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YIELD-POINT LOAD DETERMINATION BY NONLINEAR PROGRAMMING

L by

| Philip G. Hodge, Jr.
|S—-—

§ Abstract

| The determination of the yield-point load of a perfectly plastic

| structure can be formulated as a nonlinear programming problem by
TN : . : :

means of the theorems of limit analysis. This formulation is dis-

cussed in general terms png then applied to the problem of a curved

beam. Recent results in the theory of nonlinear programming are called

— upon to solve typical problems for straight and curved beams. The

theory of limit analysis enables intermediate answers to be given a
|

= physical interpretation in terms of upper and lower bounds on the

yield-point load. The paper closes with some indication of how the
|_—

method may be generalized to more complex problems of plastic yield-

— point load determination.

L */ Reproduction in Whole or in Part is permitted for any Purpose of the

| United States government. This report was supported in part by
- Office of Naval Research Contract Nonr-225(37) (NR Ok4k-211) at

Stanford University.

- .
i

-



1. Introduction

— The constitutive behavior of an ideal elastic/perfectly-plastic material

| is defined in terms of a yield function fo, 5) The stress tensor o..i 1J
Ig

must be such that

|
—

|
|S_—

§ and the strain rates €i3 are then given by

¢ _ ° + ¢1 €55 = Cippg Gp +N 2/30, (2)

L where
| | _
!

L .

A> 0 (3)

and

Wh -

LJ ®

AN=0 if f£<O0 or f£f<O (4)
—

Here the Clix are the elastic constants of the generalized Hooke's law,-

A is an unknown scalar function, and a dot over a symbol indicates dif-

- ferentiation with respect to time.

| The general elastic-plastic problem is concerned with a structure or

- body made of an ideal elastic/perfectly-plastic material subjected to a

-
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| given set of surface tractions¥ P. which are prescribed at all points
- of the surface except where the corresponding velocity is prescribed to be

! zero, A solution consists in finding a stress tensor T4397 and a velocity
~ vector v, such that
| (a) the stresses are in internal equilibrium

i
O4i,5 = 0 (5)

|
(b) for a given constant S, the stresses are in equilibrium with

i loads SP. on the boundary |

L 0 ; ny = SP, (6) |
SE

(c) the yield inequality (1) is valid;

1 (d) the velocity satisfies any boundary constraints, and the strain
rate field derived from it satisfies (2),(3) and (4).

. This problem may be viewed as a boundary value problem,but such an :

| approach involves several difficulties among which are the following.

- A different set of differential equations must be solved in the

C "elastic region" (F< O or f < 0) and "plastic region" (f = ff = 0). |
Further, the plastic region equations are nonlinear.

— The location of the elastic-plastic interface between the two regions

| is an unknown of the problem.
= Continuity requirements across the interface and within the plastic

_ region are not entirely straightforward.
*

| For simplicity of exposition, body forces are neglected; this restriction

= is not vital to the material that follows.
2
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L
If S 1s less than a certain critical value 5 known as the safety

| factor or yield-point load, (and which is not knowna priori) a unique

{ solution to the problem exists. However, for s> So no solution exists.

L For ©S = S_- a solution exists for which the magnitude of the velocity
| vector is not unique. Further, in many problems there will be further
—

| lacks of uniqueness associated with the case S = S,. Therefore, solution

3 of the boundary value problem for a given ©S depends upon the relation of
f S to the unknown S for such vital properties as existence and uniqueness.

L Within the boundary-value-problem approach, So can be determined by
| first solving for an arbitrarily small §S for which the entire solution
|

will be elastic. Since the elastic solution is linear in S, the maximum

| S = Sq for which the fully elastic solution holds is easily determined by
; observing the largest S for which this solution satisfies (1) everywhere.

- One then solves a sequence of problems with S = 5, + KAS, K = 1,2,...
for as long as a solution exists, deducing that

3 5, + (XK) - 1)AS < 5, <8, * KAS (7)

= where Ky is the smallest K for which no solution exists. Although
| easily stated, the above problem is obviously far from trivial in any but
—

the very simplest of cases.

Although only a very few simple problems have been completely solved,

it is instructive to examine the behavior of a typical displacement d

L of the problem as a function of the load-magnitude S. Figure 1 shows the

qualitive behavior that is always present. For 5 < S15 d 1s a linear

- functionof S. As S increases above S15 d increases (generally

5



L
non-linearly) at an increasing rate, tending to infinity as § tends to

i S, Since infinite displacements are rarely admissible, it appears that

\ the value of S is of crucial importance in the analysis of the problem.

— From the mathematical viewpoint knowledge of its value is a necessary pre-

requisite to proper posing of the problem. From a practical viewpoint in

many applications, determination of 5, may be the primary question of

- interest, and additional effort spent on finding C3 and Vv. may be un-
warranted.

S To summarize, 1f one uses a boundary-value-problem approach to a
practical problem in plasticity, one must solve a non-linear, free boundary,

—

| difficult to pose problem; if one is successful one ends up with the desired

| number S together with a stress and displacement distribution which may
not be required.

— The Theorems of Limit Analysis* provide an alternative approach to

the determinationof SI The Lower Bound Theorem, with which we will be

- chiefly concerned, states that if for any number S~ there exists a stress

oo tensor 9 5 which satisfies requirements (a), (b) and (c¢) listed earlier,

i.e., which is in internal and external equilibrium with SP, and does

— not violate (1), then S§ is a lower bound on 8,

-

57 <8 (8)

| * The theorems were independently discovered by Gvozdev [1], Drucker,
Greenberg, and Prager [2,3,4]), and Hill [5,6]. Textbook accounts

- may be found in [7,8,9] .
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i
oince a solution to the complete problem is known to exist for S = 5S.»

3 this theorem establishes the uniqueness of S, and may be restated in
| slightly stronger form by saying that S 1s the maximum of the set of
~ numbers for which (1),(5) and (6) possess a solution:

|
-

S, = max (So; = 0, 04405" SP. , fo; 4) < 0) (9)
L

i The similarity of this formulation to a programming problem suggests that
- techniques of mathematical programming may be of value in the solution of

. plasticity problems. That this is indeed the case will be demonstrated in
: the remaining sections of this paper.
L The Upper Bound Theorem of limit analysis will not be used directly.

However, we will make use of a corollary to this theorem which states that

if the given structure is replaced by a "replacement structure’ which is

"stronger" (i.e., one whose yield inequality (1) is nowhere more restrictive

than that of the given structure) and of the same size, shape, and loading,

“ then the yield-point load of the replacement structure will not be less than

that of the given structure.

-

L

-

p)
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L
2. Beam Problem as a Nonlinear Programming Problem

1 In order to make the discussion definite, a particular relatively
. simple problem will be considered, rather than the general three dimen-

L sional one. Specifically,we will consider a straight or curved beam

| subjected to in-plane loading.
According to beam theory, the stress state of any cross section of the ;

8 beam is adequately specified by giving three numbers corresponding to the
direct (axial) force N, the shear (transverse) force Q, and the bending

L moment M transmitted across the given section. Each of these quantities
| 1s a function of the arc length along the centroid of the beam. Further,
= it is assumed that the shear force does not noticeably affect the plastic

i behavior of the beam. Therefore analogous to (1) we have the requirement

| } |
- F(N, M) < O (10)

= If, in particular, we specify a rectangular beam and choose suitable di-

] mensionless variables* n, q, and m, then (10) becomes [10]

g fla,m) = n° + | m| -1<o0 (11)

= Further discussion will be based on (11) although it will be evident that

4 any more complex function would be as easily handled.
) If the beam is subjected to normal and tangential loads P and Pos
_ respectively, then equilibrium in the axial and transverse directions and

_ *Precise definitions of dimensionless quantities may be found the the

Appendix.

|-



i
moment equilibrium lead to

C

n’ = - kq - PD
-

| q' = Kn - 1

| m’ = ng (12)
—

L in place of (5). Here primes indicate differentiation with respect to the
dimensionless arc length s,«= k(s) is the dimensionless curvature of the

beam, p_ end p are dimensionless loads, and fq = n(s) is a known property

| of the cross-section dimensions (n = const. for a beam of uniform section).

| For further definiteness we assume that the beam is fully constrained at
o ] either end. Then, since the reactions at the ends are not prescribed, there

is no requirement analogous to (6).

= The lower bound approach to the problem of determining the yield-point

_ load may be formulated as follows: to determine the largest value a of

ay for which there exists a solution to
—

n+ Kg + ap, =9 -K+ap =n -ng=0 (13)
LL

1 which satisfies (11), a being the dimensionless equivalent of the yield-
point load.

L A programming problem is generally concerned with matrices of finite

size, rather that functions which correspond to infinite matrices. The pre-

= sent problem may be conveniently reduced to finite size by taking advantage of

I



| the linearity of Egs. (13). To this end, let n, (s), q, (s), m, (s) be the
i

- solution of Egs. (12) (i.e., Egs. (13) with a = 1) subjected to

|
;

| n, (0) = q,(0) = m(0) = © (1%)
L

| and let n,(s), 1,(s), m,(s), i = 2,3,4 be the solution of the
|

— homogeneous counterparts of (13) subject to

ny(0) = g5(0) = m, (0) = 1 (15)

O =n 0 = 0 = = = =n, ( ) = ny, (0) = q,(0) q, (0) = m(0) m, (0) 0 (16) |

- Then obviously
L

4 4

L n(s) =) an,(s) m(s) } a.m,(s) (17)

C for any solution of (13) whatsoever. Therefore , regarding and =,
| as known functions of s which may be determined once and for all, we may

formulate the problem as:

maximize « subject to
- 1

2

— a.m. + o.m. -1 <0 O< s< 4 . |Dap) + 1Bap| -1 50, 0sss (15)
-

For programming purposes we must replace the functional inequalities |

|

i (18) by a finite set of inequalities. Therefore we select a finite sequence

| of r points 5, at which to demand that (18) be satisfied.

8

L



| Further, it proves convenient to replace each inequality by two inequalities

3 so as to eliminate the absolute value signs. Thus we obtain
|

L 4 2
g, = a.n, +) am, -1<O0 |k L J jk 3 Jj Jk — |

19)
L 2

J=1

| where ny = n, (5,0, etc. Thus we have formulated the beam problem as the
nonlinear programming problem of choosing Gps vv v5 Oso as to maximize

| ay subject to the 2r inequalities (19).

|

C

|

.

|
(-

|
C

|
LC
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3. Solution of the Programming Problem

. The method used to solve the problem posed in the preceding section is

| known as the Created-Response Surface Technique and will be referred to as

~ CRST. It was first suggested by Carroll [11] and later given theoretical

i validation by Fiacco and McCormick [12].
In the CRST method a parameter { is introduced and the primal function

|

, Pla, {) is defined by

1 r
PO,8) = -0 - Lt) (1g + Un) (20)| m k

: k=1
.

where gj and h are defined in (19). The interior of the domain in.an a,

| space defined by the inequalities (19) is referred to as the feasible domain.
( If consideration is limited to points in the feasible domain, then it can be

1 - shown [12] that for any given §{, P achieves its minimum value P(t) at

| some point a(t) in the feasible domain. Further, if ¢ | is a sequence of
L

values tending to zero, then

L

: Lim P(¢,) = - a (21)Lo J
| | f—xe

-

| Figure 2 shows a schemstic flow diegram of the program for automatic
-

computation on the IBM 7090 at Stanford University using the SUBALGOL com-

] piler. Details of the method used for optimizing { for a given a and
of the second-order gradient method used in minimizing Pla, t) arebeyond

. the scope of this discussion and the interested reader is referred to [12].
However, the method used in manipulation of the mesh size provides an

C

interesting example of interaction between numerical analysis and the physical

i field of application; it will be described in some detail.
10
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i
If r points Sie are used, the computation time required will be almost

is proportional to r, so that there is an obvious advantage to keeping r

i small. Now, froma physicel picture of a curved beam at the yield-point load,
| we see that four yield hinges will be sufficient to turn the beam into a

i mechanism. If there is a yield hinge at 8.0 then one of the inequalities
(19) will be an equality, and at all points where there is not a yield hinge,

| the strict inequalities will be satisfied, Therefore, for the first coarse

| mesh we take r = 4 and, lacking any better information, we take the points
to be equispaced.

i Consider now the situation when we have found the solution for this
mesh and denote the resultant value aq by a. If we evaluate the yield

L inequalities (18) for values of s f S,, We may find that they are violated.
| _ However, consider a replacement structure whose strength at the points 5)
— is the same as the given structure, but which is infintely strong for all

i other values of s; obviously a is the desired yield-point load for the
replacement structure, hence it follows from the corollary to the Upper

. Bound Theorem that the yield-point load a of the given structure must
| satisfy

{ a, < a. (22)

L Next, using the ultimately fine mesh decided upon, find the value of s

| for which (18) is violated most severely and replace a, by Ba, (0 <B <1)
so that this worst inequality is just an equality. It then follows from

i the Lower Bound Theorem that

11

(

_



4-

Ba <a (23)
-

| so that both upper and lower bounds on the desired yield-point load have been
.

obtained.

i For the next mesh S17 we take only those points at which one of the
inequalities(18) has a relative maximum* and repeat the reasoning. In

L applications it turns out that this process need be repeated only once or

1 twice before the bounds (22) and (23) are sufficiently close together to
terminate the computation.

-

-

f

{

LC

L

-

————

b.. *
As a refinement, only that one of (19) which had a relative maximum was

i retained, and a band of three mesh points was considered for each maximum,
thus speeding the convergence.

12
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Lh. Examples

- The purpose of the present paper is to present a method rather than an

exhaustive set of calculations, although with the computer program available

-

it is a trivial matter to analyze any beam under any loading. Examples run

| to test the program included a straight beam under uniform load (a trivial
|

problem designed to discover "bugs" in the program), and a circular arch of
f

L arbitrary angle under either a uniform vertical load, a concentrated vertical

. load at the center, or a uniform load perpendicular to one end of the arch.
Figure 3 shows some typical results for-the three cases.

(

|
f

-

|

-

|
.

C

-

L

-
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5. Extensions

The method described here for the relatively simple problem of a curved

beam should prove useful in finding the yield-point loads of more complex two

and three dimensional structures. It may be of some interest to mention

briefly a two dimensional problem on which research is currently being done:

An annulus of inner and outer radii b and a, respectively is subjected

— to a uniform uniaxial tensile load F on its outer edge. Assuming conditions

of either plane stress or plane strain, the internal equilibrium equations
1

will be satisfied if the three non-vanishing stress components are given in

Co terms of a stress function V(r,6) by

4 [r+ Vg R= r +

On Vs wi Tr

-

“0 =V, rr rg TT (, 0 / r)s (2%)
5

and the boundary conditions at r=b and r=a will be satisfied if

2 2 2
¥(r,0) =(Fa/4) (r-b)” / (a-b) [1 + cos26 (a” + ab -2br) / (a-b)" ]

m

_ +h(r) + y g (r) cos2m@ (25)
k=1

for any well behaved functions h and 8, which satisfy

- h(a) = g(a) = g (a) = b'(b) = & (b) = & (b) = 0. (26)
| m m m m
{

-_

1h



| The yield inequality will be a quadratic expression in the derivatives of

— V whose precise form will depend upon the material yield condition and upon

| whether the annulus is in plane strain or plane stress:

B lvl <0 (27)

— The problem is to determine F and the functions h(r) and g(r) SO as
to maximize F subject to (27).

- As with the beam problem, (27) is transformed from a functional ine-

_ quality to a matrix of inequalities by considering a mesh of points

| r. 2. ; presumably similar techniques for keeping the number of mesh points
- reasonably small can be developed.

| ~ An additional complication is the functional form ofh and & in

contrast to the finite vector a in the beam problem. Two possibilities

B are currently being investigated to deal with this phenomenon. On the one

| hand, h and eg. ray be replaced by truncated series of complete functions

- such as polynomials, trigonometric functions, Bessel functions etc. For

example, if

/ 2

B h “2 Osi sin jn(r-b) / (a=b)
n

_ g “2 (r-b) (a-r) SR) sin jn(r-b) / (a-b) (28)

~ then by putting the load F = a, we retain the formalism of the beam problem
formulation except that k runs to m(n+l) +1 instead of only to Lk.

15



Alternatively, the values of h and gn at the mesh points may be taken

as the unknown Q's and the derivatives in (27) replaced by appropriate finite

difference formulas.

— otill further complications may be introduced if the boundary conditions

do not lend themselves to analytic expression. One method of handling this

- would be to replace a typical boundary condition

HV] = 0 (29)

at a point ty a pair of boundary inequalities

_ -€ < HV] <€ (30)

— and add the contraints (30) to the yield constraints (27). Alternatively,

some positive measure E of the extent to which the required boundary con-

ditions are 1n error could be calculated, and the primal function formulated

as

_ Play¢) = -F+ E -t}. (1/clv]). (31)

” Minimization of P would then lead to the largest load and the smallest

| boundary error.

Despite the questions which remain to be resolved, it appears likely

— that the CRST method of nonlinear programming will provide a valuable tool

for the calculation of yield-point loads of complex structures.

—

= 16
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RB APPENDIX

| v List of Symbols

| ~ Beam properties
| Typical measurement A

oT Width OB

oo Height oH

Yield stress 0

| - Yield force N= LBH 0.
: Yield moment MJ = BH” Jy

| -
| Dimensioned and dimensionless variables and parameters

(Lower case symbols are dimensionless, capitals have dimension)

Axial force n = N/N

Shear force q = Q/N

| Moment m = M/M

Normal load p, = PAN

- Tangential load Pp, = PA/N
| Beam length { = L/A

Beam curvature K =KA

Beam constant n = AN /M = 2A/H

: Arc length s = S/A

19



: Mathematical definitions

| n, (s), m, (s) Particular equilibrium solution under unit load
ns(s), ms (s) Complementary equilibrium solutions under zero loads,

i = 2, 3, 4

Dips May n(s,), m, (sy) (point values), j = 1, 2, 3, k

| ay multiplier of particular solution
<5 multiplier of complementary solutions, j = 2, 3, &4

| a, value of a, at yileld-point load
gy, h yield functions at s = s , defined by Egs. (19)

- 20



a FIGURE TITLES

| Figure 1. Typical load-displacement curve.

FE — Figure 2. Schematic diagram of computer program.

Figure 3. Yield-point load of circular arch.

| (P = total load, A N / M = LO)

21
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Figure 1 - Typical Load-Displacement Curve
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FIND n(s), m(s) TO

: FINAL ACCURACY

| CHOOSE COARSE MESH s,
: >] CHOOSE INITIAL FEASIBLE POINT

; DETERMINE OPTIMUM 4

; FIND MINIMUM OF P BY
SECOND-ORDER GRADIENT

METHOD TO TOLERANCE T,

NO YES

NO YES

| REDUCE MESH SIZE
BUT KEEP ONLY

ACTIVE CONSTRAINTS

NO YES

| REDUCE T,| [Finis |
Figure 2 ~ Schematic Diagram of Computer Program
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ov A op | |
— Dd \ |

nN 4.0 | | Pp

| P/N, |

: A

a A
3.0 |

: 2.0 |

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

: 3

Figure 3 - Yie Id-Point Load of Circular Arch (P = total load, AN /M = 40)
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