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YIELD-POINT LOAD DETERMINATION BY NONLINEAR PROGRAMMING
L by

Philip G. Hodge, Jr.

Abstract
-
— The determination of the yield-point load of a perfectly plastic
structure can be formulated as a nonlinear programming problem by
™~ means of the theorems of 1limit analysis. This formulation is dis-
cussed in general terms gng then applied to the problem of a curved
beam. Recent results in the theory of nonlinear programming are called
— upon to solve typical problems for straight and curved beams. The
s theory of limit analysis enables intermediate answers to be given a
~ physical interpretation in terms of upper and lower bounds on the
yield-point load. The paper closes with some indication of how the
-
method may be generalized to more complex problems of plastic yield-
(- point load determination.
L j/Reproduction in Whole or in Part is permitted for any Purpose of the
United States government. This report was supported in part by
L_ Office of Naval Research Contract Nonr-225(37) (NR O4L4-211) at
Stanford University.
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1. Introduction

The constitutive behavior of an ideal elastic/perfectly-plastic material

is defined in terms of a yield function f(oij). The stress tensor %5

must be such that

f(oij) <0

and the strain rates eij are then given by

eij = Ci,jkl 4, * A af/acij

where
A>0 .
and
AN=0 if £<O0 or £<0
Here the C, are the elastic constants of the generalized Hooke's law,

ijk4

A is an unknown scalar function, and a dot over a symbol indicates dif-
ferentiation with respect to time.
The general elastic-plastic problem is concerned with a structure or

body made of an ideal elastic/perfectly-plastic material subjected to a

(1)

(3)

()



given set of surface tractions¥* Pi which are prescribed at all points

!

of the surface except where the corresponding velocity is prescribed to be

zero. A solution consists in finding a stress tensor Oij’ and a velocity

o

vector A such that

(a) the stresses are in internal equilibrium

r—

~ 054,53 = O (5)
-

(b) for a given constant S, the stresses are in equilibrium with
L loads SPi on the boundary
- o4 By = SP; (6)
| -

(c) the yield inequality (1) is valid;
i_ (d) the velocity satisfies any boundary constraints, and the strain
" rate field derived from it satisfies (2),(3) and (4).
N This problem may be viewed as a boundary value problem, but such an
| approach involves several difficulties among which are the following.
- A different set of differential equations must be solved in the
L. "elastic region" (f< 0 or f < 0) and "plastic region” (f = f = 0).
, Further, the plastic region equations are nonlinear.
- The location of the elastic-plastic interface between the two regions

is an unknown of the problem.

= Continuity requirements across the interface and within the plastic
L region are not entirely straightforward.
. *For simplicity of exposition, body forces are neglected; this restriction
L

is not vital to the material that follows.
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If S is less than a certain critical wvalue So’ known as the safety
factor or yield-point load, (and which is not known a priori) a unique
solution to the problem exists. However, for S:> So’ no solution exists.
For S = So' a solution exists for which the magnitude of the velocity
vector is not unique. Further, in many problems there will be further
lacks of uniqueness associated with the case S = So. Therefore, solution
of the boundary value problem for a given ©S depends upon the relation of
S to the unknown So for such vital properties as existence and uniqueness.

Within the boundary-value-problem approach, SO can be determined by
first solving for an arbitrarily small S for which the entire solution
will be elastic. Since the elastic solution is linear in S, the maximum
S = Sl for which the fully elastic solution holds is easily determined by
observing the largest S for which this solution satisfies (1) everywhere.
One then solves a sequence of problems with 8 = S, + KAS, K = 1,2,...

1

for as long as a solution exists, deducing that
- +
S, + (K -1)A8 <8 <8 +KAS (7)

where Kl is the smallest K for which no solution exists. Although
easily stated, the above problem is obviously far from trivial in any but
the very simplest of cases.

Although only a very few simple problems have been completely solved,
it is instructive to examine the behavior of a typical displacement d
of the problem as a function of the load-magnitude S. Figure 1 shows the
qualitive behavior that is always present. For S < Sl’ d is a linear

function of S. As S increases above S d increases (generally

l)



non-linearly) at an increasing rate, tending to infinity as S tends to
so’ Since infinite displacements are rarely admissible, it appears that
the value of SO is of crucial importance in the analysis of the problem.
From the mathematical viewpoint knowledge of its value is a necessary pre-
requisite to proper posing of the problem. From a practical viewpoint in
many applications, determination of SO may be the primary question of
interest, and additional effort spent on finding Ghj and v, may be un-
warranted.

To summarize, if one uses a boundary-value-problem approach to a
practical problem in plasticity, one must solve a non-linear, free boundary,
difficult to pose problem; if one is successful one ends up with the desired
number SO together with a stress and displacement distribution which may
not be required.

The Theorems of Limit Analysis¥* provide an alternative approach to
the determination of So' The Lower Bound Theorem, with which we will be
chiefly concerned, states that if for any number S”  there exists a stress
tensor 95 which satisfies requirements (a), (b) and (c) listed earlier,
i.e., which is in internal and external equilibrium with S-Pi and does

not violate (1), then 8  is a lower bound on 8

*
The theorems were independently discovered by Gvozdev [1], Drucker,

Greenberg, and Prager [2,3,4], and Hill [5,6]. Textbook accounts

may be found in [7,8,9]



Since a solution to the complete problem is known to exist for S = So’
this theorem establishes the uniqueness of SO and may be restated in
slightly stronger form by saying that SO is the maximum of the set of

numbers for which (1),(5) and (6) possess a solution:

5, = max(Slcji’j = 0, o n = SP,, f(oij) < 0) (9)
The similarity of this formulation to a programming problem suggests that
techniques of mathematical programming may be of value in the solution of
plasticity problems. That this is indeed the case will be demonstrated in
the remaining sections of this paper.

The Upper Bound Theorem of limit analysis will not be used directly.
However, we will make use of a corollary to this theorem which states that
if the given structure is replaced by a "replacement structure" which is
"stronger" (i.e., one whose yield inequality (1) is nowhere more restrictive
than that of the given structure) and of the same size, shape, and loading,
then the yield-point load of the replacement structure will not be less than

that of the given structure.
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2. Beam Problem as a Nonlinear Programming Problem

In order to make the discussion definite, a particular relatively

- simple problem will be considered, rather than the general three dimen-

sicnal one. Specifically, we will consider a straight or curved beam
subjected to in-plane loading.

According to beam theory, the stress state of any cross section of the
beam is adequately specified by giving three numbers corresponding to the
direct (axial) force N, the shear (transverse) force Q, and the bending
moment M transmitted across the given section. Each of these quantities
is a function of the arc length along the centroid of the beam. Further,
it is assumed that the shear force does not noticeably affect the plastic

behavior of the beam. Therefore analogous to (1) we have the requirement

F(N, M) < O (10)

If, in particular, we specify a rectangular beam and choose suitable di-

mensionless variables* n, q, and m, then (10) becomes [10]

|
B
+
=]
]
=
IN
(@]
=
i

f(n,m) =

Further discussion will be based on (11) although it will be evident that
any more complex function would be as easily handled.
If the beam is subjected to normal and tangential loads Pn and Ps’

respectively, then equilibrium in the axial and transverse directions and

*
Precise definitions of dimensionless quantities may be found the the

Appendix.
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moment equilibrium lead to
/
n =-Kq-Pg
q" =Kkn-p,
m' = ng (12)

in ﬁlace of (5). Here primes indicate differentiation with respect to the
dimensionless arc length s,k = k(s) is the dimensionless curvature of the
beam, p and p_ are dimensionless loads, and n = n(s) is a known property
of the cross-section dimensions (n = const. for s beam of uniform section).

For further definiteness we assume that the beam is fully constrained at
either end. Then, since the reactions at the ends are not prescribed, there
is no requirement analogous to (6).

The lower bound approach to the problem of determining the yield-point
load may be formulated as follows: to determine the largest value ao of

al for which there exists a solution to

n'+Kq+c¢lps-=q'.-’Kn+alpn=m’—nq=0 (13)

which satisfies (11), a, being the dimensionless equivalent of the yield-
point load.

A programming problem is generally concerned with matrices of finite
size, rather that functions which correspond to infinite matrices. The pre-

sent problem may be conveniently reduced to finite size by taking advantage of



L

the linearity of Egs. (13). To this end, let nl(s), ql(s), ml(s) be the

re

solution of Egs. (12) (i.e., Egs. (13) with a = 1) subjected to
\.
!
-
( n,(0) = q,(0) = m (0) = 0 (1)
L
| and let nj(s), qj(s),nﬁ(s), i = 2,3,4 be the solution of the
|
— homogeneous counterparts of (13) subject to
L
{ n,(0) = q3(0)' =m (0) =1 (15)
| ns(0) = 1, (0) = q,(0) = q,(0) = m,(0) = m(0) = O (16)
| - Then obviously
-
\ L L
L n(s) = ), ajnj(s) m(s) Y ajm.(s) (17)

j=1 j=1 99

L for any solution of (13) whatsoever. Therefore, regarding n and m,
: as known functions of s which may be determined once and for all, we may

formulate the problem as:

maximize @ subject to
- 1

2
- a.n. + a.m. -1 <0 O0<s< 1 .
Dagp,) +|Bap | -2 50, 0sss )
L
For programming purposes we must replace the functional inequalities

|
| (18) by a finite set of inequalities. Therefore we select a finite sequence

of r points 5, at which to demand that (18) be satisfied.

r—
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Further, it proves convenient to replace each inequality by two inequalities

so as to eliminate the absolute value signs. Thus we obtain

L 2
g, Elzajnjk) + Eajmjk -1

<0
J=1
L . (19)
hk= (.Dajn,jk) - ajmjk -1 _<_ O'} K = 1,2, eee 5 I

J=1
where njk = nj(sk), etc. Thus we have formulated the beam problem as the
nonlinear programming problem of choosing Otl, e ey OLLI_ so as to maximize
a, subject to the 2r inequalities (19).
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3, Solution of the Programming Problem

The method used to solve the problem posed in the preceding section is
known as the Created-Response Surface Technique and will be referred to as
CRST. It was first suggested by Carroll [11] and later given theoretical
validation by Fiacco and McCormick [12].

In the CRST method a parameter { is introduced and the primal function

P(e,t) is defined by

r
PO,L) = -a - L} (1/g, + 1/n) (20)

k=1

where g, and h ~are defined in (19). The interior of the domain in.an o,

space defined by the inequalities (19) is referred to as the feasible domain.

If consideration is limited to points in the feasible domain, then it can be

- shown [12] that for any given {, P achieves its minimum value P(t) at

some point a(f{) in the feasible domain. Further, if ¢, is a sequence of

values tending to zero, then

lim P = - (21)
l—: (Cl) a

Figure 2 shows a schematic flow diegram of the program for automatic
computation on the IBM 7090 at Stanford University using the SUBALGOL com-
piler. Details of the method used for optimizing { for a given o and
of the second-order gradient method used in minimizing P(x,{) arebeyond
the scope of this discussion and the interested reader is referred to [12].
However, the method used in manipulation of the mesh size provides an

interesting example of interaction between numerical analysis and the physical

field of application; it will be described in some detail.
10
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If r points s are used, the computation time required will be almost

k
proportional to r, so that there is an obvious advantage to keeping r
small. Now, from & physical picture of a curved beam at the yield-point load,
we see that four yield hinges will be sufficient to turn the beam into a

mechanism. If there is a yield hinge at s then one of the inequalities

X’
(19) will be an equality, and at all points where there is not a yield hinge,
the strict inequalities will be satisfied, Therefore, for the first coarse
mesh we take r = 4 and, lacking any better information, we take the points
to be equispaced.

Consider now the situation when we have found the solution for this
mesh and denote the resultant value al by a#. If we evaluate the yield
inequalities (18) for values of s F Sy» We may find that they are violated.
However, consider a replacement structure whose strength at the points Sk

is the same as the given structure, but which is infintely strong for all
other values of s; obviously d+ is the desired yield-point load for the
replacement structure, hence it follows from the corollary to the Upper

Bound Theorem that the yield~point load a, of the given structure must

satisfy

a < a . (22)
Next, using the ultimately fine mesh decided upon, find the value of s

for which (18) is violated most severely and replace @ by B, (0 < B < 1)

so that this worst inequality is Jjust an equality. It then follows from

the Lower Bound Theorem that

11
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Ba <ca (23)

so that both upper and lower bounds on the desired yield-point load have been

obtained.

For the next mesh s we take only those points at which one of the

k’
inequalities (18) has a relative maximum* and repeat the reasoning. In
applications it turns out that this process need be repeated only once or

twice before the bounds (22) and (23) are sufficiently close together to

terminate the computation.

*
As a refinement, only that one of (19) which had a relative maximum was
retained, and a band of three mesh points was considered for each maximum,

thus speeding the convergence.

12
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4.  Examples

The purpose of the present paper is to present a method rather than an
exhaustive set of calculations, although with the computer program available
it is a trivial matter to analyze any beam under any loading. Examples run
to test the program included a straight beam under uniform load (a trivial
problem designed to discover "bugs" in the program), and a circular arch of
arbitrary angle under either a uniform vertical load, a concentrated vertical
load at the center, or a uniform load perpendicular to one end of the arch.

Figure 3 shows some typical results for-the three cases.

13
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5. Extensions

The method described here for the relatively simple problem of a curved
beam should prove useful in finding the yield-point loads of more complex two
and three dimensional structures. It may be of some interest to mention
briefly a two dimensional problem on which research is currently being done:

An annulus of inner and outer radii b and a, respectively is subjected
to a uniform uniaxial tensile load F on its outer edge. Assuming conditions
of either plane stress or plane strain, the internal equilibrium equations
will be satisfied if the three non-vanishing stress components are given in

terms of a stress function V¥(r,6) by

o =‘1’:r/ r+¢96'/ I'2

r

=V T == /1) (24)

2] rr ré ’ 0 r

and the boundary conditions at r=b and r=a will be satisfied if

V(r,0) =(Fa/k) (r—b)2 / (a-b) [1 + cos20 (a2 + ab -2br) / (a-b)2 ]

+h(r) + }Iri‘ gm(r) cos2mé (25)

k=1

for any well behaved functions h and & which satisfy

h'(a) = g (a) = g (a) =n'(v) =g (b) =g (v) =0. (26)

14
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The yield inequality will be a quadratic expression in the derivatives of
¥ whose precise form will depend upon the material yield condition and upon

whether the annulus is in plane strain or plane stress:

slvl<o (21)

The problem is to determine F and the functions h(r) and gm(r) SO as
to maximize F subject to (27).

As with the beam problem, (27) is transformed from a functional ine-
quality to a matrix of inequalities by considering a mesh of points
. %° 5 presumably similar techniques for keeping the number of mesh points
reasonably small can be developed.

An additional complication is the functional form of h and &, in
contrast to the finite vector ak in the beam problem. Two possibilities
are currently being investigated to deal with this phenomenon. On the one
hand, h and gm may be replaced by truncated series of complete functions

such as polynomials, trigonometric functions, Bessel functions etc. For

example, if
n .
/ . °
h =§§i aj+l sin ju(r-b) / (a=b)

g =:§§ (r-b) (a-r) sin jn(r-v) / (a-b) (28)

mn+j+1

then by putting the load F = o, we retain the formalism of the beam problem

1

formulation except that k runs to m(n+l) +1 instead of only to k.

15



Alternatively, the values of h and g, at the mesh points may be taken
as the unknown @'s and the derivatives in (27 ) replaced by appropriate finite
difference formulas.

Still further complications may be introduced if the boundary conditions
do not lend themselves to analytic expression. One method of handling this

would be to replace a typical boundary condition

Hv] =0 (29)

at a point by a pair of boundary inequalities

€ <HV] <€ (30)

and add the contraints (30) to the yield constraints (27). Alternatively,
some positive measure E of the extent to which the required boundary con-

ditions are in error could be calculated, and the primal function formulated

as

P, ) = -F+ E -¢ ) (1/G[¥]). (51)

Minimization of P would then lead to the largest load and the smallest
boundary error.

Despite the gquestions which remain to be resolved, it appears likely
that the CRST method of nonlinear programming will provide a valuable tool

for the calculation of yield-point loads of complex structures.

16
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APPENDIX

List of Symbols

. Beam properties
Typical measurement A
Width 2B
Height 2H
Yield stress o
0
Yield force N =U4BH o
o o
Yield moment Mo = 2BH2 g,

Dimensioned and dimensionless variables and parameters

Axial force

Shear force

(Lower case symbols are dimensionless, capitals have dimension)

n = N/N0

q = Q/N

Moment m = M/MO
_p
E Normal load P nA/No
& .
‘ Tangential load P, = PsA/No
Beam length L = L/A
Beam curvature K =KA
Beam constant N = ANo/Mo = 2A/H
Arc length s = S/A

SRR

19



Mathematical definitions

ny(s), m (s)

nj(S), mj(S)

Particular equilibrium solution under unit load
Complementary equilibrium solutions under zero loads,
i =2, 3, k4

nj(sk), mj(sk) (point values), j = 1, 2, 3, &4

multiplier of particular solution
multiplier of complementary solutions, j = 2, 3, 4

value of al at yield-point load

yield functions at s = s _, defined by Egs. (19)

k.,

20



Figure 1.
Figure 2.

Figure 3.

FIGURE TITLES

Typical load-displacement curve.
Schematic diagram of computer program.
Yield-point load of circular arch.

(P = total load, A No/ M = 4O)
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Figure 1 - Typical Load-Displacement Curve
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t

. CHOOSE COARSE MESH s,

Y

CHOOSE INITIAL FEASIBLE POINT

v

—‘——"——"I DETERMINE OPTIMUM ¢

v

FIND MINIMUM OF P BY

——» SECOND-ORDER GRADIENT
METHOD TO TOLERANCE Tl

NO YES
REDUCE ¢

NO

{

REDUCE MESH SIZE

BUT KEEP ONLY
ACTIVE CONSTRAINTS

YES

4

Figure 2 - Schematic Diagram of Computer Program

N(f YEf
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Figure 3 - YieId-Point Load of Circular Arch (P = total load, ANO/ Mo =40)
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