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Introduction,

The QD-algorithm — which stands for the quotient-difference algorithm —
has been developed by H. Rutishauser, In several papers, the first of which
appeared in 1954, Rutishauser has treated the theory and a number of applications
of the algorithm. In this treatment the theory is based on properties of continued
fractions.

In 1958 Peter Henrici based the theory of the m-algorithm on the theory of
analytic functions. Furthermore Henrici gave some new results,,

The present article is a new introduction to the subject. 1In this paper the
theory of the @-algorithm is treated by means of classical algebraic methods. The
present paper however treats only a part of this theory. Although some of the
results developed are general the main part of the paper is limited to a special
case which, as indicated in the title, may be described as the part of the theory
of the QD-algorithm needed for finding the roots of a polynomial the roots of which
are known to be positive, by means of the algorithm.

With this limitation it is possible to prove some important results which
cannot be proved in the general case, First the existence question of the QD-scheme
can be solved; that is the QD-scheme will always exist in the case of positive
roots — as may be shown by examples this is not true in the general case.

Furthermore the question of convergence of the columns of the QD-scheme can
be solved, In the case of positive roots we can prove that the columns will con-
verge to the roots under all circumstances (and not only in the case of different
roots). Again this is not true in the general case, where complex roots may spoil

the convergence.

iV"







Rutishauser has also developed the so-called LR algorithm which may be con-
sidered as a more general method than the QD-algorithm. The LR algorithm may
be used to determine the eigenvalues and eigenvectors of matrices., Since — to

a given polynomial — there corresponds a matrix the eigenvalues of which are

the roots of the polynomial, the roots may be found by means of the LR-algorithm,

Furthermore, to most of the results concerning one of these algorithms there

corresponds a similar result concerning the other.
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AS A METHOD FOR FINDING THE ROOTS OF A
*
POLYNOMIAL EQUATION WHEN ALL ROOTS ARE POSITIVE )

BY

Chr. Andersen

Summary.

In Sections 1 and 2 the QD-scheme, symmetric functions and some results from
the theory of Hankel determinants are treated. Most of the results have been known
for a long time. Aitken [1] and Henrici [6] have used these for the same purpose
of rootfinding as treated here. However, theorem 2.4 by means of which the
existence of a positive constant ¢ such that H§ > c (positive roots) may be
proved, seems to be new.

Section 3 contains some well known relations expressing the elements of the
QD-scheme by means of the Hankel determinants, and the existence theorem mentioned
above.

In Section 4 the question of convergence of the columns of the QD-scheme is
treated. An exact expression for qi is developed for the case of different roots.
This expression seems to be new. It is proved that the columns of the &D-scheme
will converge not only in the well known case of different roots, but in all cases

where the roots are positive,
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Section 5 contains a detailed examination of the convergence to the smallest
root. In this section an exact expression for qg is developed. This expression,
is correct in all cases of multiple positive roots,

It turns out that the convergence of the columns of the Q,D-scheme to the roots
of the polynomial equation may be slow, and it becomes necessary to speed up the
convergence before the @QD-algorithm can be of use in practice.

In [11] Rutishauser uses the principle of replacement as a device for accele-
rating the QD-algorithm. This principle has also been used by Faddeev and
Faddeeva [4]. They remark, that the method may be useful as soon as the @QD-scheme
"has stabilized". It is however not easy to give general and useful criteria
for such "stability? Furthermore, Rutishauser [16] remarks that the computation
practice with the method of replacement has not always been successful,,

Numerical experiments in which I have tried to use the Aitken 62-process on
the columns of the @QD-scheme has not indicated that this process will be useful in
connection with the QD-algorithm in all cases.

In the case of positive roots it is however possible to use the principle of'
replacement in such a way that faster convergence will be obtained. Theorems con-
cerning this question are included in Section 5.

Finally, in Section 6, it is shown that the progressive form of the &D-algorithm
is only "mildly unstable".

In Part 2, that is Sections 7 and 8, some ALGOL programs and some results ob-
tained by means of these, are given. The examples show that the QD-algorithm works
nicely in practice in cases where the roots are positive, and the difficulties
which arise in cases where several roots are equal or almost equal do not give

too mch trouble.,



A few words about the practical use of the &D-algorithm as a general rootfinder
may be added. In numerical experiments with real polynomials with complex roots
(polynomial with real roots may be transformed into polynomials with positive roots)
the algorithm works perfect in many cases; but in cases where several roots were
of the same, or almost the same, modulus (apart from conjugate roots) the ALGOL
programs written by the present author failed to work properly. This fact does
not mean however that the QD-algorithm should not be used in such cases. But it
means that the QD-algorithm should be combined with other algorithms. Used in
the beginning of a general root-finding program the QD-algorithm may give some
very useful information concerning the roots and this information can be used in

other algorithm for the final determination of the roots.



Part 1: [Fhe Q,D-algorithm.

1. The QD-scheme.

1.1 Formulation of the problem.

Let
N N-1
1.1 = + ee0 + + P>
( ) PN(X) A + aN_lx alx a0 &y £0
be a polynomial of degree N, let a # 0 and let the roots of pN(x) = 0 be

numerated such that
lz [ > lzpl > oee > g

1"°°aN may be complex.

The problem we will treat is to find the roots of prd = 0 by means of the

The-coefficients a8

QD-algorithm, or better, to find approximations to the roots by means of this
algorithm.

It turns out to be difficult to treat this problem in its full generality;
at least it seems to be difficult to use the w-algorithm with success for all poly-
nomials. In the present work the problem to be considered is then limited to the

following:

Let prd be a polynomial with real coefficients, and let it be known

that all the roots of pN(x) = 0 are real and positive. Find approximations to

the roots by means of the__QD-algorithm.



1.2 The progressive form of the QD-algorithm.

The QD-scheme.

We begin with the formal rules for constructing a &D-scheme, which consists

of two sets of elements, called qﬁ and ei, written as follows:

1 2 3 N
L4, 9 %4 9
°’ ' 1 2 N1 N
1 1 € 1 1
P g ;
R % % L,
o 1 2 ° N-1 N
) € e, $2 €

The upper index k in qi runs from 1 < k < N and in ei, k runs from
0 <k <N. The lower index n runs from 1< n < » in both cases. The index

k is the column number and n is the row number.

The form and the notation used in this paper is the same as Henrici has used
in [7]; it differs from the notation used by Rutishauser and by Henrici in [6].

In the progressive form of the QD-algorithm the elements in the first g-row

and the first e-row must be given. Furthermore the first and the last e-column
has zeros in all places.

From these quantities we construct the following rows in the @QD-scheme by

means of the recurrence relations:

(1.2)




k k+1l, k k
(1.3) Chtl = qn+l/q'n+1 X € k = 1,2,000,N-1; n = 1,2,

n
These formulas are used as follows:

First (1,2) for k = 1,2,--+,N to obtain the "g-part" of a new row
and then (1,3) for k = 1,2,--+,N-1 to obtain the remaining "e-part" of the
same row.

We remark, that the construction cannot be carried out if qﬁ = 0 for some
k<N -1 and some n > 0. In this case the Q,D scheme is said not to exist.

The formulas (1.2) and (1.3) are known as the rhombus rules (Stiefel)

since they connect four elements, the configuration of which is a rhombus, in the

QD-scheme.

1.3 The forward form_of the @QD-algorithm.

The formula (1.3) may be written in the form

k+1 k k k
(1.4) A1 ~ en+l/en X 941

and by putting %k + 1 instead of k in (1.2) this may be written as

k+1 k+1 k+1 k
(1.5) © =41 "% Yoy

n

The formulas (1.4) and (1.5) show, that a new column (k+l) may be obtained
from column k; that is the QD-scheme can be built up from a given e-column and
a given g-column. In this case the QD-scheme is not limited to the right, and
we can only find elements ql; and e}; for which n > k. This form of the

QD-scheme is obtained by means of the forward form of the &D-algorithm.




As we will show in Section 6, the forward form of the QD-algorithm is not

suited for numerical purposes since this form is unstable.

In the remaining part of the paper we shall only use the progressive form

of the QD-algorithm.

1.4 The first_row of the &D-scheme.

When the Q,D-algorithm is used as a method for finding the roots of

pN(x) = 0 the first row is constructed from the polynomial,

W N-1
pN(X)—aNx tag )X toeeetaxtag,
as follows:
) o - -1
1 aN
k
Q@ = 0] 2 <k<N
(1.7)
0 _ N_
€ =& = 0
a
e]1‘=aN'ﬁ L<k<N-1
N-k

Until now we have assumed that ay # 0 and a, # 0. From the last of the
formulas (1.7) follows that all the other coefficients must be different from
zero in order to start the @D-algorithm.

By means of a simple substitution x = X, ¥ ¢ it is always possible to ob-

tain an equation where all the coefficients are different from zero.



It is more serious if one of the g-elements computed by means of the formula
(1.3) becomes zero and then spoil the algorithm. By means of an example it is

easy to show that this may happen.

Example 1.1
1)5(}c)=)c5+251x2 +bx+c
QD-scheme
e0 ql el q2 e2 q3 e5
-a 0 0
b C
0 A oy 0
b _ c_b -
a ¢ b a b
1 . b
Now 4, = 0 if z - 2= 0 and qg =0 if % - g = 0. In these cases the

QD-scheme will not exist.

It is however possible to show, that the QD-scheme always exists, if all

roots of p, (x) = 0 gre real and positive. This will be proved in another

section.




2. Symmetric functions. Hankel determinants.

In Section 2.1 we state some well known results about the symmetric functions
in the roots of a polynomial equation. These results will be used to prove a

theorem which is fundamental for the solution of the existence problem.

2.1 The elementary and the complete symmetric functions.

The elementary symmetric functions in the roots Zystt 2y of the polynomial
equation p, (x) = 0 are defined as follows:
0'0 =1
91+ % N
(2.1) Oy _ Zy%y * 2023 - e By g2y
o = *1%2. . %
0p=0 for p<0 or p>N
The polynomial
N N-1
— o 0o + +
pN(x) B+ ay (X - ax +a (aN # 0)

may be expressed by means of the elementary symmetric functions as

_ N-1 N-2 N
p.(x) = aN(oOx + 0% + oo+ (1) UN)

that is we have the relation



(2.2)

The complete symmetric functions in ZyseeesZy are defined as follows

S =1

o]

Sl 2% + oo Zy

S 22 A A z2.2 Z Z 22

2" 2 7 "1 N-1"N N
_ .3 3

85 = zl + 2122 + + zN

The complete symmetric function Sn of degree n consists of the sum of all

different terms of the form

a
1 N
(2.4%) AL -
N
where 0 <a, <N 1<i<N and ), @ =n
-7 . =

Theorem 2.1
Let Sn denote the complete symmetric function of degree n in the N
variable zl""%«' and let Sﬁr) denote the complete symmetric function in

the (N-1) wvariable Zyset 210 CAEPRRREANT Then

10



(2.5) S =1z 8 5(r)

n r n-1 + n

|
N

(r-1,...,N; all n)

Proof
The terms of Sn may be divided into two sets, the first of which consists
of all terms with z., as a factor and the second set of all other terms. Hence
(2.5) is true.
By means of a similar argument we may prove the corresponding relation

between the elementary symmetric functions:

r -
(2.6) o =z cﬁ_i + "r(lr)’ (r=1,...,N; all n)
where cgff and Uil) denote the elementary symmetric functions of degree
(n-1) and n, respectively in the (N-1) variable ZiseensBy 1 Bpgqsee sl

Theorem 2.2
For all positive values of n the complete and the elementary symmetric

functions in N variables are connected by the relation

_ - n-1
(2.7) S =0, 8 O Spp (L) s,

Proof

By induction with respect to N.
N = 2, In this case ol = zl + 22, 02 = Z1 z2 and cP= 0 for p >3. Hence
(2.7) has the form

8, = (zl+z2 ) S 1 "%1%y Spp v
. . n n+l n+l n .
which, with %}: zl + Z1 Zy o, e zlz2 SN and the corresponding
expressions for Sn—l and Sn—2’ is true.

11



We assume (2.7) is true for 2, 3,...N-1 variables, respectively and for all
values of n 1in these cases, and consider the case of N variables Zys Zpye sy
We prove that (2.7) holds in the case by induction with respect to n. n=1; that
is Sl = 0y which 1is true.

Let (2.7) be true for 1, 2,...,n and consider the case n+l. We have to

prove
n
A Sp#1 = 01 51 7 9541+ 93 pp Tt (-1) On+l

. ()
By means of (2.5) we have - with the notation Sﬁ instead of Sﬁ - that

S = 0,5 o - + (-l)nc
91 °n 2"n-1t+t "3 "'n-2 .o n+l
n
= ') - ! + g e e f(=
= oz 8, 1 +8) -0, (zy S o+ S, % o3(zy S, 5 8! ) (-1)%, 4
=z (g. S - 0. S + g S - .,.(_l)n‘l o)
N'‘"1l "n-1 2 n-2 3 "n-3 n
+ay 8 - gy 8 4 og Sl 5o e+ (D)o
9. %1 T % -1 + 93 Pn-2 n+l
= ZN Sn

! LI -1)8 LIS
+(zy Gé*'OB)Sn_e +(-1)"(zy0] +q

= ! ' - i ' - 00 0 - n ]

=2y S+ 2ylog 8y 0] Sy + (-1)7 o)

+ (o!8!-g's! gl gt I ]_)n a'. .)
91°n "% R-1 + 93 -2 n+l

= 1

=y S5 F Spa

In the calculations we have used (2.7) three times, and we have used (2.6)
too. The last expression however is equal to § ,, and we have proved theorem 2.2

by induction.

]

n+.




2.2 Hankel determinants,

The Hankel determinants will be used as the basic tool in the following
treatment of the QD-algorithm. The relation (2.10) which is of special importance
"is used by Aitken [1] and by Henrici [6] for solving the same problem as we
treat, and the sketch of the proof follows the same lines as used in [6] and in

Householder [8].

Definition of Hankel determinants.

Let “rcB 5y 8_ys By 8p,85 be any sequence of complex numbers, then
k -

we define the Hankel determinants H , for n >0, as follows:
"k k-1 " %k-n+l
Sx+1 "k

H1;=1; H1;= n=1, 2, 3, 0.0

fk4n-1 ¥k

We may prove the following relation:

k-1 _k+1l K\ 2 k .
(2.10) HOU L HD - (BT 4 E H’ll;l -0 n>1;

Consider the determinant of order 2n + 2:

15



1 2 n n+l n+2 2n 2n+l 2n+2

|
0 0 0 0
1 By 1 8 n+l fn O 1
1
0 0 0] 0
2 e+l %k k-n ! Tl 0O
. I °
. I .I
. ! .
n ®ktn-1  %ktn " 0 0 0 0 00
1
0 1 0 0 0 a
n+l ak+n ak+n-1 ak-l ! X 1 0
____________________ Y m = e e = e = e e e e o e e e
n+2 ay 0 e o o 0 a1 1 8o ak_5 & n 0 1
1
w3 B 0 0 % %1 %o . v . %k 0O
: . .
. l :
2n+1 ak+n-l 0 0 ak+n-2 ! ak+n-5 ak+n-h~ ~ak-l 0] 0
I
a. !
2n+2 81tn 0 0 ktn-1 &, - ak+n-5 -8y 1 0
If we subtract row (n+l+i) from row i for i = l,...,n + 1 and then add column

(2+i) to column (n+i) for i = O,l,...,(n-2) we find that this determinant must
be equal to zero. On the other hand if we compute the determinant by expanding
by (nt+l)-order minors we obtain two times the left side of (2.10). por further

details see Householder [8].

2.3 Hankel determinants in the symmetric functions.

Hankel determinants in the elementary symmetric functions and in the complete

symmetric functions are related. We prove

14



Theorem 2.3

Let

o, Ok 1 *O%pel
%+l Yk

B : K

n - ! .,
Oktn-1 Oy (n order)

and
Sn Sn_l‘ o ° Sn_k+l
n+l Sn

n .

C, = :
Sn+k—1 000000 Sn (k order)

and let 1 E_k <N

k
If Hn £ 0 for all non-negative n, then
(2011) H =¢C n= 0,1,2,.:°°

Proof

By induction with respect_to k.

k =1: We have to prove that Hi = Sn.

This may be proved by induction with respect_to n.

n=20: Hl

SO is correct since both sides are equal to 1.

n=1: H

o
1
1

15



Now we may assume that Hi = Sn for n = 0,1,2,...,p -~ 1 and we consider the

case n = p

9y 1 o .. 05 1
% 9 1 o3 o 1
1 Lot . . _
B = DR = o % .1 |7
9, o] oy oy (n-1 order)
- p-1
_ + (-
- 0y ﬁp-l opHo o+ (-1) o

The last result follows from theorem 2.2. Hence we have proved theorem 2.3 in
the case k = 1.

Now we assume that (2.11) is true for k = 1,2,...,pandforallnon-negative

n in each case. By means of the relation (2.10) we find for n > 0;

Pl _ [ P\2 _ P 4P g pP-l
Hn N [(Hn) Hn+llall]/Hn

n,2 n+l n-1 n
= [(cp)® - g™ o7yl

16




We remark that in case p = 1 we have used Hi_l =H =1=0C% Forn =0 we

have Hﬁ;l =1 = Co

p+1’ and we have proved theorem (2.3) by induction.

. . k
In the following the notation H will only be used for Hankel determinants

in the elementary symmetric functions.

2.4 A fundamental theorem.

Until now 2., *-+ 2. have been arbitrary complex numbers, and this being

1’ N

the case the Hankel determinants may vanish, This cannot happen if Zy e ZN

are real and positive numbers.

Theorem 2.4

Let Zl’ze’°'°ZN be positive. Define
a1 ;2 " %in
Tp1 Opp v Uan
o™ - |
n o
Uanl GbnE 0dnn
where céij are elementary symmetric functions.
Let
(1) ail > gi2 > <+ > @in 1<i<n
(ii) Al < Rj < oo < amj 1<j<n

17




Then

N)

Di >0 for all n>1

and, if

O!ii= k i =l,oao,n
() . n
where 0 < k < N, then D."" > min Uﬂ(qN)).

Proof

By induction with respect to the number of variables N.

N=1: Then o.= 1, 0, =2z and 0 = 0 for p # 0, 1.
0 1 1 P
We use induction with respect to n.

(1)

n = 1l: D1 — Oy The theorem is obviously true.
Assume, that the theorem is true for n = 1,2,...,p-1 and consider
D(l).
P

If app % 0,1 it follows from the conditions (i) and (ii) that the p-th
row or the p-th column consists of zeros; that is D(l) = 0,
P

If opp = 0; that is opp — 1, we have (by means of (ii))

If app = 1; that is cdpp _ Zl’ we have (by means of (i))
(1) (1)
DP _ Zl.Dp-l

18




In all cases the theorem is true for n = p and we have proved theorem (2.4) in

the case N = 1.

Let the theorem be true for (N-1) variable z_, ooo z and let qé

1’ N-1

denote the elementary symmetric function of degree p in these (N-1) wvariables,

Let zy > Z5 > oee > Zye We use a relation between elementary symmetric functions:

(2.12) o, _ %y cé_l 4 cé P=20,+1, +2, «

To prove (2.12) we remark that the terms of- GP may be divided into two sets, the

first of which contains all terms with z as a factor and the other set of the

N
remaining terms.
By means of (2.12) we may write DéN) as follows
3 t 1 ] ] 1
N "a11-1 + %oa1 y %oa2-1 T %12 0 0 %y %yin-1 T %am
' 1
8\ Cr621-1 + Udel
2.13) oM - .
n
1 1 1 i
N “an1-1 + “oml ° ’ “N -1 " %mn

From (2.13) follows that DéN) may be written as a sum of 2" determinants, The
conditions (i) and (ii) show, that each of these determinants may either have
proportional columns — and then have the value zero — or the indices will again
satisfy (i) and (ii), The non-zero determinants, from which 2y may be removed,
(1

are then non-negative and as a sum of these must be non-negative itself,

Now let aii =k, O <k < N,

19




(v-1)

If k < N we consider the term with ZE, say Dn

)

By the induction
assurnptionDr(lN_:L > min (1, (zl ... ZN-l)n)' Since

. n . n
min (1, (zl--- zN) ) < min (1, (Zl o--ZN l) ) we have

(N) (N-1) ) n

o > o > min (1, (o™
If k= N we consider the term with zﬁ, that is zﬁ . Ah where An has
(zl . ZN-l) in the diagonal, and zeros below the diagonal. Hence

n n .
2y - Ah —(qN), and again

Dz(lN) > min (1, (a,)")

and we have proved theorem (2.4) by induction.

Theorem 2.5

Let zl > zg > e > zN > 0.

Then

ko) 1<k <N n>o0

Proof
Since the Hankel determinants satisfy the conditions (i) and (ii) from

theorem 2.4, and since the diagonal elements have the same index this result is.

nothing but a corollary to theorem (2.4).

20




3. The existence theorem in the case of positive roots.

3.1 Formulas for qi and ei

Let the QD scheme for the polynomial pNOO be started as in section (1.4)
and continued by means of the rhombus formulas (1.2) and (1.3). Then the elements
qi and ei may be expressed by means of the Hankel determinants Hk in the

n

simple symmetric expressions.

Theorem 3.1

If the Hankel determinantsﬂﬁ are different from zero, then

k HE HE:; n=2 3
— 4 )
(3.1) o=k el
n-1 "n-1 k=1, 2, N
and
Hk+l Hk-l
(5 2) ek.= - n n-1 n=2, 5, .
n k k
n n-1 k=1, 2, N-1
Proof
By induction with respect to n
= 2
= K k-1
k H2 Ho
We have to prove that QW = Hk Hk'l
.1 7L
Now
k k-1 k
L= "% T

_ ON-k-1 "Nk
-k AN-k+1

where we have used (1.7). By means of (2.2) we find

k Ox+1

0]
.
%  %%-1

21



On the other hand

(o] g
el k  %k-1
2%  %+1 % | % Ok+1
_ - = - b)
Hl]{_ Hli Looog %1 w1 %

and we have proved (3.1) for n = 2.

Since

]
(=]

1
!

——

N

H Omﬁ‘
WQ
+
]

o

3
'.-J
b
l—-l

l—'mlﬁ' (@]
[

|
PN
e
o
—

formula (3.2) is also correct for n = 2.

Now assume that (3.1) and (3.2) holds for 2, 3,...n, and all k in

question and consider the case n + 1. We obtain:
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k
Y41 "% "% T

Hk+1 Hk-l Hk Hk-2 Hk Hk-l
_ n n-1 n n-1 n "n-1
T Tk k + k-1 k-1 + _k _k-1
Hn Hn—l Hn n-1 Hn-lHn-l
k k k-2 k-1 k-1 k+1 k-1
_ Hn . Hn-lHn—l i Hn lHn-Q Hn n-1
- k-1 k-1 _k Tk k
Hn—l Hn Hn-l Hn Hn—l
k k-1,2 k+1 _k-1
_ Hn ) (Hn-l) Hn n-1
Hk-l Hk—lHk Hk Hk
n-1 n n-1 n n-1
Hk-l (Hk)2 Hk-l k+1
_ n-1 n n n__
Hk Hk-l k
n-1 n n
k-1 k k-1
_ Hn—l n 1 H.'l§1+l Hlr;l Hn—l
= _ - ;
Hk Hk -1 k Hk .Hk 1
n-1 "n n n n

that is (3.1) holds for n + 1. We remark, that we have used (2.10) twice.

Now

ek _ k+l/ k k
ntl -~ Y+’ %41 X 6p
k+1 .k k
Hn+lI}Il—l . Hn

k+1 _k k
Hﬁ - Hn n+1l

-1 Hk+l Hk-l
n n-1

n n-1

k+1 _k-1
n+l 'n .
k k ’
Hn+l n

and (3.2) has been proved for n + 1.
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Theorem 3.2. The existence theorem.

Let the roots of prd =

Then

qi>c>o K =1, 2, «oo N all n >2

where ¢ is a constant.

Hence the QD-scheme always exists in the case of positive roots.

Proof

From theorem 3.1l we have

and from theorem 2.5 we know, that

k . n
H > min (1,(cy)")

k
Hence we may conclude that 9 > o.

k

In order to prove that a9, > c > o we use the following

Lemma 3.1

for all n > 1

o7
I

91

W
]
o=

Proof

For n = 1 this follows from the first row in the @QD-scheme, where
1 k
9 =0y and 9y =©° for 2 <k <N.

and consider

Let it be true for 1, 2, ... n,

2L

o satisfy the conditions zq > Z, > 0>z

N

> 0.




k
k§l G+l T

It follows that the lemma is true for n + 1.

|
(g
=] =
1

Lemma 3.2
it
=g for all n > N
L Lik-N ~ ON
Proof
N N
k 1 2
kUl In+k-N « In+l-N - nt2-N %n
1 2 _ n-1
_ n+l-N, I-In+2-N I-fn—l\l le\ll Hn—2
-1 2 L N ~L1
Ho N Hoiioy By Hnaf
HN
_n
- N
Hn—l
n
_x
~ n-l
N
= UN
Lemma 3.3
k
qa < oy 1<k <N n>2



Proof
N

Since qg > o and z: qﬁ = 01 the lemma is obviously true.
k=1
Lemma 3.4
an>gNg:1£'N 1<k<N n>N
Proof

N
k , k . .
i ll = the lemma is obviously true.
Since qn < oy and since I qn+k~N GN y

1-N

for n > N.
oy %1

From lemma 3.4 follows that qﬁ > ¢, where c =
We consider qE for 2 <n <N.

Since HE > min (l,(oN)n), and since n < N we have

7 > min (1, (o

. )4

N

for the n's in question.

Then
& >c; = mmin (1, (o))" 17/m
where
b e (D
2<n<N
Hence

qi > min [UN oi_N, cl] > o0 1<k <N n>2

and we have proved theorem 3.2.
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We remark, that polynomial equations, the roots of which are known to be
real but not necessary positive, may be solved by means of the Q,D algorithm as
soon as a lower bound for the roots has been found. This being the case a

transformation may be carried out and the theory for positive roots can be used.

4, General convergence properties.

In this section we examine the columns of the QD scheme for a polynomial

equation p.(x) = 0. As usual we assume that z, >z
N Z

1 >.. .. >z > 0. This

2 - N

being the case we may prove that the g-columns converge. Precisely, that
qi =z, as no-ow for 1 <k <N. 1In order to prove this result we must
develop some formulas for the Hankel determinants as functions of the roots
215 Zor x Iy The formulas used until now seems not to be useful since the

number of terms in HE tends to infinity with n.

4.1 HE as_a _function o@ the_roots.

The basic formula is

5, S, L megel
Kk Sn+l
(4.1) Ho= | 1L<k<N
o\ n= 0,1, 2
Sn+k]_ .Sn 12 ] ]

and we begin by finding Sn as a function of the roots.
Theorem 4.1
1 2

Let the roots be different, that is in our case z, > z, > «-- Zy > 0, then
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Proof

By induction with respect to the number of variables N.

N=2

By definition

n n-1 n
Sn =2, + 2, Z, + + 2,
Zn+l _ Zn+1
= . zZ., - i (zl >Z2)
1 2
ZZ—l ZZ—l
L )
17 % 27 %1
which is the right side of (4.2) in this case.
Let the theorem be true for 2, 3, ..., N-1 variables and for all n in
each case. We consider Sn of N variables.
From theorem 2.1 we have
_ (1) _ 2)
(4.3) 8, =z 8,y t 8=z, snl+§n,
(1) _ (1) (2) )
where S ™ = S/ [22, . ZN]’ s, = gi [Zl’ Z3) gN]

The formulas (4.3) give
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or with n + 1 instead of n:

(L.4) s, = (8,41 - S‘*’)/(z1 -2,).

Now we may use (4.2) with N - 1 to obtain

ZN—2 zN—2
1 1 n+l p) n+l
S ' Z z +e.0 [
nz,-z, (zl-z5)“. ﬁ%.@%&@ 1+ (Zﬁ_zl) (zj-z3) e (ZB-ZN) 3
ZN—2 ZN—2
. N ntl 2 ntl
(zN-zl)(zN-z5)'°-(zN-zN_l) N (22—25 -'-(22-2ﬁ) 2
ZN—2 ZN-2
AL C 4 01
(2'3_Z2) (ZB-Z)_'_) e (Z3-ZN) 3 —(ZN-Zg) (ZN-ZB) e (ZN'ZN_]? N
ZN—l zN—l
_ 1 zn + 2 Zn
(zl-zg)(zl-zs).w.(zl-zN) 1 (z2-zl)(z2-z5)...(zz-zﬁf' 2
N-1 .
X %I: z; [zi-22 - (zi-zl ] 0

=5 (zl-zgy(zi—zl) (zi-ze) oo (zi-zi_l) (zi—zi+l) oo (zl-zN) zi

; 5 n
= Z
N i’
i=1 —I—l— (Z.—Z )
1
i=1,i#]

and we have proved theorem 4.1 by induction.

Theorem 4.2

Let zl > 22 > ..'ZN > 0.
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Then

N-k
(ZE e 2, )
k 1 k n 1<k <N
(4.5) H =) (z, ++1,) =%z
S S L T T
G T L, n >k
. . i J
i=1 j=k+1
where the sum is taken over all (ﬁ) combinations Z, "z, of k roots
1 k
taken out of the N roots.
Proof
From the general formula (4.2) for Sn and the formula (4.1) follows that

we may write Hﬁ in the form

N n l n-1 il n-k+1

De,zy Le, 2.0+ o« Loeyozy

1 1 1

N N N

De 2zt Le, o } e, 207K

k T 171 T 1 1 R R
(4.6) H_ =
n .

%c zn+k_1€:c ngk—2 %c zn (k rows)

T i "2 T T 21 T 171
where the constants CI; i=1, ..., N are independent of k and n. At this

point we have used n > k.

It follows that HE may be written as

30
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c " c g—l n-k+l

4 by 4 by Ay

C Zn-'-l C Zn Zn_k-I-2

. SRS by Ay be by

(4.7) B =L |-

o Zn+k—1 éﬁk—Z R Zn

2, %oy b, b, b "o
where 1 < zi < N i=1, ...k

From (4.6) we know that the determinants, in order to be non-zero must
have different roots in all columns; that is HE may be written as a sum of
p(N,k) determinants. 1In (4.7) we then have to take the sum over all p(N,k)
permutations (21,32,. .. Zk)taken out of (1, 2, . . . . N)

Now the p(N, k) determinants may be divided into (E)

members of each set have the same k roots in their columns. Hence we may

sets, where the

write

n n-1 n-k+1
zZ Z . . . Z
a4 % e

k
(+.8) H=L Tl ¢, Ly |-
i=1 1

n+k-1 n+k-2 n
z z . .z
where the sum Z&I must be taken over all k! permutations (ql, .o qk) of
(zl,zg, o i ﬂk) and the sum ZI must be taken over all (g) combinations
(a,, Apr e o zk) of (1, 2, . . . . N). Since the constants Cpre cz are
1 k

the same for all members of the same set, these may be taken out as shown in

(4.8). It follows that we may write (4.8) in the form
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k-1 k-2 0
z z Z
LD I
k k-1 1
Zq Zq Zq
_ E "'Fl— c K (Z )n'k'l‘l[: 1 2 K
I L. . £, TI
i=1 ii=1 i
2k-2 2k-3 k-1
z z z
9 %L 9
We introduce the powers s of the roots Zyro- Z, by
2 k
Sp = Z.EP + se @ Zz p=01 2
1 k
Then
- k-1 k-2 <© le-l+° +zl;-l
kl k
Sk Sk-l Sl ! +...+ZE
.1 k
A =
S2k-2 SEk-5. Sk-l Zik-%' . '+Zg2k_2
1 k
It follows that A may be written as a sum of k2 determinants.
only k! are different from zero and the sum of these is E:II o
Now
gkl gk-2 s° 11 1 K71
4
Sk Sk_l Sl 2, 2, z, zi_l
1 2 k 2
Lit =
ok - _ . , k-1
22 2k-3 k-1 Zl; 1 Z}Z 1 2
1 k k

zz + +zz
1
zi'l+n +%§"1
1 k
Of these
z 1
zl
z 1
2
=58y
z 1
lk




Since the product of the matrices corresponding to the two last determinants

is the matrix corresponding to the determinant on the left side.

Since
k-1
101 . 1 z Co. oz, 1
4y £y
z A Z zk-1 Z 1
SR by K £y Lo K
= l| ) (ZK - Zz) and = (Z _zz)
k-1 k-1 k-1 i=Lg>t o Ty k-1 | I A
Z Z Z Z Z
by Ay by Ly by

Hence
k k k k k k
k n-k+1 -k+
H=):||c H(z) I[ [T (z,-2, ) = L (c ||(z-z)znkl)
n T, L. . L. . R RLTR A A T ., £, . 3L AL A
i=1 “i i=1 i i=1 j=1,3#1" 17 7 i= i g=1,3A171%3 1
where the sum must be taken over all (g) combinations of k roots taken of the
N roots.
With z N-1 z N-1
2 z,
i i
2. = N ST N
i (zzi- zj) (Zﬂi- z, )
§=1, 344, J=1, 041 ’
we obtain
z N-k+n
k I
k i
Hn B [& N
i= (Z -Z)
r £, 2,
. i J
J=k+1




or

N-k
(zz ez, )
(4.9) g - L k (z, ...z, )P
n Ny, k N £ £
all (1) T 1T (z, -z, ) 1 k
comb i=1 j=kt+l i J
and we have proved theorem 4.2.
The formula (4.9) may be written as
n
(zg . z&)
(4.10) B - 1 k
Talr (N)fﬁ— 1%— (L-2,/z,)
k £.74
comb 121 jok+1 J i

4.2 General convergence theorems.

By means of the formula (4.10) we may prove

Theorem 4.3

Let 2. > 2., > ¢o0 > 2> 0.

1 2 N
Then
Hk
, n
lim B %0 0%
1 k
n—o H
n-1
Proof

Since the roots are different we have

(n > k)

jas}
-
!—-l
+
(!
—
'_l
[Ce
%::12
+
'_-I
AR
N| N
'
Ny ?
&
N N
= | s
'_l
al N
~ =
.

(v.11) & 7 (2) 25e002y) W
n-1 1 +-Z:«]—r '1"r
i=1 j=k+1

where the sums now are taken over all (ﬂ) - 1 combinations z. ...z different

from zl...zk.
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Since 2z, > 2. > *+» > 2z_> o it follows that

Zzl‘.. (*@&j .

Zl ...Zk

1

for all combinations in question. This means that all the terms in the sums
in both the numerator and the denominator tend to zero, and since there are a
finite number of terms in these sums the fraction in (4.11) tends to 1.

Hence we have proved theorem 4.3,

Multiple roots

Theorem 4.4

Let z, >z, > *** >z > 0.

1 2 - N

Then

Hk

]
N

lim
n—oo H
n-1

that 1is the result from theorem 4.3 is true also for the case where one or

several roots of pN(x) = o0 are of multiplicity greater than one.

Proof

We begin with the case where one of the N roots, say z., is of
multiplicity 2, and the remaining (N - 2) roots are single roots; that is the
roots of p, (x) = 0 are z, > z, > eee > Z.1 = 2, > 000 > Zy

Now we consider the polynomial equation p§bd = 0, which has the roots
Zl > z2 > ok > zr N € > zr > 0w s N

Let Hﬁ(e) denote the Hankel determinant corresponding to this equation.

From the definition of Hﬁ(e)as a determinant in the complete symmetric
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functions follows that Hz(e) is a continuous function of €. Hence we

find H (o) = lim H'(e).
n n
€—>00
By means of (4.9) we may write

(z, z e Z )N+n—k (z z )N+n—k
k 12 k + N-k+1 . ')
(%.11) Hn(e) T Tz,-z, ) .c.2 -2_) roe (z -z ) (z,-2 )
1 "k+1 k °N N-k+1 "1 "N "N-1
where z = Z_ + €.
r-1 r

The terms of (4.11) in which € occurs in the demoninator must be combined;

that is we'have to consider all combinations (z 2.2y )  of which L1 but

1 k
not z., is a factor and all combinations where Z. but not zr 1 is a factor.

There are (ﬁ i %) combinations of each kind; we take them pairwise as in

the following example where we assume r > k

i N+n-k N+n-k
. (20 21 %0 . (z) 2 1 %) ,
k-1 (z,-2_) (z_ _-z) N (z. .-z.) k=1 z.-z ) (z_-z_ ) il z_-2 )
ir! Mr-1"r Il r-17j TTé R T e R S P r 1Té
i= J=k, jfr,r-1 i=1 J=k, Jfr,r
k-1 N
where = || [ (z.-z.)
JIE im1 j=k,jfr,r-1 >
Then with 2.1 =2, + € we obtain
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N+n-k N+n-k N+n-k
. 2 0 & l) | (zr €) ] z,
|| ‘ el . ) il (z_-z 3t€) & l(z -z_-€) N (z_-z.)
) -y 1T r r r 7
1=f j=k, j#r,r-1 i=1 j=k, j#r-1,r
N+n-k kL N+n- k
( ) 3%&; N+n-k (z +e) ' (zi-zr-e) H (zr-z )- -z, H (z, 'Zx) H (z.r-z+e
i=1 J= k,J r-1,r J=k,J Tr,r-1
= —rr k-1 N k-1
‘ € H (z,-z_) H (zp-z s+€) || (z -z -e) II (zr-z
2 i=1 * er,JI‘I‘l J i=1 Jk,J -1,r
Let t(e) and b €) denote the numerator and the denominator of the last
fraction, respectively.
' N
2
Then t(o) = b(0) = 0; b (o) = ( ” (Zr‘ZJ) )
j=1, j#r,r-1
We find
N k-1 N
! N+n-ky N+n-k-1 k-1 k-1 1 -
£ (o) = (MR (-1) (zp-23) - (-0 T (=) (zp-z )z o
j=1, j#r,r-1 i=l “i “r j=1,j=r,r-1
N N
k-1 1 N+
- (-1) L (—=) (zp-z3) z n-k
j=k,j#r,r-l r J 1i=1,j#r,r-1
Hence
N+n-k
(z,* +z, .z)
lim u = (-1)%7t 5 1 k-lr (Mn-k 1o
€ o k-1 N 1) =z
(ZI,-ZJ llll (\’7.,~1-Z )
J=l,j¥l‘,r-l i=1 J—k,j#r,r-l J
(4.12) Nnok
(zl' 'zk_lzr) n- k-1
+ (-1 N o K1 i (E G= Z(ZT'ZJ’
(z-2) (z3-z ) =1 1 % 3Tk, ghor-l
. T3 i
J=1,j#r,r-1 i=1 j=k, j#r,r-1
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where lim u is written as the sum of two terms in order to preserve the number
of terms in Hﬁ. The limits of the remaining pairs obviously have the same
structure as (4%.12), and we may write a formula for Hi covering the case of
N - 1 different roots.

In this formula, which again consists of (g) terms of the form

(z eng )N+n—k (N+n—k
Xy )/ y7

1 k 71 k 1)
By means of the technique used above we may use the first result to obtain

, the coefficients may have a factor

new formulas covering the cases two roots of multiplicity 2 or one root of
multiplicity 3 (all other roots single in both cases) etc. until we obtain the
following result:

Let r be the number of different roots of prQ = o0, and let the
multiplicity of these roots be ml,nb, coeoe M, respectively.

Then we may write Hﬁ in the form

k N+n-k
(4.13) o= Loy cz(‘_‘?oz (z, wez, )
all (1) "1 “k 1 k
comb."
In this formula c<n» is of the form
ﬂo.oz
1 k
cz ...Z
n 1 k N+n-k N+n-k
(k.1k) ci ?,,z ———a ( D JERRN¢ pn )
1 k = || (zi-zj) £y £y
where c is a constant; || (z,-2 )a contains powers of the differences
gl...gk i)
between different roots and o <p, < m-1 (1 < i< r). By means of (4.13)
i

we obtain




.(n) g ee.g DK

Lop gpen [Fag zk\

e (n) 2. eeeg }

n ( . ) l°'°k. 1 k_

(4.15) K = Zl' 'zk (n-1) N+n-1-k

H c, . z, “c°z

n-1 e
L+ L )
cloaok Zl Z

where the sums are taken over all (g) L, ) different

k

- 1 combinations (z
ﬁl

from (zl‘.. zk) .

Among the combinations (z °'°z£ ) there may be some for which
1 k

Z, **°Z = z,***z,, and among these we choose the term with max

L £ 1 k

[(N+n-k)°.°(N+n-k)].
1 K Py

p
1 by
By division in the nominater and the denominater, respectively, with these

functions of n, the fraction in (4.15) will tend to 1 as n tends to

infinity. Since
. N+n-k N+n-k N+n-1-k N+n-1-k
Lim ([P (0 (7077 (D) =1
n— oo 21 .. ﬂk 21 Zk
we have

, k,. k _ D
lim (Hn/Hn_l) =z z

and we have proved theorem 4.4.

Theorem 4.5

Let z1 >z, >0 > 2. > 0

2 N

Then

q_r1:—>zk as n —so ,
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Proof

From theorem 3.1 we have

k k-1
qﬁ Hn Hn—Z
= .k n-1
Hn—l }%—l
Hk Hk-l
_ . n // n-1
-k k-1
Hn—l Hn—Z

Hence by means of theorem 4.4 -

lim qE =(zl"'zk)/(zl---zk_l)= 2

n— o

k

Theorem 4.6

Let 2z ZZ Z---Zz >0

1 2 N

Then
k
e 50 as n -»w
n

Proof

By induction with respect to k.
k=1

From (1.2) we have

or - since e;1= 0 -



Hence

. L. 1 . 1
lim en = lim qn+l - 1lim qn

n—-o n—o n-»c

We assume theorem (4.6) holds for k - 1 and consider the case k. Again

L]

(1.2) may be used. We obtain

k_ k k
R T R W °
Hence

. k , k . k , k-1
lim en lim qn+l - 1lim qn + llrn.en
n— o n—-9 n—oeo n—

and we have proved theorem 4.6 by induction.
In special examples the theorems 4.5 and 4.6 may be proved without using

theorem 4.4. We consider two cases.

Example 4.1
N=2
(1) z; >z, >0 N !
1 _ _.n n-1 n_ 1 % n
Now H S, =2z, * z) " Zy F tz, = ——Ezf:—zg—— 3 Hi = (zl 22) and

we find directly by means of (3.1) and (3.2):
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n+l nt+l
S -
4 = Zg _ Zg ’ Sy
n-1 n-1
2 2y T %
4G =% % o0 _ gD
1 2

qi =29, qi - 2, and -0 as —
(ii) Zl Zy >0
2 .
Then Hi =S = (n + 1) zi; Zy and we find
2n s
qi _ n+l _ el : 1
- — K} —] — - =
n 1 (n+l)zg o AL (n+l)n
2n n-2
2 A (n-1)z) © 4u-d n .
4 = 2D n-1 n 2’
z4 nz,

Again it is obvious that

1 2 1
q, 2% 4 —922(=Zl) and e —0 as n -

Example 4.2

N arbitrary;

We have

all roots equal,

that is




Now

kK k-1 2
& - By By o 9% 7 %%1 Ok
-k k-1 7 g, o
Hy Hy k 9k-1
(4.16)
N,2 N N
= T z, k=1, 2, N
@
and
K+l k-1 o
K iy "~ H (opp)” - 0 W2 o
2 =" X .k G -
fp B o = %1 k
OZ oy (M)
'kl Kk k+2! | k-l B
MR () AT 2, k=1,2, .., N-1
k k-1/ ‘kt+1 k
Since

N2 N, N N\ N-k+l  N+1
) - (k-l)(k+l) = (1) kK k(k+1)

(4.16) and (4.17) may be written in the following form:

k N+l -
LT kED) "1 Tlee e N
k (N-k)k

€ "0 (2) ‘1 k=1, ....Nl

By induction we may prove that
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k (n-1) (N+n-1)

(k.18) % = Tem2)(kn-1) 21 k=lp oo N
k __ (N-k)k _ _
()-I-.l9) en = m Zl k=1, ¢« ... N-1

For n = 2 (4.18) and (4.19) holds as we have shown above.
Now we assume that (4.18) and (4.19) holds for n and consider the case

n+ 1:

|
[¢]
[
(0]
+
3

k
1 T Gn n

_I:(N—k+l)(k—1) o Nk ko (n-l)(N+n-l)]
| (k+n-2) (k+n-1) (k+n-1)(k+n) (k+n-2)(k+n-1)

_ _ n(N+n)
= Tkn-1) (k*n) 21

which is (4.18) with n + 1 instead of n.

Then

K (Rl ) ok
ntl - ‘441 %1’ Gn

o Rk
(k+n) (k+n+l) “1

which is (4.19) with n + 1 instead of n.

From the formulas (4.18) and (4.19) we find
k k
q, - zk(=zl) and e -0 as n o

Ly




5. The convergence to the smallest root

The formulas developed in section 4 show that the convergence of the
g-columns may be very slow. In this section we shall examine the question of
the speed of convergence to the smallest root Zy of p, (x) = o. Furthermore
we shall show that it is possible to use an acceleration technique to obtain

faster convergence to the smallest root.

>.1 A formula for qg
In 'section 4 we have given a qualitative formula for Hﬁ valid for the

case of multiple roots. 1In order to examine the convergence of qg to Zy

in detail we need a precise formula for qg which cover the case of multiple

roots. As usual we assume that z, >.. . > zy > o.
Lemma 5.1
-1 1 1 1
(5-1) le\I =O'§Sn['z—,z’ .o ’E]
1 "2 N
Proof
By definition
1 1 1 1
g b, (=..=) o.(=...=7)
N-1 'N-2 z; Iy 2 z, ?N
g g o 1’- 3‘_)
N N-1 1 Z; Zy
HN—l _ _ L 1
n TN
1
1 0, (=
N ON-1 1'z
(n rows
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In the proof of theorem 2.3 we have shown that the last determinant has

1;, . "zl] and we have proved lemma 5.1.
1 2 N

the value § [i ,
n'z

Lemma 5.2

Let p(N, n) denote the number of terms in the complete symmetric function

Sn in N variables.

Then
(5.2) p(W, m) = (FP7H = (M) wm>2 n>o
proof

By induction with respect to n.

n=o
. N-1 .
Since 8 =1 and(N l)=’1 (5.2) is correct for N > 2. We assume
that (5.2) holds foro, 1, 2 . . . . n-1 and all N > 2 and consider the case

n. By means of the relation Sn[zl~--zN] = ZlSn l[Zl”'ZN] + Sn[ZE"'ZN],

which has been proved in theorem 2.1, we may obtain

p(N, ny = p(N, n-1) + p(N-1, n)

N+n-2
= N-1 ) + p(N-l, n)

_ (N+n-2) + (N+n-3) + ..

n
= .+ +
N-1 N-2 (l) L

where we have used that p(l, n) = 1.
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Since

we have proved lemma 5.2.

Lemma 5.3

1 be of multiplicity m (1 < m < N) and let the other roots be

different. Then

Let 2z

Sn[zl,...zl, Zm+l""ZN]

ZN+n—m
1 N+n-1 1 1 N+n-1 m-1 1 1 -
=— )-8 [—— i Yz 4o+ (-1)"Ts T P
N m-1 1z -z ! Z. -2 m-2 ’“1 1%z = LN i 2
Tz, -2, ) 171 17%N e R A
1 S
j=m+l *
N+n-1
Z.

i
=.I: m N
Jj=m+l (zi-zl) 1—r (zi-zj)
j =m+1

Proof

The proof may be given by means of the limit technique used in section 4.
In this case however the notation is so much handier that we may prove (5.3) by
induction with respect to N.

N2
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If z, >z, (5.3) is nothing but (4.9) which is correct and if 2, = 2,

. n , \ .
we find Sn[zlzl] = (n+l)zl which is correct too. We assume (5.2) is true

in all cases with N-1 roots and consider the case with N roots.

N+n-1
=0
From lemma 5.1 follows that this is correct. If m=1l (5.3) again is (4.9)

If z; is of multiplicity N, we find by (5.3) that Sn[zl...z

and we may assume that 1 <m < N,
By means of (4.4) we have

2]

Sn[z seeeZys gy 2y

Qo

m

= S, [2,50 02,2 co.z1-8 2,0z, 2 5. . 2] (z.-z_..)
n+1t %1’ 12 2o UG US N R e Y31 N 1 %41
m m-1

The complete symmetric functions in the parentheses are functions of N-1

variables and we may use (5.5) to obtain

ZN+n-m
S -1 N+n-1 _
I e LY s
- . }(Zl-Z ;) 1l mt2: 1°N 21 R
Jj=mt2 dJ
N Z.N+n—l N Z1.\T+n-l
+ : -
oo, m N . m-1 N
i=m+2 (zi Zl) T (zi-zj) i=mtl (zi zl) —rT- (zi %j)
J=m+2, j#i J=m+l, j#i
ZN+n—m.+l
1 [(N"‘H'l) S [ 1 1 ](N+n"l) + ] /
N - — ... TRzt (z,-z_,.)
N (zl_zj) m-2 1 zl zm+l Zl zN m-3 1 1l mtl
J=m+1l
By reduction of corresponding terms and by use of the formula
1 1 1 1 1 1 1
Sr[z -z Tz -m I+ Z -z Sr-l z.-2 2" Tz -z ] = Sr[z -z 2z -z
1 "mt2 1 °N 1 "m+l 1 "m+l 1°N 1 "mtl 1N

we end up with (5.3). Lemma 5.3 has been proved by induction.
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As an obvious consequence of lemma 5.3 we have the following general

result

Lemma 5.4

Let pN(x) = o have r different roots z, >z, > ..0 > z. > 0 of-

multiplicity m

s Mgy --., M respectively. (Z:mi = N). Then - with the

, ms ] 1 | : L
notation S [—d—] = 8 [ _ ] (541) -
=2, .- ’ - 5] .. _ ey _ g e _ Jl
P 277 P 23727 278 Zi7% 2y72y 247Zy
s —~ — N ~ "
m, m_

Ej = ) - 8 [—ALm' ](N+n‘l)z +eeet(-1)M-1 s [.m:i lzi-1
= e - Z..
i r . xmj L m.-1 1 zi—zj 'mﬁ_e 1 mi__lz.l--z:j T

1 1
Sl ek )
N 1 N
(5.5) q, = T 7
S.n_l’z—,...,'z- ]
1 N

ko




We use the notation from lemma 5.4% and obtain

1 \N+n-m, -2 1 \N+n-m. -
} (; ) n ml (-Z_ ) n ml 1
N 1 N+n- i N+n-2
q'n=E r m [(m—5)+'”]/z rl m (mrjl AR
i=1 (l_l)j i i=1 —ﬂ—(_l_l).j 3
J=1,d4 "1 % F=LJt%

In this formula zr denotes the smallest root of pN(x) = 0. Furthermore,

both the denominator and the numerator consists of N terms.

N
5.2 The monotonic convergence of ey

We consider

m
j=]

I
1
1
N

=

It
47z
1
N

~

and treat the two cases m_ = 1 and m_ > 1 separately.

m = 1; that is the smallest root is a single root.

By means of (5.5) we find

1 \N+n- 1 N+n- -2
(2 )R (= )1 i
z__ e >
€ T r-—l:r T rrl m [(rlgn?l)-h" ¢ +I num
101y R r-1 i=1
” (; Tz (_z z )
j=1 “r 7 j=1,jfr-1 “r-1 %j
1 N+n-2 1 N+n-mr-1-1
(E ) (z ) r-2
r r-1 N+n—2)+_ ] Z: d
(5.6) -z 3 -~ + T — [(m 1 * | enom
11413 1 1y J r-1 i=1
7= G -7)
j=1 “r 3 j=1,3fr-1"r-1 %
1 N+n-2
(= )
-1 - +
r 1 1 m'j
-1
j=1 *r 7
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From (5.6) follows, that ¢ may be written in the form
z n
(5.7) e =c (=) b)),
n Z
r-1

where b(n) -1 as n - o ,

Hence we have proved

Theorem 5.1

SEES
LetleZEB —ZN—l>ZN>0'

Then

mr_> 1; that is the smallest root is a multiple root.

By means of (5.5) we find

1l N+n-m.-2
(—Z-r) - N+n-3 rel
€ = [( o] + 2: num
n Ny m, m -1 .
1_LydJd r i=1
. vy 2. T,
J=l,g#Fi ("L ]
(% 3\I+n—mr—1 .
r N+n-2
(5.8) -z, " — [(m -l.)+”'] +.E denom /

Ty =

J=13541 %1 %3

1 N+n-m -1
(E ) r r-1
r N+n-2
r m, [(m 1 Yoo ] +.[ denom
(l o1 ) J r i=1

From (5.8) follows, that €, may be written in the form
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where b(n) -1 as n - .
We have proved

Theorem 5.2

>z, > .a* > ZN 1= 2%y > 0, that is the smallest root is a

Let 2z o

1
multiple root.

Then
1
€ tends to zero as = .
n n

Theorem 5.3

The last column of the @D scheme forms a monotonically increasing sequence:

Proof
Since
N _ eN _ eN-l + N
9+1 T ©n n 9
_ . N-1 , N
n )
we have



Since

e <0 for all n

From theorem 5.3 and the convergence of qg to Zy follows

(5.10) o< qg < 29 n>2

We remark, that a similar theorem concerning the convergence of qi to

the largest root z, may be proved:

1

> oo .
Let 2z, 2 Z, > > Zy > o. Then

1 1 1
R g S ]

Theorem 5.4

Let z, > 22 > xx > zN > o, and let N > 2

1
Then
N N
(5.11) (N-1) ¢ > 2y - q
Proof

The proof is based on the following

lemma_é;i

For symmetric functions of N positive variables, where N > 2, and

all n>1

.12
(5.12) S, < wy 8,4
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For N = 2 (5.12) may be proved to hold for all n by direct calculation.
Now we assume, that (5.12) holds for N - 1 positive variables
2, 22, 2 - = 22y > . For n = 1 (5.12) holds. We assume (5.12) holds for

N variables and for n and we have to prove that

(5.13) S g, S

n+l < l™n

Now

R
n+l ZN Sn * Sn+l

1 1
< zN Sn + ol Sn

where we have used

that is

Hence we have proved lemma 5.5 by induction.

The equation (5.11) may be written in the form
N qﬂ >z

N

5k




Since N>-N4 N ..., X , we have by means of (5.5):
~z z z
1 2 N
1 1
S [_ ) R
N n-2 zl zN
¥ q, =N
s . [x 1
_ ’ )
n-1 zl zN
1 1 1 1
o, I=, , =158 = . =]
1 Zl ZN n-2 z4 ZN
2 Zn J
1 1
Sp-1 (30 5]
1 N

which result by means of lemma (5.5) shows that N qg > zy, and we have

proved Theorem 5.k.

>.3 An_acceleration device

The formulas (5.7) and (5.9), in which z, denotes the smallest root of

pN(x) - o, proves the following

Theorem 5.5

Let z, >z, >...> > o be the roots of py(x) = o, let 0 <c < 2y

12 N
*
and let pN(x) = o have the roots

Z, = Cc>2Z =-C > - >z =-C>0.

Then the convergence of the last column of the Q,D scheme corresponding
to p;(x) will be faster than the convergence of the last column in the scheme
corresponding to pNOQ = o.

In order to use theorem 5.5 we have to find a constant c¢ in the interval
o<c¢< z.. The formula (5.10) shows that an arbitrary element qg (n>2)

N

from the last column of the QD scheme may be used as the constant c¢ in theorem 5.5,
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The results from theorem 5.4 and 5.5 prove that the following algorithm

may be used to find Zy within a prescribed error e.

Algorithm
Let zl > z2 >.en1{_;N> o be the roots of p,(x) = o, and let € > o
be an arbitrary real number.

N
Compute r, rows of the Q,D scheme. If (N - 1) x q. < e then
1

1
Zy - qf < € otherwise compute r, TIows of the QD scheme corresponding
1
N
to the polynomial with roots z, - qg, C e e Bym qf . If (N-1) xg <e
M. Loy v 2
then z - 4. - 4q, < € otherwise compute r rows of the QD scheme
N - 3
g to the a1 i CAIEIEAD RPRE R CLE
corresponding to the polynomial with roots zZy - qu + qrz yoeees 2y qu + qTZ )

etc.

6. - Stability of the QD-algorithm

6.1 The stability of the _progressive form of the O,D-algorithm

In the following considerations concerning the numerical stability of the
QD algorithm we assume that the computations are carried out in floating point
arithmetic on a computer for which the basic formulas of Wilkinson [1§] holds.
In Wilkinsons notation, if x and y are floating point numbers, then

FL(x+y) = (x+y) (1+e)

£1(x-y) = (x-y) (l+e)
fl(xy) = xy (1+e)

f1(x/y) = (x/y) (1+e) ,
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where Je 1< 2't, if the mantissa has t binary places. Since our
examination will be quantitative only, the statements obtained in this section
will also hold for computers for which the floating point addition and
subtraction are less accurate than supposed in (6.1).

In this section we use the following notation:

(6.2) Qﬁ and EE for the floating point numbers which actually are in

. k
the computer instead of q, and ei, respectively.

(6.3) r(q) = Q- qf

r

(6.4) r(eﬁ) =B - ef
(6.5) 5anyy) = oy -(Ef - Ep T+ Q)
(6.6) 6(elz;l) = E§+l '(Qiii/Q§+l X Ei)

We want to express the errors on q§+l and ei+l’ that is r(q§+l) and

r(ek ) by means of the errors from row n.

n+l

The formulas used in the progressive form of the QD algorithm are

k  _ k k-1 k
(6.7) Ye1 “ S "% T

ek k+l/ k k

n+l T "n+l’ "n+l X e

In the computer these formulas may be substituted by means of
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(6.9) @, = [E - B
kel
(6.10) n+l by Qn+l
Now

r(q1}§+1) = Q§+1 }

and we obtain

TSR RECREY

(1 +¢,)

1+ gﬁ + Qﬁ]

) (1 + & ) X E, o (1 + eu)

k
L1

n

k-1

k
%1)

o) @ - a) + alay).

- (En

- k k k-1 k k
(6.11) r(qn+1) _ r(en) -r(e 7) + r(qn) + 8(a ) -
Furthermore
k+1 k+1
k Q1 k 41 k
rle ) = 5 X E tole ) - X &
U1 L1
which may be approximated by
ek &§+1 an+l k
k . n k+1 +1 k ntl
(6.12) r(e ) ~ 5 rla3) + 5 () ( L r(a,,) + 8(el,)
41 L1 qn+1

Before we draw any conclusions from the formulas (6.11) and (6.12) we

k k .
consider the terms 8(qn+l) and 8(en+l). By means of (6.5) and (6.9) we find
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o

8(q:+l) = [(Ei - é:l) (1 + €l) + Q;{] (1 + 52) - (Elrj - Ei-l +
- (E]; -5 (g + [ (Ei - Ei-l) (1 +¢) + Qfl] ¢
(6.13)
~E BT (g ) g
~ (eﬁ - e};-l) (el + 62) + q_ﬁ €

(6.6) and (6.10) may be used to obtain

ok, ) = (@4, ) (a1 + &) X Eix (1+¢) - (Qr/Qf, XE
@G/ X B9 & + HQTY/a,) (14 ) x5 ¢
k+l k
~ Q‘n+l n+l X En) (65 + el\t)

_ X
~eni (55 7 q)

From the limit theorems we know that ei - o and q]; - zk as n -,
Hence
5(e

n+l

and

k
8apn,y) = 2y € -

Furthermore (6.12) give
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z
(6.15) r(eﬁ+l) ~ —%i; r(ei).

These results together with (6.11) show that although the error
f(q§+l) may not decrease with increasing n this error will not increase
very rapidly.

Hence we may conclude:

The progressive form of the &D-algorithm is only "mildly" unstable.

6.2 The stability of the forward ﬁBrmmof_thQ_QD:algorithm,

When the formulas (1.4) and (1.5) from the forward form of the algorithm

are used instead of (6.7) and (6.8) we find the relations

k k k
e e
(6.16)  n(q) ~ L (g 1y Tk —n“(‘lkjg“‘l r(eX) + 5(5*h)
e e e
(6.27)  x(eg™) = rlany) - x(ag™h) + rlep) + B(ep™)

. k k
Since ¢ —» 0 and q ', —» 2z as n - @ we may conclude from (6.16)

that the forward Eprmnpf the QD algorithm is "strongly" unstable.

Part 2: ALGOL procedures and numerical experiments

7. The procedure QDPOSITIVE

7.1 Introduction

The numerical experiments with the QD-algorithm were carried out on the

Burroughs B 5000 computer at Stanford. The programs were written in
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Extended ALGOL for the B 5000. The part of this language used in the programs

is so close to the corresponding part of the ALGOL 60, that I have chosen to
show the B 5000 procedures whichhave been used in practice instead of ALGOL 60
procedures. In fact, the only changes needed in the following B 5000 procedure
QDPOSITIVE in order to have a correct ALGOL 60 procedure are:

1) The basic symbol+ should be changed to := .

2) BEGIN, COMMENT etc. should be begin, comment etc.

3) The brackets following the array identifiers in the specification should

be removed.

7.2 Description of the procedure

In order to avoid to many comments in the procedure a description of the
parameters, the main features of the algorithm, the' storage; requirements
“etc.are given below:
1. Parameters
Input parameters:
N the degree of the polynomial.
POLY an array which holds the (N + 1) coefficients of

ay SIS + 8 X &, with ay in POLY[o], ay_q

in POLY[1] etc.

EPS a real number specifying "the tolerance." cf. section 3
below.
MAX an integer specifying the maximum numbers of rows of

the QD scheme to be used.
JUMP a label to which exit is made when the roots are not

found by means of less than MAX rows.
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Output parameters:

ROOTS an array which upon exit holds the N roots of the
polynomial equation.

ROWS an integer which upon exit holds the number of rows used

in the calculations.

2. Method
In the general case Q,DPOSITIVE computes N rows of the QD scheme. Then
a translation from 0 to qg is carried out, and N rows of the new QD scheme
N

are computed etc., until (N - 1) Ay < EPS. Now the smallest root is computed,

and the process is continued with (N - 1) rows until the next root is computed
etc.

Before the QD schemes are computed the procedure checks if all the remaining
roots are equal. This check is carried out by means of a very simple device
which consists of a comparison of the arithmetic and the geometric mean of the

remaining roots. When the roots are positive these means will be equal if and

only if the remaining roots are equal.

3. Accuracy

The theory of the algorithm used (chapter 5) says that the maximum error
should be less than or equal to the value of the parameter EPS. Since the
progressive form of the QD-algorithm is mildly unstable and since the
translations used will introduce other errors this will in general not be true.
In numerical experiments with equations of degrees between 4 and 10 the first
five digits have been correct in all cases (see the examples in 7.4).

4., SBtoxageirement s

The procedure uses approximately (N + 4) XN cells for storing local

variables.
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7.3 QDPOSITIVE
PROCEDURE QDPOSITIVE(N,POLY,RO0TS,EPS»MAX» JUMP,RONS) 3 VALUEN,EPS,MAX}

INTEGER N,MAX,ROWSJARRAY POLY{01,RO0TSLIIIREAL EPSILABEL JUMP)
BEGIN INTEGER SsKsRs1,TIREAL AM,GM»CORsCOILABEL STOP,AGAIN}
ARRAY QU18N,18N),E,POL,POLITOINY)
FOR $¢0 STEP 1 UNTIL N Do POLCUS)¢POLILS)+POLYLS) SCOR¢CO¢OSR¢0)
FOR SN STEP «1UNTIL 2 DO
BEGIN AMeABSC(POLL1)/5)IGMeABSCPOLES)I#C1/8)))
‘IF ABSCAM®GM)<EPS THEN
"BEGINFORTey STE PIUNTIL S DOROOTSITIeAM+COR)
6o TO sToOP
ENDJ
AGAINY
FOR le€l STEP 1 UNTIL $*§ DO
BEGIN QC1,13¢03ECI)e¢POLLT¢1)/POLL])}
END3
R¢R+1
Ql1,1)¢ =POLL1)/POLLOYSQLY,SIELO)¢ELS) 60}
FOR T¢2 STEP {UNTILS DO
BEGIN FORI¢$ STEP 1 UNTIL S DO
QET,II¢ELII=ELI=1)¢QlTmi,I)JR¢R*Y)
FORI¢1 STEP 1 UNTIL $*4 DO
ECIJeQIT,1413/QLT,11%EL]]
ENDJ
IF (N=1)xQ[S»SI<EPS THEN
BEGIN ROOTS[S)¢AM¢Q(S,S]1+COR)
IF SSN THEN AM¢AM®ROOTS[S+1))
FOR 1¢S STEP®=IUNTILIDO
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F O RTe1 STEP 1 UNTIL I DO
POLICTIePOLICTI+AM xPOLItT=1]}
FOR 11 STEPY UN TiL S*1pOPOLLYI)¢POLICT]}
IF $#2 THEN ROOTS[11¢Q(251)1+COR)
END ELSE
BEGIN COR¢COR+Q[S»S)JC0¢QLS»S))
IFR2 MAX THEN GO TO JUMP}
FOR1!¢S STEP *1 UNTIL 1 DO
FOR T®YSTEP | UNTIL I DO
POLETI¢POLETI+COXPOLIT=11)
GO TO AGAIN
ENDJ
ENDJ
. STOP$ RONS#R}
END QDPOSITIVES
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7.4 Examples
Lop(x) =x" - 8% +20 5% -32 x4 16
Exact roots: 2, 2, 2, 2.
The following output was obtained:
Table 1
COEFFICIENTS:
1.00000000 -8.00000000 24 . 00000000 -32.00000000 16.00000000
EPS = 0.00000001  NUMBER OF ROWS = 0
ROOTS:

2.00000000 2.00000000 2.00000000 2.00000000

2. p(x)=x 4 - 82 +23.98 & - 5192 x + 15.9201
Exact roots: 2.1, 2.1, 1.9, 1.9,
The following output was obtained:
Table 2
COEFFICIENTS:
1.00000000 -8. 00000000 23.98000000 -31.92000000 15.92010000
EPS = 0.00000001  NUMBER OF ROWS = 54
ROOTS:

2.09999999 2.09999999 1.90004137 1989995865

The details of the computation in example 2 are shown on the next pages where

the 54 g-rows and the 5% e-rows are printed.
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COEFFICIENTS
1.00000000

o1
8.00000000
5.00250000
4.00399600
3,50524403
4,013968402
2,51372260
2.01494834
1.76653424
2.03476855
1.28155947
1.03299026
0.91049602
1.07147703
0.68833896
0.56479397
0.50566483
0.63412153
0.42786565
0.36380441
0.33393578
0.46774781°
0,33510047
0,29355750
0.27356795
0.41768310
0.30893513

0.27338006

-8.00000000

£t

=2499750000
=0.99850200
=0,49875399
0429885632
=1+50026143
=0.49877426
-0~24841413
“0.14828186
“0.75320908
-0~24856921

-0112249424
=0+07214592
=0.38313806
=0.12354500
=0405912914
0103375236

=0+20625588
=0406406124
=0.02986863
-0.01690210
=0413264735
«0404154297
=0.01998955
=0.01172245
=0.10874797
=0.03535507

23.96000000

‘42

0.00000000
1.66639074
2.00000600
2.10036278
0.00000000
0.83570776
1,00354344
1,05446896
0.00000000
0.42293200
0.50905483
0.53625845
0.00000000
0.22195673
0.27031270
0,28864757
a. 00000000
0.13269127
0.16962426
0,18896805
0.00000000
0.10494795
0,14125334
0.16042817
0.00000000
0.10043795

0.13528846

©31,92000Q00

£E2
‘1.33110926
‘0.66488674
-0.39839721
~0,26515190
©0,66455367
©0,33093857
-0.19748861
-0.13075966
-0.33027707
-0.16244639
«0,09529062
-0.06169423
-0.16117934
-0.07519102
-0.04079427
-0.02371865
-0.07336461
-0.02732825
=0,01052485
-0.00387783
-0.02769939
-0.00523758
-0.00081472
-0.00010784
=0,00831003

-0.00050856

15,92010000

@3
0,00000000
0.83235926
1.19839480
1.39788922
0.00000000
0.41617096
0,59886764
0.69817699
0.00000000
0.20801860
0.29861020
0.34719120
0.00000000
0.10354493
0.14669593
0.16782576
0.00000000
0,04950187
0,06532691
0.06962428
0.00000000
0.01984424
0.02197243
0.02123552.
0.00000000

0.00614661

0.00589371

E3
-0.49875000
-0.29885120
-0.19890279
-0.14179051
*0.,240838271
-0.14824189
-0.09817926
-0.06958046
-0.12225847
=0.07185479
-0.04670962
-0.03239926
-0.05763440
-0.03208003
-0.01962445
-0.01278537
-0.02386274
-0.01150321
-0.00622748
-0.00372029
-0.00785516
-0.00310939
-0.00155163
-0.00091453
-0.00216342

-0.00076146

(1]
0.00000000

0.49875000
0.79760120
0.99650399
0.00000000
0.24838271
0.39662461
0.49480387
0.00000000
0.12225847
0.19411326
0.24082288
0.00000000
0.05763440
0.08971443
0.10933887
0.00000000
0.02386274
0.03536595
0.04159343
0.00000000
0,00785516
0,01096455
0.01251618
0~00000000
0.00216342’

0.00292407
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=0.01748297 =0,00002216 -0.00037789

0.25609709 0,15274527 0.00553798 0.00330276
-0~01042745 -0.00000080 '0.00022537

0.40447206 0.00000000 0.00000000 0,00000000
=0¢10222985 -0.00219946 -0.00055516

0.30224221 0.10003036 0.00164432 0.00055516
©0,03383409 -0.0000~3616 -0.00018744

0.26840812 0.13382829 0.00149304 0.00074260
-0001686968 -0.00000040 -0.00009323

0.,25153845 0.15069757 0~00140021 0.00063583
-0401010668 0.00000000 -0.00005565

0.40112874 0.00000000 0.00000000 0.00000000
-0010056397 -0.00056200 -0.00013788

0.30056477 0.,10000198 0.00042412 0,00013788
'0~03345900 -0.00000238 -0.00004482

0.26710577 0.13345859 0.00038168 0.00018270
=0.01674769 -0.00000001 -0.00002145

0,25038808 0.15017627 0.00036023 0.00020415
*0,031002683 0.00000000 -0.00001216

0.40031213 0.00000000 0.00000000 0.00000000
=0.100156048 =0,00015588 -0.00002805

0.30015610 0.10000015 0.00012783 0.00002805
-0103336803 -0.00000020 =0.,0000061¢

0.26678806 0.13336799 0.00012187 0.00003421
-0~01668076 0.00000000 -0.00000173

0,25010730 0.15004674 0,00012014 0.00003594
=0,01000741 0.00000000 -0.00000052

0.40016838 0.00000000 0.00000000 0.00000000
=0,10008418 -0.00008414 -0.00000074

0.30008420 0,10000004 0,00008340 0.00000074
-0003335205 -0.00000007 =0,00000001

0.26673215 0.13335202 0.00008346 0.00000074
*0.01667427 0.00000000 0.00000000

0.25005788 0.15002629 0.00008346 0.00000074
-0.01000400 0.00000000 0.00000000

0.40016540 0.00000000 0.00000000 0,60000000
=0.10008269 -0.00008265 0,00000000

0.30008271 0.10000004 0.00008265 0.00000000
~0+03335172 -0.00000007 0.00000000

0.26673099 0.,13335169 0.00008272 0.00000000
=0.01667413 0.00000000 0.00000000

0.25005686 0.15002582 0.00008272 0.00000000
-0.01000393 0.00000000 0.00000000

0.40016540 0.60000000 0,00000000 0.00000000
-0010008269 -0.00008265 0.00000000

0.30008271 0,10000004 0.00008265 0.00000000
=0+03335171 -0.00000007 0.00000000

0.26673099 0,13335168 0.00008272 0.,00000000
-0001667413 . 0.00000000 0.00000000

0.39991723 0,00000000 0.00000000 0.00000000
-0.09997930 0.00000000 0,00000000

0.29993793 0.09997930 0.00000000 0.00000000
-0103332643 0.00000000 0.00000000

0.26661150 0.13330573 0, 00000000 0,00000000
=0:.01666321 0.00000000 0,00000000

EPS = 0,00000001% NUMBER OF ROWS = 54
ROOTSS
2.09999999 2,09999999 1.90004137 1,89995865




the matrix considered in example 8.1 in the next chapter.

3. p(x) = - 8% + 23.9999 % - 31.9996 x + 15.9996

Exact roots: 2.01, 2, 2, 1.99.

The following output was obtained:
Table 3
COEFFICIENTS:

1.00000000 -8.00000000 23.99990000 -31.99960000

EPS = 0.00000001 NUMBER OF ROWS = 72

ROOTS:

2.00996394 2.00087 089 1.99912488 1.99004029

10 90 %2+ 171 x 8 816 x ¥ 2380 x & 4368 x°

+ 5005 % - 3432 0 + 1287 ¥ - 220 x + 11.

L Pox) = x

The following output was obtained:
Table U
COEFFICIENTS:

1.00000000

-20.00000000 171.00000000 -816.00000000

-4368., 00000000 5005.00000000 -3432.00000000 1287.00000000
11.00000000

EPS = 0.00000001 NUMBER OF ROWS = 191

ROOTS :
3.91898807 3.68250232 3.30972557 2.83082807
1.71537022 1.16916998 0.69027853 (0.31749293

15.99960000

2380. 00000000

-220.00000000

2.28463026

0.08101405

The polynomial p,.(x) is the characteristic polynomial corresponding to
10

roots.
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In all cases the first

six figures are correct and all eight figures are correct in the three smallest




8. Examples of computation of eigenvalues.

8.1 Introduction

The following two examples ought to be considered as illustrations of the
QD-algorithm as a rootfinder, and not as examples of the QD-algorithm as a
method for finding eigenvalues. The reason for this point of view is simply
that the method used in the examples merely consist of a computation of the
characteristic polynomial followed by the use of a QD-procedure similar to
QDPOSITIVE. This does not mean that the @D-algorithm in general cannot be
considered as a good method for finding eigenvalues, but it means that the
starting row of the QD-scheme should be computed directly from the elements of

the given matrix and not via the coefficients of the characteristic polynomial.

8.2 An example of the,computation of the eigenvalues of a symmetric three-

diagonal matrix.

The matrix used was the following 10 x10 matrix

> -1
1 2 -1 O
-1 2 -1
-1 2 -1
-1 2 -1
A= 1 2 -1
-1 2 -1
O -1 2 -1
-1 2 -1
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The eigenvalues of A are given by means of the formula,

(8.1) EP - 2 sin® (5%%1-[_7)’ p=1,2,....N

where N is the order of the matrix (N = 10).
The following output was obtained (the numbers in the column "CORRECT EV"

were computed by means of (8.1))

THE CHARACTERISTIC POLYNOMIAL HAS THE COEFFICIENTS:

1.00000000@+00
-2, 00000000@+01
1.7 1000000@+02
-8.16000000@+02
2.38000000@+03
-4 .36800000@+03
5.00500000@+03
-3.43200000@+03
1.28700000@+03
-2.,20000000@+02

1.10000000@+01

NUMBER OF ROWS = 138 EPS = 0.00000001
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EIGEN-VALUE NR

1

+ W

(O ) NN |

10

EV COMP QD-ALGORITHM

3.918986773@+00
3.682505627@+00
3.309722197@+00
2. 83082987 8@+00
2.284629734@+00
1.71537 -294@+00
1.16916997~00
6.902785321@-01
3.174929343@-01
8.101405277@-02

CORRECT EV
3.918985945@+00
3. 682507 063@+00
3.309721464@+00
2.83083 0022@+00
2.284629673@+00
1.715370320@+00
1. 169169972@+00
6.902785306@-01
3.174929336@-01
8.101405259@-02

ERRORX1000000
8.276@-01
-1.436@+00
7.333@-01
-1.434@-01
6.103@-02
-2.593@-02
6.956@-03
1.432@-0%
6.858@-0k
1.835@-0k

An example of the computation of the eigenvalues of a symmetric full matrix.

The matrix used was the following 4x4 matrix, which is used in Faddeev

and Faddeeva [ 4] (p. 281)

1.00 0.h42 0.54 0.66

0.42 1.00 0.32 0.44
A=

0.54 0.32 1.00 0.22

0.66 0,44 0.22 1.00

The characteristic polynomial of A is

L4 33 + h752 22 - 2.111856 A + 0.28615248

where the coefficientsare computed exactly.

T1



Faddeev and Faddeeva give the following eigenvalues (computed within

5.10'9):
Kl = 2.32274880
xe = 0.79670669
x3 = 0.63828380
Kll- = O, 2)4'226071

The . following output was obtained:

THE CHARACTERISTIC POLYNOMIAL HAS THE COEFFICIENTS:

1.00000000@+00
-4, 00000000@+00
- 4.7 5200000@+00
-2.11185600@+00

2.86152480@-01

NUMBERS OF ROWS = 24 EPS = 0.00001000
EV NR EV COMP BY QD
1 2.322748800@+00
2 7 . 967 066889@~01
3 6.382838028@-01
4 2.422607 083@-01
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