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Figure 1: (a) Videos captured with a cell-phone camera tend to be shaky due to the device’s size and weight. (b) The rolling shutter used
by sensors in these cameras also produces warping in the output frames (we have exagerrated the effect for illustrative purposes). (c) We

use gyroscopes to measure the camera’s rotations during video capture. (d) We use the measured camera motion to stabilize the video and to

rectify the rolling shutter. (Golden Gate photo courtesy ofSalim Virji.)

Abstract they rival DSLRs in some settings, their video quality is still signif-
icantly worse than that of film cameras. The reason for this gap in

In this paper we present a robust, real-time video stabilization quality is twofold. First, compared to film cameras, cell phones are
and rolling shutter correction technique based on commodity gy- significantly lighter. As a result, hand-held video capture on such
roscopes. First, we develop a unified algorithm for modeling cam- devices exhibits a greater amount of camera shake. Second, most
era motion and rolling shutter warping. We then present a novel cell-phone cameras have sensors that make use of a rolling shut-
framework for automatically calibrating the gyroscope and camera ter (RS). In an RS camera, each image row is exposed at a slightly
outputs from a single video capture. This calibration allows us to different time; which, combined with undampened camera motion,
use only gyroscope data to effectively correct rolling shutter warp- results in a nauseating “wobble” in the output video.

ing and to stabilize the video. Using our algorithm, we show results In the follow hii for ;
for videos featuring large moving foreground objects, parallax, and ; i oy 0 pA ae we presets ourGo due or Improving
low-illumination. We also compare our method with commercial the video qua 0 N MEMS cally, we employ 1nex-image-based stabilization algorithms. We find that our solution is pensive icroe ectromechanical ( ) gyroscopes to measure
more robust and computationally inexpensive. Finally, we imple- camera rotations. We use these measurements to perform video
ment our algorithm directly on a mobile phone. We demonstrate stabilization (inter-frame motion compensation) and rolling shutter
that by using the phone’s inbuilt gyroscope and GPU, we can re- correction (intra-frame motion compensation). To our knowledge,
move camera shake and rolling shutter artifacts in real-time. We are the first to presenta gyroscope-based solution for digital

video stabilization and rolling shutter correction. Our approach is
: : h tionally i . Thi kes i iC-

CR Categories: 1.4.3 [Computing Methodologies]: Image bot computationally inexpensive and robust 1s maxes It partic
: . ularly suitable for real-time implementations on mobile platforms.

Processing and Computer Vision—Enhancement; 1.4.1 [Comput-

ing Methodologies]: Image Processing and Computer Vision— Our technique is based on a unified model of a rotating camera and
Digitization and Image Capture a rolling shutter. We show how this model can be used to compute

a warp that simultaneously performs rolling shutter correction and

Keywords: video stabilization, rolling shutter correction, gyro- video stabilization. We also develop an optimization framework
scopes, mobile devices that automatically calibrates the gyroscope and camera. This al-

lows us to recover unknown parameters such as gyroscope drift and

1 Introduction delay, as well as the camera’s focal length and rolling shutter speed
from a single video and gyro capture. As a result any combination
of gyroscope and camera hardware can be calibrated without the

Digital still cameras capable of capturing video have become need for a specialized laboratory setup.
widespread in recent years. While the resolution and image qual-

ity of these consumer devices has improved up to the point where Finally, we demonstrate the practicality of our approach by imple-
———— menting real-time video stabilization and rolling shutter correction

on Apple’s iPhone 4.

1.1 Related Work

Video stabilization is a family of techniques used to reduce high-
frequency frame-to-frame jitter produced by video camera shake.
In professional cameras, mechanical image stabilization (MIS) sys-
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tems are commonly used. For example, in the SteadiCam system Our approach foregoes the use of feature trackers or MIS systems.
the operator wears a harness that separates the camera’s motion Instead, we employ inexpensive MEMS gyroscopes to measure
from the operator’s body motion. Other MIS systems stabilize the camera motion directly. Inertial measurement units (IMUs) have
optics of the camera rather than the camera body itself. These sys- been successfully used for image de-blurring [Joshi et al. 2010] and
tems work by moving the lens or sensor to compensate for small for aiding a KLT feature tracker [Hwangbo et al. 2009]. They are
pitch and yaw motions. These techniques work in real time and do also frequently used for localization and mechanical stabilization in
not require computation on the camera. However, they are not suit- robotics [Kurazume and Hirose 2000].
able for mobile devices and inexpensive cameras, because of their

price and size. Measuring camera motion using gyroscopes allows us to perform
digital video stabilization and RS rectification with high computa-

As a result, a number of digital stabilization systems have been de- tional efficiency. This approach is robust even under poor light-
veloped that stabilize videos post-capture. Digital video stabiliza- ing or substantial foreground motion, because we do not use the
tion typically employs feature trackers to recover image-plane (2D) video’s content for motion estimation. While our method requires
motion [Matsushita et al. 2006; Battiato et al. 2007] or to extract an additional hardware component, many current camera-enabled
the underlying (3D) camera motion [Buehler et al. 2001; Bhat et al. mobile phones—such as the iPhone 4—are already equipped with
2007; Liu et al. 2009]. A low-pass filter is applied to the recov- such a device. Furthermore, compared to MIS systems, MEMS gy-
ered motion, and a new video is generated by synthesizing frames roscopes are inexpensive, versatile and less bulky (see fig. 8). We
along this smoothed path. However, feature trackers are sensitive to believe that our approach strikes a good balance between compu-
noise (such as fast moving foreground objects) and require distinc- tational efficiency, robustness, size and price range for the large
tive features for tracking. As a result, digital stabilization based on market of compact consumer cameras and cell phone cameras.
feature tracking often breaks down—especially in adverse lighting
conditions and excessive foreground motion. In addition, extracting ] ap ] ]

and matching visual cues across frames is computationally expen- 2 Video Stabilization and Rolling Shutter
sive, and that expense grows with the resolution of the video. This Correction
becomes prohibitively costly for some algorithms if the goal is to

perform video stabilization in real time. Consequently, such ap- Video stabilization typically proceeds in three stages: camera mo-
proaches are rarely employed in current digital cameras. Instead, tion estimation, motion smoothing, and image warping. Rolling
manufacturers opt for more robust (and expensive) mechanical sta- shutter rectification proceeds in the same way; except the actual
bilization solutions for high-end DSLRs. camera motion is used for the warping computation rather than

CL the smoothed motion. As we will later show, both video stabiliza-
Rolling shutter correction is a related family of techniques for re- d rolling shut . b h di :
moving image warping produced by intra-frame camera motion. tion and rolling shutler correction can be performed in one warping

: computation under a unified framework. We develop this frame-
High-end cameras use CCD sensors, which have a global shut- kin the follows bsecti
ter (GS). In a GS camera (including many DSLRs) all pixels on WOE the TOTOWINE SUDSCCUONS.
the CCD sensor are read out and reset simultaneously. There- We begin by introducing a model for an RS camera and its mo-
fore all pixels collect light during the same time interval. Conse- tion. This model is based on the work presented by Forssén and
quently, camera motion during the exposure results in some amount Ringaby [2010]. Forssén and Ringaby use this RS camera model
of image blur on these devices. In contrast, low-end cameras typ- in conjunction with a feature tracker to rectify rolling shutter in
ically make use of CMOS sensors. In particular, these sensors videos. The reliance on feature trackers, however, makes their sys-
employ a rolling shutter, where image rows are read out and re- tem susceptible to the same issues as tracker-based video stabiliza-
set sequentially. The advantage of this approach is that it requires tion algorithms. We extend their model to a unified framework that
less circuitry compared to CCD sensors. This makes CMOS sen- can perform both rolling shutter correction and video stabilization
sors cheaper to manufacture [El Gamal and Eltoukhy 2005]. For in one step. We also develop an optimization procedure that allows
that reason, CMOS sensors are frequently used in cell phones, mu- us to automatically recover all the unknowns in our model from a
sic players, and some low-end camcorders [Forssén and Ringaby single input video and gyroscope recording.
2010]. The sequential readout, however, means that each row is
exposed during a slightly different time window. As a result, cam- Camera motion in our system is modeled in terms of rotations only.
era motion during row readout will produce a warped image. Fast We ignore translations because they are difficult to measure accu-
moving objects will also appear distorted. rately using IMUs. Also, accelerometer data must be integrated

Co twice to obtain translations. In contrast, gyroscopes measure the
Image readout in an RS camera is typically in the millisecond range. rate of rotation. Therefore, gyro data needs to be integrated only
Therefore, RS distortions are primarily caused by high-frequency once to obtain the camera’s orientation. As a result, translation
camera motions. MIS systems could, therefore, be used to stabilize measurements are significantly less accurate than orientation mea-
the camera. While this approach removes rolling shutter warping, surements [Joshi et al. 2010]. Even if we could measure trans-
in practice the price range and size of MIS systems make it not suit- lations accurately, this is not sufficient since objects at different
able for RS cameras. For that reason, a number of digital rolling depths move by different amounts. Therefore, we would have to
shutter rectification techniques have been developed. Ait-Aider et rely on stereo or feature-based structure from motion (SFM) algo-
al. [2007] develop a technique for correcting RS artifacts in a single rithms to obtain depth information. Warping frames in order to
image. Our approach also works forsingle images, but unlike Ait- remove translations is non-trivial due to parallax and occlusions.
Aider et al.’s method, it does not require user input. However, in this These approaches are not robust and are currently too computation-
paper we restrict our analysis to videos. A number of techniques ally expensive to run in real time on a mobile platform.
have been proposed for rectifying RS in a sequence of frames [Cho
and Hong 2007; Liang et al. 2008; Forssén and Ringaby 2010]. Forssén and Ringaby [2010] have attempted to model camera trans-
Forssén and Ringaby [2010] use feature tracking to estimate the lations in their system; but found the results to perform worse than
camera motion from the video. Once the camera motion is known a model that takes only rotations into account. They hypothesize
during an RS exposure, it can be used to rectify the frame. Since that their optimizer falls into a local minimum while attempting to
this approach relies on feature trackers, it has the same disadvan- reconstruct translations from the feature tracker. Their algorithm
tages previously discussed in the case of video stabilization. also assumes that the camera is imaging a purely planar scene (i.e.,
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Figure 2: Pinhole camera model. A ray from the camera center
c to a point in the scene X will intersect the image plane at X.

Therefore the projection of the world onto the image plane depends

on the camera’s center c, thefocal length f, and the location ofthe

camera’s axis (0g, 0y) in the image plane. Figure 3: High-frequency camera rotations while the shutter is
rolling from top to bottom cause the output image to appear

warped.

constant depth). Therefore, translation reconstruction sometimes
fails due to unmodeled parallax in the video.

To avoid these problems we do not incorporate translations into our rotation w(t):
model. Fortunately, camera shake and rolling shutter warping oc- AO(t) = (w(t + ta) + wa) * At. (4)
cur primarily from rotations. This is the case because translations

attenuate quickly with increasing depth, and objects are typically
sufficiently far away from the lens that translational camera jitter Here wg is the gyroscope drift and tq is the delay between the
does not produce noticeable motion in the image. This conclusion gryoscope and frame sample timestamps. These parameters are ad-
is supported by our stabilization results. ditional unknowns in our model that we also need to recover.

21 Camera Model 2.3 Rolling Shutter Compensation

Our rotational rolling shutter camera model is based on the pinhole We now introduce the notion of a rolling shutter into our camera
camera model. In a pinhole camera the relationship between image model. Recall that in an RS camera each image row is exposed at a
point x in homogeneous coordinates and the corresponding point slightly different time. Camera rotations during this exposure will,
X in 3D world coordinates (fig. 2) may be specified by: therefore, determine the warping of the image.” For example, if the

camera sways from side to side while the shutter is rolling, then the

x =KX, and X = )\K 'x. (1) output image will be warped as shown in fig. 3. The time at which
point x was imaged in frame + depends on how far down the frame

Here, A is an unknown scaling factor and K is the intrinsic camera it is. More formally, we can say that x was imaged at time (4, y):
matrix, which we assume has an inverse of the following form:

t(i,y) = t; + ts xy/h, where x = (z,y,1)", (5)
1 0 —og

K*'=(0 1 —oy |, (2) where y is the image row corresponding to point x, h is the total
0 O f number of rows in the frame, and #; is the timestamp of the i-th

frame. The ts term states that the farther down we are in a frame,

where, (0, 0,) is the origin of the camera axis in the image plane the longer it took for the rolling shutter to get to that row. Hence,
and f is the focal length. The camera’s focal length is an unknown ts 1s the time it takes to read out a full frame going row by row
that we need to recover. We assume that the camera has square pix- from top to bottom. Note that a negative ts value would indicate a
els by setting the upper diagonal entries to 1. However, it is straight- rolling shutter that goes from bottom to top. We will show how to
forward to extend this model to take into account non-square pixels automatically recover the sign and value of ¢; in section 3.
or other optical distortions.

2.4 Image Warping
2.2 Camera Motion

We now derive the relationship between image points in a pair of

We set the world origin to be the camera origin. The camera motion frames for two different camera orientations (see fig. 4). For a scene

can then be described in terms of its orientation R(t) at time ¢. point X the projected points x; and x; in the image plane of two
Thus, for any scene point X, the corresponding image point x at frames ¢ and j are given by:
time t is given by:

x = KR(t)X. 3) x; = KR(t(5,4:))X, and x; = KR(i(j,9;))X. (6)

The rotation matrices R(t) € SO(3) are computed by compound- If we rearrange these equations and substitute for X, we get a map-
ing the changes in camera angle Af(t). We use SLERP (Spherical ping of all points in frame 7 to all points in frame j:
Linear intERPolation) of quaternions [Shoemake 1985] in order to

interpolate the camera orientation smoothly and to avoid gimbal x; = KR(t(j,9;))R" (t(i,4:)K "x; . (7)
lock.! A(t) is obtained directly from gyroscope measured rates of 2
0 6>6>6>9>-©Z©—-—-—n~n~=~=n= Translational camera jitter during rolling shutter exposure does not sig-

"Tn practice, the change in angle between gyroscope samples is suffi- nificantly impact image warping, because objects are typically far away
ciently small that Euler angles work as well as rotation quaternions. from the lens.
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Figure 4: Top view of two camera orientations and their corre-

sponding image planes i and j. An image ofscene point X appears [/ S/S)
in the twoframes where the ray (red) intersects their camera plane. [[////][/

So far we have considered the relationship between two frames of ENNENE NN
the same video. We can relax this restriction by mapping frames HHfrom one camera that rotates according to R(t) to another camera
that rotates according to R’(¢). Note that we assume both camera AREER EEE
centers are at the origin. We can now define the warping matrix W LT ||| |
that maps points from one camera to the other: © d)

_ / T —-1

Wits, t2) = KR (t1)R™ (12)K (8) Figure 5: (a) Warped image captured by an RS camera. (b) A
global linear transformation of the image, such as the shear shown

Notice that eq. 7 can now be expressed more compactly as: here, cannotfully rectify the warp. (c) We use a piecewise linear ap-

, proximation ofnon-linear warping. (d) Wefind that 10 subdivisions
x; = W(t(J,y5),t(¢,9i))xi , where R"=R. 9) are sufficient to eliminate visual artifacts.

Also note that W depends on both image rows y; and y; of image

points Xi and Xj respectively. This warping matrix can be used and the global shift model [Chun et al. 2008]. These models assume
match points in frame 2 to corresponding points in frame j, while that camera rotation is more or less constant during rolling shutter
taking the effects of the rolling shutter into account in both frames. exposure. If this is not the case, then a linear approximation will fail

Given this formulation of a warping matrix, the algorithm for ” reottly the rolling shutter (fig. oD). We caate the Pcriormance
rolling shutter correction and video stabilization becomes simple. of a linear approximation on actual video footage in section 4.
We create a synthetic camera that has a smooth motion and a global

shutter. This camera’s motion is computed by applying a Gaus- 3 Camera and Gyroscope Calibration
sian low-pass filter to the input camera’s motion, which results in a

new set of rotations R’. We set the rolling shutter duration ¢, for We now present our framework for recovering the unknown cam-
the synthetic camera to 0 (i.e., a global shutter). We then compute era and gyroscope parameters. This calibration step is necessary to
W (ti, t(¢, y:)) at each Imagerow of the current frame 7, and ap- enable us to compute W directly from the gyroscope data. The un-
ply the warp to that row. Notice that the first term of Ww now only known parameters in our model are: the focal length of the camera
depends on the frame time ¢;. This operation maps all input frames f, the duration of the rolling shutter ¢5, the delay between the gy-
onto our synthetic camera; and as a result, simultaneously removes roscope and frame sample timestamps t4, and the gyroscope drift
rolling shutter warping and video shake. wy.

In practice, we do notcompute W(t, t(i,y:)) for each image row Note that some of these parameters, such as the camera’s focal
yi. Instead, we subdivide the input image (fig. Sa) and compute length, might be specified by the manufacturer. It is alternatively
the warp at each vertical subdivision (fig. Sc and 5d). In essence, possible to measure these parameters experimentally. For example,
we create a warped mesh from the input image that is a piecewise Forssén and Ringaby [2010] use a quickly flashing display to mea-
linear approximation of the non-linear warp. We find that ten sub- sure the rolling shutter duration ¢;. However, these techniques tend
divisions are typically sufficient to remove any visible RS artifacts. to be imprecise and error prone; and they are also too tedious to be
Forssen and Ringaby [2010] refer to this sampling approach as m- carried out by regular users. The duration of the rolling shutter 1s
verse interpolation. They also propose two additional interpolation typically in the millisecond range. As a result, a small misalignment
techniques, which they show empirically to perform better on a syn- in t4 or t, would cause rolling shutter rectification to fail.
thetic video dataset. However, we use inverse interpolation because
it is easy to implement an efficient version on the GPU using vertex Our approach is to estimate these parameters from a single video
shaders. The GPU’s fragment shader takes care of resampling the and gyroscope capture. The user is asked to record a video and
mesh-warped image using bilinear interpolation. We find that RS gyroscope trace where they stand still and shake the camera while
warping in actual videos is typically not strong enough to produce pointing at a building. A short clip of about ten seconds in duration
aliasing artifacts due to bilinear inverse interpolation. As a result, is generally sufficient to estimate all the unknowns. Note that this
inverse interpolation works well in practice. only needs to be done once for each camera and gyroscope arrange-

ment.

Some prior work in rolling shutter correction makes use of global
image warps—such as the global affine model [Liang et al. 2008] In our approach, we find matching points in consecutive video
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Jinn da | | | [ I Ili | Il Hn Il | | Figure 7: Signals x (red) and f * wy(t + tq) (blue). Top: BeforeIii:Lg RE i 11 Li y li i= calibration the amplitude of the signals does not match, because
mm TH rh a IE our initial guessfor f is too low. In addition, the signals are shifted

000AR Lusk since we initialize tq to 0. Bottom: After calibration the signals are
SN well aligned because we have recovered accurate focal length and

gyroscope delay.

ll tation axes and run our optimizer for each permutation. The per-
1 il A mutation that minimizes the objective best corresponds to the cam-oll hill 4 b ‘ fleBR era’s axis ordering. We found re-projection error to be significantly

LL au i ak na = Chel TH larger for incorrect permutations. Therefore, this approach works
a | well in practice.

ply pi om eyondCW "consecutive [rames: ne oy In our discussion we have assumed that the camera has a vertical| tO Jind potential matches. we Hien Appry 0 arsearn rolling shutter. The RS model could be easily modified to work for
outliers that do not match the estimated homography. : : ne . ar

image columns instead of rows. Finding the minimum re-projection
error for both cases would tell us whether the camera has a horizon-

tal or vertical rolling shutter.
frames using SIFT [Lowe 2004], and we use RANSAC [Fischler
and Bolles 1981] to discard outliers. The result is a set of point cor- Finally, in order to provide a better sense of the results achieved
respondences x; and x; for all neighboring frames in the captured by calibration, we present a visualization of video and gyroscope
video (fig. 6). Given this ground truth, one can formulate calibra- signals before and after calibration. If we assume that rotations be-
tion as an optimization problem, where we want to minimize the tween consecutive frames are small, then translations in the image
mean-squared re-projection error of all point correspondences: can be approximately computed from rotations as follows:

. «NT
. . 2 . ~ X =a

T=" lx —WltG.ug), te y)xil’. (10 (1) mf #Go(t+ ta), where { =e an(1-9) © = (wy, wo)

Note that this is a non-linear optimization problem. A number of Here, we have also assumed no effects due to rolling shutter (i.e.,
non-linear optimizers could be used to minimize our objective func- Ls N 0), and we ignore rotations about the z-axis (i.e., ws). We
tion. However, we have found coordinate descent by direct objec- let x be the average rate of translation along x and Y for all point
ive Danton evilivalion io converse quickly. Tad this we lake correspondences in consecutive frames. If our optimizer converged
step where the objective function J does not decrease, we reverse © the correct focal length J¢ nd =. delay ld : then fhe two i
the step direction and decrease the step size of the corresponding [a S(tL 0) : r NL . hy J. nt N . H oS el theparameter. The algorithm terminates as soon as the step size for d) DEIOTC dnd ater AHgNmCEnt. OMe NOW aCCUTdicly
all parameters drops below a desired threshold (i.e., when we have SYTOSCOpe data matches the image motions. This surprising preci-
achieved a target precision). Our Matlab/C++ implementation typ- sion of MEMS gyroscopes 15 what enables our method operform
ically converges in under 2 seconds for a calibration video of about well on the video stabilization and rolling shutter correction tasks.
10 seconds in duration.

a a 4 Results
We initialize our optimization algorithm by setting the focal length

. 0

fo be such that the 0 Wo fi has 2 eld oF view of 0 : We set i” In this section we present dataset and results for video stabilization
other parameters to 0. we nd that > t coc nia conditions. ! © and rolling shutter correction. We also compare our approach withoptimizer converges to t ce correct SO ution or our dataset. ore a number of feature tracker based algorithms.
generally, we can avoid falling into a local minimum (e.g., when the
delay between the gyro and frame timestamps is large) by restarting i
our coordinate descent algorithm for a range of plausible parame- 4.1 Video and Gyroscope Dataset
ters, and selecting the best solution. The average re-projection error
for correctly recovered parameters is typically around 1 pixel. We use an iPhone 4 to capture video and gyroscope data. The plat-

form has a MEMS gyroscope (see fig. 8), which we run at a (maxi-
An additional unknown in our model is the relative orientation of mum) frequency of 100Hz. Furthermore, the phone has an RS cam-
the gyroscope to the camera. For example, rotations about the era capable of capturing 720p video at 30 frames per second (fps).gy p p p p g /2Up vide °S PCr S$ 1 {Ip
gyro’s y-axis could correspond to rotations about the camera’s x- The frame-rate is variable; and typically adjusts in low-illumination
axis. To discover the gyroscope orientation we permute its 3 ro- settings to 24fps. We record the frame timestamps as well as the
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} : A N i | rately stabilizes a video but does not correct for rolling shutter, and

| = bond ; 1 the original video contains high-frequency camera rotations, then- YKCS3I6E2 1019 i | the stabilized video will look poor. In effect, correcting accurately

{t 0 SRO TR DI ’ for one artifact makes the remaining artifact more evident and egre-
COTRE EAR gious. To support this observation, our dataset includes an exam-

A end of 5 or pit oot | iil ple where we have disabled rolling shutter rectification. We also
I~ | 2% 4at =1 find that a linear approximation for RS warping is not sufficient to

D, } BL Apo SL sot | | completely remove RS artifacts in more pronounced cases (e.g., ati | Tin QL N each step in the walking motion). We have included a video where
To AMMEa tet a rolling shutter warping is rectified with a global homography. In

ERT CURIA : this video, artifacts due to warping non-linearities are still clearly
PEREa ans off visible. As a result, our algorithm performs better than linear RS

| fa cig TREE y approximations such as Liang et al. [2008] and Chun et al. [2008].Re i Apart from scenes where feature tracking fails, 2D stabilization al-
Figure 8: The iPhone 4’s MEMS gyroscope (outlined in red). gorithms also conflate translations that occur due to parallax with
(Photo courtesy of iFixit.com.) translations that occur due to the camera’s rotation. This degrades

the accuracy of the recovered 2D camera motion in the presence
of parallax. As a result, frame popping and jitter can be seen in
many videos produced by iMovie and Deshaker. In addition, high-

timestamped gyroscope data, which are saved along with the cap- frequency camera motions are difficult to reconstruct in the pres-
tured video. ence of noise. Therefore, rolling shutter correction is a difficult

Our aim was to obtain a wide range of typical videos captured by task for feature-based algorithms. Our approach, on the other hand,
non-professionals. We have recorded videos where the camera is 15 effective at correcting RS artifacts because SYTHSCOPES MEASUTE
moving and videos where the camera is mostly stationary. Videos the camera’s rotation with high frequency and high accuracy.
in our dataset also contain varying amounts of moving foreground Deshaker and iMovie are 2D stabilization solutions that reconstruct
objects and illumination conditions. We also record a calibration 2D motion in the image plane. Our method is also a 2D stabilization
video, which we use to recover the iPhone’s camera and gyroscope algorithm, because we do not measure the camera’s translation. In
parameters. Except for the calibration video, the video shake in contrast, 3D stabilization algorithms recover the camera’s full 3D
our videos was never deliberate—it is simply a consequence of the motion. However, they rely on structure from motion (STM) tech-
device being very light. niques that are currently more brittle than 2D tracking. For exam-

ple, Liu et al. [2009] use Voodoo to reconstruct 3D camera motion

4.2 Evaluation and a feature point cloud. They use this reconstruction to perform
3D video stabilization using content preserving warps. However,

We ask the reader to refer to the accompanying videos in order to we find that Voodoo fails to correctly recover the 3D structure and
obtain a better sense of our results. We have included four hand- camera motion in many of the videos in our dataset (e.g., the video
held video sequences from our test dataset: the first sequence con- captured at night).
tains a walking motion, the second features a strong lens flare, the oo
third contains cars moving in the foreground and the fourth se- We have found motion blur in low-illumination videos (e.g., the
quence was captured at night. In addition we provide the calibra- night sequence) to significantly degrade the quality of our stabiliza-
tion video used to recover camera and gyroscope parameters. For tion results. While our algorithm performs better than feature-based
the walking sequence we also include two additional videos. The stabilization on the night sequence, motion blur from the original
first shows the wobble that occurs when RS compensation is turned shaky camera video is clearly visible in the stabilized output. How-
off. The second shows RS correction results, in which warping is ever, removing this artifact is out of the scope of this paper.

approximated with a global homography. Finally, our method can be easily used for RS correction in single
[Note to reviewers: the videos included in our submission are a high-resolution photographs since our algorithm already works for
subset of our test dataset, which will be made available online to individual video frames. Ait-Aider et al. [2007] looked at rectifying
accompany the published paper. It was impossible to provide a link RS post-capture in single images. However, unlike their approach
to the full dataset without compromising anonymity.] we do not require any user input. We leave a more detailed analysis

of this application for future work.
We compare our stabilization and RS correction results with image-

based video stabilization solutions. We use iMovie’ 11 and De- 4.3 Realtime Implementation
shaker to stabilize our videos. Both applications offer rolling shut-
ter correction. We find that iMovie’ 11 and Deshaker produce sub- :

: : : . To demonstrate the low computational expense of our approach,
par results for most videos in our dataset. Frame popping and jitter : : : :
from failed RS compensation can be seen in each of the four videos. we have mplemented our method to run in real time on the iPhone
In contrast. our method perform Il recardl fvid ntent 4. Using our algorithm and the built-in gyroscope, we are able to, performs well regardless of video content. : :

display a stabilized and rolling shutter corrected viewfinder directly

Although our model does not compensate for translations, high- on the iPhone’s screen. Our implementation runs at 30 fps (i.e., the
frequency translational jitter is not visible in our output videos. camera’s maximum frame rate).
This supports our original conclusion that camera shake and rolling
shutter warping occurs primarily due to rotations. A low-frequency We receive frames from the camera and copy them to the GPU,
translational up and down motion can be seen in the stabilized walk- where we perform the warping computation using vertex shaders
ing sequence that corresponds to the steps taken by the cameras and a subdivided textured mesh (as described in section 2.4). Mov-
user. ing frames to the GPU is the bottleneck in this approach; however,

we found this to be substantially faster than performing warping
One of our experimental results is the observation that if one accu- computations on the CPU, even though the latter avoids extra frame
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copies. S. B. 2007. Using photographs to enhance videos of a static
scene. In Rendering Techniques 2007 (Proceedings Eurograph-

In order to prevent a large delay in the viewfinder, we use a trun- ics Symposium on Rendering), J. Kautz and S. Pattanaik, Eds.,
cated causal low-pass filter for computing smooth output rotations. Eurographics, 327-338
Compared to the Gaussian filter used in the previous sections, this ’
causal filter attenuates camera shake but does not completely elim- BUEHLER, C., BOSSE, M., AND MCMILLAN, L. 2001. Non-
inate it. However, RS correction is unaffected by this filter change, metric image-based rendering for video stabilization. Computer
because it is computed from the unsmoothed rotations during the Vision and Pattern Recognition, IEEE Computer Society Confer-
frame’s exposure period. ence on 2, 609.

For video recording, frames can be held back for a longer period CHO, W., AND HONG, K.-S. 2007. Affine motion based CMOS
of time before they need to be passed off to the video encoder. As distortion analysis and cmos digital image stabilization. Con-
a result, a better low-pass filter can be used than in the case of a sumer Electronics, IEEE Transactions on 53, 3, 833 —841.
viewfinder, which must display imagery with low latency. We leave :

the implementation of such a recording pipeline for future work. CHUN, 1-B., JUNG, H, AND KYUNG, C.-M. 2008. Suppressing
rolling-shutter distortion of cmos image sensors by motion vec-

. tor detection. Consumer Electronics, IEEE Transactions on 54,
5 Conclusion 4, 1479 —1487.

In this paper, we have presented an algorithm that employs gyro- EL GAMAL, A. AND ELTOUKHY, H. 2005. Cmos image sensors.
scopes for digital video stabilization and rolling shutter correction. Circuits and Devices Magazine, IEEE 21, 3, 6 — 20.
We have developed an optimization framework that can calibrate FISCHLER, M. A.. AND BOLLES, R. C. 1981. Random sam-
the camera and gyroscope data from a single input video. In addi- ple consensus: a paradigm for model fitting with applications to
tion, we have demonstrated that MEMS gyroscopes are sufficiently image analysis and automated cartography. Commun. ACM 24
accurate to successfully stabilize video and to correct for rolling (June), 381-395.
shutter warping. We have compared our approach to video stabi-
lization based on feature tracking. We have found that our approach FORSSEN, P.-E., AND RINGABY, E. 2010. Rectifying rolling
is more efficient and more robust in a diverse set of videos. shutter video from hand-held devices. In CVPR, 507-514.

The main limitation of our method is that it is restricted to rotations HWANGBO, M., KIM, J.-S., AND KANADE, T. 2009. Inertial-

only. While this makes our approach robust and computationally aided klt feature tracking for a moving camera. In Intelligent
efficient, 3D video stabilization can produce better results when a Robots and Systems, 2009. IROS 2009. IEEE/RSJ International
specific camera translation is desired. For example, Forssén and Conference on, 1909 —1916.

Ringaby’s [2010] present a 3D video stabilization algorithm that JOSHI, N.. KANG. S. B.. ZITNICK, C. L.. AND SZELISKI, R.
can synthesize a dolly shot (i.e., camera motion along a straight 2010. 1 debluri 0 inertial )
line) from hand-held video. Future work could investigate combin- hag GebIiing WSs Metta mMeastrement Sensors.

: : ACM Trans. Graph. 29 (July), 30:1-30:9.ing IMUs and feature trackers in order to improve the accuracy and Pp
robustness of the reconstructed camera motion. KURAZUME, R., AND HIROSE, S. 2000. Development of image

Another limitation of frame warping is that it produces areas for ey IO MEE IO EE OR CRE
which there 1s no image data. We crop video frames in order to hide International Conference on
these empty areas. This operation reduces the field of view of the

camera and also discards video data around frame boundaries. Fu- LIANG, C.-K., CHANG, L.-W., AND CHEN, H. 2008. Analysis
ture work could investigate using inpainting algorithms [Matsushita and compensation of rolling shutter effect. Image Processing,
et al. 2006] to perform full-frame stabilization. IEEE Transactions on 17, 8, 1323 —1330.

Lastly, we do not currently remove motion blur. This degrades the Liu, F., GLEICHER, M., JIN, H., AND AGARWALA, A. 2009.

quality of stabilized low-illumination videos in our dataset. Joshi et Content-preserving warps for 3d video stabilization. ACM Trans.
al. [2010] have presented an effective IMU aided image deblurring Graph. 28 (July), 44:1-44:9.
algorithm. Their approach fits in well with our method since both

algorithms rely on gyroscopes. Alternatively, future work could LOWE, D. G. 2004. Distinctive image features from scale-invariant
explore the use of alternating consecutive frame exposures for in- keypoints. Int. J. Comput. Vision 60 (November), 91-110.
verting motion blur in videos [Agrawal et al. 2009]. MATSUSHITA, Y., OFEK, E., GE, W., TANG, X., AND SHUM, H.-

Y. 2006. Full-frame video stabilization with motion inpainting.
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