paths. Thus, it does

ELF binary formats. Therefore, to maximize portabil-
: oo : not need to capture sources of randomness, thread

ity across machines, cde copies the dynamic linker into : .
oo scheduling, and other non-determinism [21, 24].

the package, and cde-exec executes the dynamic linker

from the package rather than having Linux execute the e OS/hardware emulation: CDE does not spoof the
system’s version. Without this hack, we have noticed OS or hardware. Thus, programs that require spe-
that even a trivial “hello world” binary compiled on one cialized hardware or device drivers will not be
distro (e.g., Ubuntu with Linux 2.6.35) will not run on an portable across machines. Also, CDE cannot cap-
older distro (e.g., Knoppix with Linux 2.6.17). ture remote (network-based) dependencies.

A side-effect of rewriting execve to call the dy- e Security: Although CDE isolates target programs
namic linker is that when a target program in- in a chroot-like sandbox, it does not guard against
spects its own executable name, the kernel will re- attacks to circumvent such sandboxes [18]. Users
turn the name of the dynamic linker, which is in- should only run CDE packages from trusted sources.
correct. Thus, cde-exec spoofs the return val-

ues of calls to readlink ("/proc/self/exe") and LL

readlink ("/proc/<$PID>/exe™) to return the orig- 3.5 Limitations
inal executable’s name. This spoofing is necessary be- pyecyting a command within a CDE package will fail if:
cause some narcissistic programs crash with cryptic er-

rors if their own names are not properly identified. e the Linux kernel or hardware architecture is incom-

patible with the binaries in the package. Only virtu-

3.3 Ignoring files and environment vars alization or emulation can overcome this limitation.

By convention, Linux directories like /dev, /proc, and o the arguments or 1put change to make the prOgtdm
/ sys contain pseudo-files (e.g., device files) that do not load anew shared library that the original execution
make sense to include in a CDE package. Also, environ- did not load. We show in Section 4.6 that mn the
ment variables like $XAUTHORITY and the correspond- typical CAsSe, proghams load the majority of their Li-
ing .Xauthority file (for X Window authorization) are braries at start-up, so the inputs can change a lot be-
machine-specific. Informed by our debugging experi- fore the program needs to load additional libraries.
ences and user feedback, we have manually created a e the arguments or input change to make the program

(customizable) blacklist of a dozen directories, files, and load another file that is not in the package. Since

7

These directories often contain pseudo-files that shouldn’t be tracked

ignore_prefix=/dev/

ignore_prefix=/proc/

ignore_prefix=/sys/

ignore_prefix=/var/cache/

ignore_prefix=/var/lock/

ignore_prefix=/var/log/

ignore_prefix=/var/run/

ignore_prefix=/var/tmp/

ignore_prefix=/tmp/

ignore_exact=/tmp

ignore_substr=.Xauthority # Ignore to allow X Window programs to work

ignore_exact=/etc/resolv.conf # Ignore so networking can work properly

These environment vars might lead to 'overfitting’ and hinder portability

ignore_environment_var=XAUTHORITY

ignore_environment_var=DISPLAY

ignore_environment_var=SESSION_MANAGER

ignore_environment_var=0RBIT_SOCKETDIR

ignore_environment_var=DBUS_SESSION_BUS_ADDRESS

Figure 5: The default CDE options file, which specifies the file paths and environment variables that CDE should ignore.

ignore_exact matches an exact file path, ignore_prefix matches a path’s prefix string (e.g., directory name), and

ignore_substr matches a substring within a path. Users can customize this file to tune CDE’s sandboxing policies.

a CDE package is just an ordinary directory tree, it 4 Evaluation
is easy for users to directly add more files into the

package if necessary. Also, if the user runs multiple To show that CDE is a practical and effective system, our
commands in the same directory, cde will simply evaluation addresses the following questions:
add additional files into the same cde-package/.

e How are people using CDE (84.1)?

Note that a user who manually creates software pack- e How portable are CDE packages (34.2)?
ages by bundling together executables, libraries, and e How large are CDE packages (84.3)?

other files will face these exact same limitations, so CDE e How much run-time slowdown is there (54.4)?
never performs worse than this manual approach. Of

course, an expert user with the proper domain knowledge e Is dynamic dependency tracking necessary (84.5)?
can create a more complete package than any automatic e When running programs within a package, how
tool can (see Section 4.6); CDE can still aid these experts much can inputs differ from the originals (§4.6)?
by creating a partially-complete package and then allow-

ing them to manually fll on the TETAS files. 4.1 Use cases and benchmark packages
In addition, CDE is limited by the limitations of

ptrace and of executing binaries by explicitly invok- Since we released the first version of the CDE executable

ing the dynamic linker: ptrace can cause subtle differ- online on Nov 9, 2010, it has been downloaded at least

ences in the semantics of traced processes, most notably 2,000 times (as of April 2011) [2]; we cannot track how

that a process being monitored by pt race cannot itself =~ many people have directly checked out its source code,

pt race another process, which precludes the use of CDE though. We have exchanged hundreds of emails with

alongside applications like symbolic debuggers. Also, CDE users and discovered six salient real-world use cases

there is a known bug on certain Ubuntu distros where the as a result of these discussions.

bash shell non-deterministically crashes when invoked Table 2 summarizes the 16 CDE packages we used as

explicitly with a dynamic linker; a workaround is to have ~~ benchmarks in our experiments. They contain software

CDE use the machine’s native bash shell on those distros. written in diverse programming languages. We have put

8

Package name Description Dependencies Creator

Distributing research software

arachni Web app. security scanner framework [9] Ruby (+ extensions) security researcher

graph-tool Lib. for manipulation & analysis of graphs [10] Python, C++, Boost math researcher

pads Language for processing ad-hoc data [17] Perl, ML, Lex, Yacc self

saturn Static program analysis framework [13] Perl, ML, Berkeley DB self

Running production software on incompatible distros

meld Interactive visual diff and merge tool for text Python, GTK+ software engineer

bio-menace Classic video game within a MS-DOS emulator DOSBox, SDL game enthusiast

google-earth 3D interactive map application by Google shell scripts, OpenGL self

Creating reproducible computational experiments

kpiece Robot motion planning algorithm [26] C++, OpenGL robotics researcher

gadm Genetic algorithm for social networks [22] C++, make, R self

Deploying computations to cluster or cloud

ztopo Batch processing of topological map images C++, Qt graduate student

klee Automatic bug finder & test case generator [15] C++, LLVM, uClibc self

Submitting executable bug reports

cog-bug-2443 Incorrect output by Coq proof assistant [3] ML, Coq bug reporter

gcc-bug-46651 Causes GCC compiler to segfault [4] gcc bug reporter

11lvm-bug-8679 Runs LLVM compiler out of memory [6] C++, LLVM bug reporter

Collaborating on class programming projects

emalil-search Natural language semantic email search Python, NLTK, Octave college student

Vr—0sg 3D virtual reality modeling of home appliances C++, OpenSceneGraph college student

Table 2: CDE packages used as benchmarks in our experiments, grouped by use cases. ‘self’ in the ‘Creator’ column

means package created by first author; all other packages created by CDE users (mostly people we have never met).

all benchmark packages online, along with the command packages for two of our Stanford colleagues’ research

lines required to execute them [1]. We now summarize tools, which were originally distributed as tarballs of

the use case categories and benchmarks (shown in bold). source code: pads [17] and saturn [13]. 44% of

the messages on the pads mailing list (38 / 87) were

Distributing research software: The creators of two questions related to troubles with compiling it (22% for
research tools found CDE online and used it to create ~~ saturn). Once we successfully compiled these projects

portable binary packages that they uploaded to their web- (after a few hours of improvising our own hacks since the
sites: arachni, a Ruby-based tool that audits web ap- instructions were outdated), we created CDE packages by
plication security [9], requires six hard-to-compile Ruby running their regression test suites, so that others do not
extension modules, some of which depend on versions need to suffer through the compilation process.
of Ruby and libraries that are not available in the pack-

age managers of most modern Linux distributions. Its Running software on incompatible distros: Even

creator, a security researcher, uploaded CDE packages production-quality software might be hard to install on
and sent us a grateful email describing how much ef- Linux distros with older kernel or library versions, espe-
fort CDE saved him: “My guess is that it would take cially when system upgrades are infeasible. For exam-
me half the time of the development process to create a ple, an engineer at Cisco wanted to run some new open-
self-contained package by hand; which would be an un- source tools on his work machines, but the IT department
acceptable and truly scary scenario.” In Section 1.1, we mandated that those machines run an older, more secure
already described how the creator of the graph-tool enterprise Linux distro. He could not install the tools
library used CDE to create portable Linux packages. on those machines because that older distro did not have

In addition, we used CDE to create portable binary up-to-date libraries, and he was not allowed to upgrade.

9

Therefore, he installed a modern distro at home, ran CDE down the steps for reproduction, exact versions of exe-

on there to create packages for the tools he wanted to cutables and dependent libraries, and maybe attaching an

port, and then ran the tools from within the packages input that triggers the bug. Developers often have trouble

on his work machines. He sent us one of the packages, reproducing bugs based on these hand-written descrip-

which we used as a benchmark: the meld visual diff tool. tions and end up closing reports as “not reproducible.”

Hobbyists applied CDE in a similar way: A game en- CDE offers an easier and more reliable solution: The

thusiast could only run a classic game (bio-menace) bug reporter can simply run the command that triggers

within a DOS emulator on one of his Linux machines, the bug under CDE supervision to create a CDE package,

so he used CDE to create a package and can now play the send that package to the developer, and the developer can

game on his other machines. We also helped a user create re-run that same command on their machine to reproduce

a portable package for the Google Earth 3D map applica- the bug. The developer can also modify the input file and

tion (google—earth), so he can now run it on older dis- command-line parameters and then re-execute, in order

tros whose libraries are incompatible with Google Earth. to investigate the bug’s root cause.

]]] To show that this technique works, we asked peo-

Reproducible computational experiments: In Sec- ple who recently reported bugs to popular open-source
tion 1.1, we described how CDE can make it easier for projects to use CDE to create executable bug reports.
scientists to package up their experiments so that their Three volunteers sent us CDE packages, and we were
colleagues can re-run and build upon them. Inourex- aple to reproduce all of their bugs: one that causes
perience, the results of many computational science ex- the Coq proof assistant to produce incorrect output
periments can be reproduced within CDE packages since (cog-bug-2443) [3], one that segfaults the GCC com-
the programs are output-deterministic [14], always pro- piler (gec-bug-46651) [4], and one that makes the
ducing the same outputs (e.g., statistics, graphs) for a |[vM compiler allocate an enormous amount of mem-
given input. For instance, a robotics researcher used CDE ory and crash (11vm-bug-8679) [6].
io make he experiments for his motion planning paper Since CDE is not a record-replay tool, it is not guar-
(kpiece) [26] fully-reproducible. Similarly, we helped a anteed to reproduce non-deterministic bugs. However, at
social networking researcher creaie a reproducible pack- least it allows the developer to run the exact versions of
age for his genetic algorithm paper (gadm) [22]. the faulting executables and dependent libraries.

Deploying computations to cluster or cloud: It can be Collaborating on class programming projects: Two
difficult to get root access to cluster machines. Instead, users sent us CDE packages they created for collaborat-
d user can create a self-contained package using CDE on ing on class assignments. Rahul, a Stanford grad student,
their desktop machine and then execute that package on was using NLTK [23], a Python module for natural lan-
the cluster Of cloud (possibly many Instances nparal- guage processing, to build a semantic email search en-
lel), without needing to install any dependencies or to gine (email-search) for a machine learning class. De-
get root access on the remote machines. For Instance, our spite much struoale. Rahul’s two teammates were unable
colleague Peter wanted to use a department-administered to install NLTK on their Linux machines due to conflict-
100-CPU cluster to run a parallel image processing Job ing library versions and dependency hell. This meant
on topological maps (ztopo). However, since he did not, .¢ they could only run one instance of the project at a
have root access on those older machines, it was nearly time on Rahul’s laptop for query testing and debugging.
impossible for him to install all of the dependencies re- When Rahul discovered CDE, he created a package for
quited to fun his computation, especially the image pro- their project and was able to run it on his two teammates’
cessing librares. Peter used CDE to create a package by machines, so that all three of them could test and debug
running his job on a small dataset on his desktop, trans- in parallel. Joshua, an undergrad from Mexico, emailed
ferred the package and the complete dataset to the cluster, us a similar story about how he used CDE to collaborate
and then ran 100 instances of it in parallel there. on and demo his virtual reality class project (ve—osg).

Similarly, we worked with lab-mates to use CDE to de-

ploy the CPU-intensive klee [15] bug finding tool from

the desktop to Amazon’s EC2 cloud computing service ~~ 4.2 CDE package portability
without needing to compile Klee on the cloud machines.

Klee can be hard to compile since it depends on LLVM, To demonstrate that CDE packages can successfully ex-
which is very picky about specific versions of GCC and ecute on a wide range of Linux distros and kernel ver-
other build tools being present before it will compile. sions, we tested our benchmark packages on popular dis-

tros from the past 5 years. We installed fresh copies of

Submitting executable bug reports: Bug reporting is a these distros (listed with the versions and release dates of

tedious manual process: Users submit reports by writing their kernels) on a 3GHz Intel Xeon x86-64 machine:

10

Sep 2006 Oct 2007 Oct 2008 Sep 2009 Feb 2010 Aug 2010

Size CentOS Fedora openSUSE Ubuntu Mandriva Linux Mint

Package name Origin (MB) 2.6.18 2.6.23 2.6.27 2.6.31 2.6.33 2.6.35

32-bit packages (tested on 32-bit Linux distributions)
bio-menace 2.6.33 P 14 28% 29% 36% 48% 31% 43%

pads 2.6.24 U 23 14% 10% 29% 28% 20% 23%
arachni 2.6.35U 27 47% 20% 20% 26% 22% 64%

zt opo 2.6.35U 46 20% 15% 20% 21% 17% 31%
klee 2.6.32 D 61 3% 3% 3% 7% 3% 6%

graph-tool 2.6.26 D 192 15% 8% 17% 20% 22% 20%

google—earth 2.6.24 U 220 5% 4% 3% 2% 2% 2%

64-bit packages (tested on 64-bit Linux distributions)

cog-bug-2443 2.6.32D 18 7% 7% 7% 9% 9% 9%

Vr—0sg 2.6.35U 24 27% FAILED 28% 35% 35% 43%

11lvm-bug-8679 2.6.35U 30 7% 7% 7% 10% 8% 12%

kpiece 2.6.35U 38 12% 13% 13% 15% 16% 18%
arachni 2.6.35U 41 17% 17% 15% 20% 20% 41%

saturn 2.6.18 C 79 9% 8% 10% 10% 10% 72%

meld 2.6.35U 82 20% 21% 25% 32% 31% 44%

gcc-bug-46651 2.6.36 G 125 10% 10% 33% 33% 62% 34%

graph-tool 2.6.26 D 209 15% 8% 17% 19% 25% 20%

gadm 2.6.18 C 281 3% 2% 2% 2% 2% 20%
email-search 2.6.32U 476 4% 3% 5% 6% 10% 6%

Table 3: CDE benchmark packages, uncompressed package sizes, and percentage of disk space savings due to data

deduplication. The ‘Origin’ column shows the kernel version and distro where a package was created: Ubuntu, Debian,

CentOS, Gentoo, Puppy Linux. Creators of arachni and graph-tool provided both 32-bit and 64-bit packages.

e Sep 2006 — CentOS 5.5 (Linux 2.6.18) ics drivers!). By ‘succeeded’ we mean that the programs

e Oct 2007 — Fedora Core 8 (Linux 2.6.23) ran correctly: Batch programs generated identical out-
puts across distros, regression tests passed, we could in-

e Oct 2008 — openSUSE 11.1 (Linux 2.6.27) teract normally with the GUI programs, and we could
reproduce the symptoms of the executable bug reports.

s Sep 2005 — Ubunin 9.10 (Linux 2.6.31) In addition, we were able to successfully execute all
e Feb 2010 — Mandriva Free Spring (Linux 2.6.33) of our 32-bit packages on the 64-bit versions of CentOS,

Mandriva, and openSUSE (the other 64-bit distros did

* Aug 2010 — Linux Mint 10 (Linux 2.6.35) not support executing 32-bit binaries).
In sum, we were able to use CDE to successfully exe-

We installed 32-bit and 64-bit versions of each distro cute a diverse set of programs (Table 2) ‘out of the box’
and executed our 32-bit benchmark packages (those cre- on a variety of Linux distributions from the past 5 years,
ated on 32-bit distros) on the 32-bit versions, and our without performing any installation or configuration.
64-bit packages on the 64-bit versions. Although all of

these distros reside on one physical machine, none of our Comparison against binary installer: To show that the
benchmark packages were created on that machine: CDE level of portability that CDE enables 15 substantive, we
users created most of the packages, and we made sure compare CDE against a representative binary installer for
to create our own packages on other machines. The ‘Ori- a commercial application. We tried installing and run-
gin’ column of Table 3 shows that packages were created ning Google Earth (Version 5.2.1, Sep 2010) on our 6
on a variety of distros and kernel versions. test distros using the official 32-bit binary installer from

Google. Here 1s what happened on each distro:

Results: Table 3 shows that out of the 108 configura-

tions we tested (18 CDE packages each run on 6 distros),

all executions succeeded except for one (vr-osg failed ~~1gpenSceneGraphonline forum discussion: http: // forum.
on Fedora Core 8 with a known error related to graph- openscenegraph.org/viewtopic.php?t=5653

11

eo CentOS (Linux 2.6.18) — installs fine but Google have encountered contain libraries compiled with fairly

Earth crashes upon start-up with variants of this generic and portable x86 optimizations. We have shown

error message repeated several times, because the that CDE allows diverse types of programs to run on a va-

GNU Standard C++ Library on this OS is too old: riety of popular Linux distros within a 5-year range. Al-

though we cannot predict the future, our intuition is that
/usr/lib/libstdc++.s50.6: i } .
version ‘GLIBCXX 3.4.9" not found packages created today will continue to run fine on Linux
(required by ./libgoogleearth free.so) distros from several years in the future, since kernel de-

velopers place high priority on maintaining backwards

e Fedora (Linux 2.6.23) — same error as CentOS compatibility in the kernel-to-user ABI [5]. For refer-
ence, the saturn and gadm packages were created on

* openSUSE (Linux 2.6.27) — installs and runs fine 2006 Linux kernels and run oy on 2010 kernels. Users
e Ubuntu (Linux 2.6.31) — installs and runs fine who desire greater portability or ‘future-proofing’ can

e Mandriva (Linux 2.6.33) — installs fine but Google pair CDE with a virtual machine or processor emulator.
Earth crashes upon start-up with this error message

because a required graphics library is missing: 43 CDE package size & data deduplication

error while loading shared libraries: The ‘Size’ column of Table 3 shows that our benchmark

1ibGL.so.1: cannot open shared object packages range from 14 to 476 MB uncompressed (file
file: No such file or directory compression can make them 2X—5X smaller). Since disk

e Linux Mint (Linux 2.6.35) — installer program space is plentiful on modern desktop machines and our
: : users have not yet complained about package sizes, we

crashes with this cryptic error message because the .

XML processing library on this OS is foo new and have not attempted to optimize CDE for space usage.
: : : However, to allay potential concerns about package

thus incompatible with the installer: : : Co :
sizes, we implemented a data deduplication algorithm

setup.data/setup.xml:1l: parser error : and evaluated its impact on our benchmarks. Each CDE

Document is empty package contains all files the enclosed program needs in

setup.data/setup.xml:1: parser error : order to run on any contemporary x86-Linux machine,
Start tag expected, ’'<’ not found but intuitively, some of those files must already exist on

Couldn't load ’setup.data/setup.xml’ any given target machine. For example, almost all CDE
packages contain 1ibc (GNU Standard C Library), and

To recap, on 4 out of our 6 test distros, a binary some variant of 1ibc must exist on a target machine.

installer for the fifth major release of Google Earth Our data deduplication algorithm searches for files

(v3.2.1), a popular commercial application developed by that exist in both the CDE package and the target ma-

a well-known software company, failed in its sole goal chine’s system directories (e.g., /1ib, /usr). For ev-

of allowing the user to run the application, despite adver- ery pair of identical files, our algorithm deletes the copy

tising that it should work on any Linux 2.6 machine. within the CDE package and replaces it with a hard link

In contrast, once we were able to install Google to the copy in the system directory. For non-identical

Earth on just one machine (Dell desktop running Ubuntu files with similar filenames (e.g., 1ibc—-2.5.s0 and

8.04), we ran it under CDE supervision to create a self- libc-2. 8. so are both variants of 1ibc), our algorithm

contained package, copied the package to all 6 test dis- takes a binary diff using bsdi ff, deletes the copy within

tros, and successfully ran Google Earth on all of them the CDE package, and replaces it with the delta. bsdiff

without any installation or configuration. 1s an efficient binary diff algorithm optimized for exe-

Absolute limit of portability: A CDE package can only cutable files; the Google Chrome team uses it as the basis
run on a machine whose hardware architecture and Linux for creating binary security patches [12]
kernel version are compatible with the executables and Results: Table 3 shows that disk space savings range

shared libraries within the package. Every Linux exe- widely from 2% to 72%, depending on how many files

cutable and library indicates the architecture and mini- each Linux distro happens to share in common with the

mum kernel version on which it can run (the file com- package’s contents. The mean disk space savings was

mand shows this information). These hard limits are set 18% (median was 15%), which indicates that the major-

at compile-time and cannot be overcome by anything ex- ity of package contents are files that do not already exist

cept for emulation of the outdated ABI and system calls. on most modern Linux systems. Deduplication can only

Some libraries (on distros like Gentoo) are compiled be done after a package arrives on a particular target ma-

with aggressive machine-specific optimizations that hin- chine, not at package creation time, since each machine

der portability. However, most Linux distros our users contains different files. In sum, deduplication might be

12

Native CDE slowdown Syscalls was statistically significant (i.e., whether the means of
Command time pack eXec per sec two sets of runs differed by a non-trivial amount).

gadm (algorithm) ~~ 4187s 0%] 0%" 19 Results: Table 4 shows that the more system calls a pro-
pads (inferencer) 18.6s 39%" 1% 478 gram issues per second, the more CDE causes it to slow
klee 79s 31% 20,1 260 down. This makes sense because the kernel must context

gadm (make plots) 7 0g 8% 20,1 544 switch to the CDE process during every syscall. Creating
gadm (C++ comp) 85s 17% 59, 1459 a CDE package (‘pack’ column) is slower than execut-
saturn 222 7s 18% 18% 6477 ing a program within a package (‘exec’ column) because

google-earth 12.5s 65% 199, 7038 CDE must create new sub-directories and copy files into
pads (compiler) 1.7s 59% 28% 6969 the package. The ‘exec’ column slowdowns are shown
- in bold since they are more important for our users: A

Table 4: Quantifying run-time slowdown of CDE package is only created once but executed multiple times.
package creation and execution within a package. Each CDE execution slowdowns ranged from negligible (not
entry reports the mean taken over 5 runs; standard devi- statistically significant) to ~30%, depending on system
ations are negligible. Slowdowns marked with I are not call frequency. As expected, CPU-bound workloads like
statistically significant at p < 0.01 according to a t-test. the gadm genetic algorithm and the pads inferencer ma-

chine learning algorithm had almost no slowdown, while

those that were more I/O-intensive (e.g., the pads com-

useful for space-conscious users, especially those who piler) had the largest slowdowns.
wish to run multiple CDE packages on one machine. When using CDE to run GUI applications, we did not

notice any loss in interactivity due to the slowdowns.

4.4 CDE run-time slowdown When we navigated around the 3D maps within the
google—earth GUI, we felt that the CDE-packaged ver-

To quantify the slowdown that CDE incurs, we measured sion was just as responsive as the native version. When
running times for executing these commands in the five we ran GUI programs from CDE packages that users sent
CDE packages that we created (first column in Table 4): to us (the bio-menace game, meld visual diff tool, and

oo vr-osg), we also did not perceive any visible lag.
e pads — Compile a PADS [17] specification into C

code (the ‘compiler’ row in Table 4), and infer a . .
specification from a data file (the ‘inferencer’ row). 4.5 Importance of dynamic tracking

e gadm — Reproduce the GADM experiment [22]: To show the importance of dynamic (run-time) depen-

Compile its C++ source code (‘C++ comp’), run ge- dency tracking, we compare CDE against a simple but

netic algorithm (‘algorithm’), and use the R statis- representative static analysis. We wrote a script that runs

tics software to visualize output data (‘make plots’). the Linux 1dd and strings utilities on an executable

e google—earth — Measure startup time by file to find all string constants representing shared li-
launching it and then quitting as soon as the initial braries on which it depends, and then recursively runs
Earth image finishes rendering and stabilizes. ldd and strings on those libraries and their dependen-

cies until the set of files converges. Although this basic

® klee — Use Klee [15] to symbolically execute a gatic technique only finds libraries named by constant
C target program (a STUN server) for 100,000 in- qineg. it represents what people actually do in practice,
structions, which generates 21 test cases. since it automates the tedious manual process of “chas-

e saturn— Run the regression test suite, which con- ing down and copying over dependent libraries” that
tains 69 tests (each is a static program analysis). folk wisdom (e.g., blog posts and forums) suggests as

the way to transport Linux binaries across machines [8].

We measured the following on a Dell desktop (2GHz Tt is difficult in general for a static analysis to model
Intel x86, 32-bit) running Ubuntu 8.04 (Linux 2.6.24): dynamically-generated strings; we know of no static de-
number of seconds it took to run the original command pendency gathering tool that works in this way.
(‘Native time’), percent slowdown vs. native when run- In contrast, since CDE actually executes the target ex-
ning a command with cde to create a package (‘pack’), ecutable in addition to statically searching for constant
and percent slowdown when executing the command strings, CDE can find dependencies on shared libraries
from within a CDE package with cde-exec (‘exec’). We (and all other files) named by dynamically-generated
ran each benchmark five times under each condition and strings, in addition to those that a static technique finds.
report mean running times. We used an independent two-

group t-test [16] to determine whether each slowdown

13

shared library files # total preter dynamically generates the pathnames of those 23
Package name Total Statically found files libraries by processing strings read from environment
-— TT = variables and config files, so it is unlikely that any static
google-earth 82 3 (4%) 243 analysis could ever generate those 23 pathnames and find
graph-tool 149 9 (6%) 1909 the corresponding libraries. CDE easily finds those li-

nee “ ° 39 no braries since it monitors actual execution.(8)

gcc-bug-46651 13 2 (15%) 114 . . .
email-search 138 28 20%) | 3052 4.6 Running on different inputs

gadm 184 (22%) 268 Since users create CDE packages by executing the tar-
saturn 16 38 (50%) 455 get program on one or a few inputs, one might wonder
pads 9 5 (56%) 150 how far programs executed from within packages can
ZLopo 59 35 (59%) 164 diverge from their original execution paths before they
VITOoSg 39 28 (72%) 57 fail. In general, no automatic tool (static or dynamic) can
bio-menace 27 26 (96%) 107 find all the dependencies required to execute all possible
coq-bug-2443 33 (100%) 29 program paths, since that problem is undecidable. Simi-
klee 6 6 (100%) 18 larly, it is also impossible to automatically quantify how
1lvm-bug-8673 8 8 (100%) 14 ‘complete’ a CDE package is or what files are missing,
kpiece 3030 (100%) 45 since every file-related system call instruction could be

Table 5: Number of total shared library files in each CDE mnvoked with complex on non-deterministic arguments.For example, the Python interpreter executable has only

) modules, but that dlopen cou ¢ called many times

Rightmost column is number of total files in package. with different dynamically-generated string arguments.
Despite the lack of formal guarantees, we feel that ex-

Results: Table 5 shows that in all but four bench- ecution within CDE packages can diverge from their orig-
marks, the static technique found fewer libraries than inal path(s) to a degree that our users find to be practical.
CDE. Thus, it cannot be used to create a portable package Packaged execution can diverge as long as 1t does not

: cree : Co load any new libraries (or configuration files) that were
since the program will fail if even one library is missing. ne ;

(For similar reasons, static linking when compiling will not loaded by the original execution(s) We observed that
not work either.) Even on the four benchmarks where the many programs load the majority of required libraries at
static technique found all required libraries, a user would start-up, regardless of what paths are executed later.
still have to manually insert all input, configuration, and : Most of our benchmark packages were createdby run
other data files into the package. The ‘# total files’ col- fing One epresentative command (or a regression (est
umn in Table 5 shows that packages contain dozens to suite); we list all the commands on out benchmark web-
thousands of files, often scattered across many directo- page [1]. Here are out Xpcriences with executing those
ries, so this process can be tedious and error-prone. packages on different inputs using cde -exec:

Table 5 also shows why it is necessary for CDE to e We can make compiler-like programs (e.g., pads,
dynamically track dependencies, since most benchmarks saturn, coq, gcc, 11vm) process any legal input
load libraries that are not named by constant strings. At file, not just the files used to create the packages.

one extreme, the four benchmarks where the static tech- e We can reproduce the original results of com-
nique performed worst (google—earth, graph—-tool, putational experiments (e.g. gadm, kpiece,
meld, arachni) consist of scripts written in interpreted email-search), but more impotantly, we can ad.
languages. The interpreter dynamically loads libraries just parameters recompile and execute variants of
and invokes other executables based on the contents of those experiments 0 explore related hypotheses.
those scripts. A static analysis of the interpreter’s exe- oo
cutable (e.g., Python) can only find the libraries needed e We can interact normally with GUI applications like
to start up the interpreter; however, the majority of li- google-earth, meld, and vr-osg. Of course, it
braries that each script requires are indirectly specified 1S possible that clicking some obscure nested sub-
within the script itself. For example, executing a simple menu option causes these programs to load libraries
line of Python code “import numpy” in graph-tool not in the package, but common use cases work fine.
causes the Python interpreter to import the NumPy nu- e We can play the bio-menace game following any

merical analysis module, which consists of 23 shared path we wish, not just the path taken by its package

libraries scattered across 7 sub-directories. The inter- creator, since the game contents are in a single file.

14

e We can use the arachni security tool to scan ar- [6] LLVM compiler: Bug 8679, http://llvm.org/bugs/

bitrary URLs and the graph-tool Python library show_bug.cg1?1d=8679.
to do graph operations. Their creators had enough [71 Mac OS X Bundle Programming Guide: Introduction,

confidence in CDE to make those packages available Fi 2)ores : “pb : com”ary/mae/y. . . . ocumentation oreroundatlion onceptua

for download on their respective project websites. CFBundles/Introduction/Introduction.html.

Since a CDE package is just an ordinary directory tree [8] Tutorial: Static, Shared Dynamic and Loadable Linux Li-
. directly add files i h braries, http://www.yolinux.com/TUTORIALS/
1t 1S easy Ior a creator to rectly add more les into the LibraryArchives-StaticAndDynamic.html.
package. A more convenient way to add files 1s to simply [9] arachni project home page. https://qithub.com/
execute the program additional times using cde to exer- Zapotek/arachni.

cise more paths that users might want to run. In sum, [10] graph-tool project home page. http://projects.
although it is impossible for any automatic tool to cre- skewed.de/graph-tool/.

ate complete self-contained binary packages, CDE works [11] VMware ThinApp User's Guide, http://www.vmware.
well in practice and makes it convenient for creators to com/pdf/thinapp46 manual .pdf.

augment their packages with additional files as needed. [12] Google Chrome software updates: Courgette, http://www.
chromium.org/developers/design—documents/

5 C 1 . software—updates—courgette.onciusion [13] AIKEN, A., BUGRARA, S., DILLIG, I., DILLIG, T., HACK-
ETT, B., AND HAWKINS, P. An overview of the Saturn project.

We presented CDE, an open-source tool [2] that auto- PASTE *07, ACM, pp. 43-48.

matically packages up the Code, Data, and Environment [14] ALTEKAR, G., AND STOICA, I. ODR: output-deterministic re-
required to run a set of x86-Linux programs on other play for multicore debugging. SOSP *09, ACM, pp. 193-206.

x86-Linux machines without any installation or config- [15] Capar, C., DUNBAR, D., AND ENGLER, D. KLEE: unassisted
uration. Hundreds of people in both academia and in- and automatic generation of high-coverage tests for complex sys-

dustry have used CDE to avoid the usual pains associated tems programs. OSDI "08, USENIX Association, pp. 209-224.
with software distribution and installation. [16] CHAMBERS, J. M. Statistical Models in S. CRC Press, Inc.,

Our experiments showed that CDE packages are Boca Raton, FL, USA, 1991.

. . guage for processing ad hoc data. PLDI 05, ACM, pp. 295-304.
years, that size and run-time overheads are acceptable,

and that dynamic dependency tracking is necessary and [18] GARFINKEL, T. Traps and pitfalls: Practical problems in system
. . call interposition based security tools. NDSS "03.

works well in practice. All of the benchmark packages
used in our experiments are available online [1]. [19] GARFINKEL, T., PFAFF, B., AND ROSENBLUM, M. Ostia:

A delegating architecture for secure system call interposition.
NDSS *04.

AIN, K., AND SEKAR, KR. User-level infrastructure for systemAcknowledgments [20] JAIN, K S R. User-level inf for sy
call interposition: A platform for intrusion detection and confine-

Thanks to Fernando Perez for the serendipitous discus- ment. NDSS “00
sion of reproducible research that planted the seeds of the ~~ [21] LAADAN, © LV IENNOT, oo py NIEH, J. Jon sparent: : i ! i ightweight application execution replay on commodity multipro-

idea for CDE, to Richard Spillane for sharing his Goanna cessor operating systems. SIGMETRICS * 10, pp. 155-166,
code [25], to Imran Haque for the Slashdot Publicity, to [22] LAHIRI, M., AND CEBRIAN, M. The genetic algorithm as a
our users for bug reports and feedback, to {ridddlr, general diffusion model for social networks. In Proc. of the 24th
paboonst, cbird, TomZ, ewencp, 1haque, daramos} AAAI Conference on Artificial Intelligence (2010), AAAI Press.

for editorial help, and to the NSF fellowship for funding [23] LOPER, E., AND BIRD, S. NLTK: The Natural Language
Philip’s graduate studies. Toolkit. In In ACL Workshop on Effective Tools and Method-

ologiesfor Teaching NLP and Computational Linguistics (2002).

Referen [24] SAITO, Y. Jockey: A user-space library for record-replay debug-
crerences ging. In AADEBUG (2005), ACM Press, pp. 69-76.

[1] CDE benchmark packages and documentation, http://www. [25] SPILLANE, R. P., WRIGHT, C. P., SIVATHANU, G., AND

stanford.edu/~pgbovine/cde-usenix.html. ZADOK, E. Rapid file system development using ptrace. In Ex-

[2] CDE public source code repository, https: //github.com/ perimental Computer Science (2007), USENIX Association.
pgbovine/CDE. [26] SucCAN, I. A., AND KAVRAKI, L. E. Kinodynamic motion plan-

[3] Coq proof assistant: Bug 2443, http://coq.inria.fr/ ning by interior-exterior cell exploration. In Int’l Workshop on the
bugs/show_bug.cgi?id=2443. Algorithmic Foundations of Robotics (2008), pp. 449-464.

[4] GCC compiler: Bug 46651, http://gcc.gnu.org/

bugzilla/show_bug.cgi?id=46651.

[5] Linux: Ensuring Binary Compatibility, http://

kerneltrap.org/node/4006.

15

