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ABSTRACT
NUMERICAL METHODS FOR SOLVING LINEAR

_X..
LEAST SQUARES PROBLEMS Y/

by

G. Golub

A common problem in a Computer Laboratory is that of finding linear least
squares solutions. These problems arise in a variety of areas and in a variety
of contexts. Linear least squares problems are particularly difficult to solve
because they frequently involve large quantities of data, and they are ill-
conditioned by their very nature. In this paper, we shall consider stable numer-
ical methods for handlingbthese problems. Our basic tool is a matrix decomposi-

tion based on orthogonal Householder transformations.
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1. Introduction.

Let A be a given m X n real matrix of rank r, and b a given
vector. We wish to determine a vector .X such that

he - AR | = min. (1.1)

where H cee H indicates the euclidean norm. If m>n and r <n then

there is no unique solution. Under these conditions, we require simultan-

eously to (1.1) that

|21 = min. (1.2)

Condition (1.2) is a very natural one for many statistical and numerical
problems.
If m>n and r =n, then it is well known (cf. [4])that 2

satisfies the equation
AAx = Ab (1.3)
Unfortunately, the matrix ATA s frequently ill-conditioned [6] and

influenced greatly by roundoff errors. The following example of Lauchli [3]

illustrates this well. Suppose




then _
- _
1+e2 1 1 1 1
1 1+e2 1 1 1
T 1 1 1+e2 1 1
A"A = (1.4)
1 1 1 1+é'2 1
1 1 1 1 1+ 62

‘Clearly for € % 0, the rank of A?A is five since the eigenvalues of
ATA‘ are 5 + €2, eg, e2, 62, e2 .

; Let us assume that the elements of AIA are computed using double
precision arithmetic, and then rounded to single precision accuracy. Now
let 1 be the largest number on the computer such that £1(1.0 +1 ) = 1.0
where fl(...) indicates the floating point computation. Then if e < \Q; )
the rank of the computed representation of (1.4) will be one. Consequently,

no matter how accurate the linear equation solver, it is impossible to solve

the normal equations (1.3).



In [2], Householder stressed the use of orthogonal transformations for
solving linear least squares problems. In this paper, we shall exploit these

transformations and show their use in a variety of least squares problems.

2. A Matrix Decomposition.

Throughout this section, we shall assume m >n = r.

Since the euclidean norm of a vector is unitarily invariant,

lo-ax| = [le-aaxl

where ¢ = Qb and Q 1is an orthogonal matrix. We choose Q so that

.. (2.1)
(:> }(m-n) X n
where R is an upper triangular matrix.

Clearly,

N

lp-a%ll = P2




Since R is an upper triangular matrix and R Tlﬁ = ATA, R Tlﬁ

is simply the Choleski decomposition of ATA.
There are a number of ways to achieve the decomposition (2.1); €.8.,
one could apply a sequence of plane rofataons to annihilate the elements
below the diagonal of A. A very effective method to realize the decomposition
(2.1) is via Householder transformations [2]. Let A = Aﬁl), and let

a®) 400, )

oo A( be defined as follows:

A0 p() () (k = 1,2, »00 , n) .

plk) o

is a symmetric, orthogonal matrix of the form

K) _ g o0 ()]

o

T
for suitable K(k) such that Eﬁk) HKk) =1 .
(k)

A derivation of P is given in [9]. 1In order to simplify the

calculations, we redefine P(k) as follows:
- T
)

p(&) _ 1 Bkg(k) ok




where 1
[ = k)\2 2
- (& o)

Lo, (o + o520

Py =
ug_k) 0 for i<k
ugk) = ssn(al(f;){) (o + \al(:;){“
;ik) = a§?i for i>k .

Thus A(k+l) = A(k) - E(k) (8, E‘k)TA(k))

After P(k) has been applied to A(k) B A(k+l)

- (k+l)
R

A(k+1) _

O

appears as follows:



where ‘ﬁ(k+l)

is a k X k wupper triangular matrix which is unchanged by

. (k+1) (x)
subsequent transformations. Now ak,k = -(sgn ak,k) o 8o that the
rank of A 1is less than n if 0 = 0. Clearly,
R = al™D)
and .

o = p® p(r-1) (1)

although one need not compute @Q explicitly.

-

3. The Practical Procedure.

Wilkinson [10] has shown that the Choleski decomposition is stable
for a positive definite matrix even if no interchanges of rows and columns
are performed. Since we are in effect performing a Choleski decomposition
of A"A, no interchanges of the columns of A are needed in most situations.
However, in order to ensure the utmost accuracy one should choose the columns
of A by some strategy. In what follows, we shall refer to the matrix A(k)
-even if some of the columns have been interchanged.
One possibility is to choose at the kth stage the column of A(k) which

will maximize |a§k+l)|.
. )

Xk This is equivalent to searching for the maximum

diagonal element in the Choleski decomposition of ATA.

m 2
Let s<k) = 0 (agk}) for j =k, k+1, oe0 , N.
J l=k l) J



= 0y, one should choose that column for which

Then since | (k+l |

sgk) is maximized. After A(k+l) has been computed, one can compute
s§k+l) as follows:
k+1 k k+l .
S§ ) = ( ) ( ( )) (J = k+l, eeo 9 m)

since the orthogonal transformations leave the column lengths invariant.

(k)

Naturally, the sgk)'s must be interchanged if the columns of A are

interchanged. Although it is possible to compute o directly from the
s(k)'
J

s, it is best to compute o, at each stage using double precision

k
inner products to ensure maximal accuracy.

The strategy described above is most appropriate when one has a
sequence of vectors 21, EQ, e PP for which one desires a least squares
estimate. In many problems, there is one vector b and one wishes to
express it in as few columns of A as possible. This is the stagewise
multiple regression problem. We cannot solve this problem, but we shall

show how one can choose that column of A(k) for which the sum of squares

of residuals is maximally reduced at the kth stage.

Let g(l) = b and g(k+l) = P(k) S(k). Now

1
m 2\ 2
~(k k) A(k-1 ‘ k
T I RO
J=k
Alk-1) .
where Xx is the least squares estimate based on (k-1) columns of A,

and 'E(k) is the first (k-1) elements of gﬁk). Then since length is preserved




under an orthogonal transformation, we wish to find that column

of A(k) which will maximize |c§k+l)|.

m : : :
Let t(k) = 2)-a§k? cgk) for j =k, kt1, ... , m.
J j=x Tod 1
(k+1) Pk (k)
Then since Ick | = | Z: a. c.’’ /o | one should choose that
ik i,k i k

2 .
column of A(k) for which (tgk)) / Sgk) is maximized. After P(k) is

applied to A(k), one can adjust tgk) as follows:

-

$41) | (k) (k1) (kel)
J dJ sd k

In many statistical applications, if (tgk))e / s(k) ig sufficiently
small then no further transformations are performed.
Once the solution to the equations has been obtained then it is .
possible to obtain an improved solution by a simple iterative technique.
-This technique, however, requires that the orthogonal transformations be
saved during their application. The best method for storihg the traﬁsformation

is to store the élements of Eﬁk) below the diagonal of the kth column of
A1)

Let X be the initial solution obtained, and let 2 =X+ e,

Then lo-axfl=fz-ael

vhere r=b-AXx, the residual vector .




Thus the correction vector e 1is itself the solution to a linear least
squares problem. Once A has been decomposed then it is a fairly simple
matter to compute r and solve for ‘é, Since e critically depends‘upon
the residual vector, the components of r should be computed using double
precision inner products and then rounded to single precision accuracy.
Naturally, one should continue to iterate as long as improved estimates of

A
x are obtained.

The above iteration technique will converge only if the initial

approximation @o g is sufficiently accurate. Let

L) _ (@), (d)

(@=0,1, ... )

with x

Then if || g(l) I/l E(l) | > ¢ and if ¢ < 1/2, i.e., "at least
one bit of the initial solution is correct,' one should not iterate since there
is 1little likelihood that the iterative method will converge. Since convergence

‘tends to be linear, one should terminate the procedure as soon as

S P IO T




L. A Numerical Example.

In Table I, we give the results of an extensive calculation. The
matrix consists of the first 5 columns of the inverse of the 6 X 6 Hilbert
matrix. The calculations were performed in'single precision arithmetic.

The columns were chosen so that the diagonal elements were maximized at each

stage. The iteration procedure was terminated as soon as

” g(k+l) H > 0,25 ” g(k) H . Three iterations were performed but since

H EFQ) H > 0.25 “ g(l) H B 5(2) was taken to be the correct solution.

-

In Table II, we show the results of using double precision inner
products on the same problem. Note that the first iterate in Table I
is approximately as accurate as the first iterate in Table II. The
double precision inner product routine converged to a solution for which
all figures were accurate. The normal equations were formed using double
precision inner products but even with a very accurate linear equation

solver described by McKeeman [5] no solution could be obtained.
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1T

3,6000000000%401
«$.300002000094+02

3.3600000000P403
«7.56000200008403
7,56000000000403
«2,7720000000%403

*6,3700872199P+06

9.,99999123620-01
1.45285321648~06
5.82842213838=07

9.9999970646P=01
3,20374965678=07
*3,78198749068-07

«6,30000000000402
1.47000000008+08
-8,82000000000+04
2,1168000000€+05
-2,2050000000P40%
8,.31600000008404

5,77604263688406
“6,71356268210408

8,99990724930-04
-4,76837158200=07
1,72925515868<07

4.99999897569-01
4,768371582098«07
=1,18877742680=07

TABLE I
A
3,36000000000403
=8,82000000008404
5.68480000000+405
*1,81120000008+06

1.51200000000+06
=%,.82120000008+05

PIvVOY
3

R
»2.2228895814P+06

6,0308471363F408
=1,842550350004+03

ITERATION

3,3333322021#=04

0.,00000000008+00 -

6,93811812798=08

3,33333289590=01

3,814690726560=006

=0,65697251130=08

*7.5600000000#4+03
2,11680000008405
*1,41120000008406
3,62880000009406
=3,96900000002406
1,55232000002406

3.28754014200405
©1,61025520179408
9,47070826430402
8,61751316430401

2,0499090510880-01
0,00000000008+00
2,90875663958-08

2,89990981078=01
*3,81069726568-06
.1,9660767383808

7.560000000004+03
=2,20500000000405
1.51200000008+406
=3,96900000000+06
4,41000000008+406
*1.766356000000406

*1,15224079520+04
9,4910780925P402
=1,09826846360402
=1,494903807584+01
2.00955590620+00

1,99999083328=01
0.00000000008+00
1.00380520038=08

1.99999993360=01
3.81469726568-06
*6,82274266010=09

8
4,6300000000P+02

«1,38600000009404
9.70200000009+04
=2,587200000094+05
2,9106000000#4+05
*§,16428000008405

0,0000000000€+00

0,00000000000400




ct

TABLE II
PIvOoT

R
“6.37068721998406 5.77608463686406 =2,22244958148406  3,28758914208+405 =1,15224079526+04
“6,71356268218404  6,03084713639404 =1,61025529176404  9,29107809250402

=1,44255035000403  §,470704264384+02 =1,098264463768402

4,61751316428401 =1,4945038077€401

2.00955590618400

ITERATION

9.9999912347€=01 4,9999972435€-01 3,33333219858=01 2,45999951808-01 1,999599832568=01°
1.44808655028-06 =8,86211637418-058 9.32050170388-08 =2,618908183¢68-0¢ 2.1314%173318=07 3.272703272118=C7

b.76531166388~07 2.756478%0228-07 1,1348a345368~07 4,82018092918=08 1.6752167940@~08

1.00000000008+00 5.000000C0008~0% 3,3333333333e-01 2+50000000006=01 2,00000000008=C1
=7.53789208836=09 2.1391315386€8=07 =1,8423R58374€@=06 3,743480192568=06 =4,12546794728-06 1.62360083748@=06

9.47737203682€=18 2.69235369098~18 =¢,06328757848=13 4,25562900068=15 =7 ,275956177568=13

1,00000000008+00 5.00000000008~01 3,33333333338=-01 2.50000000008=01% 2.00000000008~=01
*7.53789208838=09 2.13913153868=07 =1,44238583748=0¢ 3,70348019256-06 =4,12546796728=06 1.62360083786=0¢

9,47737203826=18 2,69235369098~18 =¢,06328757848~13 4,25562900068+19 =7,2759561775€~=13




5. An Iterative Scheme.

For many problems, even with the use of orthogonal transformations it
may be impossible to obtain an accurate solution. Or, the rank of A may
truly be less than n. In this section, we give an algorithm for finding
the least squares solution even if ATA is singular.

In [7], Riley suggested the following algorithm for solving linear
least squares problems for r = n. Let §(o) be an arbitrary vector, then

solve

(Ta + a 1) x0T 2 AT p 4+ o x(V (5.1)
A
The seguence §(Q) converges to x if @ > 0O since the spectral radius
of a(ATA +Q I)"l is less than 1. Again we may implement this algorithm
more effectively by the use of orthogonal transformations.

First, let us note that (5.1) is equivalent to the following:

£(q) —Db-aA 5(q) (5.2a)
(aTa + a 1) E(Q) = AT E(Q) (5.2b)
Lat) (@), ((a) (5.2¢)

The vector g(q) is itself the solution of a linear least squares problem

(a) I é(q) o g(q) I

since e minimize

where £(q)

13




Thus the numerical procedure should go as follows.

by the methods described in Section 2 so that

where PTP = I and § is an upper triangular matrix. Then let z(o) =

3 () _ z(q)

LLarl) _ (a) , (a)

and ‘i(q) is the vector whose components are the first n

b a(@)

(a)

X

© _ 4

. We choose X

A
will converge to x.

Now going back to the original process (5.1),

(@) , 4

(T gy

Decompose C

[®)

components of

since otherwise there is no assurance that

(5.3)

where

Thus

G=oa+a1)™? and h=(aTa+a1) ATy .

PR (e S A (5.4)

14



It is well known (cf. [6]) that A may be written as
A=UT V'

where Z is an m x n matrix with the singular values Gj on the
diagonal and zeros elsewhere, and U and V are the matrices of

eigenvectors of AA? and A:A, respectivély. Then

T T . T
Ab=VE U b=f oy +P o+ w0 ¥B 0,7,
where B = U'T by and r is the rank of A. Then from (5.4) we see
that
(a) _ (a) (a)
?_('._ —71 Y_l+'.'+7r KI‘
B.
where 7§q)= [1- (—(12—)61];;‘1 (3=1,2, ...,x)
o, J
J
Thus as q — oo
B 5
x(q')-—> —-];v + + —rv -—.;(\ .
- o, —L1 g_ —T -
1 r

The choice of «a will greatly affect the rate of convergence of the
iterative method, and thus one must choose «a with great care. If a is

too small then the equations will remain ill-conditioned. If & is a lower

15



bound of the smallest non-zero singular value, then @ should be chosen

so that

—2 < 0.1, say .
a+ d

This means at each stage, there will be at least one more place of

accuracy in the solution. There are a number of methods for accelerating

the convergence of (5.1) (cf. [1]).

It is easy to see that

-

e(q+l) = G e(Q) = a(A?A +Q I)-l e(q)

it follows

Since E(Q) lies in the space spanned by Vs oeee 5 Vs

immediately that

Pl o —2— @<l
Q-+ o
r
Thus a good termination procedure is to stop iterating as soon as “ g(q) H

increases.

6. Statistical Calculations.

In many statistical calculations, it is necessary to compute certain

auxilliary- information associated with ATA . These can readily be obtained

from the orthogonal decomposition. Thus

16




det ( ATA)

2
(rll X oo X eoe X rnn)

Since ATA = ®TE , (afa)t - 1T .

The inverse of R can be readily obtained since R is an upper triangular
matrix. Waugh and Dwyer [8] have noted that it is possible to calculate

(A.TA)"l directly from R by the relation

T@hH™t = 8§77 .
No operations ;;e saved over the first method but it may be somewhat
more accurate.
In some statistical applications, the original set of observations are
augmented by an additional set of observations. In this case, it is not
necessary to begin the calculation from the beginning again if the method

~

of - orthogonalization is used. Let ﬁi, < correspond to the original data
after it has been reduced by orthogonal transformations and let AQ,QQ
correspond to the additional observations. Then the up-dated least squares

solution can be obtained directly from

The above observation has another implication. One of the arguments
frequently advanced for using normal equations is that only n(n+l)/2 memory
locations are required. By partitioning the matrix A by rows, however, then
similarly only n(n+l)/2 "locations are needed when the method of orthogonali-

zation is used.

17




Te Least Squares Problems with Constraints.

Frequently, one wishes to determine g’ so that H b -A 2’“ is
minimized subject to the condition that H g =g where H isa pXn
matrix of rank p. One can, of course, eliminate p of the columns of A
by Gaussian elimination after a p X p submatrix of H has been determined
and then solve the resulting normal equations. This, unfortunately, would
not be a numerically stable scheme since no row interchanges between A and
H would be permitted.

If one uses JLagrange multipliers, then one must solve the

(n-+ B) x* (al#p ) )system ofosquatisnsn

%>
=
lop

A”A H

e 00 = o 00eoce

A -
where A\ 1is the vector of Lagrange multipliers. Since x = (aTa)™t AT b -

T =1 T
(A7A)" H A,
gaTA)™ B A = Hz-g

where

_z_=(ATA) ANy .

Note 2z 1is the least squares solution of the original problem without
constraints and one would frequently wish to compare this vector with the
final solution g . The vector z , of course, should be computed by the

orthogonalization procedures discussed earlier.

18




T T ~ =T T

Since ATA = ®TE, HLA)TET - WW where W= R T H
After W 1is computed, it should be reduced to a p X p upper triangular
matrix X by orthogonalization which is the Choleski decomposition of

WTW. The matrix equation

should be solved by the obvious method. Finally, one finds

N -
=z - WATEA

—

where (A.TA)-l H A can be easily computed by using 7L
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procedure least squares solution (2, x, b, m, n, p, singular) ;
value m, n, p ; |
arrzy a, X, b ; integer m, n, p ; label singular ;

comment The array a[i:m,l:n} containsathe given matrix of an
overdetermined system of m linear equations in n unknowns (m = n).
For the p right hand sldes given as the columns of the array |
b[;:m,l:p], the least squares solutions are computed and stored
as the columns of the array x{l:n,l:p}. If renk(a)<n then the
problem 1s left unsolved and the emergency exit singular is used;

In elther case 2 and b are left intact ;

-~

begin

real procedure inner product (i, m, n, 2, b, ¢) 3

valve m, n, ¢ 3

real a, b, ¢ ; integer i, m, n ;

comment The bedy of this inner product routine should pre-
ferably be»replaced by lts double precision equivalent in
machine code ;

for 1:=m step 1 until n do ci=c¢ + axb ;

1nner product:i= ¢
end Ainner product ;
procedure decompose (m, n, qr, alpha, pivot, singular} H
velue m, 1 ;

' integer m, n ; array qr, alpha ; integer arrany pivot ;

label singular ; comment nonlocal real procedure inner product

comment dﬂcomposé reduces the matrix given i the array

qul:m,l:n} (m 2 n) to upber right trianguler form by means

-

22




of n elementary orthogonal transformations (I-2ww') =
(I-beta uu'). The diagonal elements of the reduced matrix
are stored in the array alpha[l;n}, the off diagonal ele-
ments in the upper right trlangualér part of qr. The non-
zexro components of the vectors u are stored on and below
the leading diagonél of qr. Pivoting is done by choosing.
at each step the column with the largest sum of squares to
be reduced next, These interchanges are recorded in the |
array plvot{l:n]. If at any stage of the reduction the sum
of squares of the column to be reduced next 1s exactly equal
to zero then thémemergency exit éingular 1s used ;
Degin |
integer 1, J, jbar, k ; real beta, sigma, alphak, qrkk §
array y, sum{l:n] H
for J:= 1 step 1 until n do
pivot[J] =3 3
sum|j] 1= inner product (i, 1, m, qr{1,3], ar{1,s], 0)

end J 3

for k:= 1 step 1 until n do

begin
sigma:= sum|k] ; Jbar:= k ;

for J = k+1 step 1 until n do if sigma<:sum[j] then
begin |
slgma := sum[,j] 3 Jbar:= J
end ;
if jvar#k then
23




begin
1= pivotlk| ;
pivot!k| := pivot[jbar] ;
pivot{;bar1== i 3
sum[jbar];= sum[y} ;

=
i

sum|k| = sigma ;

[

for 1:=1 step 1 until m do
begin
sigma:='qr[1,k] H
qr[},k]== qr[l,Jbar]-;

qr(},gbaf]:z sigma
end 1 |
end ;
sigma := inner product (1,Km, qr[i,k], qr[i,kﬂ, 0)
if sigma=0 then goto singular ;
qQrkk = qr[k,k] ;
alphak := alpha[k]:= if qrkk <0 then sqrt(sigma)
~ else -sqrt(sigma) ;
qr(k,k] := qrkk-alphak ;
beta ¢= 1/(sigma-qrkkxalphak) 3

for J = k+1 step 1 until n do

¥ |3] = beta = inner product (1, k, m, ar[1,k], ar(1,3], 0) ;
for J:= k+1 step 1 until n do '
begin
for 1:=k step 1 until m do
ar{1,3] = ar(1,3] -ar[1,k]xy [5] ;
sumtj] = sum{q]-qrtk,J]?Z
ok




end J
end k
end decompose ;
procedure solve (m, n, Qqr, alpha,'plvot, r, ¥) ¢
velue m, n ;

integer m, n ; array qr, alpha, r, ¥y ; integer array pivot ;'

comment nonlocal real procedure inner product ;

comment Using the vectors u whose nonzero components are

stored on and below the main diagonal of qrilzm,l:n} solve
applies the n elementary orthogonal transformations (I-2ww')

to the right h;hd side r[l:m}. From the reduced matrix giveh

in alpha[l:n} and the upper right triangular part of qr,

solve then computes by backsubstitﬁtlon an approximate solution
to the linear system. The components of the solution vector

are stored in ytl:n} in the order prescribed by plvot[l:n] 3

begin

integer 1,J) 3 real gamma ; array z[l:nl s
for J:= 1 step 1 until n do

begin
gamma = inner product (i, j, m, qr[i,J], r[i], 0)
/(alpha |3 [xqr(s,3]) ;
for 1:= J step 1 until m do r(1] s= r{1] +gammaxqr(1, )]

end J ;

zLﬁ]:= r(n|/alpha|n] ;

for 1 '= n-1 step -1 until 1 do

z[l]:= -inner product (j, i+1, n, qr[},J], zLJ], -r[}]).
/alpha{}] H ’
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i

for 1:=1 step 1 until n do yXplvotY1\11= z{}
L -

end solve

integer 1, J, k¥ ; real norm0, norml ;3
]
1}

v i i
array qrtlxm,lxq}, alpha, e, ytl:n}, rt}zmlv;

integer array pivotLl:n} H

for J'= 1 step 1 until n do for 1:= 1 step 1 until m do
ari1,3) = al1,1] 3

decompose (m, n, qr, alpha, pivot, singular)

for k:= 1 step 1 until p do

begin

for 1:= 1 sted 1 until m do r|i] = b[1,k] ;

solve (m, n, qr, alpha, pivot, r, y) 3

for 1:= 1 step 1 until m do

rLi} = ~inner product (}, 1, n, a{i,J}, y[J], -b[},k]) H
solve (m, n, qr, alpha, pivot, r, e) ;

norm0 = norml = 0 3

for 1 =1 step 1 until n do
begin

Q?Z;nmm1=nmmueuﬂ2

normQ = norm0+yﬁ
[

end 1 ;

;g norml > 0.0625<norm0 then goto singular ; comment No
attempt at obtalning the solution is made unless the norm
of the first correction 1s significantly smaller than the

norm of the initisal approxigmation ;

iterate:

or 1:= 1 step 1 until n do y511:= y{;1+e£1] 3

S .

L]

ps
o]
*

1:= 1 step 1 until m do
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r(i}z= ~-inner product (J, 1, n, a\},J], ytj}, -b{},kﬂ) $

- =

solve (m, n, qr, alpha, pivot, r, e) 3

normQ := norml ; norml.= 0 ;

Loy

for 1:= 1 step 1 until n do norml:= normi+e[1]72 ;

if norm1£0.0625<norm0 then goto iterate ; comment iterative
improvement of the solution is terminated as soon as the
norm of a correction 1s not significantly smaller than the
norm of the previous correction ;

for 1:= 1 step 1 until n do x[1,k] - y[1]

end k

end least squares solution






