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PART 1: GENERAL CONSIDERATIONS

Introduction.

The problem to be considered 1s that of obtaining polynomial approx-

imations to continuous functions or empirical data in such a way that

the approximating polynomials are convex 1n some prescribed interval.

This problem arises naturally in connection with data smoothing and

was 1n fact suggested to the author by a problem requiring the calculation

of derivatives from data,

The difficulties arising from the use of interpolation and least

squares methods for data smoothing by polynomial approximation are well

known. There are excellent discussions 1n Lanczos [10]”, and Hamming

[7]. There appears, however, to be very little literature which treats

the problem of interest by methods of constrained polynomial approximation.

Such problems are usually posed 1n terms of minimizing functionals,

which suggests treatment by variational methods. A similar problem has

been so treated by Boltjanskii [3]. He examined the problem of approx-

imating continuous functions with functions whose n-th derivatives

satisfy a Lipschitz condition. By application of the Pontrjagin maximum

principle [15|, he obtained necessary conditions which solutions of the

problem must satisfy. The problem of interest here can be formally

stated in a manner similar to that of Boltjanskii, but such a represen-

tation does not appear to help in the study of means of computing best

approximations.

Methods of polynomial approximation where the polynomial coefficient

vectors are constrained to lle 1n a convex set are treated 1n the recent

*
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paper of Rice [16]. He showed that the problem of obtaining best

approximations to continuous functions with n-th degree polynomials

whose k-th derivative is positive on [0,1] has solutions and gives

conditions for uniqueness and location of these solutions. However, he

does not find the problem of computing such approximations to be tract-

able.

The difficulties that Rice encountered are of two kinds. First,

the problem 1s essentially nonlinear, having nonlinear constraints.

Second, the geometry of the constraint set 1s difficult to deal with

because 1t 1s not given explicitly.

In this work, both of the aforementioned difficulties will be

dealt with. In this first part, after development of some necessary

preliminaries, a theory for treating a class of nonlinear approximation

problems 1s presented. This class 1s of interest not only because 1t

includes the convex polynomial approximation problem, but because it

provides a potentially useful generalization of the linear theory. A

typical problem of this class 1s expressed as follows: Given an element

f of a real normed linear space V, a set (x;(z) : 1 =1,...,k} of

elements of V which are continuous functions of z in a subset S

of E anda set H in gk determine an element (y*,z*) in

Hx S so as to minimize

IE- (yx (2) +. wx (2).

To the writer's knowledge,this class of problems 1s being treated

for the first time in this work. Questions of existence, uniqueness,
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and location of best approximations of this type are discussed in

Sections 5 and 6. Except as otherwise noted, the theorems given there

appear to be new. One concludes from these results that under fairly

general conditions, this class of problems exhibits most of the nice

features of constrained linear approximation problems.

In the second part, the geometry of the set of polynomials convex

on [0,1] is developed. The theorems which represent the convex poly-

nomials 1n such a manner that the results of Part 1 are applicable are

given 1n Sections 10 and 11. These theorems appear to be new; in

essence, they say that the problem of convex polynomial approximation

on an interval can be reduced to a problem of minimizing a function

subject to linear constraints. Further, the problem exhibits features

which make it amenable to treatment by readily available computational

procedures. In particular, the function to be minimized cannot have a

relative minimum even though 1t need not be convex. It 1s also shown

that under certain conditions solutions can only lie on the boundary

of the set of constraints.

Computation of best least squares approximations by convex poly-

nomials 1s 1llustrated in an appendix.

1. Definitions and Notation.

Throughout, V will denote a normed linear space over the real

numbers with norm || ||; elements of V will be denoted with letters

f, g, x. E' will denote n-dimensional Euclidean space. It will be

convenient to have two means of referring to coordinate systems in

Euclidean space: the elementy of pit will be written in either
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of the forms

. a SAPTERFY SRY or . a (¥gseeesy,) .

Sets or sequences of points are denoted by capital letters such as

A, B. The elements of a set or sequence are indicated by enclosing them

in brackets, and the customary procedure of writing"X is the set of

all x which have property P" as

X= (x: X has property P)

1s used.

The closed interval 0 < t < 1 will be written as [0,1] or I.

The finite set of points on I given by 0 = t < ty < vee < ty = 1

will be denoted by T. The linear spaces of real-valued continuous

functions f(t) on I or T will be written as C(l) and C(T)

respectively. C(I) is a Banach space with norm

Il = max [£(t)] ;
t €1

C(T) is a Banach space with norm

ll = max ee]
O<i<N

Other norms can be put on these linear spaces to obtain Banach spaces.

The spaces C(I), p > 1, are obtained with definition

! 1/p

fel, =| les) Pap 8
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and the spaces C,(T) are obtained when

N 1/p

Ell, =| 2 £0) 1)i=0

The same notation is used for both norms, but context will always make

the usage clear.

Inner product notation for sums of products will be used whenever

: _ : n+l
convenient: y .x = y X_ + .00 + Y¥p for x, y in E . With the

convention that x" (t) = (1,t,...,t0), polynomials p(t) of degree

< n can be written in the form

n n
= . = . tr.p(t) = y .x (8) = y_ + yt + .** +7,

If p(t) > 0 ona set S, it will simply be called positive on

S; if p(t) > 0, it will be called strictly positive on 8S.

It is now possible to state the convex polynomial approximation

problem: Given an f(t) in C(l) or C(T) normed in one of the ways

given above, an integer n, and a set H 1n oh t determine an ele-

ment y*¥ in H such that

n

ly «= - £]

1s minimized at y = y* subjectto the condition that

a= n n-2
vy x(t) =2y. + byt + .a=+ n(n-1)y t > 0

2 2 3 n
dt

for all t in I.



2. The Problem is Reasonable. |

It 1s worthwhile to inquire as to whether the problem posed at the

end of the last section 1s reasonable in the following sense: Given a

function convex on [0,1], are there polynomials convex on [0,1]

which are arbitrarily close to the function in some norm? If the answer

1s yes, the problem will be considered reasonable.

The desired affirmative answer 1s contained in the following

Theorem 2.1: Let f(t) be a function which has positive k-th derivative

on [0,1]. Then given any€ > 0, there is a polynomial p(t) with

positive k-th derivative on [0,1] such that

max p(t) - £(t)]| < € .
O0<t<1

The desired result 1s the special case of this theorem with k = 2.

The theorem 1s proved as a consequence of two other theorems, the

first of which is S. Bernstein's version of the Weierstrass approxi-

mation theorem.

For a function f(t) defined on [0,1], the expression

= my Ny, Mm n-m
B[£(t)] = 3 £(3)(Jt (1-t)

m=1

is called the Bernstein polynomial of order n of the function f(t).

With this definition, one can obtain

Theorem 2.2 (S. Bernstein): If f(t) is continuous on [0,1], then

lim B[£(t)] = f(t)
n —- oo
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uniformly on [0,1].

Proof can be found in Natanson [14].

Now, define forward differences of f(t) at t = m/n by

m mtl m

af(=)= 1(==)- £(3)

k./m k-1_/m

AE(Z) = A672) k =2,3,...

Then, by direct differentiation and term rearrangement, the following

expression for the k-th derivative of B [£(t)] 1s obtained:

25) (5)] BL ale(my(aokgngy yaorkn ki n’' m
. m=0

for k = 1,2,...,n. If the k-th derivative of f(t) is positive on

[0,1], then Ne (2) is positive for 0 <m <n - k. This proves

Theorem 2.3. If f(t) has positive k-th derivative on [0,1], then

the Bernstein polynomials of f(t) have positive k-th derivative on

[0,1].

The proof of Theorem 2.1 follows directly from Theorems 2.2 and 2.3.

The above results are contained in Lorentz [11]. Convergence in

the uniform norm implies convergence in any of the norms for C[0,1]

considered in Section 1.

Armed with the comforting knowledge that there are convex poly-

nomials close to convex functions, 1t 1s now interesting to ask the

following question: Among all n-th degree polynomials convex on [0,1]

1s 1t possible to find best approximations to a given function (in

particular, a convex function)? Here, "best" will mean the usual thing:
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best in the sense that some norm is minimized.

To answer this question, the problem of Section 1 will be imbedded

in a larger class of problems. To do this, and to facilitate discussion

of the geometry of convex polynomials, the next two sections will be

devoted to a development of results on convex sets and cones.

3. Convex Sets.

, A set S in E" is convex if for each pair of points yt and y

in 8S, the points y = oy" + (1-6)y° are in S, where 0 <6 < 1;

that 1s, the line segment Joining yt and Vv? lies 1n S. S is called

strictly convex if 0 < 6 < 1 causes the points y to lie in the in-

terior of S. For a fixed vector x and a constant c¢, the plane Bg"

determined by

Y © OX = ax + eee + YX, =C

1s called a supporting plane to S if the plane contains at least one

point of S and S lies entirely 1n one of the half-spaces

(y:y-x > cl, {y:y-x < c}. Any half-space containing S is called a

supporting half-space to S. Theorems relating these concepts can be

found in many places; for example, Karlin[8] proves:

Theorem 3.1: A closed convex set is the intersection of all of its

supporting half-spaces, and every boundary point of the set lies on a

supporting plane.

The dimension of a convex set S is defined as the dimension of

the linear subspace of smallest dimension which contains S.
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If the set S 1s convex, closed, bounded, and n-dimensional, 1t 1s

called an n-dimensional convex body.

A supporting plane to a closed convex set S will be called proper

if it contains exactly one point of S. In such a case, that point 1is

called an extreme point of ss. It 1s an immediate consequence of the

definition that an extreme point cannot lie in the interior of a line

segment joining two points of S.

The following theorems give relationships between convex sets,

extreme points, and supporting planes. Their proofs can be found in

Berge [2].

Theorem 3.2: If S 1s a compact non-empty convex set in BE", 1t has

an extreme point; further, every supporting plane of S contains an

extreme point of S.

Theorem 3.3: A compact non-empty convex set S in E' is the inter-

section of the closed convex sets containing the set of extreme points

of S.

Theorem 3.4. If R and S are compact convex sets in BE", each having

at least one interior point, then R and S are homeomorphic.

4. Convex Cones.

A set K in E" is a convex cone if for each palr of points yt
2 1 2

and y in K, the points y = Qy + By are 1n K, where a, B > 0.

A convex cone 1s a convex set. The relationship of convex cones and

supporting planes 1s shown by

Theorem 4.1: Let K be a closed convex cone in E°. Then every
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supporting plane to K contains the origin, and a supporting plane can

be proper only at the origin.

Proof: Supposey .Xx = c 1s a supporting plane to K at ¥ # 0.

Then ¢ = 0, else there are points of K, namely ay for & < 1

and & > 1, on both sides of the plane. This shows that every support-

ing plane to K is of the formy .x = 0 from which both parts of the

theorem can be concluded.

For convenience, 1t will be supposed that any x which defines a

supporting plane to a closed convex cone K is always takenso that K

lies in the half-space given by y .x > 0. The intersection of the

translate vy .x = 1 of a supporting plane to K with K will be

called a cross section of K. If K has a 'proper supporting plane,

its corresponding cross section 1s called a proper cross section, and

K 1s called pointed (the origin 1s an extreme point).

Theorem 4.2: LetK be a closed convex cone in E'. A cross section

of K 1s bounded if and only if it 1s proper.

Proof: For each fixed vector x, y'x is a continuous function

on E". Define the set S = {y:y €K, |ly]| = 1) and let u be the

greatest lower bound of y - Xx on S. S 1s compact, so there exists

a y in S for which vy - x =p. By convention,y «x > 0 for each

y in K, so p>0. If p>0, then for each y in S there is a

number A, 0 <A <z such that Ay .x = 1. This says that the cross
section corresponding to x 1s bounded 1f and only 1f pu > 0. If

uw =0, there is a non-zero y in K such that y . x = 0, which

makes the supporting plane improper. The desired result follows

immediately.
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5. Existence.

Throughout this section and the next, vy = (¥yseees¥y) will denote

a point of gL, and z = (21,.4052,) a point of EY. The unit sphere

2 2

V4 0m Fy =

: K
in E will be called U.

Achieser[1] gives the fundamental existence theorem for approxi-

mation 1n normed linear spaces as follows:

Theorem 5.1: Let Xyse++5%, De k linearly independent elements of

V. Then for any element f in V there exists a point y* in oi

such that the function

- oy).lly. x-£ |l

attains 1ts greatest lower bound (and hence its minimum) at y*.

Rice [16] shows that ¢(y) will also attain a minimum if y is

constrained to lie 1n a closed set H 1n gk.

The approximation problem under consideration involves the para-

meters nonlinearly. Thus, it would be useful to have an existence

theorem which-covers the situationof interest and might also be appli-

cable to other approximation problems. A rather general theorem is

given by Young [22], and discussed by Rice [17], but appears difficult

to apply. The theorem which will be given here 1s appropriate to the

situation and is an extension of Theorem 95.1.

Definition 5.2: Let Xp (2) poe er xy (2) be k continuous functions on
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E® into V. Let S be a subset of E®, If for each z in S, the

set B(z) = (x,(2)5...,%,(2)} is linearly independent in V, then the

set B(S) = {B(z) : z € S) 1s called a basic set on S, or simply a

basic set.

An example of a basic set 1s obtained by taking V = C(I), S the
z

2 1

square in E° given by 0 <z, <1, i = 1,2, and x, (2) =t °, x,(z)
2+z

2
-— t °

Definition 5.3: Let B(S) be a basic set and define the function

(yz) = lyx(2)l] = lpg (2) + oor + wx (2).

Since V(y,z) is positive, it has a greatest lower bound p > 0 on

the set U X S in oa x EY. If uw > 0, B(S) is called an admissible

basic set.

The example of a basic set given above 1s admissible. It would be

tedious to show this by direct computation; however, the reason for the

truth of the assertion 1s contained 1n the following

Lemma 5.4: Let B(S) be a basic set. If S is a compact set in 2

then B(S) 1s admissible.

: n : : k n
Proof: Since S 1s compact in E, UX S 1s compact in EX EE.

The function V¥(y,z) given in Definition5.3 is continuous on Bx Bt

and hence attains its greatest lower bound p on U X S. Now, let

(y*¥,2¥)be a point in U x S such that

V(y*,2%) = |lyex(z)| nw.

Since B(S) is a basic set, the x, (2%) are linearly independent.
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Hence p = 0 if and only if yi = 0, all 1i. Since y* is in U,

uw # 0 and B(S) is consequently admissible.

Theorem 3.5: Let f be an element of V, H a closed set in oa

S 'a compact set in ES. Let B(S) be a basic set in V with elements

x0 (2), 05%, (2). Then there exists an element (y¥,z*) in H X S such
that the function

(yz) = |ly-x(z) - £]

attains its greatest lower bound on HX S at (y*,z*).

Proof: U 1s compact 1n oa Thus, for each fixed z in S,

the continuous function

¥(y,2z) = [ly-x(z)]

attains its greatest lower bound p(z) on U. By Lemma 5.4,

p(z) > up > 0, where p is the greatest lower bound of ¥(y,z) on
k

UX s. Also, observe that for any y in E and z in S,

k 1/2 k 1/22\ 2

ly-x(2)| > (5 vi] wu(z) (I vl TRi=l" i=1

Now, let p be the greatest lower bound of ®(y,z) on H X S.

By the inequality just derived,

ko 1/2
boxe) = oz lex] = el { 592) we en1=

Thus, if yv is taken such that

k 1/2
2 1

(2 7%) >So + 1 + El) =r,i=1



then .

ly-x(z) - £]>0 +1 .

This shows that only those y in the sphere

k ~
_ I. 2 _ 2R= fv )y Yi ST Ii=1

permit ¢(y,z) to approach p.

'R is closed and bounded, so Rl H is closed and bounded and

hence compact in oa S 1s compact in BE", so (Rl H) x S is com-
k n : : : k n

pact inE X E°. Since ®(y,z)is continuous on E= x E , 1t will

attain its greatest lower bound on (Rl H) x S which by the above

argument 1s 1ts greatest lower bound on H x S, and this is what was

to be proved.

Theorem 5.1 can be obtained from Theorem 5.5 as the special case

when XqseeesXy, are constant linearly independent elements of V.

Conditions under which solutions of approximation problems such

as those under discussion are unique are discussed in the next section.

Location of solutions 1s also discussed.

0. Uniqueness and Location of Solutions.

Achieser[1] proves a uniqueness theorem for linear approximation

in a finite dimensional linear manifold in V under the condition that

V 1s a strictly normalized space. This condition holds whenever

equality in the expression

14



Ie + ell <lie Il +llell (£,¢ #0)

holds only for g = af(a > 0).

Rice [16] gives more specific results. Let H be a closed set in

Br, and let XqseeesXy be fixed linearly independent elements of V.
Let f be an element of V and suppose that

min K lly + x - fl < min lly x - lll .
y € E y € H

Rice proves:

Theorem 06.1: (1) Every local minimum of ly «x - f | on H is a global

minimum on H.

(2) If y* minimizes |ly'x- £|| on H, then y* is in the

boundary of H.

(3) If H 1s strictly convex, then y* is unique.

(4) If ~v is strictly normalized, then y* 1s unique.

(Rice actually proves a slightly different statement than (4), but

1t 1s essentially the same in the present context.)

Some theorems similar to those of Rice can be proved under some

assumptions on the nature of the mapping of H x S to the set of

possible approximations in V.

Let ® denote the mapping which associates the element y .x(z)

in V with the element (y,z) in gf x B®. Let C = O(H X 9).

Henceforth, it will be assumed that C 1s a closed convex set in V.

It will also be assumed that ® sets up a 1 - 1 correspondence

between H X S and C. If ® is a homeomorphism between H X S and

15



C, then C will automatically be closed because H x S 1s closed.

Definition 6.2 (Riesz-Nagy [18]): A Banach space V is called uniformly

convex if for each f, g in V such that |f|,|lg |] <1 4 € and

le + &ll > 2, then [if - gf] < e.

It can be shown (Clarkson [5]) that of the spaces defined in Section

1, C(I) is uniformly convex, but C(1l) 1s not.

Theorem 6.3: If V is a uniformly convex space, then

Py,z) = |ly-x(z) - £|| has a unique minimum in H x S.

Proof: Let ((y",2")) be a minimizing sequence for ¢@. Let
n n / n Co.

g =y .x(z°) and p be the minimum of ® on H xS. Then given

€ > 0, there is an N sufficiently large so that for m, n > N,

n m

lg =f] lef] < ; +
, 1 Te |

P e =

Now, because C = ®(H x S) is assumed convex, 2 gh+g™) is an element
of C and

n, m
+

| EE 220

which implies

op gar
|= +&= ||>2 .

P p -

By the assumed uniform convexity of V, it then follows that

n my

le” - ell < pe,

which shows that (g"}, and hence any minimizing sequence in C, is

a Cauchy sequence. By the completeness of V and the fact that C

16



| is closed, this sequence converges to an element g of c. The element

g is unique in C, for if (n") is another minimizing sequence, then

1.12 2 n.n

g,h,8,h _ ...,8 yh’, . aD

is also a minimizing sequence which must converge to g. The assumption

that ® is a 1 - 1 correspondence implies the existence of a unique

element (y,z) in H X S with ®(y,2z) = p, which is what was to be

proved.

Theorem 6.4: Let ® be a homeomorphism. Then every local minimum of

®(y,z) on HX S is a global minimum on H X S.

Proof: Using the notation of the previous theorem, let gt and

z be elements of C such that lgt-£ | < lg®-£ |. The elements g

of the line segment between zt and . in C are given by the

expression.

g = 0g- + (1-0)g°, 0<e<1l .

By hypothesis, the points 2g) lie on a continuous path from

(y1,20) to (VF ,%) in H XS. Along this path, ®(y,z) is monotone,

since

1 2 1 2 2
leg” + (1-6)e” - fff< ole™-£ll . (1-8)e” - £|l < [le - £1] .

CL 1 1
Now, let (y,z) have a global minimum at (vy ,2z ) and a candidate

_ 2 2 1 1
for a local minimum at (y~ ,Z ). Construct the path from (y ,27)

to (v° 2°) as indicated above. Because the path 1s continuous and

® is monotone along it, 1t 1s not possible for a relative minimum to

17



be at (v°,2°). This completes the proof.

There are several conditions which can cause ® to be a homeo-

morphism. In particular, if H is compact, then ¢® is a 1 - 1 con-

tinuous map from a compact space onto a Hausdorff space and hence a

homeomorphism. Also, if C can be decomposed into a product A x B

and ¢ into a product ¢; X ®, such that 2, is a homeomorphism of

H onto A and 5 1s a homeomorphism of S onto B, then it can be

shown that © is a homeomorphism.

It 1s now interesting to inquire about conditions which would force

solutions to lie on the boundary of H x S. A set of conditions for

this 1s given in

Theorem 6.5. Let ® be a homeomorphism. Let H XS be closed, con-

vex, and have interior points 1n Br X E'. Let (y*¥,2z*%) be a point

of EX x EY such that (y*,2*) is not in H xS and

P(y*,z*) < ¢(y,z) for all (y,z) in H xS. Let V* be the smallest

linear subspace of V which contains g* = y¥.x(z*¥) and C. Then

if C has an interior point 1n the relative topology in V¥, the

minimum points of ® on H xS must be on the boundary of H xS.

Proof: It is easily shown that ¢ is a homeomorphism of H xS

onto C considered as a subset of V*¥. Let a = ’ x(2°) be a

candidate for a minimum in the relative interior of C corresponding

to a point (v%,2%) in the interior of H XS (guaranteed by the

homeomorphism). Construct the line segment from g* to £. Because

C 1s closed and convex with an interior, this line segment must meet

the boundary of C 1n exactly one point which will be called oa.

By the same argument used in Theorem 6.4, |f-g|| is monotone along the

18



2 1
line segment g* to & , and consequently is also monotone from g

2 1 1 1
to g . Under the homeomorphism, g~ corresponds to a point (y ,z")

on the boundary of H x S and o(y+,z%) < o(y2,2°). This completes

the proof.

The remainder of this work 1s devoted to an example in which the

foregoing theorems apply.
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PART 2: CONVEX POLYNOMIALS

T. Methods of Representation.

Some kind of parametric representation of the set of polynomials

of degree < n which are convex on [0,1] is needed before a com-

putation of best convex polynomial approximation can be attempted. One

such representation 1s suggested by Section 2: form Bernstein poly-

nomials with coefficients whose second differences are positive. The

second difference expressions will yield a finite set of linear in-

equalities which the coefficients must satisfy, which 1s desirable,

but this method will be rejected since it can be shown that not all poly-

nomials of degree < n which are convex on [0,1] can be represented

exactly by Bernstein polynomials of degree < n (see Section 12).

Another method would be the direct method of Section 1: make the

| polynomial y . x"(t) satisfy the infinite set of constraints

| n-2
+ oe. + - 0

2y, + 6y5t n(n-1)yt7°° >

| for each t in [0,1]. This is the method found intractable by Rice

[16].

The method which will be adopted here derives from the existence

of a parametrization of the set of polynomials of degree < n which

are positive on [0,11]. It has the desirable property that the para-

meters must satisfy a finite set of linear constraints. This repre-

sentation can be integrated twice to obtain a representation of the

polynomials of degree < n + 2 which are convex on [0,1].
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8. The Cone of Positive Polvnomials.

The results of this section and the next were obtained by Karlin

and Shapley (9] by less direct means.

The point y = (Fgs¥yseees¥,) in ght representing the poly-
nomial y .x(t) = Yo tT yt treet yt corresponds to a polynomial

positive on [0,1] when y-° x(t) > 0 for each t in [0,1]. Let

K' denote the set of all y in pitl which have that property.

Theorem 8.1: K' is a closed convex cone in ght whose boundary con-

sists of points representing polynomials of degree < n which have roots

in [0,1] but are otherwise positive there.

Proof: If Pl and P2 are polynomials of degree < n which are

positive on [0,1], then so also are the polynomials ap, + Pp, for

all &,p > 0; hence, K® is a convex cone. Since a polynomial 1s a

continuous function of its coefficients, a polynomial p(t) which 1s

strictly positive on [0,1] will remain so in an open neighborhood about

its coefficient point in pit. hence, that point must lie in the

interior of K'. If p(t) is positive but has a root at t, in [0,1],

then each open neighborhood of its coefficient point contains a point

corresponding to a polynomial which 1s negative at t, hence, p(t)

corresponds to a boundary point of - K'. Since XK* contains its boundary,

it 1s closed.

Corollary 8.2: The planes of the form

p(t) = y, + yb, + .** + yt = 0

where p(t) is positive with a root at ton [0,1] are supporting

planes to K*.
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Proof: If q(t) is a positive polynomial of degree Cn on

[0,1], then g(t) > p(t) = 0, so K' lies to one side of the plane

p(t) — 0. By hypothesis, p(t) corresponds to a point in the plane,

SO p(t) = 0 is a supporting plane.

If p(t) has a root at t_ on [0,1], then so does ap(t) for

all @ > 0. Thus, the supporting planes of the form p(t.) = 0 cannot

be proper. K* does have a proper supporting plane, however. This fact

1s used to prove

Theorem 8.3:XK" is pointed.

Proof: It will be shown that the plane

1 1
Yo 2% + = "ni Inv

1s a proper supporting plane to kK. First, the plane meets K' at

the origin. Second, 1f vy # 0 1s 1n K*, then p(t) = vy . x"(t) > 0

for t in [0,1], but p(t) 1s not identically zero, so

1

yt Ey, * Lv.=| p(t)> 0o 2 fl .*x ntl nn J, )

The rest of the proof follows immediately from Theorem 4.1 and the

definitions of Section 3 and L. :

n

9. The Cross Section P.

Theorem 8.3 implies that K' has a proper cross section defined

by the intersection of K' with the plane

1 1, -
Yo + 291 + xx + mL In © :
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This cross section will be called P° and will be described in detail.

Theorem 9.1: P° is an n-dimensional convex body.

Proof: It must be shown that Pp 1s convex, closed, bounded, and

n-dimensional.

P" is closed and convex because it is the intersection of two

closed convex sets. By Theorem 4.2, p" is bounded. To show that P"

1s n-dimensional, observe that the points in pr corresponding to the

polynomials 1, ot, 3t°,. ., (n+1)t" lie 1n the plane defining the

cross section. Thus, the n vectors

(-1,2,0,0,. .. , 0),

(-1,0,3,0, ... , 0)

cee ,

(-1,0,0,0,.. . , 0, n+l) ,

formed by subtracting the vector to the first point from those to the

others, all lie in the plane of the cross section and are clearly

linearly independent. The dimension of the plane must therefore be at

least n. Since the dimension of the plane must also be < n + 1, the

proof 1s completed.

Theorem 3.3 says that to describe PY, it suffices to describe

its set of extreme points. The nature of the extreme points of Po is

given by

Theorem 9.2: The extreme points of p" correspond to polynomials which

have n roots (counting multiplicities) on [0,1].

Proof: Each polynomial corresponding to an extreme point of p"

must be of degree n exactly. To see this, suppose p(t) corresponds
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to an extreme point but is of degree < n. Then the polynomials tp(t)

and (1-t)p(t) are positive on [0,1] and both are of degree < n. It

1s then clear that positive scaling factors a, and ny Can be found

so that a, tp(t) and a, (1-t)p(t) correspond to points of P_, and

further, there will be a 6, 0 < 6 < 1, so that

p(t) = 6atp(t) + (1-0) a(1-t)p(t) ,

which contradicts the hypothesis that p(t) corresponds to an extreme

point.

Now, if p(t) is positive on [0,1] but does not have all of

its roots there, then its corresponding point in K* cannct be an

extreme point of Pp, for p(t) must then have a root a < 0, a

root b > 1, or a pair of complex roots «c¢ * id. This implies that

p(t) 1s expressible in one of the forms

1 1, 0

p(t) = (t-a)u(t) = 3 (t-2a)u(t) + 5 tut) |

1 1

p(t) = (b-t)v(t) = 5 (2b-1-t)v(t) + 5 (1-t)v(t) ,

p(t) = [(t-c)® + a®lw(t) = (t-c)%w(t) + a“w(t) ,

where u, v, and w are polynomials positive on [0,1]. All three of

the right-hand expressions can be scaled so that they are of the form

op, (t) n (1-6)p,(t) with 0 < 6 < 1 andp; and Ps corresponding

to points in PY. This proves one half of the theorem.

Now, suppose p(t) 1s a polynomial corresponding to an extreme

pointof P', and that there are polynomials py (t), p(t)
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corresponding to points of P" and 8, 0 <8 < 1, so that

p(t) = op, (t) + (1-6)p,(t). Because p, and p, must each have the

same roots as Pp, they must be identical, for p(t) already has the

maximum possible number of roots. Thus, the supposed convex combination

1s impossible, and this completes the proof.

Knowing the permissible disposition of all of the roots makes it

possible to write down polynomials proportional to those corresponding

to extreme points of pr, Any roots in the interior of [0,1] must

be' of even order; Roots of odd order can occur only at 0 and 1.

Hence for n even (n=2m), the extreme polynomials are

n m-1

[[(t=2,) or t(1-t) || (t-25,) ,
J=1 j=1

and for n odd (n=Pm+l), they are

m m

t [[(t-2,,)° or (l-t) IT (bz, 4) ,
j=1 J=1

where the z, are in [0,1] and need not be distinct. The subscripts

were taken as shown for later convenience.

One would expect that a convex linear combination of n + 1

extreme points would be required to represent an arbitrary point of

pe. However, 1t 1s a remarkable fact that every point in p and

hence any point of K?, can be represented by a unique positive linear

combination of at most two extreme points, and the extreme points can

be chosen in a completely systematic manner. That this 1s so 1s stated

in
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Theorem 9.3 (Karlin-Shapley): Every polynomial corresponding to a

point y of Pp" has a unique representation by a pair of polynomials

corresponding to extreme points of po as follows:

m m-1

: 1 2 2
2 y;t7 = a i (t-253 4) + PBt(l-t) I] (t-2, 5)1=0 . .

J=1 J=1

if n = 2m, and

m m

7 yt 2 (t-2,. 1)"L YgtT = ot pp (Bez)7 + p(1-t) |] "203-1
1=0 .

1 = 1 . oo. *x * .ifn=2m +1, with a> 0, B>0, 0 <zy <2, < 2,151

Moreover, y 1s interior to P' if and only if all of the inequalities

are strict. Note that @ and B are not independent. They are

actually of the form a = a'z , B = B'(1-z N <2, =< 1, where O'

and PB' are scaling factors which make the corresponding extreme points

lie in Pp.

The proof of this theorem is too lengthy to repeat here. See Karlin

and Shapley [9]. Note that each point in the simplex in pil defined

by 0 < Zq < veel 20-1 < 1 .generates two linearly independent poly-

nomials proportional to polynomials corresponding to extreme points of

P. A sketch of the cross section P~ is shown in Figure 1.

Corollary 9.4: Every polynomial corresponding to a point y of K"

has a unique representation of the same type as that given in Theorem

9.3. Here, «a and B may be regarded as independent.

Proof: Every element of K' is a positive multiple of an element
n

in P .
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The plane of the page 1s

1 1
+ = = = 1.

Vo* 2 Vt 39, =1

Yo

2

~ (tt) ,
~ 31%

pe |

o |

~~ _
~~ - ~N

_ ~ 1 \™Nj

0 Yq

~ 6t(1-t)

: Figure 1

2
The cross section P
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The representation of Theorem 9.3 will be used to generate the

desired parametric representation of the convex polynomials.

10. Convex Polynomials.

Let Z% denote the set of those z in E' whose components

satisfy the relations 0 <2; <:.-- <2 ,<1 0<z <1. [It is

clear that zh 1s a compact convex set. Define the mapping & from

z% to PY by &(z) = the element in P" corresponding to the poly-

nomial given by Theorem 9.3.

+ +

Now, define the mapping n from gE" 1 to BE" 3 as follows:

ny, 0 T0485)= (0,0, 51Ys 225 Fysevvr mT—ry¥
o’ ?=2 2.1 Yo’? 3.2 V1’ > (n+2)(n+l) Yn

Under the corresponding relation between polynomials, the polynomials of

)
degree < n are mapped into their indefinite double integrals. Let

n+2 n,
Q" "=P ).

n+2 : n
Theorem 10.1: OQ 1s an n-dimensional convex body homeomorphic to 7,

Proof; By Theorem 9.3, &£ is a 1 - 1 continuous map of 7

onto pl 7" 1s compact and p? 1s Hausdorff, so ¢ 1s a homeomorphism.
; n n+2

Also, Nn 1s a linear 1 - 1 continuous map of P onto Q from

which the rest of the proof follows.

+

The polynomials corresponding to points 1n on : can be realized
n n-+2

as images of points in Zz in the form q(z,t) = n(&(z)).x “(t),
+ + +

where x (4) = (1,t,...,t" 2. Let C%% denote the set of poly-

nomials of degree < n + 2 which are convex on [0,1].

n+2
Theorem 10.2: Each element of C has a unique representation of the
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form

with g(z,t) defined as above and (935%, ) a point in > subject

to the condition Ys > 0.

Proof: Let p(t) be convex on [0,1]. There 1s no loss of

generality 1f it 1s supposed that the degree of p(t) 1s exactly

n+ 2. Let p'"(t) be the second derivative of p(t). By Corollary

9.4, there is a scale factor y, > 0 so that p"(t)/¥, corresponds

to a point of p- and a unique point z of 7" which represents that

element of P-. By Theorem 10.1, the point z determines a unique
+ : :

element of 0" 2 and a corresponding polynomial q{z,t). It follows

that y,(z,t) agrees. with p(t) except for the terms y_ and yt

which are absent from y,(z,%). The rest of the proof follows easily.

In the proof of the last theorem, 1t 1s observed that the degree

of any of the polynomials qg(z,t) is > 2. Thus, for each fixed z,

the set {1,t,q(z,t)} is linearly independent in the space of poly-

nomials of degree <n + 2. Since 7H is compact, this proves

Theorem 10.3: {1l,t,q(z,t)} is an admissible basic set.

Now define H = {y :y = (¥,5¥4 595) in ox Pe 0}. H is
closed. Define the mapping ® from H X 7" to C(l) by the

expression

y,z) . vg - ¥it . voalz,t)

Theorem 10.4: The mapping ¢ is a homeomorphism of H X 7" onto
n+2
C .
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Proof: Let E' = {y, :y, > 0}, E(t) = (y_ + yt : (yy) € E°)
—_— 2 "v2 = ? 0 1° = o’v1 ?

and cote = the set of all polynomials of cite with Vo = V1 = 0.
Then the mapping® can be considered as a mapping from

2 + 1 +2

Ex (BE x z") to E(t) x Co . Now, © can be decomposed into the
2 1 n

form 2, x 2, where 24 maps E- to E(t) and 2, maps E+ x Z
+ CL +

to ce, By definition 2, 1s 1 - 1, continuous, and onto coe,
+

A product of an open interval in E and an open set in 77 is

mapped to an open set 1n cB because ohite is homeomorphic to z=,
Thus, 2, 1s an open mapping and consequently a homeomorphism. ?, 1s

a homeomorphism by definition From the remarks following Theorem 6.4,

it follows that ® is a homeomorphism.

11. Convex Polynomial Approximation.

Theorem 10.2 isolates the class of convex polynomials and Theorems

10.3 and 5.5 establish the fact that the best approximations exist with-

in the class Furthermore, Theorems 10.4 and 6.4 give assurance that

during computation of best convex approximations to f(t), 1f a local

minimum of the function ly, + yt + Jol = il is found, then it is a

solution to the problem.

Now, observe that with the definitions of H and zZ" given 1in
: n n+3

Section 10, H X Z 1s a closed convex set with interior in E ,

Observe also that cite 1s a convex set of dimension n + 3 in either

C(l) or C(T). Thus, the linear subspace of either of these spaces

+4

generated by oa 2 1s just the set of all polynomials of degree
n+2

<n +2, and in this subspace C has interior points (by an

extension of Theorem 8.1). Thus, an immediate application of Theorem
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6.5 yields

Theorem 11.1: Let f be an element of C(l) or C(T). Suppose the

best approximation to f by polynomials of degree < n + 2 in one of

the norms of Section 1 1s not convex. Then the best convex polynomial

approximation to f 1s obtained on the boundary of H X 72,

In computational practice, one may as well allow H to be all of

E-, in which case either the best convex or the best concave poly-

nomial approximation will be found. Since best approximations must occur

in a compact part of BS, application of Theorem 11.1 implies that

all solutions are on the boundary of 7 whenever the unconstrained

best approximation 1s not already convex or concave.

Computational examples are described in the Appendix.

1 2 . A Note on the Bernstein Polynomials; Some Unsolved Problems.

A look at Figure 1 shows that it 1s impossible to express the poly-

nomial (£-1)° as a positive linear combination of the polynomials 2

t (1-t), and (1-%)°. Thus, it is not in general possible to obtain

a best approximation by positive polynomials of degree < n by taking

positive linear combinations of the polynomials t¥1-1)%, Kk = 0,1,...,n.

The set of polynomials just referred to 1s linearly independent, so any

polynomial of degree < n can be represented as a linear combination

of them. However, conditions on the coefficients making the polynomial

positive are not known. This is an interesting problem which would

bear investigation.

For reasons much the same as in the positive polynomial case, the

attempt to represent all polynomials convex on [0,1] by linear
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combinations of the same kind with a condition on the second differences

of the coefficients will fail.

Another difficulty with the ordinary Bernstein polynomials 1s that

no matter how many derivatives the parent function has, the order of

convergence of B, (f) to f is o(2). See Voronowskaja [21] or
Lorentz [11]. Butzer [4] has shown that certain linear combinations of

the ordinary Bernstein polynomials converge to f like _— if £ 1s

bounded and has 2k derivatives on [0,1]. The question of whether

Butzer's polynomials exhibit properties-like that of the parent function

1s also open.

Now that best convex polynomial approximations can be computed,

the problem of order of convergence estimation for these approximations

becomes more interesting and should be investigated. However, no

course of attack 1s immediately evident.
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APPENDIX: COMPUTATIONAL EXAMPLES

The spaces C(I) and C,(T) defined in Section 1 are uniformly

convex, SO best convex polynomial approximations in these spaces will

be unique. Furthermore, the functions of the form f - yx(2)]5 which
are to be minimized are differentiable functions of the parameters in

the cases to be considered. One example will illustrate approximation

in C(I), the other in C,(T).

Al. Convex Cubic Approximation in c,(I).

This case can be solved exactly. This is facilitated by the use

of the Legendre polynomials on the interval [0,1], the first four of

which are (see Milne [13])

p(t) = 1,

P,(t) = 1 -2t ,

2
p,(t) = 1- 6t +6t° ,

2 3
P(t) = 1 -12t + 30t° - 20%” .

These polynomials are orthogonal on [0,1]; in fact, they satisfy

the relationship

1 0, if

/ P.(t)P.(t)dt = {i J . -1 :
0 (23+1) —, i = 73 .

They are linearly independent, forming a complete orthogonal set;

hence any polynomial of degree n can be written as a unique linear

combination of the first n + 1 of them.
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Polynomial approximations of the third degree to f(t) on [0,1]

are obtained by minimizing

2

: 2 3 1 3, Yj
If - 7 v.P. | [: 5 | £(£)P,(t)dt +  =——So tie Jy [£()1%at- 2 5 vy Jo 1 Ly BIL

where the right hand side has been obtained by using the orthogonality

relations. This expression 1s quadratic in the Yio and by completing

squares 1t 1s easily shown that its minimum value 1s

2

[ (8) Pa. 5 (a1)f(t)l dt - — Al
Jo 150 21i+1

which 1s obtained for

1

/ £(t)P,(t)at0

Yi = 71jzisr Ft © 0,1,2,3 . (A2)

Now, let it be required that the approximation be convex on [0,1].

This condition 1s expressed as

3° 3™
— 0 y.P.(t) =12y, + ( 60-120t)y. > o ,
= ° 3

or,

y, + 5(1-2t)y,205 0<t <1

What this means geometrically 1s shown in Figure 2, where the shaded

region 1s the intersection of all of the half-spaces given by the

constraints. The boundary lines of the cone of possible solutions are

given by yp * O¥q = 0.
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Now, supposing it 1s known that the best unconstrained least squares

cubic approximation to f(t) is not convex. Then one can conclude by

applying Theorem 11.1 or Theorem 6.1(2) that the solution must lie on

the boundary lines. The expression to minimize then becomes

1 1 52
en

J. fee) - [aP(t) + a,P(t) + VoBo(t) * z AXON, dt ,

and again 1t 1s easy to show by completing squares that the minimum 1s

2 : =

J [£(t)]%at - {a2 P1368 ying? +i (dS we | (43)
and that the minimum 1s obtained for

1

yi = (2141) [ £(t)P,(t)at , i = 0,1 ;0

(Ak)

1/ 1 £(t) [P,(t) + = P(t)ldt
) 2 5 °3

Y2 = I  — :
= + =
5 T1(=)d

Two solutions are possible from equations (A3) and (A4); the

correct one 1s that which gives the smallest value in (A3).

To illustrate, consider the problem of obtaining the best convex

cubic approximation on [0,1] to f(t) = t*, Using equations (A2)

it 1s found that the best approximation 1s

1 2 2 1
= - = + £ - ==

sh "shh "Th 103 |
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Bt

or,

1,2, 9.2 3- — St -£t + 2t° .
TO 7 bo 7

The mean square error from equation (A2) 1s found to be approximately

2.3 X 107° It 1s easily shown that this approximation is not convex.

Applying equations (AY) with minus sign (which is seen to be

correct by plotting the point of best unconstrained approximation in

Figure 2), one obtains

1 2 Tp _ I
sP sh ta B-Tmis |

or,

1 7 7.3

From equation (A3), the mean square error obtained is approximately

2.8 .10%

Approximation 1n C,(T) can be handled in essentially the same

manner using the orthogonal polynomials described by Forsythe [6].

A2. Convex Quartic Approximation in C,(T).

By application of Theorems 9.3 and 10.2 for the case n = 2, every

polynomial of degree < 4 which is convex on [0,1] can be represented

in the form

| 4 t 5 5
p(y;2,t) =y_ + yt + v2 (2, (t-2,)" + (L-2z,)t(1-t)]at™ , (A5)

0 1 o Jo 2 1 2

with y, > 0, 0 <z, <1, 0 <z, <1.
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Thus, best least squares convex approximations to functions f(t)

in C,(T) are obtained by minimizing

2 al 2
le - ply = 30 let) - (32,8) (26)

i=1

subject to the constraints. In Section 11 it was pointed out that the

constraint Yo > 0 need not be applied in practice, so only the bounds

on, 24 and z, will be used.

One might now proceed by trying to solve the problem using the

method of Lagrange multipliers.

However, the equations so obtained will be non-linear and difficult

to solve, thus it seems worthwhile to use a numerical procedure from

the start. Fortunately, such procedures are available, and many are

programmed for digital computers The method to be employed here is the

gradient projection method of Rosen [19]. It has been programmed for

use on the IBM 7090 computer by Merrill [12]. For use on the problem

at hand, a subprogram for evaluating expression (46) and its gradient

on the parameter space must be supplied. The program 1s already ahle

to handle the constraints. A subprogram has been written for the

following test problem:

T = (t, : t. = 0.1i ; i = 0,1,2,...,10} ,

-Tt,

£(t,) —e

For purposes of comparison, and to obtain starting approximations

for the gradient projection code, best unconstrained quartic approxi-

mations for this test case were computed. This was done using the
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method described in Forsythe [6] and an IBM 7094 computer code based

on the program described in Rudin [20]. The second, third, and fourth

degree approximations and the corresponding sums of the squared errors

were computed as follows:

Second degree, 2 ¢; = 0.092146842 ,
0.82273361 - 2.589028Lt + 1.863667Tt> .

Third degree, p¥ ed = 0.013453531
0.95122132 - 4.6305554t+ 7.2173224t"

- 3.5691031%°

Fourth degree, 2 ¢; = 0.0012569747 ,
0.99040337 - 5.9910430t + 14,019760t°

- 1h.4530043 + 5.4419509t%

The third and fourth degree approximations are not convex. Thus,

the best convex approximations 1n these cases must lie on the boundary

of the constraint set.

However, in the first application of the gradient projection

method, the solutions were not constrained to lie on the boundary of 7°

(see Section 10), but allowed to range over all of 7° No other

constraints were applied. As a starting guess, the above second degree

approximation was used, for it 1s convex.

Convergence towards a minimum was very slow, despite various

accelerating options in the program that were applied. After some 3500

iterations, the following result was obtained:
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Yo = 0.92700600 |,

y, = -4.7174867

y, = 29.390549

Z, = 0.78380506 ,

2, = 1

, The corresponding polynomial and sum of squared errors are:

p(y,z,t) = 0.92700600 -L4.T7174867Tt

+ 9.0280473t° - 7.6788203t3

+ 2. hhge1ont?

2

Le, = 0.0092285508 .

This result 1s better than the best third degree (unconstrained)

polynomial approximation, but not as good as the hest fourth degree

approximation, which gives a lower bound for the error. Noteithat this

result 1s on the boundary of 7°.

Some subsequent computations were made forcing the solutions to

lie on the boundary of 22 but unless the starting approximation was

close to the one found above, convergence was also quite slow. It

appears that slow convergence 1s the price that one must pay for the

lack of convexity of the expression (AB).

It should be mentioned, however, that the long computation referred

to above took 12 minutes on the IBM 7090 computer.
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Perhaps better (e.g., faster) computational procedures can be found;

however, the principal aim here has been to demonstrate the possibility

of solving such problems by practical means. This has been

accomplished.
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