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Introduction,

The QOD-algorithm — which stands for the quotient-difference algorithm —

has been developed by H. Rutishauser, In several papers, the first of which

appearedin 1954, Rutishauser has treated the theory and a number of applications

of the algorithm. In this treatment the theory is based on properties of continued

fractions.

In 1958 Peter Henrici based the theory of the m-algorithm on the theory of

analytic functions. Furthermore Henrici gave some new results,,

The present article 1s a new introduction to the subject. In this paper the

theory of the (@-algorithm 1s treated by means of classical algebraic methods. The

present paper however treats only a part of this theory. Although some of the

results developed are general the main part of the paper is limited to a special

case which, as indicated in the title, may be described as the part of the theory

of the QD-algorithm needed for finding the roots of a polynomial the roots of which

are known to be positive, by means of the algorithm.

With this limitation it 1s possible to prove some important results which

cannot be proved in the general case, First the existence question of the QD-scheme

can be solved; that is the QD-scheme will always exist in the case of positive

roots — as may be shown by examples this 1s not true in the general case.

Furthermore the question of convergence of the columns of the QD-scheme can

be solved, In the case of positive roots we can prove that the columns will con-

verge to the roots under all circumstances (and not only in the case of different

roots). Again this 1s not true in the general case, where complex roots may spoil

the convergence.
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Rutishauser has also developed the so-called LR algorithm which may be con-

sidered as a more general method than the @QD-algorithm. The LR algorithm may

be used to determine the eigenvalues and eigenvectors of matrices., Since — to

a given polynomial — there corresponds a matrix the eigenvalues of which are

the roots of the polynomial, the roots may be found by means of the LR-algorithm,

Furthermore, to most of the results concerning one of these algorithms there

corresponds a similar result concerning the other.
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THE QD-ALGORITHM

| AS A METHOD FOR FINDING THE ROOTS OF A

POLYNOMIAL EQUATION WHEN ALL ROOTS ARE POSITIVE *)

BY

Chr. Andersen

Summary.

In Sections 1 and 2 the QD-scheme, symmetric functions and some results from

the theory of Hankel determinants are treated. Most of the results have been known

for a long time. Aitken [1] and Henrici [6] have used these for the same purpose

of rootfinding as treated here. However, theorem 2.4 by means of which the

existence of a positive constant c¢ such that in > Cc (positive roots) may be
proved, seems to be new.

Section 5 contains some well known relations expressing the elements of the

QD-scheme by means of the Hankel determinants, and the existence theorem mentioned

above.

In Section 4 the question of convergence of the columns of the QD-scheme is

treated. An exact expression for q 1s developed for the case of different roots.
This expression seems to be new. It is proved that the columns of the &D-scheme

will converge not only in the well known case of different roots, but in all cases

where the roots are positive,

*) A part of the present paper was first presented at the Matrix Symposium in
Gatlinburg, Tennessee, April 13-18, 196k.

Reproduction in Whole or in Part 1s Permitted for any Purpose of the United

States Government. This report was supported in part by Office of Naval Research

Contract Nonr-225(37) (NR O4l4-211) at Stanford University.



Section 5 contains a detailed examination of the convergence to the smallest

root. In this section an exact expression for a 1s developed. This expression,
1s correct in all cases of multiple positive roots,

It turns out that the convergence of the columns of the Q,D-scheme to the roots

of the polynomial equation may be slow, and it becomes necessary to speed up the

convergence before the QD-algorithm can be of use 1n practice.

In [11] Rutishauser uses the principle of replacement as a device for accele-

rating the QD-algorithm. This principle has also been used by Faddeev and

Faddeeva [4]. They remark, that the method may be useful as soon as the QD-scheme

"has stabilized". It 1s however not easy to give general and useful criteria

for such "stability? Furthermore, Rutishauser [16] remarks that the computation

practice with the method of replacement has not always been successful,,

Numerical experiments in which I have tried to use the Aitken 8° process on

the columns of the QD-scheme has not indicated that this process will be useful in

connection with the QD-algorithm in all cases.

In the case of positive roots it 1s however possible to use the principle of'

replacement in such a way that faster convergence will be obtained. Theorems con-

cerning this question are included in Section 5.

Finally, in Section 6, it is shown that the progressive form of the &D-algorithm

1s only "mildly unstable".

In Part 2, that is Sections 7 and8, some ALGOL programs and some results ob-

tained by means of these, are given. The examples show that the QD-algorithm works

nicely 1n practice 1n cases where the roots are positive, and the difficulties

which arise 1n cases where several roots are equal or almost equal do not give

too much trouble.,



A few words about the practical use of the &D-algorithm as a general rootfinder

may be added. In numerical experiments with real polynomials with complex roots

(polynomial with real roots may be transformed into polynomials with positive roots)

the algorithm works perfect in many cases; but in cases where several roots were

of the same, or almost the same, modulus (apart from conjugate roots) the ALGOL

programs written by the present author failed to work properly. This fact does

not mean however that the QD-algorithm should not be used in such cases. But it

means that the QD-algorithm should be combined with other algorithms. Used in

the beginning of a general root-finding program the QD-algorithm may give some

very useful information concerning the roots and this information can be used in

other algorithm for the final determination of the roots.

>



Part 1: fhe Q.D-algorithm.

1. The QD-schene.

1.1 Formulation of the problem.

Let

_ N N-1

(1.1) p(x) = ax + aX + eo + a x + a ay £0

be a polynomial of degree N, let a # 0 and let the roots of p(x) = 0 be
numerated such that

The-coefficients 8y8qyye+ +8 MAY be complex.

The problem we will treat 1s to find the roots of Py (x) = 0 by means of the
QD-algorithm,or better, to find approximations to the roots by means of this

algorithm.

It turns out to be difficult to treat this problem in its full generality;

at least it seems to be difficult to use the w-algorithm with success for all poly-

nomials. In the present work the problem to be considered 1s then limited to the

following:

Let Py (x) bea polynomial with real coefficients, and let it be known

that all the roots of Py (x) = 0 are real and positive. Find approximations to

the rootsby means of the @D-algorithm.



1.2 The progressive form of the QD-algorithm.

The QD-schemne.

We begin with the formal rules for constructing a &D-scheme, which consists

of two sets of elements, called a and ek, written as follows:
1 2 3 N

C41. 4 4 | 4

0 ' 1 2 N-1 N
1 1 1 1 1

I: % % a %
0 1 2 N-1 N

0 : 0 ) © $0 : ©

k k

The upper index k 1n q, runs from1 < k < N and ine, k runs from

0 <k <N. The lower index n runs from 1< n < » in both cases. The index

k 1s the column number and n 1s the row number.

The form and the notation used in this paper 1s the same as Henrici has used

in [7]; it differs from the notation used by Rutishauser and by Henrici in[6].

In the progressive formof the QD-algorithmthe elements in the first g-row

and the first e-row must be given. Furthermore the first and the last e-column

has zeros in all places.

From these quantities we construct the following rows in the QD-scheme by

means of the recurrence relations:

k k-1 + k

(1.2) cq ST, Te, a, k=1,2, ...N n=1, 2, ...



k k+l, k kK

(1.3) € 41 — q,1/% 41 X e, k =1,2,00e,N=-1;n = 1,2,c¢0

These formulas are used as follows:

First (1,2) for k = 1,2,.--+,N to obtain the "g-part" of a new row

and then (1,3) for k = 1,2,---,N-1 to obtain the remaining "e-part" of the

same row.

We remark, that the construction cannot be carried out 1if 0 = 0 for some
k <N -1 and some n > 0. In this case the Q,D scheme 1s said not to exist.

The formulas (1.2) and (1.3) are known as the rhombus rules (Stiefel)

since they connect four elements, the configuration of which 1s a rhombus, in the

QD-scheme.

1.3 The forward form_of the @QD-algorithm.

The formula (1.3) may be written in the form

k+1 k k k

(1.5) Lil = ne1/%n ¥ Yel

and by putting k + 1 instead of k in (1.2) this may be written as

k+1 k+1 k+1 k

(1.5) © = +1 - aq, te

The formulas (1.4) and (1.5) show, that a new column (k+l) may be obtained

from column k; that 1s the QD-scheme can be built up from a given e-column and

a given g-column. In this case the QD-scheme is not limited to the right, and

we can only find elements a and e! for which n > k. This form of the
QD-scheme is obtained by means of the forward form of the &D-algorithm.

6



As we will show in Section 6, the forward form of the QD-algorithm is not

suited for numerical purposes since this form 1s unstable.

In the remaining part of the paper we shall only use the progressive form

of the QD-algorithm.

l.4 The first_row of the &D-scheme.

When the Q,D-algorithm is used as a method for finding the roots of

Py (x) = 0 the first row is constructed from the polynomial,

N N-1
= + 000Py (x) aX ay 1X + tax tag,

as follows:

- " = =- N-1
1 ay

k

qq = 0 2 <k<N
(1.7)

0  N_
&, = & = 0

a
k -k-

ey _ J 1 <k<N-1
N-k

Until now we have assumed that ay £0 and a_ # 0. From the last of the

formulas (1.7) follows that all the other coefficients must be different from

zero 1n order to start the @D-algorithm.

By means of a simple substitution x = Xy + Cit is always possible to ob-

tain an equation where all the coefficients are different from zero.

I



It 1s more serious 1f one of the g-elements computed by means of the formula

(1.3) becomes zero and then spoil the algorithm. By means of an example it is

easy to show that this may happen.

Example 1.1

P(x) = x + ax +bx+cC

OD-scheme

ol qt ot ne 2 " oe”

-a 0 0

b C

0 iN 5 0

b _ c_b - L
a ° b a b

1 _ .~ Db _ 2 : Cc b
Now aq, = 0 1f S - a= 0 and aq, = 0 if 5-3-0 In these cases the

QD-scheme will not exist.

It 1s however possible to show, that the QD-scheme always exists, if all

roots of p, (x) = 0 are real andpositive. This will be proved in another

section.

8



2. Symmetric functions. Hankel determinants.

In Section 2.1 we state some well known results about the symmetric functions

in the roots of a polynomial equation. These results will be used to prove a

theorem which 1s fundamental for the solution of the existence problem.

2.1 The elementary and thecomplete symmetric functions.

The elementary symmetric functions in the roots Zysttty of the polynomial

equation p, (x) = 0 are defined as follows:

Ty = 1

0p + Zp = + = = Zy

° + « mm=(2.1) Op _ 2925 * 2925 Ze 12)

‘m= "1%2..°%

a, =O for p <0 or p>N

The polynomial

N N-1
= cos + +py (x) aX + ayoX " ax + ag (ay £ 0)

may be expressed by means of the elementary symmetric functions as

_ N-1 N-2 N
p,(x) = ayo x to % + ooo + (=1) oy)

that 1s we have the relation



a.
k "N-k

(2.2) 0) = (-1)" ——a
N

The complete symmetric functions 1n ZyseeesZy are defined as follows

S =1
0

Spf Tt By

S 2.2 ZZ Z.Z Z Z nt
2°71 "172 © 71 © 7 "N-1"N© °N(2.3) °

_ 0 2 5
Sz = 2] +292, * + 2x

S, = 0 for p <0

The complete symmetric function S of degree n consists of the sum of all

different terms of the form

a
1 MN

(2.4) Z," eee Zp

N

where 0 <a, <N 1<i<N and ). a. =n—- i = —- 7 —= . i
i=1

Theorem 2.1

Let Sh denote the complete symmetric function of degree n in the N

variable Zire %o and let 5%) denote the complete symmetric function in
the (N-1) wvariable ZestZh qs Zuotc tye Then

10



(r)
(2.5) Ss, =2z.8 , ,8 (r-1,...,N; all n)

Proof

The terms of S may be divided into two sets, the first of which consists

of all terms with Zz. as a factor and the second set of all other terms. Hence

(2.5) is true.

By means of a similar argument we may prove the corresponding relation

between the elementary symmetric functions:

(r) , (r) :
(2.6) 0, =z, 0.7) +07, (r=1,...,N; all n)

where 0 (7) and ol 1) denote the elementary symmetric functions of degree
(n-1) and n, respectively in the (N-1) variable ZosenesByqs Bpypreees Zye
Theorem 2.2

For all positive values of n the complete and the elementary symmetric

functions in N variables are connected by the relation

2, = - Cex o4 (-1)RT(2.7) 8,=0,8 1 -0,8 , + (-1)7" 0, 8,

Proof

By induction with respect to N.

N=2, In this case 0, = 2 + Z5y Op = Z 4 Z, and 7, = © for p > 3. Hence
(2.7) has the form

— - S5) (2, +2, ) S| “29%, Spo

: : n n+1 n+1 n
hich h = + :

which, wit 5 Zz, Z Zo 4 "cco Zq2, “2 and the corresponding

expressions for S 1 and So 1s true.

11



We assume (2.7) 1s true for 2, 3%,...N-1 variables, respectively and for all

values of n 1n these cases, and consider the case of N variables Zs Zpyee erly

We prove that (2.7) holds in the case by induction with respect to n. n=l; that

1S Sq = 0; which 1s true.

Let (2.7) be true for 1, 2,...,n and consider the case n+l. We have to

prove

Kil S .=0,8 - g,S z -. «4 (-1)%n+l = °1 “n 2 n-11t "3 "'n-2 . n+l

By means of (2.5) we have - with the notation Ss instead of EM a

n

- N w- 0 -19 n 055.1 + 93 n-2 ca TF (-1) n+l

=o(2, S_ . +8)0, (zy SL +8! V+ ay (zy 8 + 8 )-+-(-1)71'"'N "n-1 n 2 "N "n-2 n-1 53*"N n-3 n-2 n+l

m2 (0.5 - -0, S L+axS 5 =o (-1)" a)
N'"1 n-1 2 n-2 3 "n-=-3 n

+ g. SS" = g. S! gx S! - °c°° 4 (-1)" o)
1 n 2 n-1 Tt "3 "n-2 n+1

= 2N i

n
f 1 i ' ? —ooo +( = UNNI,

+ (zy ol + ool) 8! -(zgog vag) zy 05 + 03)S] , (-1)"(zgo; +a)

_ A '! $ 7 ee oe _ n 7
= zy S,+ 2ylof Sy m0 8 + (<1) ap)

n
1 ft _ tat 8 § - 000 - !

+ (oS) -e 81 4 938 5 + (-1)7 op)

—_ ]
= Zp SI S +1 .

In the calculations we have used (2.7) three times, and we have used (2.6)

too. The last expression however is equal to S,, and we have proved theorem 2.2

by induction.

12



2.2 Hankel determinants,

The Hankel determinants will be used as the basic tool in the following

treatmentof the QD-algorithm. The relation (2.10) which 1s of special importance

"is used by Aitken [1] and by Henrici [6] for solving the same problem as we

treat, and the sketch of the proof follows the same lines as used in [6] and in

Householder [8].

Definition of Hankel determinants.

Let cer85p 8_q5 8; 8,8, 0 be any sequence of complex numbers, then
k .

we define the Hankel determinants IH , for n> 0, as follows:

“x k-1 "" %k-ntl

Stl “k

o) n o

Yetn-1 By

We may prove the following relation:

k-1 k+1 k\2 k k
(2.10) H © HC -(H) +H J H.,,=0 n>1;

Consider the determinant of order 2n + 2:

15



1 2 n n+l n+2 2n  2nt+l 2n+2

I

0 0 0 0
: ox *k-1 . . . %k-ntl an 0 1

|

- 0 0 0) 0
2 +l “k “k-n | “kent OO

[J -]

‘ .

n ®k+n-1 “kn “k 0 0 0 0 0 0
|

0 t 0 0 O a
ntl Ben ftn-1 8-1 | k 10
a a TT TE JS

I

| [
SE EE] : Y %  %-1 %-2 . ° . %,knt1 OO

& | [J

+1

Zn Sk+n-1 0 0 Sx+n-2 +n-3 Stn =k . qr. 0 0
I

a !

2n+2 8 in 0 0 k+n-1 & 1h» qg+n-3 . a 1 0

If we subtract row (n+l+i) from row i fori = ly...,n + 1 and then add column

(2+i) to column (n+i) for i = 0,1,...,(n-2) we find that this determinant must

be equal to zero. On the other hand if we compute the determinant by expanding

by (n+l)-order minors we obtain two times the left side of (2.10). gor further

details see Householder [8].

2.3 Hankel determinants in thesymmetric functions.

Hankel determinants in the elementary symmetric functions and in the complete

symmetric functions are related. We prove

14
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Theorem 2.3

Let

%+1 Yk

Rh . K
no ! °

Okin-1 0 (n order)

and

= Sp-1"" "Pn-k+l

S41 S_

n :
Ch oo 0

3 tk—1 000000 S, (k order)

and let 1 <k <N

k

If Ho £0 for all non-negative n, then

k

(2011) H = C) n= 0,1,2,.:°°

Proof

By induction with respectto k.

k =1: We have to prove that iy = 5 -
This may be proved by induction with respectto n.

n = 20: H = S 1s correct since both sides are equal to 1.
—_— [] 1 — —

n=1: Hy = 0; = 5;

15



! 1
Now we may assume that H = S, forn = 0,1,2,...,p - 1 and we consider the

| case n =p

gq 1 oO ... 0s 1

1 . °. . whe ' —
io = . * : = ay Hola - Go . 1 =

[ J L 1

ag. 0, a, gq (n—1 order)

_ 1 p-1
— oe + -—_ oy Hoy op Hy 5 + (-1) a5

p-1
- coe + (=

= 03 Spo 79 S52 + (-1) 95

=S [2
P

The last result follows from theorem 2.2. Hence we have proved theorem 2.3 in

the case k = 1.

Now we assume that (2.11) is true for k = 1,2,...,pandforallnon-negative

n 1n each case. By means of the relation (2.10) we find for n > 0;

pl _ P\2 LP LP p-1
5 B [(H,) Hopp Bp VE,

n,2 n+l n-1 n
= C -C C C[(6)2 - Bt 2 hyel

n

16



We remark that in case p = 1 we have used gP-1 = 1° = 1 = cf, For n = 0 we
n n O

p+l 0

have 1 = 1 = Con? and we have proved theorem (2.3) by induction.
k

In the following the notation HL will only be used for Hankel determinants

in the elementary symmetric functions.

2.4 A fundamental theorem.

Until now 2% © oo an have been arbitrary complex numbers, and this being

the case the Hankel determinants may vanish, This cannot happen if Z, > oo Zy;
are real and positive numbers.

Theorem 2.4

Let 2122p oc Zn be positive. Define

“a1 %ar2 °° qin

(0) oO @ @21 “op2 on

pM _ |:
n [+]

of

Soml °on? omn

where ¥ ai are elementary symmetric functions.
Let

(i) ail > gi2 > ««. > qin 1 <i<n

(ii) aly < aj < «o¢ < mj 1 <Jj<n

Ly



Then

N

pl ) > 0 for all n>1»1

and, 1f

ail = k 1 = 1,6c0,yn

(IN) n
where 0 < k < N, then D"/ > min (1, (a) )

Proof

By induction with respect to the number of variables N.

N=1: Then oo. = 1, 0, =z. and ¢ = 0 for p £ 0, 1.
—-— 0 1 L Pp

We use induction with respect to n.

n= 1: pL) 0 .,. The theorem 1s obviously true.—_— 1 = “oll.

Assume, that the theorem is true for n = 1,2,...,p-1 and consider

p(1),
P

If app #£ 0,1 it follows from the conditions (i) and (ii) that the p-th

row or the p-th column consists of zeros; that is 5 (1) = 0,
P

If opp = 0; that is Oo 1, we have (by means of (ii))

(1) Lo)
P P-1

If app = 1; that is % op _ Zq 3 we have (by means of (i))

pL), pL)
Pp = 1 p-1

18



In all cases the theorem 1s true for n = p and we have proved theorem (2.4) in

the case N = 1.

Let the theorem be true for (N-1) variable Zoy tot Tyg and let go- p

denote the elementary symmetric function of degree p in these (N-1) variables,

Let zy 2 Zs > oo > zy We use a relation between elementary symmetric functions:

1 1

(2.12) oy _ 2x Oho1 n Or p=0, +1, +2, 200

To prove (2.12) we remark that the terms of- 7 may be divided into two sets, the

first of which contains all terms with Zy as a factor and the other set of the

remaining terms.

_(N)
By means of (2.12)we may write D, as follows

H 1 1 1 § , 1

“N %oa1-1 + %q11 “8 ‘q12-1 Taz °° %w %ain-1 * Coan

f 1

“N ‘op1-1 + pl

2.13) pW _ :
n

! 1 t i

“N %an1-1 + “om ’ | ’N %mn-1 © %mn

From (2.13) follows that p{M) may be written as a sum of oH determinants, The
conditions (i) and (ii) show, that each of these determinants may either have

proportional columns — and then have the value zero — or the indices will again

satisfy (1) and (11), The non-zero determinants, from which Ix may be removed,

are then non-negative and as a sum of these p{M must be non-negative itself,
Now let aii =k, 0 <k < N.

19



0 (N-1)
If k < N we consider the term with Zp say D . By the induction

A (N-1) n
assumptionD) > min (1, (2, Co. Zy 1) ). Since

n n

min (1, (zg “oo zy) ) < min (1, (2, tee zy 1) ) we have

(N) (N-1) n
D."’ > D > min (1, (oy) )

If k= N we consider the term with 20s that 1s 2 . AN where A hasn

(24 oo Zoe 1) in the diagonal, and zeros below the diagonal. Hence
n n

Zp ay =(oy) and again

pM> min (1, a)"

and we have proved theorem (2.4) by induction.

Theorem 2.5

Let 2g 2 25 > 70 2 Zp 2 0.

Then

k n

H > min (1, (op)") 1L<k<N n>0

Proof

Since the Hankel determinants satisfy the conditions (i) and (ii) from

theorem 2.4, and since the diagonal elements have the same index this result 1is.

nothing but a corollary to theorem (2.4).

20



Se The existence theorem inthe case of positive roots.

k k

3.1 Formulas for 4 and eEE — — n

Let the QD scheme for the polynomial Py (%) be started as in section (1.4)
and continued by means of the rhombus formulas (1.2) and (1.3). Then the elements

a and e¥ may be expressed by means of the Hankel determinants a in then

simple symmetric expressions.

Theorem 3.1

If the Hankel determinants. are different from zero, then

k B Bey n=203p - 4 S + 0 0

(3.1) ho= Tk El
n-1 "n-1 k=1, 2, .. .N

and

itl gel
= k n n-1 Nn =2, 95...

n 7X 7X
n n-1 k=1, 2, .. . . Nl

Proof

By induction with respect to n

n=c Kk kel
k fy H,

We have to prove that AQ = KEL
SE Ea

Now

k NS J k-1 + k
=°% 9 4

_ ON-k-1 'N-k
*n-k SN-k+1

where we have used (1.7). By means of (2.2) we find

NAR
| %  %-1

21



On the other hand

Ox  %-1
gk gil
2 Yo |%+1 %k Tk Tk+1
x k-1 aao. - "4 >pet 9% Oka ne-1 9%
171

and we have proved (3.1) for n = 2,

| Since

k k+1, k k

2 7% [ag oS!
k+l _k k _k-1

_ ; 2) | o Nok-l- LLk+1 Lk k .k-1 a.

Hy H Hy Hy -N-k

k+l _k k k-=1

E fi HY | kn- 7 \Tk+tL _k kK .K-1 0,
Hy Hy Hy Hy k

_ git nx Ta gE-1 itl
B 2 0 2 0 1
TT Lkk k .k-1 k

Hy © Hf Hy Hy fy

k+1 Hk-1

EC
=" Xxxk

Hy Hy

formula (3.2) is also correct for n = 2.

Now assume that (3.1) and (3.2) holds for 2, 3, ...n, and all k in

question and consider the case n + 1. We obtain:
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k N LS _ KL + k
L+1 © Cn n dy

girl pL ES gia g¥ pil
n n-1 n n-1 n “n-1

Tk k + .k-1.k-L+ k _k-1
fy fo ih Ho] Lo

7X LS pie + p= iygk-L etd pil
I! . n-1n-1 n n-2 n n-1
~ k-1 k-1 _k —  _k k

Hh-1 By Ba ® Ba

k k-1,2 k+l _k-1

_ 1, . (55) _ 4 f1
gl ge igk ES ES
n-1 n n-1 n n-1

gl (55)? _ cL Logs
_n-1 n nn
aX gl 1
n-1 n n

k-1 k - k-1

_ Ho, Hy Be Bro H-1
= Tk k-1k = x_ . %&-3 °°
ni rk 1 nX 1X 1X 1
n—-1 n n n Nn

that is (3.1) holds for n+ 1. We remark, that we have used (2.10) twice.

Now

oK _ k+l, k y LSn+l = Yn+1/ Gel Tn
k+l . k k k-1 k+1 _ k-1

Ho i.1 ) H) 1) | |= )= _k+1 _k kK —1 k k
fi ER Hy HT H Ha

k+1 _k-1

B Hel os
TX k ’

Ho E

and (3.2) has been proved for n + 1.
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| Theorem 5.2. The existence theorem.

Let the roots of py (x) = 0 satisfy the conditions Z) 2 Zp 2 eee 2 2p > OL
Then

a >c>o kK = 1, 2, oon N all n >2

where ¢ 1s a constant.

Hence the QD-scheme always exists in the case of positive roots.

Proof |

From theorem 3.1 we have

k _k-1

a 3 on ho- kL. k-1

Bp -1fao

and from theorem 2.5 we know, that

k : n

HS > min (1,(q)")

k

Hence we may conclude that 4, > 0.

In order to prove that 0 > c > o we use the following
Lemma J5.1

il kK
) 4, = 04 for all n > 1
k=1

Proof

For n = 1 this follows from the first row in the QD-scheme, where

T k

9, = 0 and 94 = 0 for 2 <k <N.

Let it be true for 1, 2, ... n, and consider
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|

N N
k k  k-1 k

LoGq= L (e -e 7 ta)

N
N N k

= e - Qe yn o + 2 4

N
k

= 0 + )k=1 *n

It follows that the lemma 1s true for n + 1.

Lemma 3.2

ig: = g for all n > N

Key BEN TON

Proof

T Nk 1 2 ® & 0»
U+k-N + n+l-N - dn+2-N an

k=1

1 2 — N n-1

Cu 2 og N N-1Aon Hin Bri Hina

wl
nn
- _N

Ho,

n

_ oN
~ n-1

oN

Lemma 3.3

k

4 < 91 1 < k < N n>?2

25



Proof

k Nx
Since 4, > 0 and 3 4, = 0, the lemma 1s obviously true.

k=1

Lemma 3.k4

ay > og or 1L<k<N n>0N

Proof

k il k
| = the lemma 1s obviously true.Since a < oq and since IN Uk oa. y

From lemma 3.4 follows that of > c, where c = oy op for n > N.
We consider a for 2 <n <N.

Since HE > min (1, (o)"), and since n < N we have

k N-1

H > min (1, (ay) )

for the n's in question.

Then

k N-1, -2
> =a, > [min (1, (oy) )1°/M

where

Mo = mex (5) ET)
2<n<N

Hence

a, > min Loy, 0) c, > 0 <k <N n >

and we have proved theorem 3.2.
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We remark, that polynomial equations, the roots of which are known to be

real but not necessary positive, may be solved by means of the Q,D algorithm as

soon as a lower bound for the roots has been found. This being the case a

transformation may be carried out and the theory for positive roots can be used.

4, General convergence properties.

In this section we examine the columns of the QD scheme for a polynomial

equation p(x) = 0. As usual we assume that 2) 22, >... >zy, > 0. This
being the case we may prove that the g-columns converge. Precisely, that

k

qQ, 22% as noe for 1 <k <N. In order to prove this result we must

develop some formulas for the Hankel determinants as functions of the roots

21s Zor 4. Ey The formulas used until now seems not to be useful since the

number of terms in HS tends to infinity with n.

k

4.1 8 as_a function of the_roots.

The basic formula 1s

Sh Sn 1 °° 7 ‘n-k+l

" n+l
(4.1) H = | 1<k<N

_- n=0,1,2, . ..
Sik 1 ce S_ ross

and we begin by finding S as a function of the roots.

Theorem 4.1

Let the roots be different, that 1s in our case Zy > Zp > te 2 > 0, then

2'f



(4.2) S_ = y EN L, N>2, n=1, 2, +.
i=1 (z,-2z,)

I] 1 J
J=1, JFi

Proof

By induction with respect to the number of variables N.

N =2

By definition

n n-1 - n
— + + eo 0 4

Sh “1 27% “2

OL } AL

- — (z, >z,)
1 2

,271 a!

rm Ati =
17% 2” %1

which 1s the right side of (4.2) in this case.

Let the theorem be true for 2, 3, ..., N-1 variables and for all n in

each case. We consider S. of N variables.

From theorem 2.1 we have

_ (GN) _ R)(4.3) 5, = 2,8; tT 8 =z, s + 8),

(1) (1) (2) 2)
where S_ = S_ (2, cee zd S, — $ [2 22 oe Zl:

The formulas (4.3) give

_ (a(2) 1)Spo= (877 - 3 )/ (zy =z)
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or with n + 1 instead of n:

{ 0 1)
\&/ al) _

(4.4) s_ = (851-820)/(2) -2,).

Now we may use (4.2) with N - 1 to obtain

N-2 N-2
Z Z

S = 1 1 Re pp) +L tee =
“z_.-z. | (i- n il + (z,-2.)(2_-2)...(2,-2_)n z,-Z, Lt) § Eq) $20 1 25 z, 25 Zs 2 ZN 3

,N=2 2
N n+l 2 n+1

f (z.-2.)(2.-2 Yoo (z -7 “N i (z -Z Yooe(z -Z_) 2 -
N 1 N 3 N N-1 2 5 2 N

,N=2 Ne
2 tL coo b tL

_ _ . oe _ - - (z,~2.)(2. 2.) (2-2. .)(25 2,) (25 Z),) (25 zy) fo) Zn Z, Zn Zz Zn Zy-1 N

1 NL
1 n 2 n

“(z.z. (2.2)... (z.-z.) “1 Yaz) (zz). (z-z) 22
1 2 1 73°" "YT °N 2 1 2 3 2 N

N 1 [2z.-2,. = (z.-2.) ]
+ V 1 1 2 1 1 71 ~

i=3% (21-25) (23-2) (25-2) ++ (2-2;)(z=z,) (2-2) a

N ZL
= ¥ SEoo. N i

i=1 TT (25-2)
i=1,1#J

and we have proved theorem 4.1 by induction.

Theorem 4.2

Let Zq > Zp, > tte 2g > 0.

)



Then

(z, bee 2, yN-k
k 1 k n l <k <N

(4,5) H = y —_—(z, 1, ) - =

(,) I] I 4s £5 n>k
i=1 j=k+l

where the sum is taken over all (3) combinations Z, tt Z of k roots
1 k

taken out of the N roots.

Proof

From the general formula (4.2) for S. and the formula (4.1) follows that

we may write HE in the form

3 n il n-1 N n-k+1
Ye. z. Lc. 2. ee }, c. 2.
1 1 1

N N N

Te, zt Le, LL. Voc, 207K
Kk 7 +1 T 1 1 A

(4.6) H =
nl []

re IRL ntk-2 re z 0 (k rows)
T 171 7 1 T 171

where the constants Cyi i=1, ..., N are independent of k and n. At this

point we have used n > k.

It follows that in may be written as a sum of Nn determinants
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o ne o n-l o Skt]
£ Ly £5 Ls . £ Ly

- +1 o pe - ,NKt2
£q 4 Lo Ly . Ly Lye

kK
(4.7) H =) |.

o k=l o Jtk—2 - 0
£q £4 Ly £5 . by Ly

where 1 <i; < N i=1,.. .k.

From (4.6) we know that the determinants, in order to be non-zero must

have different roots in all columns; that 1s He may be written as a sum of
p(N,k) determinants. In (4.7) we then have to take the sum over all p(N,k)

permutations (£5 &y) Coe. 4) taken out of (1, 2, . . . . N)

Now the p(N, k) determinants may be divided into (,) sets, where the
members of each set have the same k roots in thelr columns. Hence we may

write

Nn n-1 n-k+1
Zz Zz. [J [ LJ Z

4 4 Uk

* k LJ [J [ ]
(4.8) m=);IT e, Lip |-

i=1 "1

n+k-1 n+k-2 n
Zz ya . . Z
9 - 4 “hn

where the sum 11 must be taken over all k! permutations (a; . . q) of

(£15255 v EEE 2) and the sum}; must be taken over all (3) combinations

(a,, £or¢ ws L) of (1, 2, . . . . N). Since the constants Cyr eC, are
1 k

the same for all members of the same set, these may be taken out as shown in

(4.8). It follows that we may write (4.8) in the form
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k-1 k-2 0
Z Zz 4
hh Db Ue

k k-1 1

24 24 24
k k 1 2 °° k

k n-k+1

Ho=0pIT ey JI (zp) Lit
i=1 1 i=l 1

2k-2 2k-% ’ k-1
Zz Zz Z
qy A A

We introduce the powers sP of the roots z,, 2,, .. . %Z byJ J J)
1 2 k

s =z) +. oz p=0,1,2, ...
1 k

Then

- - k- - lo}

- sk 1 sk : . . 5° Z Sheers 1 «ee 2 tecotzy
1 k 1 k

sk gf . st 2 beer
[3 L 1 k

FAN = . - .

[ J _ ; _ LJ ; _ _ Ko
gPk-2 o2k-3 gf 2" Toe 5 =... > L.. . oe !

1 k 1 k

2
It follows that A may be written as a sum of kK determinants. Of these

only k! are different from zero and the sum of these 1is pn. .
Now

ght gk= | ¢° 11 1 251 z 1
Ly Ly

sk gk-1 «ee st Z, 2, Z, zt Z, 1

YI = * = =0 By

- - - — - k-1

ook 2 ok > oo ok 1 2! 1 y 1 Z) z, 1
1 k k k
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Since the product of the matrices corresponding to the two last determinants

1s the matrix corresponding to the determinant on the left side.

Since

k-1
1 Lr . . . 1 Z « «2 1

4 . £q

z z z EL z 1
SE by k by 4s k

i=1,3>1 £5 x and i=1 nl %
kl kel _k-1 > J _k-1 EN
bh A by by 3"

follows'that

k kK k
k(k-1) 2

Lr= 11 JT, (2, -2,) (=(-1) =5=~ TT (z,-2,)°5)L

IL 301 j=1,341 “1 73 2 aap A Ay

Hence

k k k k k kK
k n-k+1 -k+1

i ZL Te, TT(z,) TT TT (z,-2,)= I; Tle [T (z,-2,)2," )n 1 L, . £. : LETT 2 T , L. wh hh he
i=l "1 i=1 "i i=1 j=1,j#1i" i ] 1= i §=1,3A1%1i73 1

where the sum must be taken over all (}) combinations of k roots taken of the
N roots.

With . N-1 . N-1
£. £.
i i

0. = ~~ . , TT nN 7

i TT (2) z,) TT (zy. - “s)
J=1, #4; J=1, J#1

we obtain

2 N-k+n
k £.

k 1

1 Bl Lr 11 N1= (z - Z )
Tr 4s £

: i J
J=k+1
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or

(z, ...z, yN-k
(4.9) SE I Se SU SUn N, k N £ £

all ( ) TT TT (z =z ) 1 kcomb k £ 44
i=1 j=k+1

and we have proved theorem 4.2.

The formula (4.9) may be written as

n

) SPRRIR
(4.10) H = y TE o

n all (Jr 7 (1 - 2 Jz)k £. kL,

comb 121 jok+1 J i

4.2 General convergence theorems.

By means of the formula (4.10) we may prove

Theorem4.3

Let Zq > 2, > seo > ZN > 0.

Then

gk
lim —— a #_ + cag

_k 1 k
n—o H

n-1

Proof

Since the roots are different we have

/ Z Z nk N l-z./2. £.°°°°71

H L+ of . =i a oo 00d
2 = (2, z z. ) _ i=l J=k¥l * AFA 1 ko (

(4.11) TR 1 2°" k k N 1-7 /z Zz, AALS. -1y’ n > k)
n-1 1+) [] | j | 1 :i=1 J=kt1 1-z /z_ Z coe od

£: kb, 1 k
J 1

where the sums now are taken over all (2) - 1 combinations z. ...z different
bh

trom z,...z,.
pL



Since 29 > Z, > er > zy > o 1t follows that

1°"

for all combinations in question. This means that all the terms in the sums

in both the numerator and the denominator tend to zero, and since there are a

finite number of terms in these sums the fraction in (4.11) tends to 1.

Hence we have proved theorem 4.3.

Multiple roots

Theorem 4.4

Let 21 225 2 7 2 2p 2 0.

Then

gX
lim ——— = 7 Z, 3

K 1 "Tk?
n—oH

n-1

that 1s the result from theorem 4.3 1s true also for the case where one or

several roots of Py; (x) = 0 are of multiplicity greater than one.

Proof

We begin with the case where one of the N roots, say Zs is of

multiplicity 2, and the remaining (N - 2) roots are single roots; that is the

fo > > eee > fo > ese
roots of p, (x) 0 are zy Zp, Z. 1 Z, > Zp

Now we consider the polynomial equation p(x) = 0, which has the roots
> e mm oe moe24 Zs > xx > z, " € > 2. > N

Let Be) denote the Hankel determinant corresponding to this equation.
From the definition of Ee) as a determinant in the complete symmetric
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functions follows that Eile) is a continuous function of €. Hence we
find 150) = lim He).

n n
€—0

By means of (4.9) we may write

(z . . yN+n-k (z 2 yN+n-k
k 1 2 Tk n N-k+1 RE \

an) BO -moSrzay 0 am (er
1 "k+1 kN N-k+1 "1 -*N N-1

where z = 2 + €.
r-1 Tr

The terms of (4.11) in which € occurs in the demoninator must be combined;

that is we'have to consider all combinations (z , ..z2, ) of which z but
} ‘A Ly r-1

not Z.. 1s a factor and all combinations where Z but not Z., 1 is a factor.

There are ®2) combinations of each kind; we take them pairwise as in
the following example where we assume r > kK

° N+n-k N+n-k

0 kd (z.-2.) (z. .-z) il (z. _-z.) k=l, 2 ) (z_=z) TT -z .)ir r-1 r [] r-1 J [IE oo. 1 rl r r-1 | r J [IE, j=k, j#r,r-1 i=1 j=k, jfr,r

k-1 N

where [] = 1 [] (z.-z.)© 411 j=k,jdr,r-1 + 9

Then with =z =z + € we obtain
r 1 r
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N+n-k N+n-k N+n-k

2. Hr) N (z, + €) Z ]
uu = EE —

k-1 N k-1 N

| | : € a. 2-2.) TT (z,, z 5te) TT 2172) TT 25
i=1 j=k, j#r,r-1 i=1 j=k, j#r-1,r

k-1 N k-1 N
N+n-k N+n-k:

Mk (z +e) T(z, -2 -€) IT (z2p=2:)-2 [1 (z.-2 [T (zt)

EE ET k-1 N -| e |] (z.-2) ) (zp-z ste) [[ (2. -2_-€) IT (zp-z3)2 i=1 L I j=k, 3 r,r-1 J 121 1 Tr j=k, j#r-1,r J

Let t(e) and b €) denote the numerator and the denominator of the last

fraction, respectively.
N

2

Then t(o) = b(0o) = 0; b (0) = C I] (2-25) ).
j=1, j#r,r-1

We find

N k-1 N
N+n-ky N+n-k-1 k-1 k-1 1 Nn- k

Flo) = (THEIR TE (ra) - (OF EE) Tamed
j=1, j#r,r-1 i=l 1 r j=1,j=r,r-1

N N
k-1 1 N+n-~k

j=k, j#r,r-1 “r J i=1, j#r,r-1

Hence

k-1 (20 zz) N+n-k 1
lim u = (-1) -  (TUTh =

€—00 TT 2 TT -. 1) z.
j=1, 3#r,r-1 i=1 Jj=k,j#r,r-1

(4.12) Co Tink
. (z Zo 12.) k-1 . N 1

(2-2) (25-2) = JK JFLj=1, j#r,r-1 i=1 j=k, j¥r,r-1
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where lim u 1s written as the sum of two terms in order to preserve the number

of terms in K. The limits of the remaining pairs obviously have the same
k

structure as (4.12), and we may write a formula for H covering the case of

N - 1 different roots.

In this formula, which again consists of (3) terms of the form
o(n) (z, +242 yN+n-k » the coefficients may have a factor (Nn-k .

1 k 71 k

By means of the technique used above we may use the first result to obtain

new formulas covering the cases two roots of multiplicity 2 or one root of

multiplicity 5 (all other roots single in both cases) etc. until we obtain the

following result:

Let r be the number of different roots of Py (x) = 0, and let the

multiplicity of these roots be My, My, « . . MW, respectively.

Then we may write HY in the form

N+n-k

(L.13) HY =}, . c,\® (z, “2, ) TH
all () “1 k 1 Kk
comb."

In this formula (0) 1s of the form
JAK
1 k

C ty
n 1 k N+n-k N+n-k

(4.14) ct )., a ( p ) ee p )
1 k = 1 (2-25) Ly L,

where c¢ 1s a constant; I (z.-z )° contains powers of the differences

between different roots and o < Pp, <m-1(1<1i<r). By means of (4.13)
i

we obtain
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(n) N+n-k
c Z, *°°Z

£icook y y/

1 -) 1 k 1 kk (n)
H C Z 007

in Il = (2 +e-2,) look V1 kK!(b.15) = (zy 002) =(qa) N+n-1-k
H C Z °° or

n-1 byt dy £q Lye
1+Ye (———Cc n-1 Z, *°°%Zlek 1 k

where the sums are taken over all (0) - 1 combinations z, IN ) different
1 k

from (2. @ zk)
Among the combinations (z rz, ) there may be some for which

1 K N+n-k N+n-k
z +e+z = z_*++z , and among these we choose the term with max[( ooo ) 1.
L y/ 1 k p bp
1 k 4 £.k

By division 1n the nominater and the denominater, respectively, with these

functions of n, the fraction in (4.15) will tend to 1 as n tends to

infinity. Since

: N+n-k N+n-k N+n-1-k N+n-1-k

Lim ([C 0) CC 07) 71) = 1.
Nn— 0 £4 .. Ly 2 Lye

we have

k,..K _ CL
lim (H/Hi) = z,°" "2,
n—

and we have proved theorem 4.4.

Theorem 4.5

Let 2, > z, > *** > zy > 0 .

Then

K — Z as nn —»®
Ih 7%
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Proof

From theorem 3.1 we have

k k-1

k 5 H2

| I = Knol
n-1 n-1

ie gi-1

<= [E- k k-1

1 12

Hence by means of theorem 4.4 -

lim gq" =(z 2. )/ (2 2 _)=9h 1 “kVA kel) Toy
Nn— oo

Theorem 4.6

Let 29 225 2 "°° 22% > 0

Then

k
e —5 0 as hn —»w
n

Proof

By induction with respect to Xk.

k=1

From (1.2) we have

1 ot _ 8+ 1
dh+1  n nn

or - since e® = 0 -
n

ot 1 pt
EE

LO



Hence

Lo, 1 1
lim e = lim SE - lim a,
Nn—-o Nn— n-—>c

BE BT

= 0 ®

We assume theorem (4.6) holds for k - 1 and consider the case k. Again

(1.2) may be used. We obtain

kk k k-1
2" +1 "4h TS )

Hence

N k k k k-1
lim e, = lim U1 ~ lim gq + lim e
n—» n-—9 n—oo n-— oo

= - +

Ze ~ Ze TO

= 0 9

and we have proved theorem4.6 by induction.

In special examples the theorems 4.5 and 4.6 may be proved without using

theorem 4.4. We consider two cases.

Example 4.1

N =2

(1) 1 > “0 > 0 LOL , AFL
1 n n-1 n | n

— — + + eee H+ — oe —

Now H S, 2; tz, Tz, Z,, 2-2, ; in = (z Z,) and
we find directly by means of (3.1) and (3.2):
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n+l n+l (2. - z 2
ISE SEP UU PR 1” Zo
4 Bl n n ? n 1 2 (FL _ arly n _ 2)i 1 2 JV >

L071 L071
2__ Aa 2
dy © “1 “2 SO _ 0 ‘

1 2

From these formulas it 1s obvious that

a — Z 0 2 and et — 0 as n — oo1’ 2 n

(ii) Zq = Z, > 0
2n

Then H = 5S = (n + 1) 2); i = 29 and we find
2n

1m. 1 SU SE
9h Th %1 nT (m1) 2” no BE (n+L)n °1 1

2n n-2

2 Zq (n-1)z] numa nuh
4h © 2-1) n-1 “Tm “1” Tn “

yA nz
1 1

Again 1t 1s obvious that

1 2 1

aq, =z, 4 - z,(=2,) and e —0 as n -—w

Example 4.2

N arbitrary; all roots equal, that 1s

2g = 25 == 20 >0

We have

Ny _k

0 = ()2) k = 1, «voy N
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Now

k .k-1 2

& fo Hy 0x 70%) Tigok _k-1 gd. Oo
Hy Hy k "k-1

(4.16)

Ny 2 N N
(3) - (1e_1) (41)

ER Zz k=1, 2, .. .N
(NY L
k-1 k

and

k+1 _k-1 2 Oo

FO I SA og)” = 9 2 oy
2 = k k B 2 0) ag

fy Hg op ~ k-1 KT k

(Som (Ny)
k+1 ‘k Vk+2! | kel

TMZ(Ny (Ny Tm A Ko bed ees Nd

Since

MZ (Ny Ny NE Nekrl | Ne
k k-1’ ‘k+l’ = ‘k-1 k k(k+1)

(4.16) and (4.17) may be written in the following form:

k  N+1 _YU = Kr) 24 k =1, ¢ ... N

k __ (N-k)k ]
0 TThr1) (kt2) ‘1 k=l Nl

By induction we may prove that
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k (n-1) (N+n-1) _
(4.19) In = Tem-2) (kn-1) 21 k=l een I

k ~~ (N-k)k 3 _
(4.19) °n = (&*n-1) (k+n) 21 k =1, ¢« ... N-1

Forn = 2 (4.18) and (4.19) holds as we have shown above.

Now we assume that (4.18) and (4.19) holds for n and consider the case

n + 1:

: k oK _ Kl + k
+1 © Cn n 4

Jm-x+1) k-1) © (N-k)k  (n-1)(N+n-1)
“| (k+n-2) (k+n-1) (k+n-1) (k+n) (k+n-2) (k+n-1)

_ n (N+n) 2
~ (k+n-1)(k+n) “1

which is (4.18) with n + 1 instead of n.

Then

RS = k+l, k KEntl © ‘ntl Tel’ Cn

_ (N-k)k z
(k+n) (k+n+l) “1

which 1s (4.19) with n + 1 instead of n.

From the formulas (4.18) and (4.19) we find

k k

aq > z, (=z) and e  —0 as n -.

it



5. The convergence to the smallest root

The formulas developed in section 4 show that the convergence of the

g-columns may be very slow. In this section we shall examine the question of

the speed of convergence to the smallest root zy of p, (x) = o. Furthermore

we shall show that it 1s possible to use an acceleration technique to obtain

faster convergence to the smallest root.

N

> .1 A formula for a

In 'section % we have given a qualitative formula for in valid for the

case of multiple roots. In order to examine the convergence of a to Zn
in detail we need a precise formula for 0 which cover the case of multiple

roots. As usual we assume that Zy 2+. + 22g > O.

Lemma 5.1

-1 n 1 1 1

I = N

Proof

By definition

1 1 1 1

0} Co (=..=) o.(=...7)
N-1 'N-2 . 1 2, oy 2 zy ZN

o} o] Y (= C=)
N N-1 1 Z Zu

AL _ 0 1
n -  “N . .

1 1

1 N
(n rows
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In the proof of theorem 2.3 we have shown that the last determinant has

1 1 1
the value S[=, =, ...=~] and we have proved lemma 5.1.

nz zZ Z1 2 N

Lemma 5.2

Let p(N, n) denote the number of terms in the complete symmetric function

S_ in N variables.

Then

N+n-1 N+n-1
(5.2) | p(N, n) = ( ) = ( ) N>2 n>o

N-1 n

proof

By induction with respect to n.

n =o

N-1

Since §_ = 1 and (57) =1 (5.2) is correct for N > 2. We assume
that (5.2) holds foro, 1, 2 . . . . n-1 and all N > 2 and consider the case

n. By means of the relation [z+ -zy] = Z1 5, [200 zy] + S [250+ 2y],
which has been proved in theorem 2.1, we may obtain

p(N, n) = p(N, n-1) + p(N-1, n)

N+n-2

N+n-2 N+n-3 n
= + + eee + + 1(yop 2+ Cpls) (7)

where we have used that p(l, n) = 1.
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Since

n n+l N+n-2
i i + xx +Le (0) + (Fh (3278)

_ (ntl n+l N+n-2
= Cy) + C0) +--+ (1005)

n+2 N+n-2
= + see +("ry ) (Typ

_ N+n-1
- ( N-1 7 ’

we have proved lemma 5.2.

Lemma 5.3

Let zy be of multiplicity m (1 <m < N) and let the other roots be

different. Then

Splzs 2, 2 4100 2)
LNT
1 N+n-1 1 1 N+n-1 - 1 -

= (a ss em JO a (Ds5 ld
T(z. -2. ) 1 "m+l 1°N 17%ml 4%1, “a

j=m+l —

N pil
i. Vv +r nnn
jem+l (z,-z, )™ hl (z.-2.)1 1 | | 1 J ]

J=m+1

Proof

The proof may be given by means of the limit technique used in section 4.

In this case however the notation is so much handier that we may prove (5.3) by

induction with respect to N.

N 2
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If Zq > Z, (5.3) is nothing but (4.9) which 1s correct and 1f Zq = Z,

we find s lz 2] = (n+l)z; which 1s correct too. We assume (5.2) 1s true
in all cases with N-1 roots and consider the case with N roots.

Ca N+n-1l, n

If z, 1s of multiplicity N, we find by (5.3) that 8 [z...2,]=( N-1 )z,-

From lemma 5.1 follows that this is correct. If m=1l (5.3) again is (4.9)

and we may assume that 1 < m <N,

By means of (4.4) we have

S [2,,0eeZ yZ nye. Zo]
n _J 1’ mtl N

m

n+l, “1’ 1’ "mt2’ N n+l Ll Ll m+l N 1 “m+l
m m-1

The complete symmetric functions in the parentheses are functions of N-1

variables and we may use (5.3) to obtain

,Nn-m
g _ 1 N+n-1 _to | T [Co ). s,[775 eer If Gp ;

j=m+2 J

_ +1 =

N 2 MN 1 N 2) n-1
* L (z.-2 i I (z.-2.) LL (z.-2 ym-l N (z -z.)

i 1 [1 i J i 1 [] 1 J
j=m+2, j#i jem+l, j41

 Ntn-mtl

1 ah S[ 1 1 (n=l + /-"— _ - PRR yore TT _ Z tee (z zo)
N (2.-2.) m-2 1 Zq Z +1 zy Zn m-3 1 | 1 mt+l
[1 1 J

By reduction of corresponding terms and by use of the formula

1 1 1 1 1 1 1

5. [3 -2Z SRRSP / I+ Z_ =2Z S..113 ~z 2g =z I= S12 -Z 2g az
1 "mt2 1 N 1 mtl 1 mt+l 1 "N 1 ml 1 N

we end up with (5.3). Lemma 5.3 has been proved by induction.
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As an obvious consequence of lemma 5.3 we have the following general

result

Lemma 5.4

Let p(x) = o have r different roots z, >z, >..0 >z > 0 of-r

multiplicity m,, Myy eewy Mo respectively. (2, m, = N). Then - with the
ng 1 1 | 1 1

notation Ss [——] = 8 [—— —_— ,  — — ~—— 1] (541) _=z. 7 - ; J - J _ b ELEC) _ PII) _ JFL
P2372; P #372 27% 217% EE a
a ned —_———

my My.

S lz)...2, yee 2,002]

r ,NFn-my m, . m
+n- +n- ; : :

“LF ———2———) — os = 10  ea(1)ML s [e ppMed
: Tr : mM; m,-1 lz, -2. '™m, 1 m, Z.,=2. 1

i=1 TT | 1 i J 1-2 1-1 1 7A (zz)
j=l,j#i 1 J

Now

i ae

a I! n-2- -1

v1
n-2

A RT
n-1

which by means of lemma (5.1) may be written as

1 1

sp-ol% yer ]
(5.5) Te: SU :|| dn 1 1,

Spaz oeeoy |
1 N

9



We use the notation from lemma 5.4 and obtain

1 N+n-m.2 1 Nn-m.-1

Cl NC
N 1 N+n-3 i N+n-2

web — QVGr]
. w/. 2. 2, w/o Z. .

J=1,3A "1 7 F104“

In this formula Z., denotes the smallest root of p(x) = o. Furthermore,
both the denominator and the numerator consists of N terms.

N

5.2 The monotonic convergence of 9,

We consider

€ = No Z
nn N

= 9 r

and treat the two cases m_= 1 andm_ > 1 separately.

m= 1; that 1s the smallest root is asingle root.

By means of (5.5) we find

1 \N+n- 1 N+n- -2

(=)? (= eel iy
Z_ SI x

A | SE = S— tC) PONY J Jn r-1 m, r m. m -1
1 1 J 1 _ 1 J r-1 i=1

| (= -32) I] (=, _)
j=1 r J j=1,jfr-1 r-1 J

1 N+n-2 1 N+n-mr-1-1

(Z ) (2 ) r-2
Tr r-1 [m2 ] 3 g(5.6) aE Be tfao Yu 1 + enom
1-1 v3] TT 1 1 vv J r-1 1=11] (; =) (3 - 5)

j=l r 7] j=1, jfr-1 r-1 J
1 N+n-2

=
—— I

r 1 1 m, .
me =2)

j=L “r %j

50



From (5.6) follows, that €, may be written in the form

(5.7) e =c (z=—) bv),
n Z

r-1

where b(n) -» 1 as n » o ,

Hence we have proved

Theorem 5.1

* *

Let z, 22, 3. > 31 > zy > 0.
Then

‘ntl °N
“n “N-1

m > 1; that 1s the smallest root is amultiple root.

By means of (5.5) we find

1 N+n-m_-2

& i N+n-3 rel
e = ||—2—(M3) 1 AT numn Tr m, m -1 .

AlN 1_ Lyd or i=lWh. Z.  Z,

J=l,J#Fi( 1 J
1 N+n—-mr-1

=
Tr N+n-2 L

(5.8) -z [———————— [( Heo] + ) denomTr Tr m, m -1. i
I EN r i=1

NIRCAR
j=1,J#1 1 J

1 N+n-m -1

Z. N+n-2 rl
— [(, ny JERE +} denom| .

1 1 hy r i=1
G3)
j=1, ji i J

From (5.8) follows, that ¢, may be written in the form

hl



(0-3
| Co Be?

0 TC (WHn-2y 2y b(n)
m ~1
r

m-1
Tr

= ¢ —

(N+n-2)

where b(n) -»1 as n -» =,

We have proved

Theorem 5.2

* —

Let z, > Z, > .a* > Zy 1 2 > 0, that 1s the smallest root 1s a

multiple root.

Then

1
€ tends to zero as = .
n n

Theorem 3.3

The last column of the QD scheme forms a monotonically increasing sequence:

N N N N <
0=q = = SQ) - yyy 50

Proof

Since

N _ N JN-1 , N
+1 T Cn n in

N-1 N

7% tay, g

we have

N N NL >
1 - In 7 "Cn ’
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Since

en <0 for all n .|

From theorem5.3 and the convergence of a to Ze follows

(5.10) o < No z n>2ih = 2

We remark, that a similar theorem concerning the convergence of a to
the largest root z, may be proved:

Let 2) 2 25 2 00 2 Zy > On Then |

1 1 1 1
> > ° * * > @ ° p= @

4 7% 4h Gn 1

Theorem 5.4

* *

Let 2, > z, >. 2 2y > 0, and let N > 2 .
Then

N N
5.11 - > - .(5.11) (N-1) q 2 zg - q

Proof

The proof 1s based on the following

lemma 5.5

For symmetric functions of N positive variables, where N > 2 and

all n > 1

12(5 ) Sh S "1 Sno1
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For N = 2 (5.12) may be proved to hold for all n by direct calculation.

Now we assume, that (5.12) holds for N - 1 positive variables

zy 22, >. = 22zy> . For n=1 (512) holds. We assume (5.12) holds for

N variables and for n and we have to prove that

(5.13) Spel S 9) Fy

Now

1

“ntl = 2x Cnt Spa
1 1

< Zy 5) + gy 8

< (zy + 0, ) S

= 0, S ,

where we have used

!

S = ZN Sq" S ’

that is

] .

S < 8S
n— n

Hence we have proved lemma 5.5 by induction.

The equation (5.11) may be written in the form

N

Nay 2 7g
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°N |. °N °N
| Since N>-—+ — + +++ + — | ye have by means of (5.5):

- Zz Z z
1 2 N

N 1 N

N q, = N—mm——
s . [X 1} y oe

n-1 Z4 ZN

oy I= 21s IE 2]
1 N 1 N

1 1

1 Ze 7]
1 N

which result by means of lemma (5.5) shows that N x > Zp and we have
proved Theorem 5.4.

0.3 Anacceleration device

The formulas (5.7) and (5.9), in which z denotes the smallest root of

py (x) — o, proves the following

Theorem 5.5

Let z; > 2, >...> zy > 0 be the roots of p(x) = 0, let 0 <c < Zs
*

and let py (x) = 0 have the roots

- : - > see > -

2 Cc 2 2 Cc > > ZN Cc > 0 .

Then the convergence of the last column of the Q,D scheme corresponding

*

to py (x) will be faster than the convergence of the last column in the scheme

corresponding to py (x) = o.

In order to use theorem 5.5 we have to find a constant ¢ in the interval

o< cc < Zo The formula (5.10) shows that an arbitrary element a (n > 2)
from the last column of the QD scheme may be used as the constant c¢ in theorem 5.5.
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The results from theorem 5.4 and 5.5 prove that the following algorithm

may be used to find Zx within a prescribed error ce.

Algorithm

Let Zq > Z, >.em > 4” Oo be the roots of p, (x) = 0, and let e€ > ©

be an arbitrary real number.

Compute ry LOWS of the Q,D scheme. If (N - 1) x a < € then
Zn " 4 < € otherwise compute Yr, LOWS of the QD scheme corresponding
to the polynomial with roots z, - os Cee yt 4 If (N - 1) x 3 < e€
then Zy a - a < € otherwise compute Ts rows of the QD scheme

1 2

corresponding to the polynomial with roots Zq (a + 4): ceey Zn T (4 + x)
etc.

6.- Stability of the QD-algorithm

6.1 The stability of the_progressive form of the O,D-algorithm

In the following considerations concerning the numerical stability of the

QD algorithm we assume that the computations are carried out in floating point

arithmetic on a computer for which the basic formulas of Wilkinson [18] holds.

In Wilkinsons notation, if x and y are floating point numbers, then

F1(x+y) = (x+y) (1+e)

£1 (x-y) = (x-y) (l+e)

fl(xy) = xy (L+e)

f1(x/y) = (x/y) (+e) ,
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where Je I< ot 1f the mantissa has t binary places. Since our

examination will be quantitative only, the statements obtained in this section

will also hold for computers for which the floating point addition and

subtraction are less accurate than supposed in (6.1).

In this section we use the following notation:

(6.2) Q; and 2 for the floating point numbers which actually are in
the computer instead of . and ek, respectively.

k k k

(6.3) r(q) =Q - aq

k k k
6.4 - -

( ) rey) 5 °n

k k k k-1 k

(6.3) O(a) = Quy (By - Bp 7 + Q)

k k k+l, k k6.6 5 _ -( ) (ep) - Bil (Qs Uy x Ey)

We want to express the errors on K and eX that is r( k ) dIn+1 n+l’ Int’ oF

r(eX ) by means of the errors from row n.
n+l

The formulas used in the progressive form of the QD algorithm are

kk k-1 k
(6.7) EE EE

n+l = n+’ dtl X Gp

In the computer these formulas may be substituted by means of

7



k k k-1 k

(6.9) Que; = [(E  -E 7) (1 +¢) +] (1+¢,)

k k+l, k k

(6.10) El = [(Q41/ 9p) (1+ 5) x E,] (1+ €)

Now

k k k

r(Qy) = 41 7 Tt

k k-1 k k k k-1 k
_ - + _ .

= (E, BE, Q,) + 8(q, 1) e, -e + q,)

k k k-1 k-1 k k k

B (Ep _ e,) i (B, © pn ) +(Q } 1, + 5(q, 1):

and we obtain

- k k k-1 k k

(6.11) r(q0 rle) —r(e 7) + r(q)) + 8(q,)-

Furthermore

k+1 k+1

k Ul BS k n+ k
tle) = So X Ey ele) 5 Xe

U1 n+l

which may be approximated by

K Ci a RSk n k+1 +1 k +1 “n ko k

(6.12) req) ~ 5vay) + 5 rie) (EV rq) + 8(e ,y)+l tl L+1

Before we draw any conclusions from the formulas (6.11) and (6.12) we

consider the terms 5(aq,,) and 5(e,,). By means of (6.5) and (6.9) we find
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k k -1 k k k-1 k

8(q,,) = [(E] - E ) (1+ e) + Ql (1 +e) - (EB) - ES + Q)

(=k k-1 k k-1 k
(E -E ) (ef + [(E -E I (1 te) + Qle,

(6.13)
k k-1 k

~ (BE) - E] ) (ep +e) + Q &

_ + k k-1 k
~(e - e ) (e) +e) + q «; :

(6.6) and (6.10) may be used to obtain

kK \ _ ryaktl, Kk | k k+l, k k
5(e 41) a [(Q 41/941) (1 + 5) X EX (1 + 6) i (Qe 1/ Un x E))

k+l, k k k+1, k kK

(Qe 1/ en x Ey) 5 * [(Q47/ 9p) (1+ 5) X E,] “l

- k+l, k k
(Q477 Ue x Ey) (< * ,)

_ _k
= Chel (ey te,)

Co k k

From the limit theorems we know that e, =O and q, ™ 3%, as n —e.

Hence

JCD = 0

and

k

B(apyp) = 2 €

Furthermore (6.12) give
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k “k+l _, k
(6.15) re .1) ~~ = r(e ).

k

These results together with (6.11) show that although the error

, k

r(q ,;) may not decrease with increasing n this error will not increase

very rapidly.

Hence we may conclude:

The progressive formof the &D-algorithm is only "mildly" unstable.

6.2 The stability ofthe forward fgrmpof the Qh-algorithm,

When the formulas (1.4) and (1.5) from the forward form of the algorithm

are used instead of (6.7) and (6.8) we find the relations

x & Egk+1 n+l k +1 k n+l “n+l k k+1
«1 rN — —_— -—_—=

(6.16) rq 7) yy: rq.) + gy: r(e .;) (EP r(e) + 8(q7)n n “n

k+\ _ k+1 k+1 k k+1
(6.17) r(ef™) ~ (a1) - (ah) + ref) + (ef)

Sin KX, 0 and gf z lude f (6.16)ince eg - a 1 ~ Zk as n —» «© we may conclude from (6.1

that the forward form ppt the QD algorithm is "strongly" unstable.

Part 2: ALGOL procedures and numerical experiments

I The procedure QDPOSITIVE

7.1L Introduction

The numerical experiments with the QD-algorithm were carried out on the

Burroughs B 5000 computer at Stanford. The programs were written in
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EE

Extended ALGOLfor the B 5000. The part of this language used in the programs

1s so close to the corresponding part of the ALGOL 60, that I have chosen to

show the B 5000 procedures whichhave been used in practice instead of ALGOL 60

procedures. In fact, the only changes needed in the following B 5000 procedure

QDPOSITIVE in order to have a correct ALGOL 60 procedure are:

1) The basic symbol+ should be changed to i= .

2) BEGIN, COMMENT etc. should be begin, comment etc.

3) The brackets following the array identifiers in the specification should

be removed.

1.2 Description of theprocedure

In order to avoid to many comments 1n the procedure a description of the

parameters, the main features of the algorithm, the' storage; requirements

“etc.are given below:

1. Parameters

Input parameters:

N the degree of the polynomial.

POLY an array which holds the (N + 1) coefficients of

a x + reep 8 Xx a0 with ag in POLY[o], ay_q
in POLY[1] etc.

EPS a real number specifying "the tolerance." cf. section 3

below.

MAX an integer specifying the maximum numbers of rows of

the QD scheme to be used.

JUMP a label to which exit 1s made when the roots are not

found by means of less than MAX rows.
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Output parameters:

ROOTS an array which upon exit holds the N roots of the

polynomial equation.

ROWS an 1nteger which upon exit holds the number of rows used

in the calculations.

In the general case Q,DPOSITIVE computes N rows of the QD scheme. Then

a translation from 0 to ay 1s carried out, and N rows of the new QD scheme

are computed etc., until (N- 1) dy < EPS. Now the smallest root 1s computed,
and the process is continued with (N - 1) rows until the next root is computed

etc.

Before the QD schemes are computed the procedure checks 1f all the remaining

roots are equal. This check 1s carried out by means of a very simple device

which consists of a comparison of the arithmetic and the geometric mean of the

remaining roots. When the roots are positive these means will be equal if and

only 1f the remaining roots are equal.

3, Accuracy

The theory of the algorithm used (chapter 5) says that the maximum error

should be less than or equal to the value of the parameter EPS. Since the

progressive form of the QD-algorithm 1s mildly unstable and since the

translations used will introduce other errors this will in general not be true.

In numerical experiments with equations of degrees between 4 and 10 the first

five digits have been correct in all cases (see the examples in 7.4).

Lh, SBtmpgeirements

The procedure uses approximately (N + 4) XN cells for storing local

variables.
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7.3 QDPOSITIVE

PROCEDURE QDPOSITIVE(N,POLY,RO0TS,EPS»MAXsJUMP,RONS)IVALUEN,EPS, MAX}

INTEGER N,MAX,ROWSJ ARRAY POLY({0),RO0TSL1IIREAL EPSILABEL JUMP)

BEGIN INTEGER SsKaR»1»TIREAL AM,GMsCORsCOSLABEL STOP,AGAIN}

ARRAY QCYSN,1INI,E,POL,POLICOINY)

FOR Se0 STEP 1 UNTIL N Do POLCUS)¢POLICS)¢POLYLS) 3COR¢CO¢OSR¢0)

FOR S¢N STEP «1 UNTIL 2 DO

BEGIN AMeABSCPOLL1)/S)IGMeABSCPOLISI*(1/5)))

‘IF ABSCAM®=GM)<EPS THEN

"BEGINFORTe¢1 STE PJIUNTIL S DOROOTSLTI¢AM+COR)

60 TO STOP

ENDJ

AGAIN?

FOR let STEP 1 UNTIL $21 DO

BEGIN QC1,13¢03ECIJePOLIT+1)/POLLIY)

END}

R¢R+1

Ql1,1)e¢ =POLL1)/POLLOYSQL1,S)¢ELO)¢ELS)0}

FOR Te¢2 STEP SUNTILS DO

BEGIN FORI¢1 STEP 1 UNTIL S DO

QIT,I1)eElIInELIm] )¢Ql Tel, I)JR*R*Y)

FORI¢{ STEP 1 UNTIL $4 DO

ECIJe@IT,1¢13/Q0T,1X%ELT]

ENDJ

IF (N=1)xQ[S»SJI<EPS THEN

BEGIN ROOTSLS)¢*AM¢Q[S,S]1+COR}

IF SSN THEN AM¢AM®ROOTSI[S+1))

FOR 1¢S STEP ®JUNTILIDO
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F O RTel STEP {1 UNTIL I DO

POLICTI¢POLICTI+AM xPOLILT=1)}

FOR 1¢1STEP1UN TiLS"1p0POLLTI)¢POLILT YS

IF $®*2 THEN RDOTS[1)¢Ql2511+COR)

END ELSE

BEGIN COR¢COR+Q(S»S)sC0¢Q(S»S))

IFR2 MAX THEN GO TO JUMP}

FORII¢S STEP ®*3 UNTIL 1 DO

FOR Te{STEP | UNTIL I DO

| POLETI¢POLLTI4COXPOLIT=1])
GO TO AGAIN

END}

END)

. STOPS ROWS¢R}

END QDPOSITIVES
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] 7.4 Examples
1. p), (x) =x - 8 © + 24 x - 32 x + 16

| Exact roots: 2, 2, 2, 2.
| The following output was obtained:

Table 1

| COEFFICIENTS:

| 1.00000000 -8.00000000 24. 00000000 ~32.00000000 16. 00000000
EPS = 0.00000001 NUMBER OF ROWS = 0

ROOTS:

2.00000000 2.00000000 2.00000000 2.00000000

| 2. P(x)=x 4 - 8 + 23.98 x - 31.92 x + 15.9201

Exact roots: 2.1, 2.1, 1.9, 1.9.

The following output was obtained:

Table 2

COEFFICIENTS:

1.00000000 -8. 00000000 23.98000000 -31.92000000 15.92010000

EPS = 0.00000001 NUMBER OF ROWS = 54

ROOTS:

2.09999999 2.09999999 1.90004137 1989995865

The details of the computation in example 2 are shown on the next pages where

the 54 g-rows and the 54% e-rows are printed.
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COEFFICIENTS

1.00000000 -8.00000000 23.96000000 =31,92000Q00 15,92010000

ot (¥] ‘42 £2 3 E3 oa
8,00000000 0.00000000 0,00000000 0.00000000

«299750000 ‘1.33110926 -0.49875000

5.00250000 1.66639074 0.83235926 0.49875000

*0:99850200 ‘0.66488674 -0.29885120

4.00399600 2.00000600 1.19839480 0.79760120
=0.49375399 -0.39839721 -0.19890279

3,5052440% 2.10036278 1.39788922 0.99650399
029885632 *0:.26515190 -0.14179051

4,01398402 0.00000000 0.00000000 0.00000000

“150026143 *0,66455367 *0,2483827%
2,51372260 0.83570776 : 0.41617096 0.24838271

=0.49877426 *0.33093857 -0.14824189

2.01494834 1.003541344 0.59886764 0.39662461
-0~24841413 -0.19748861 -0.09817926

. 1.7665342% 1,05446896 0.69817699 0.49480387
“0.14828186 -0.13075966 -0.06958046

2.03476855 0. 00000000 0.00000000 0.00000000
«075320908 -0.33027707 -0.12225847

1.20155947 0.42293200 0.20801860 0.12225847
-0~24856921 -0.16244639 *0.,07185479

1.03299026 0.50905483 0.29861020 0.19411326

0112249424 «0,09529062 -0.04670962

0.91049602 0.53625845 0.34719120 0.24082288
oN =0,07214592 -0.06169423 -0.03239926

on 1.07147703 0.00000000 0.00000000 0.00000000
=0.308313806 -0.16117934 -0.05763440

0.68833896 0.22195673 0.10354493 0.05763440

“012354500 -0.07519102 -0.03208003

0.56479397 0.27031270 ’ 0.14669593 0.08971443

=0:05912914 -0.04079427 -0.01962445
0.50566483 0.28864757 0.16782576 0.10933887

0103375236 -0.02371865 -0.01278537

0.,6341215) a. 00000000 0.00000000 0.00000000
*0.20625588 -0.07336461 -0.02386274

0.82786565 0.13269127 0,04950187 0.02386274

*0+06406124 -0.02732825 -0.01150321
0.36380441 0.16962426 0,06532691 0.03536595

=0.02986863 =0,01052485 -0.00622748

0.,33393578 0,18896805 0.06962428 0.04159343
-0.01690210 -0.00387783 -0.00372029

0.46774781’ 0.00000000 0.00000000 0.00000000

=0¢13264735 -0.02769939 -0.00785516

0,3351004a7 0.10494795 0.01984424 0,00785516
*0.04154297 -0.00523758 -0.00310939

0,29355750 0.,1412%334 0.02197243 0,01096455
«0.01998955 -0.00081472 -0.00155163

0,27356795 0.16042817 0.02123552 0.01251618
=0.01172245 . -0.00010784 -0.00091453

0.41768310 0,00000000 0.00000000 0~00000000

=0.10874797 »0,00831{003 -0.00216342
0.30893513 0.10043795 0.00614661 0.00216342’

*0.03535507 -0.00050856 -0.00076146
0.27338006 0.13528846 0.00589371 0.00292407



=0.01748297 =0,00002216 -0.00037789

0.25609709 0.,15274527 0.00553798 0.00330276
_0~01042745 -0.00000080 '0.00022537

0.40447206 0.00000000 0.00000000 0,00000000
*0¢30222985 20.00219946 -0.00055516

0.30224221 0.10003036 0.00164432 0.00055516

«0,03383409 0. 0000~3616 20.00018744
0.26840812 0.13382829 0.00149304 0.00074260

-0001686968 -0.00000040 -0.00009323

0,25153845 0.15069757 0~00140021 0.00063583
-0401010668 0.00000000 -0.00005565

0.40112874 0.00000000 0.00000000 0.00000000

-0010056397 -0.00056200 -0.00013788

0.30056477 0.,10000198 0.00042412 0,00013788
'0~03345900 -0.00000238 20.00004482

0.26710577 0.13345859 0.00038168 . 0.00018270
“0:01674769 -0. 00000001 20.00002145

0,25038808 0.,15017627 0.00036023 0.00020415
*0,031002683 0.00000000 -0.00001216

0.40031213 0.00000000 0.00000000 0.00000000

“0.10015604 «0,00015588 -0.00002805
0.30015610 0.10000015 0.00012783 0.00002805

-0103336803 -0.00000020 0,00000616

0.26678806 0.13336799 0.00012187 0.00003421

~0~01668076 0.00000000 -0.00000173

0,25010730 0.15004674 0,00012014 0.00003594
=0:01000741 0.00000000 -0.00000052

0.40016838 0.00000000 0.00000000 0.00000000

=0,10008418 20.00008414 ~0.00000074

0.30008420 0.10000004 0.00008340 0.00000074

ON -0003335205 -0.00000007 =0,00000001
= 0.26673215 0.13335202 0.00008346 0.00000074

*0.01667427 0.00000000 0.00000000

0.25005788 0.15002629 0.00008346 0.00000074

20.01000400 0.00000000 0.00000000

0.40016540 0.00000000 0.00000000 0.00000000

~0+310008269 -0.00008265 0,00000000
0.30008271 0.10000004 0.00008265 0.00000000

»0:033385172 -0.00000007 0.00000000
0.26673099 0.1333516%9 0.00008272 0.00000000

=0.016674813 0.00000000 0.00000000
0.25005686 0.15002582 0.00008272 0.00000000

~0.01000393 0.00000000 0.00000000

0.40016540 0.60000000 0,00000000 0.00000000
-0010008269 -0.00008265 0.00000000

0.30008271 0,10000004 0.00008265 0.00000000
=0.03335171 -0.00000007 0.00000000

0.26673099 0.13335168 0.00008272 0.,00000000
-0001667413 0.00000000 0.00000000

0.39991723 0,00000000 0.00000000 0.00000000

-0.09997930 0.00000000 0,00000000
0.29993793 0.09997930 0.00000000 0.00000000

20103332643 0.00000000 0.00000000

0.26661150 0.13330573 0, 00000000 0,00000000
»0:01666321 0.00000000 0,00000000

EPS = 0,0000000% NUMBEROF ROWS = 54

ROOTS |

2.09999999 2,09999999 1.90004137 1.,89995865



3. p(x) = x — 8% + 23.9999 x - 31.9996 x + 15.9996
Exact roots: 2.01, 2, 2, 1.99.

The following output was obtained:

Table 3

COEFFICIENTS:

1.00000000 -8.00000000 23.99990000 -31.99960000 15.99960000

EPS = 0.00000001 NUMBER OF ROWS = 72

ROOTS:

2.00996394 2.00087 089 1.99912488 1.99004029

1. Pro(x) = x0 20 X04 171 x © 816 x + 2380 x l 4368 x°

+ 5005 % - 3432 © + 1287 x2 - 220 x + 11.

The following output was obtained:

Table b

COEFFICIENTS:

1.00000000 -20,00000000 171.00000000 -816.00000000 2380.00000000

-4368., 00000000 5005.00000000 -3432.00000000 1287.00000000 -220.00000000

11.00000000

EPS = 0.00000001 NUMBER OF ROWS = 191

ROOTS:

3.91898807 3.68250232 3.30972557 2.83082807 2. 28463026

1.71537022 1.16916998 0.69027853 0.31749293 0.08101405

The polynomial py o(%) 1s the characteristic polynomial corresponding to
the matrix considered in example 8.1 in the next chapter. In all cases the first

six figures are correct and all eight figures are correct in the three smallest

roots.
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8. Examples ofcomputation ofeigenvalues.

8.1 Introduction

The following two examples ought to be considered as illustrations of the

QD-algorithm as a rootfinder, and not as examples of the QD-algorithm as a

method for finding eigenvalues. The reason for this point of view is simply

that the method used 1n the examples merely consist of a computation of the

characteristic polynomial followed by the use of a @QD-procedure similar to

QDPOSITIVE. This does not mean that the @D-algorithm in general cannot be

considered as a good method for finding eigenvalues, but it means that the

starting row of the QD-scheme should be computed directly from the elements of

the given matrix and not via the coefficients of the characteristic polynomial.

8.2 An example of the, computation of theeigenvalues of asymmetric three-

diagonal matrix.

The matrix used was the following 10 x10 matrix

2 -1

1 2-1 0
-1 2 -1

-1 2 -1

-1 2 -1

A= “1 2-1

-1 2 -1

0 -1 2 -1
-1 2 -1

-1 2
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The eigenvalues of A are given by means of the formula,

(8.1) E = 2 sin” ( ) =1, 2 N‘ b= SNe p Fp 2r ee

where N 1s the order of the matrix (N = 10).

The following output was obtained (the numbers in the column "CORRECT EV"

were computed by means of (8.1))

THE CHARACTERISTIC POLYNOMIAL HAS THE COEFFICIENTS:

1.00000000@+00

-2.00000000e+01

1.7 1000000@+02

-8.16000000@+02

2.38000000@+03

-l .36800000@+03

5.00500000@+03

-3.43200000@+03

1.28700000@+03

-2.20000000@+02

1.10000000@+01

NUMBER OF ROWS = 138 EPS = 0.00000001
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EIGEN-VALUE NR EV COMP QD-ALGORITHM CORRECT EV ERRORX1000000

1 3,918986773@+00 3,918985945@+00 8.276@-01

2 3.682505627@+00 3.682507 063@+00 -1.436@+00

3 3,309722197@+00 3 ,309721464@+00 7.333@-01

4 2. 83082987 8@+00 2.83083 0022@+00 -1.434@-01

5 2.284629734@+00 2.284629673@+00 6.103@-02

6 1.71537 -294@+00 1.715370320@+00 -2.593@-02

Is 1.16916997~00 1. 169169972@+00 6.956@-03

8 6.902785321@-01 6.902785306@-01 1.432@-03

9 3,174929343@-01 3.174929336@-01 6.858@-0k

10 8.101405277@-02 8.101405259@-02 1.835@-04

8:3 An example of the computation of the eigenvalues of a symmetric full matrix.

The matrix used was the following 4x4 matrix, which is used in Faddeev

and Faddeeva [ 4] (p. 281)

1.00 0.42 0.54 0.66

0.42 1.00 0.32 0.44

A =

0.54 0.32 1.00 0.22

0.66 0.44 0.22 1.00

The characteristic polynomial of A 1s

4 3 2
N= 4 N+ 4.752 A - 2.111856 A + 0.28615248

where the coefficientsare computed exactly.

71



Faddeev and Faddeeva give the following eigenvalues (computed within

5.1077):

NM = 2.32274880

A = 0.79670669

Ay = 0.63828380

The following output was obtained:

THE CHARACTERISTIC POLYNOMIAL HAS THE COEFFICIENTS:

1.00000000@+00

-4 , 00000000@+00

- 4.7 5200000@+00

-2.11185600@+00

2.86152480@-01

NUMBERS OF ROWS = 2k EPS = 0.00001000

EV NR EV COMP BY QD

1 2.322748800@+00

2 7 . 967 066889@-01 .

3 6.382838028@-01

4 2.422607 083@-01
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