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: ABSTRACT |

NUMERICAL METHODS FOR SOLVING LINEAR

LEAST SQUARES PROBLEMS

by

: G. Golub

A common problem in a Computer Laboratory is that of finding linear least

squares solutions. These problems arise in a variety of areas and in a variety

of contexts. Linear least squares problems are particularly difficult to solve

because they frequently involve large quantities of data, and they are 111~

conditioned by their very nature. In this paper, we shall consider stable numer-

ical methods for handling these problems. Our basic tool is a matrix decomposi-

tion based on orthogonal Householder transformations.
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1. Introduction.

let A be a given mx n real matrix of rank r, and b a given

vector. We wish to determine a vector .X such that

lp - AR = min. (1.1)

where | coe | indicates the euclidean norm. If m>n and r <n then

there is no unique solution. Under these conditions, we require simultan-

eously to (1.1) that

| R | = min. (1.2)

Condition (1.2) is a very natural one for many statistical and numerical

problems.

If m>n and r =n, then it is well known (cf. [4])that X |

satisfies the equation

: atax = ap (1.3)

Unfortunately, the matrix ATA is frequently ill-conditioned [6] and

influenced greatly by roundoff errors. The following example of Lauchli [3]

illustrates this well. Suppose | |
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1 1 1 1 1

€ 0) 0 oO _ 0 |

Q € 0 0 0

A = 0 0 c 0 0 ,

| 0) 0 0 € 0

0 0 0 0 €

then _

1 + e? 1 1 1 1

1 1 + 2 1 1 1 |

T 1 1 1 + © 1 1
AA = | (1.k) |

1 1 1 1 + 2 1

1 1 1 1 1 + c°

Clearly for e€ # 0, the rank of aA'A is five since the eigenvalues of

ata are 5 + eZ, ©, =, ®, .

Let us assume that the elements of ata are computed using double

precision arithmetic, and then rounded to single precision accuracy. Now |

let n be the largest number on the computer such that f1(1.0 +m) = 1.0

where fl1(...) indicates the floating point computation. Then if e < pit , oo
the rank of the computed representation of (1.4) will be one. Consequently,

no matter how accurate the linear equation solver, it is impossible to solve

the normal equations (1.3).
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In [2], Householder stressed the use of orthogonal transformations for

solving linear least squares problems. In this paper, we shall exploit these

transformations and show their use in a variety of least squares problems.

2. A Matrix Decomposition.

; Throughout this section, we shall assume m >n = r.

Since the euclidean norm of a vector is unitarily invariant,

lp-ax|l = llec-aqaxl

where ¢c = Qb and Q 1s an orthogonal matrix. We choose Q so that

QA = R = URL (2.1)

O }(m-n) X n |

where R is an upper triangular matrix.

Clearly,

X= ROT |

where c is the first n components of c¢ and consequently,

1

n 2
A

lo-akl - Loo
J=m+1 |
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Since R is an upper triangular matrix and R T R = ata, Rr t R |

1s simply the Choleski decomposition of ala.

There are a number of ways to achieve the decomposition (2.1); Ceo,

one could apply a sequence of plane rotations to annihilate the elements

below the diagonal of A. A very effective method to realize the decomposition

(2.1) is via Householder transformations [2]. Let A = 1) and let
; +. nas a3) coe ne 1) be defined as follows:

+

alk 1) p(k) alk) (k = 1,2, ... , n) .

p(k) is a symmetric, orthogonal matrix of the form

(i) (x) (x)
Pro=l-aw rw

(x) 0)" (x)
for suitable w such that w Ww = 1 .

A derivation of p(k) is given in [9]. In order to simplify the

calculations, we redefine p(k) as follows: |

(x) (x) (x)
P =1~-B u u

k— —

} .



where 1
m 2

| 8, = Lo, (0 + a) | |

ol) = 0 for 1<k

of) = sgn(a®)) (0 + lag)

NO _ a) for i>k
ih i,k |

Thus G6) 400 0) (007,00)

After p(k) has been applied to alk) R a appears as follows:

(1) ZZR .

5 (k+1) _

ZZ
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~(k+1) os ;
where R 1s a k X k upper triangular matrix which is unchanged by

: (x+1) (x)
subsequent transformations. Now 2k = -(sgn Be x) 0, SO that the .
rank of A is less than n if 0p = 0. Clearly,

+4R = ant)

and .

+ q = pin) pln) 51)

although one need not compute Q explicitly.

3. The Practical Procedure.

Wilkinson [10] has shown that the Choleski decomposition is stable

for a positive definite matrix even if no interchanges of rows and columns

are performed. Since we are in effect performing a Choleski decomposition

of ata, no interchanges of the columns of A are needed in most situations.

However, in order to ensure the utmost accuracy one should choose the columns

of A by some strategy. In what follows, we shall refer to the matrix AlE)

-even if some of the columns have been interchanged.

One possibility is to choose at the x stage the column of AlE) which

will maximize EN K |. This is equivalent to searching for the maximum
. J

diagonal element in the Choleski decomposition of ata.

m 2

Let <(k) = (a8) for j =k, k+t1l, ... , n.
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Then since alk) = 0p, one should choose that column for whichJ

\) is maximized. After a(k+1) has been computed, one can compute N

sth) as follows: .

: 37 eg JIN

since the orthogonal transformations leave the column lengths invariant. |

Naturally, the SF must be inhterchanged if the columns of ne are
interchanged. Although it is possible to compute 0} directly from the

$F), it is best to compute Ty at each stage using double precision
inner products to ensure maximal accuracy.

The strategy described above is most appropriate when one has a

sequence of vectors b> b,, ces b, for which one desires aleast squares
estimate. In many problems, there is one vector b and one wishes to

express it in as few columns of A as possible. This is the stagewise

multiple regression problem. We cannot solve this problem, but we shall

show how one can choose that column of alk) for which the sum of squares |

h - of residuals is maximally reduced at the kB stage.

Let (1) = b and o (+1) = p(k) ck), Now

3m 2
~(k k) a(k-1 | k
IE ACS

J=K

Alk-1) |
where Xx is the least squares estimate based on (k-1) columns of A,

ana SUK) is the first (k-1) elements of o(¥), Then since length is preserved

[4



© under an orthogonal transformation, we wish to find that column |

of alk) which will maximize aedb |

Let ¢ {k) = Bok) o (K) for j =k, k+l, ... , m.| "J : i, J i
i=k

(+1) nok) (x) |i Then since |e | = Y a, ce.” J o one should choose that
k ik i,k i k' |

5 N

column of alk) for which (+1) / {F) is maximized. After p(k) is
| applied to alk) one can adjust 5%) as follows:

| ple) (6) WKH) (kil)oo J J sd k

Co CL (X)\2 , (x) . CL
In many statistical applications, if (t; ) / s is sufficiently
small thenno further transformations are performed. |

Once the solution to the equations has been obtained then it is .

possible to obtain an improved solution by a simple iterative technique.

This technique, however, requires that the orthogonal transformations be

saved during their application. The best method for storing the transformation

~~ 1s to store the elements of ull) below the diagonal of the x 0 column of-
+

Let X be the initial solution obtained, and let X = % + e .
| ) | | | .

Then  llp-azli=llz-acel

where r=Db-AX, the residual vector . |



Thus the correction vector e is itself the solution to a linear least

squares problem. Once A has been decomposed then it isa fairly simple

matter to compute r and solve for e. Since e critically depends upon |

the residual vector, the components of r should be computed using double

precision inner products and then rounded to single precision accuracy.

: | Naturally, one should continue to iterate as long as improved estimates of
A

X are obtained.

| The above iteration technique will converge only if the initial

approximation to 2 is sufficiently accurate. Let

+

(a 1) _ x (2) i (a) (0=0, 1, ... )

with x9 = o.

Then if | et) | / | x) | > ¢ and if c¢ < 1/2, i.e., "at least
one bit of the initial solution is correct,” one should not iterate since there

is little likelihood that the iterative method will converge. Since convergence

tends to be linear, one should terminate the procedure as soon as

; + B
| e® > el

2 |



4. ANumerical Example.

In Table I, we give the results of an extensive calculation. The

matrix consists of the first 5 columnsof the inverse of the 6 X 6 Hilbert

matrix. The calculations were performed in single precision arithmetic.

The columns were chosen so that the diagonal elements were maximized at each

- stage. The iteration procedure was terminated as soon as

3 N
I AL 1) | > 0,25 | o() | ‘ Three iterations were performed but since

I (2) | > 0.25 | et) | » (2) was taken to be the correct solution.

In Table II, we show the results of using double precision inner

| products on the same problem. Note that the first iterate in Table I

1s approximately as accurate as the first iterate in Table II. The

double precision inner product routine converged to a solution for which

all figures were accurate. The normal equations were formed using double

precision inner products but even with a very accurate linear equation

solver described by McKeeman [5] no solution could be obtained.

10



| TABLE I |

| A | 8 .

3,6000000000#401' #6,3000000000#¢02  3,3600000000#+03 «7.56000000008403  7,5800000000#403  4,63000000009¢02 oo
=$,3000030000?4+02 1,4700000000# +08 «8,8200000000P+04 2,11680000008405 «2,20500000000405 =1,38600000008404 +
3.3600000000#403 ~8,82000000000404  5,.64480000000405 <=1,41120000008406 1.51200000008406 9,70200000008¢08

=7.56000000008403  2,11680000008405 =1,81120000008406  3,6288000000P406 =3,96900000008+406 =2,58720000008+05
| 7,5600020000#403 «2,2050000000#405 1,512000000080+06 =3,96900000008406 4,41000000008+406 2,9106000000®+05 Bg

=2,77200000008403 8.31600000000408 =5,82120000000405  1,55232000008406 =1,74636000000406 =i,16428000008405

| oo PIVOY

5 8 3 2 | 1

| | :

“6,3706872199P+06  5,77604863688406 =2,2223895814P+06  3,28754014200405 ~1,15224079520+04

EB “6,71356268210408 6,03084713530408 «=1,61025529178+08 9©,4910780925P402 ©

| | | | =1,84255035008403 9,4707068264304+02 =1,0082644636P4+02
oo | | 8,61751316438,01 <=1,494903807584+01

| 2.00955590620+00

| | ITERATION | | oo -

1 | So | oo | |
X 9,99999123620-01  4,09990724030-03  3,33333220218=01 2,00909051980<01 1,99999983328=01 oo oo
R 1,45288321648~06 =4,76837158208-07  0,00000000008400  0,0000000000#+00  0,0000000000#+00 0+0000000000€400 y
E  5.82842213838-07  1,72925515868-07  6,93811812798-08 2.90875663950-08 1.00380520938=08 |

X  9,9999070646P=01 3,99999897868=01 3.33333289590=0% 2,89900984078=01 1,99999903360=01 | }
R 3,20374965678=07  4,76837158200=07  3,81469726560=06 =3,81469726568-06 3,81369726568=006 0,00000000008400 .

E. *3,7819874908P=07 =1,18877742680=07 =4,6569725113P=08 *1,96560767 3630208 *6,82274266010°09 iy

| a



| | TABLE II

oo Co PIVOT

5 4 3 2 | 1

“6.37068721990+406  5.77608463686+06 =2,22244958148406 3,28754914208+405 =1,15224079526+04

“6,71356268218+04 6,03084713638404 ~1,61025529176404 9.491078092584+02

| | -1,44255035008403  9,47070426438402 =1,09826846376+02
4,61751316420401 =1,4945038077€+01

2,00955590618400

ITERATION |

pet i |
nN

X 9.99999123478=01  4,99999724356-01  3,33333219858=01  2,45999951808=01 1,99959983256=01" |

R 1,4080865502606 <=8,86211637418°08  9,3205017038@=08 =2,61890818366-06 2,13189179318=07  3.22703272116=C7

3 6.76531166388~07  2.75647850228=07  1,1348434536@=07  8.82018092918=08  1.6752167940808

, |

x 1.0000000000€+00  5.,000000000068=03  3,33333333338=01  2,50000000008=01 2,00000000008=C1

R “7.53789208838~09 2.13913153868=07 =1,4423R258374@~06 3,743480192568=08 =4,12546794728=06 1.6236008378@=06

Ck 9,47737203626=18  2,69235369096=18 =¢,06328757846=13  4,25562900068~15 =7,275956177568=13 |
3 | | | | | |

x 1,00000000008+00  5,00000000008=01  3,33333333338=01  2,50000000008=01 2,00000000008=01

R =7.53789208838<09  2,13913153860=07 =1,4423358374806  3,7434801925805 =4,12506796728=06  1,62360083784=06
E 9,47737203028=18  2,69235369098~18 =6,06328757848=13  4,25562900068=19 =7,27595617758=13



5. AnIterative Scheme.

For many problems, even with the use of orthogonal transformations it

may be impossible to obtain an accurate solution. Or, the rank of A may

truly be less than n. In this section, we give an algorithm for finding |

the least squares solution even if ata is singular.

In [7], Riley suggested the following algorithmfor solving linear

. ‘least squares problems for r= n. Let x (0) be an arbitrary vector, then
| solve |

(aA + a 1) x (a+) = AT b+ a (2) (5.1)

A

The sequence (0) converges to x if «a > 0 since the spectral radius
of alata + 1)"t is less than 1. Again we may implement this algorithm

more effectively by the use of orthogonal transformations. |

| First, let us note that (5.1) is equivalent to the following:

- (ata + a I) (2 = at (2) (5.2b)

The vector (2 is itself the solution of a linear least squares problem

since (a) minimize | ala) _ C (a) | |

where A (a) la)Cc = EERE 2 ad = ce seve .

Ve 1 0

15



~ Thus the numerical procedure should go as follows. Decompose C

by the methods described in Section 2 so that )

PC = S —- 6000000

; T ~ (0)
where PP = I and S is an upper triangular matrix. Then let X = 0

¥ (0) _ F(a) | |

x (a+) _ (2) i (a)

and Fla) is the vector whose components are the first n components of

p g(a), We choose x (0) = Q since otherwise there is no assurance that

(2) will converge to x. |

Now going back to the original process (5.1),

| HF) Cg xl) 4p (5.5)

| where G=oAa+a1)t and h=@a+an) aly.

Thus ACR (CC RHC PS (5.4)

1h



It is well known (cf. [6]) that A may be written as

A=USVW

where I is an m ¥ n matrix with the singular values 0; on the
diagonal and zeros elsewhere, and U and V are the matrices of

; eigenvectors of at and ata, respectivély. Then

T T .T .

Ab=VIZ U b= Py op vy + Bs Op Vp + eee + B.. 0. V. |

where PB = i by and r is the rank of A. Then from (5.4) we see
that

(a)_ (a) (a)
x SV Yt TY Aa

B. |
Q :

where Ja) = [1 - ( — J (3 =1, 2, «ou,1)J 0.
+a, J

J

Thus as q —» oo

MC) ES +oeee + Ly 2 2 .
— o, —L g._-r —

1 r

The choice of «a will greatly affect the rate of convergence of the

iterative method, and thus one mist choose «a with great care. If «a is

too small then the equations will remain 1ll-conditioned. If © 1s a lower

15



bound of the smallest non-zero singular value, then @ should be chosen

so that ~ a.

— < 0.1, say .
a+ B | | | |

- | This means at each stage, there will be at least one more place of

accuracy in the solution. There are a number of methods for accelerating

the convergence of (5.1) (cf. [1]).

It is easy to see that

Since (a) lies in the space spanned by Vis eee 3 Vo it follows
immediately that

(q+1) a ( (9 e —2— P<?)
a+ o |

r

Thus a good termination procedure is to stop iterating as soon as I cla) I
increases.

6. Statistical Calculations.

In many statistical calculations, it is necessary to compute certain

auxilliary- information associated with ata ‘ These can readily be obtained

from the orthogonal decomposition. Thus

16



T 2

det(A™A) = (ry X Ton X eee X ro) .

Since ATA = RTE , (ata)! = F1FT

The inverse of R can be readily obtained since R is an upper triangular

matrix. Waugh and Dwyer [8] have noted that it is possible to calculate

| (ata)t directly from R by the relation

ht = x77.

No operations are saved over the first method but it may be somewhat

more accurate.

In some statistical applications, the original set of observations are

| augmented by an additional set of observations. In this case, it is not

necessary to begin the calculation from the beginning again if the method

| of orthogonalization is used. Let R, [N correspond to the original data

after it has been reduced by orthogonal transformations and let Ass by

] correspond to the additional observations. Then the up-dated least squares

solution can be obtained directly from

A = CLT J) b = LE °
fo oo 2

The above observation has another implication. One of the arguments

frequently advanced for using normal equations is that only n(n+l)/2 memory

locations are required. By partitioning the matrix A by rows, however, then

similarly only n(n+l1)/2 “locations are needed when the method of orthogonali-

zation is used.
17



7. Least Squares Problems with Constraints. |

Frequently, one wishes to determine x so that I b - A 2 || is
A

minimized subject to the condition that H x =g where H isa p Xn

matrix of rank p. One can, of course, eliminate p of the columns of A

by Gaussian elimination after a p X p submatrix of H has been determined

and then solve the resulting normal equations. This, unfortunately, would

not be a numerically stable scheme since no row interchanges between A and

H would be permitted. | i

| If one uses Lagrange multipliers, then one must solve the

(n+BY) w (n(# pp) )systemrofoéquatibhen: |

Aa Hr x IY

; O : :

: eo. A T \-1 ,T
where A 1s the vector of Lagrange multipliers. Since Xx = (A"A) A" b -

(a'a)H HA,

BATA) HA = Hz -g |

where

z = (ata)™t a? bo.

Note =z is the least squares solution of the original problem without

constraints and one would frequently wish to compare this vector with the

final solution x. The vector z , of course, should be computedby the

orthogonalization procedures discussed earlier.

| 18



Since ATA = TTR, H(ATA) THT = WW where W= ® TH .

After W is computed, it should be reduced to a p X p upper triangular

matrix XK by orthogonalization which is the Choleski decomposition of

WoW. The matrix equation oo

KK AN = Hz-g

shouldbe solved by the obvious method. Finally, one finds

A _

Xx =z - ater | |

T,y-1 Es| |
where (AA) © H A can be easily computed by using R
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; _

| procedure least squares solution (2, x, b, m, n, p, singular) ;

value m, n, p ; | | |
arrey a, Xx, b 3 integer m, n, p ; label singular ; |

comment The array al1:m,1:n] containsthe given matrix of an -

overdetermined system of m linear equations inn unknowns (m = n).

For the p right hand sides given as the columnsof the array |

blim,1:p], the least squares solutions are computed and stored

as the columns of the arrey xl1:m,1:p]. If renk(a)<n then the
problem 1s left unsolved and the emergency exit singular is used.

In elther case a and b are left intact ; |

real procedure inner product (i, m, n, 2, b, ¢) ;

valuem, n,¢ ;

real a, b, ¢ ; integer 1, m, n ;

comment The body of this inner product routine should pre- |

ferably be replaced by its double precision equivalent in

machine code | |

© for 1:=m step 1 until n do c:i= ¢ + axb ;

inner product:= c | oo

end inner product ; |

| procedure decompose (m, n, qr, aloha, pivot, singular) H | |

value m, n ; oo
integer m, n ; array qr, alpha ; integer array pivot ; . .

| label singular ; comment nonlocal real procedure inner product;

comment decompose reduces the matrix given in the array |

ar|1l:m,1:mn)] (m =n) to upper right triangular form by means
| 22



| of n elementary orthogonal transformations (I-2ww') = |
(I-beta uu'). The diagonal elements of the reduced matrix |

are stored in the array alphalim], the off diagonal ele-
ments in the upper right triengudlay part of qr. The non- |

zero components of the vectors u are stored on and below

the leading diagonal of qr. Pivoting is done by choosing |
i at each step the column with the largest sum of squares to

be reduced next, These interchanges are recorded in the |

array pivoti1l:m]. If at any stage of the reduction the sum |

of squares of the column to be reduced next is exactly equal

to zero then the emergency exit singular 1s used3 oo

begin | | : |
integer i, J, Jbar, k ; real beta, sigma, alphak, qrkk :

array y, sun{1:n] ; | |

for j:= 1 step 1 until n do

pivot (j] := J |

sum) j] s= inner product (i, 1, m, ar{i,31, ar|i,3], 0)

end J ;

for k= 1 step 1 until n do
begin

sigma: = sum |k] s Jbar:= k | |

for jt= k+l step 1 until n do if sigma< sum{)] then
| begin | | | |

| signa := sum [3] s Jbar:= }

| end ;

if jbar#k then |
23



begin
1:= pivot[k] ; |

pivot[k] i= pivot{jvar] ;

pivot (Jbar] i= 1 ; -

sum | 3var] = sum x] : : | |
oo sum [k]| = sigma ; |

3 for 1:=1 step 1 until m do

| slgma = qr 1,k] ; |

qr 11,k] = qr(1,jbar| ; |
| ar fb Jvar] ‘= sigma oo | | |

end ; | Ca

sigmai= inner product (1,km, ar(i,k], qr|1,k] , 0) 5
if sigma=0 then goto singular ; |

qQrkk = arik,k| ; | oo |

alpheak := alpha k| i= 1f qrkk<0 then sqrt(sigma) |

else -sqrt (sigma) : |
: qr(k,k]|= qrkk-alphak ; |

betai= 1/(slgma-qrkkxalphak) 3 |

for J := k+1 step 1 until n do oo |

| y 3] ‘= beta * inner product (1, k, m, ar[i,k|, ar(1i,3], 0) ;
for j= k+1 step 1 until n do os

for 1:= k step 1 until m do

ar|1,)] = qr|1,]] -qr|1,k]xy [J] ; |
sum | J] = sum 3 ]-ar|k,3]t2 |

| 2k
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end J

enddecompose j; |

procedure solve (m, n, qr, alpha, pivot, r, ¥) ¢

yalue m, n j | |

integer m, n ; array qr, alpha, r, ¥y ; integer array pivot 5
comment nonlocal real procedure inner product 3 |

comment Using the vectors u whose nonzero components are

| stored on and below the main diagonalof ar{1m,1:n] solve
applies then elementary orthogonal transformations (I-2ww') .
to the right hand side r(1m]. From the reduced matrix glven |
in alpha |l:n) and the upper right triangular part of qr,
solve then computes by backsubstitution an approximate solution

to the linear system, The components of the solution vector N |
are stored in y[1:n) in the order prescribed by pivot|1:n] s |

~~ integer 1,J ; real gamma ; array z{1m] ;
_ for J:=1 step 1 until ndo

| gamma= inner product (i, Jj, m, ar(1,1], ri], 0)

/(alpha|j lxqr{3,3]) ;

for 1:= J step 1 until m do r|1] c= 1|1] +gammaxqr|1,}]
end§ ; | |

| z{n) = rin|/alpha|n| ; oo |
for 1 = n-1 step -1 until 1 do |

| z[1] = -inner product (Jj, i+1, n, ar|1,1], z|3], -rl1]).
/alpha|i] ; - |

5



for 1:=1 step 1 untiln do ylpivotia]] = z!1] |
end solve; |

| integer 1, J, k 3 real norm0, norml ; |

array qril:m,1:n], alpha, e, yim], rim] ; | |
integer array pivot|1:n | 3 | |
for J'= 1 step 1 untiln do for 1:=1 step 1 until m do | oT

3 arit,) = al1,]] 5 oo
decompose (m, n, qr, alpha, pivot, singular) ; |

for k= 1 step 1 until p do oo

for 1:= 1 sted 1 until m do ri1}:= b[1,k] ;
solve (m, n, qr, alpha, pivot, r, ¥) 3

for 1:= 1 step 1 until m do -
ri1] = ~inner product (Jj, 1, n, al1,3], y[3], -b[1,k%]) 3 |
solve (m, n, qr, alpha, pivot, r, e) ;

~ norm0 := norml:= 0 N

for 1:= 1 step 1 until n do -

normQ = normO+y | 1} {2 $s norml = normi+e|1]}2 |
end 1 3; |

if norml> 0,0625<xnorm0 then goto singular ; comment No
attempt at obtaining the solutionis made unless the norm

| of the first correction 1s significantly smaller than the | |

| norm of the initisl approxigmation ; | |

iterate: | | oo oo

B for 1:=1 step 1 untiln do yii}:= y 1] +e[1] 3
for 1:= 1 step 1 until = do oo

| 26



rii) = ~inner product (J, 1, n, ait,s], yl, -b|1,k]) :
| solve (m, n, qr, alpha, pivot, r, e) .

| norm:= norml § norml:= 0 ;

| for 1:=1 step 1 until n do norml:= normi+e|1] {2 ; |
Af norm1=0.0625«norm0 then goto iterate ; comment iterative
improvement of the solution is terminated as soon as the

norm of a correction 1s not significantly smaller than the

norm of the previous correction ; |

| for 1:= 1 step 1 until n do x[1,k| = y[1]
ond : |

end least squares solution .

-
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