
ON IMPROVING AN APPROXIMATE SOLUTION OF A

FUNCTIONAL EQUAT ION BY DEFERRED CORRECTIONS

BY

VICTOR PEREYRA

TECHNICAL REPORT CS29

AUGUST 31, 1965

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY



RRC LSRR Cy



|

ON IMPROVING AN APPROXIMATE SOLUTION OF A FUNCTIONAL

EQUATION BY DEFERRED CORRECTIONS

by

Victor Pereyra’

Abstract

The improvement of discretization algorithms for the approximate

"solution of nonlinear functional equations 1s considered. Extensions to

the method of difference corrections by Fox are discussed and some gen-

eral results are proved. Applications to nonlinear boundary problems and

numerical examples are given 1n some detail.

Present address: Mathematics Research Center, The University
of Wisconsin, Madison, Wisconsin, U.S.A.

Reproduction in Whole or in Part 1s Permitted for any Purpose of the

United States Government. This report was supported in part by Office
of Naval Resesmrch Contract Nonr-225(37) (NR-OkL4-211) at Stanford University.



aE

Tt a Se N

vt FRA



-

ON IMPROVING AN APPROXIMATE SOLUTION QF A FUNCTIONAL

EQUATION BY DEFERRED CORRECTIONS

by

Victor Pereyra

Introduction

Many problems of mathematical physics and applied analysis are par-

ticular instances of the problem ofsolving the functional equation

F(v) = £, (1)

with v and f belonging to appropriate general spaces and F being

an operator between these spaces.

Most of the time this equation cannot be solved in & closed form, and

some approximations are required. We are interested in considering the

case in which (1) 1s replaced by an associate, simpler problem depending

on a real (small) parameter h :

, (V) =g . (2)

In-this general formulatim many problems can be dealt with. For example,

Kantorovich [1948] has proved, under suitable hypothesis, several impor-

tant relationships between the solution of (1) and (2).

More recently, Stetter [196%] has discussed the asymptotic behavior

(for h » 0) of the error of discretization e = V =~ a Vv, obtaining

very general result and showing several applications. His main aim was

to have a rigorous basis for-the application of Richardson's extrapolation

to the limit.
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In this paper we intend to analyze 1n general another method for

accelerating the convergence of certain approximate processes. In dif-

ferent contexts this method has been known as "the difference (or deferred)

correction method" (Fox and Goodwin [ 1949]).

In Section 1 we state the problem and give the notation and some

definitions.

In Section 2 a special form of a theorem by Stetter is proved, stating

the existence of an asymptotic expansion for the error of discretization.

In Section 3 a linear deferred correction procedure 1s presented.

In Theorem 3.1 we prove that in fact this procedure will produce an im-

proved approximate solution.

Section 4 is devoted to the analysis of an iterative deferred cor-

rection.

Sections 5 and 6 provide means of proving some of the hypotheses used

in the former sections when some other hypotheses hold.

In Section 7 two applications are discussed. Finally in Section 8

some numerical results are presented.

) A list of references has been included. Some of them are not alluded

to in the text but are nonetheless relevant.
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[.. Statementof the problem and_definitions

We will consider the functional equation

Fv) =f. (1.1)

The (generally non-linear ) operator F will map a linear subspace of

a Banach space D into a Banach space E. Problem (1.1) will always

be assumed to have a unique solution u ¢D' CD.
We are interested in accelerating the convergence of approximate

methods for solving (1.1).

Let us consider now a_discretized version of (1.1)

0. (V) = Af. (1.2)

The operators @, will map certain Banach spaces D. into Banach

spaces E while Ah, A will be bounded linear transformations from

D into Dy and from E into B respectively. The possible values

for the real parameter h will be: hy>h; ...> 0, {n,}= H being
a vanishing sequence given in advance (h™0). In what follows the

: norms of the different spaces will appear, and to avoid cumbersome no-

tation we will. use only the symbol ||.|| whenever this is not confusing.

The operator in (1.2) will be assumed to have the following proper-

ties:

For each V «¢ D and h ¢ H there exists an expansion®

* The symbolic expression,

y(h) = o(n¥) , y(h)e Banach space (possibly different for each h)

has the meaning,

Tim v8 lyn) < K , K constant,
h—0
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Np.
0 J N+1 |

o(a, v) =a {F(v) + ) n Fovi+ om), (1.3)
J=1 J

where the linear operators Fo do not depend upon h and are boundedIj!
t

on D

The exponents appearing in (1.3) will be positive rational numbers

satisfying

0<p <p, <. . .<py (1.4)

The operators F and UN will always be assumed to be at least twice

Frechet-differentiable on D and Dy respectively.

Definition 1: If for any e «¢ D, a fixed V e¢ Dy and any h e€ H

there exists anon—-negative constant K (which may depend on V) such that

lel} < x flo, (V)el| , (1.5)

then we will say that the operator 0, (V) 1s stableat V. Observe

that this is equivalent to say that if ®, (V) is onto, then it has an
-1

inverse and [[e, (V)] | < K.

Definition 2: Let gq be a positive number. We will say that

U(h) « D, 1s an approximate solution of (1.2) 1f it satisfies

0 | oo

lo, (Un) - a fll <c nt, (1.6)

where C 1s a positive constant.

Whenever this 1s not confusing we will not mention in U(h) the

specific dependence on h.
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Definition 3: If h € H, wu is the solution of (1.1), and U(h)

is an approximate solution of (1.2), then the vector

e(h) = U(h) - A ueD (1.7)

will be called the global discretization error (g.d.e.) of (1.2).

Definition 4: The method (1.2) having an asymptotic expansion (1.3)

will be convergentof order § if for any h e H, |le(n)|< ¢C ns, where
C 1s a positive constant,

In this case U(h) will also be called a {-approximate solution

of (1.1).

Definition 5:g.d.e. admits an asymptotic expansion up to the order

Py > 0 if there exist e,€ D, independent of h € H, such that
N p. -

leh) - Ah Y nde. <c, nf (1.8)
p jh = N
J=1l

with Cx = 0 constant, and p > Py

2. Existence of an asymptotic expansionfor g.d.e,

In Stetter [1965] it is proved that under certain conditions g.d.e.

has an expansion of the form (1.8) if ¢_ has an expansion like (1.3).

We will present a simpler proof for the case in which only the first

term of such an expansion 1s needed,

Until something else is said we will assume that the operator 0, (V)
has the property

Vi

(ct) lop (v) | < 2k, for VveD |,
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and also that

(B) F'(u) e = b has a unique solution e € D for any b €¢ E .

Now we can state

Theorem 2.13 Let U(h) be a p, -approximate solution with gq > Py)

and let u be the exact solution of (1.1). If dQ 1s stable at Ah u,

then e(h) = U(h) = Ah u admits an asymptotic expansion up to the order

Py (Def. 5), where e (independent of h) satisfies

F' (u) €4 = = p" . (2.1)

Proof: On one hand we have that, by the general Taylor-expansion and ():

/

lo, (U) =o, (au) - @(Au) e(h)] <

2

< Ky. flem)® (2.2)

Also, by using (1.3),

o (U) - ¢ (Au)=o (U) O (Fu) +n LE n 2) (2.3)
h nA = & a u p, + O( . .

| 0 |

Hence, since 2, (U) - of = 0(h?) and F(u) = f we obtain,

3 (U) - 0 (Au) he! Oru) o(n 2) (2.4)
h h ‘ “n Pp; CC ]

Combining (2.2) and (2.4%),

o/ (Au) Bh) = - ANF w + O(n") (2.5)h\“h Dy !
— “Py

where e(h) = h e(h) and p*= min(p, P, - Pp, )-

ly



Consider now the equation

F'(u) e=-F u, (2.6)
P

which by (B) has a unique solution e, € D.
We have, by differentiating (1.3) and combining (2.5) and (2.6),

0, (au) [2(h) - e,1 = 0(a®")hh 1

Using the stability, it 1s found that

— *

e(n) — e = 0"), (2.7)

or 1n other words

by —
le(n) - Ah Tel <cn® (2.8)

ith p = p*% + > :with p = p py = Py

3. Accelerating the convergence

A deferred correction

Once the expansion (2.8) has been secured, several procedures are

avallable in order to obtain a more accurate approximation than U(h),

A well known one 1s Richardson's extrapolation to the limit (Stetter

[1965]). This procedure requires the solution of (1.2) for two different

values of h, say hy, h, (hy >h,), and a suitable combination of these
p

two solutions permits the term h L e; to be eliminated giving an approxi-
mation of order ho,

We 1ntend now to describe a different approach aimed at serving the

same purpose. The underlying 1dea can be traced back to Fox and Goodwin
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[1949] and in its present restricted form to Bickley, Michaelson and Osborne

[1960],Volkov [1957], and Henrici [1962]. It essentially consists in

calculating an approximate value of el by using the already computed
P 0

solution (of order h Ly, U. We will now assume the existence of an operator

. 8S such that

Pl

0 *

a F u-8_ (U) = or") (3.1)
Py Py

and range (s ) ¢ range (9) .1 h
Theorem 5.1:

Under the hypotheses of Th. 2.1, and if(3.1)is valid, then

1
U=U-h" eX (3.2)

1s an approximate solution of (1.1) of order 0, that 1s,

P
Jo, -a, F o@m™)

Here e¥* is the solution of

0, (U) ex = -5_(U) . (3.3)p
) 1

Proof: Calling n = e(h)- e* and subtracting (3.3) from (2.5), we obtain

0 (Au) 1 = O(n") (5.4)nh

since

/ o ; ¥ =
o, (Au) e(h) - Gh (U) e a, (80) n + O(h)

and (3.1).

From this and the stability

- *

lin _— o(n® )

6
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Jo-n tex Aull = ov?)

Observe that here we have only needed gq > Pp,
Remarks:

1) A procedure similar to this has been empirically employed for many

different problems (mainly linear) in differential and integral equations

(see Fox [1962] and Noble [1964]).

. ii) From Theorem 3.1 it is clear that this procedure will give an

approximate solution with the same order of accuracy as the Richardson

extrapolation technique but with much less work. In fact, both procedures

consist of essentially two steps. The first step, common to both, 1s the

computation of 8 Pp; ~approximate solution U.

For Richardson's extrapolation one has now to compute another solu-

tion with a smaller parameter, say h/2. That involves solving once again

the non-linear problem (1.2), which in general will be of a "larger size"

than the one corresponding to the original h. On the other and, for com-

puting the deferred correction a! e¥, one only has to solve the linear
problem (3.3) (for the same h). The only drawback that we can point out

1s the computation of 0, (U) and Sp which are necessary for the de-
ferred correction but not for Richardson's .extrapolation.

With respect tc, (U) we can say that, 1f Newton's method 1s being
used for solving problem (1.2), then 1t will already be available from the

first part of the computation.

The extra computation (and derivation) of Sp, V is rapidly compen-
sated for in problems wherein decreasing h by a factor a increases the

size of the problem by a power n > 2 of 1/a (for instance, in elliptic

partial differential equations),

111) The purpose of introducing the notion of an approximate solution

of (anSeshaibimniisas 2) will appear clearly in the applications. At this

i



point we can say that since the exact solution of (1.2) will only be an

approximation to the solution of (1.1),it is of no use to solve (1.2) exactly.

Moreover, the condition gq > p; says how incomplete this solution can be.

This idea is present in the works of J. Douglas [1961] and Henrici [1962],

in connection with the solution of mildly non-linear elliptic equations

and two-point boundary value problems respectively, and 1t has a very im-

portant practical value since only "incomplete" solutions are computationally

available.

The expansion in Th. (2.1) will generally be needed for the construc-

tion of the operator °p,

L. Iterated deferred corrections

In Section ) we developed a way of eliminating the first term in the

expansion of g.d.e. It had the advantages of involving only the solution

of a linear problem and preserving the "size" of the main equation. If a

longer expansion 1s avallable one can ask whether it 1s possible to elimi-

nate further terms in a similar fashion. This seems to be unlikely, since

in eliminating the first term we have thrown information away which can-

not be regained within a linear process.

However, 1f we are willing to loose the linearity, then 1t 1s possible

to describe an iterative procedure which will give an asymptotically more

accurate solution for each (non-linear) step.

This procedure will have an advantage over the successive Richardson's

extrapolation in that the parameter h will not have to be changed.

It will also have a disadvantage in that for each special problem some

expressions will have to be worked out. In order to carry out the proof

of the next theorem we have to introduce a new definition.

8



Definition 6: ?, (V) is said to have the mean value property (m.v.p.)

(Schroder [1961]) if for Vis Vo € Di» there exists a linear operator

M(V v,) such that

0, (Vy) = 0, (v,) = Mv, Vv) (Vv, -V,).

Theorem 4.1:

Let ¢ have m.v.p. with M(v,, V,) non-singular. Let us assume
-1

also that for Vs Vs € Do IMC, v,)] | < K , where K does not
depend on Vi, Vso

If an expansion (1.3) 1s valid, 0B) <N) is a p, ~approximate
solution of(1.1), and there exist operators S such that

¥;
PD. P
J AQ k k k+1

h <a) Fu - s{8) (uf )y = O(h ) (4.1)
J J

then the solution of the equation

(1)y _ 0f + 5 aK) (x)
o (U7) = A Y, S; (0%) (k.2)

J=1 =]

is a py, ,-approximate solution of (1.1).

Proof:

By (1.3) we have that

kK Dp, J
0 J k+1

0, (&u) =a [f+ 2 h Ful + o(n Fy (4.3)
J=1 J

Hence, by subtracting (4.2) from (4.3),we obtain

(k+1) Peel
Me = O(h ) ’ (4.4)

9



and the hypothesis on M implies

SE %
+ +

, (k+1) au - ylk 1) _ o(h ktly

With this result it is simple now to describe Lhe iterated deferred

corrections procedure (i.d.c.p.). In order to obtain approximate solutions

of increasing accuracy we will proceed as follows.

(1)
1) Obtain U by solving

b (0) 0 ofl <x (4.5)h “ M = 1

i >
with q; 2p; » K, 2 0

CL (k+1) | |
ii) For k = 1,2,..., N-1 compute U satisfying

| (k+1) AO S s(®) (y(E)yg) < K p rl (4.6)
j=1 © |

where SY > Pry Kis1 > 0 .
(k+1) |

Then, and from Theorem 4.1, U will satisfy

p
+

la, u = o (+L I <C nt (4.7)

On writing (%.5) and (4.6) we have shown explicitly how "incomplete"

kthe approximate solutions of ) can be.

10



0. Operators of monotonic type

We will now assume that the spaces E, E, introduced in Section 1
have also a compatible structure of Archimedean lattices.

Thus 1t makes sense to consider operators 2 whose Fréchet deriva-
tives are of monotonic type (Schroder [1961]).

In this case ®, will be non-singular and [0/17 will be isotone.
0

In the usual way, for any V ¢ By (or E,) we have a notion of
0

absolute value |v] e E, (or E, ):0 <lvl = supw, -v) .
In many practical problems of monotonic type one has information not

on o, (V) but on a certain (generally simpler, and independent of V)

linear operator, say B,
The following Theorem gives a sufficient condition for the operator

oto be stable, in terms of assumed bounds for lB.
/ / -1

Theorem p.1: If e, (V), B, and (e, (V) - B,) are operators of mono-
tonic type, and

-1

I) <x (5.1)

- then SN 1s stable.

Proof: It is enough to prove that for any w > 0,

/ -1

°, w< Bw. (5.3)

In fact,

-1 rq=1,-1 Ifa? -1

(B, - [e,] ) T= 0, (0 - B,) B, - (5.3)

Since the product of inverse-monotonic operators 1s inverse-monotonic,

it follows that B" - [0/17 is isotone and from the definition of

isotonicity we obtain that, 0 < (87° - [0/11 w and (5.3) follows.

11



We can write now,

/q=1 /

and from this

-1 / :

lell < lie.” To) el Il <x [lo ell

and, according to Definition 1, UN 1s stable.

6. A sufficient condition for convergence

In many cases convergence can be proved from the properties of

Section 2 1f some additional hypothesis 1s valid. For instance,

Theorem 6.1: If all the hypotheses assumed in Theorem 2.1 are valid (ex-

cept the convergence), 2 has the mean value property and the Mv, ,V,)

of Def. 6 has an inverse bounded in norm, then the method (1.2) is con-

vergent of order P, -

Proof: If instead of using the development (2.2) we use the mean value

property, then we obtain instead of (2.4) the equations

P1
Me() =0th 7) , (6.2)

-1
and if X > |M||, then it follows that

p

| le ll cxnt

Observation:

2

The point in using m.v.p. 1s that it eliminates the term in lle (n)]]

from the discussion. Observe that m.v.p. 1s not an automatic property for

arbitrary, (let us say) twice Fréchet differentiable non-linear operators.

12
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f. Applications

We will consider now several applications of the methods described

in the preceding Sections.

7.1 Two-point boundary value Problem

We want to solve the problem

Fy) = = ¥' (x) + £x, y(x), y'(x)) = 0 for x ela,b]

Fy) = y(a) - a = 0

F(y) = y(b) =p = 0 (7.1)

In Pereyra [1965] the author has considered a simpler instance of (7.1)

for which y' (x) was not present in the differential equation. We would

like to discuss this problem at length, since we feel that all the important

features of d.c.p. can be displayed here in an environment of median tech-

nical difficulty, not so complicated as to obscure the 1ssues and not too

simple as to be trivial. Furthermore, besides the paper mentioned above,

we do not know of any publication in which this application has been dis-

cussed rigorously and in detail.

In order to insure existence and uniqueness of a solution of (7.1)

we will assume that

£06 v2) 20, [f,(x,5, 2)| <K (7.2)

in a certain bounded region 9 = [a,b] X B X B'. Let us call that solu-

tion vy (x).

The different spaces are D = C [a,b], the space of continuous func-

tions on [a,b], and E =C[a,b] X R° * F(y) will be defined on c“la,b].

13



In order to define a discretization of (7.1), we introduce the vanishing

_bma ive es
sequence H = {nh}, where h, = : (q positive integers, gq —* for
i »®), and hy < 2/K.

q tl
Then D = E, = R the q;+1 - ‘dimensional real space. Theh.

1 1

link between the spaces corresponding to the continuous and discrete cases

will be provided by the operators

Ay (x) > Ly (x,)] with x; = a + J hy J = 0ly.ees qs
01

: X.)}.

00 02

ap yx) -yla) , AT yx) syle)

In what follows we will use p to symbolize a fixed, but otherwise arbitrary q..
The norms involved will be the L, norms for vectors and matrices.

We can now define a discrete version of (7.1):

=D |
— - + Vv. - V. + fi{x., V., (V. -V., .)/2h) =O[0, (V1, = 07°(-v, 1+ 2 Vom Vo) % lag, Vo (Vy) = Vy /

J = 1,00. pl

[o, (V)1, = V,
(7.3)

md — md §)

where H h = (b-a)/p .

—The Frechet derivative of UN 1s

21 +B ed(u))e, + (2 + BEI(W)e, - (1 = 2EIV))ey,)Lo, (V)e}., =h{-(1 + 3 T j-1 y J 2 2 J

J =L..., p11

0. Ve = e

|

o. (V)e = e .(oy (Ve} =e

14



The notation for the partial derivatives of f in (7.4) is,

J _ _
£,(V) = f(x, V5 (Vy,,-V5 ,)/2n), and so on.

+

For v e¢ CoN [a,b] = pt we have the expansions

ok (Av)= OL pl (4) \ eh -2) _ _(2§+2) |p \BpV m0 ft] 23+2) 1,

1 (23+1) +1 + ON+1
+ BT f£(v) v 137 o(h )

(7.5)
0 / 00 _0

2 fail 02 2

Since ¢, (V) clearly has the mean value property (with [M(v, Y, )d. = Lo, (V1,
the subilindex meaning the j-th rowsof the corresponding matrices, where v,
are different intermediary points for each row), 1f we are able to show

that it is also stable then, by Theorem 6.1, we will have that it is con-

vergent of order 2.

We will next show that 0, (V) is of monotonic type. The order con-
sidered is componentwise in RY

Lemma 7.1.

The operator 0, (V) of (7.4) 1s of monotonic type for any V € Dy .

Proof: Let e € By , and assume that

/

2, (V) e > 0 .

We want to prove that e > 0. Suppose that for some j, 0 < Jj <p,

ey S & for all 0 <i<pande.,<U .

15



But

(0/(V) e}.= ~ A, e LZ [240° £J(V)] e - \, © > 0h J L "3-1 + 2 Y J 2 j+l = ’
or

. 5
O>e, >2.(N, e. + + J322: 00 gig + Ny eg,)/ [207 2(VN),

with

+ =

A A 1 , Ns A >0 .

Hence, we obtain that

> mi

es 2 min(e, © yp) ,

and from this follows that e =e. =e.
- j-1 j+l

Repeating this argument we will finally obtain that for all

0<ip , ©; = €3 <0.
But this 1s a contradiction.

From Lemma 7.1 we have in particular that ®, (V) 1s invertible
/ -1 CL

and that [o, (V)] has positive elements.

Corollary 1:

If e 1s the solution of

/ '

[0,(V) el, = 0 J =1,..., p-1

€q T@ © = B
then

min (0, min(,p))< e.< max(0, max(a,p)) (7.6)

Proof:

It 1s enough to observe that, for 1 < j < p-1,

e. < maxl(e, -e, if ee, >

16
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or

es 2 min(e, ,, € 41) if e, < 0,

and a reasoning similar to the one used in Lemma 7.1 shows that © 5
cannot have either a positive maximum or a negative minimum at an interior

point (maximum principle). Observe that both Lemma 7 .1l and its corollary

are also valid for the operator M(Vys V,), since the arguments of £2(v)
did not play any role in the proof, the only relevant property being the

positivdty of rv) :

Theorem T.l:

¢, (V) is stable on D (uniformly in h and V). Moreover, the

operators M(V,, v,) are non-singular and thelr inverses are uniformly
bounded 1n norm.

Proof: If in Theorem 5.1 we take M(V, v,) as 0, (V) and ateg((7,))
as B, then it 1s clear that these operators and (Vv) = M(v,, V,) -

- aag(22 (7) satisfy the hypothesis of the theorem and, consequently
M(V, V,) will have an inverse bounded in norm if © has this property.

Since this will be valid for arbitrary arguments v in M, let
v, =V for Jj =0,..., P. In this case M = e, (V) and we have from the
above result that UR 1s stable. That these properties are uniform will

stem from the fact that the bounds on Call will be independent of v
and h.

Hence we will show that led is bounded. Let @(x) C°la,b] be

a negative function for which

ong) <0, ent EXRELIBELCc (wa) | 1.7)
~ xela,b]

17



We have that

0 < [A]. = PS el 7 -1 -1
< [a9]; = 2 [677]; 18M] + [07 ple@)] + 16771, lo) ,

and from (7.7) we obtainthe inequality )

pl 4

x [077], lea9)] | < max(lo(a)], lo()]) , (7.8)

: since max (071), 071, ) <1.
Finally we obtain from (7.7) and (7.8) that

Eo-1
max )_ le” 1]. | < C(x, b-a)

1 s=1 tS

or, 1n other words, let < C , where C only depends on the bound K

of the partial derivative t and on the length of the interval [a,b].

That a function(x) with properties (7.7) exists is shown in detail

in Bers [1953], Section 3.

Theorem 7 .1 has been proved.

In conclusion, 2 1s stable and convergent of order 2, and we can

apply any of the deferred correction algorithms of Sections 3 and 4. We

will now assume that f(x, y, y') 1s sufficiently differentiable as a

function of its three arguments, which in particular will imply that the

solution y(x) of (7.1) has continuous derivatives up to the order neces-

sary in the following discussion.

For the linear, one-step correction, which will give a fourth order

approximate solution, we will develop some special formulas in order to

approximate y'" (x) and 7 (x) at the interior points. Since

p¥ = min(p,, D, - D, ) = 2 we needthese approximationstobe of order he
(see (3.1)).

18



Lemma 7.2: Let U be an approximate solution of (7.3) with gq > 2. The

expressions

of, = f . -— = -3 3 (x55 Us» (Usi1 Us_1)/2h) f (34015 Usp (Us40 Ud )/ 2h)

and the similarly defined 3 satisfy

v(x) - (82,)/2n = 0(n%)
IV 2 2 2 (7-9)
y (x)- (8°f,)/n" = o(n")

J J

for J = lye, -p-1.

Proof: We will prove (7.9) for or and exactly the same argument can be
used 1n order to obtain the second formula.

First of all we recall that

i) v(x) = f(x, yx), y'(x)) ,
2

ii) e, =u, - yx.) = 0h”) ,jy =U y( 5) (h")
CL " 3 Ca 1 IV 1 "
iii) e"(x) =f ex) + for e'(x) + [3 vV (x) -2 fr YO

"and finally

iv) oe, = b2 ex) + O(n) .
J U

Also from (1) we have that

v) ay (x) = 82x, yx), y' (x) = 2h y" (x) + O() .

Hence, it is enough to show that of | approaches & f(x) as or).
In fact,

(f(x, y(x), ¥y'(x))- f(x, U, 8U/2h)]=
| Lh

= nle, e (x) + f (oe(x)/2h + y"' (x))] + O(h)
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and

5[ f(x) - f£.]/2h = ne [f .e(x) + Ff /(e’(x) + v'(x))] + ont) ,
J dx ~y y

and from the differentiability properties of all the involved functions

we have that

5f(x) - Bf = or) ,

and Lemma 7.2 1s proved.

From this lemma we can now define

L"C 5 Sl

[5,(U)] = 3 571, - = £2 (U) ST (7.10)

which satisfies condition (3.1) since also £2, (0) - AC) _ 0(n°)
Hence, by Theorem 3.1 we can obtain by solving (3.3) and using (3.2) an

approximate solution Uy of order 4.

For the iterated deferred corrections, besides the increased differ-

entiability requirements, 1t 1s necessary to define the operators 5)
of (4.1). i

As before, the approximations to the different derivatives will be in

terms of differences, either of the successive approximate solutions

glk) or of the values of the right hand side f(x, y, y') at this ol),

Formulas (7.5) and (4.1) show that at the k-th step we need to approxi-

nate’ the quantities nd (23 D(x) and 023 (332) (0 (5x) up to the order
2k+ 2 in h.

From Milne - Thomson [1960], Chap. 7 we take the following formulas

for numerical differentiation.

i) forward differences,

n-1 / n-m

£™x) =n "r Tomy Ts m2) £°e(x) ovr p(n) ue
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11) backward differences,

n-1 s+m mtn. n-m

and

111) central differences,
n

£ (2m) _ y= em Ls Tr B{28) (5) 528 F(x) + O(n)

p (omtl) oo _ p-(eml) i (EE 8252) (11) ow 855 fix) + o@®emy
s=m

3) (x) stands for the Bernoulli polynomial of order n and degree v ,
defined by -

n xt ® V

te. ply) 7.12)
(e”-1) v=0

The Bernoulli number B\") is equal to the value of the corresponding
polynomial at x = 0.

The expressions in (111) make 1t clear that the use of central differences

will soon require points outside of the interval [a,b]. Even if unsym-

metric differences are used, care would have to be taken in order to have

. enough points, especially if several iterations are planned. In fact the

maximum number of iterations desired and the set of formulas chosen for

approximating the derivatives at the different points will impose a new

restriction on the largest step hy (minimum number of points p) which

can be allowed.

A highly sophisticated scheme might be to take symmetric differences

at all points where possible, and for the remaining points to take unsym-

metric formulas using all the points up to the closest boundary. This

technique will give the smallest truncation error at each point but it

will require many different formulas. In order to avoid this proliferation
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of formulas, another possibility can be to take, as before, symmetric

expressions wherever possible and to use for the remaining points either

forward or backward differences. Still another scheme may be to eliminate

the symmetric, formulas altogether, to take forward differences until the

right boundary is reached, and then to switch to backward differences.

Any of these schemes is feasible, and we will now discuss the second

’ of them.

For completeness it may be interesting to present a general algorithm,

but that would take us too far and too long. Hence, we will restrict the

discussion to the case N = 2, where all the relevant questions are present*.

As we observed above, 1t 1s necessary to approximate v(x) and

y" (x) up to orders 2 and bk and y and y up to the order 2 in h.
|

As we did in Lemma 7.2, recalling the observation at the end of Theorem 4.1

it is possible to show that if L is a linear operator involving finite

differences) such that,

dH) = 1 ye + om)

then it also holds that, if y(x) is sufficiently differentiable,

7) (x) _ TT [b° f(x, lk), L,0)/n] + o(n"tey

where' L has the same form as L with all the difference orders decreased

by two, and ht Ly 1s a difference operator approaching y' (x) up to the
order 2K in h. CTV ” |

For K= 1 the approximations to y and y are obtained from

(111) with n = 2. Those will be enough for the whole interval since we

*

Professor M. Lees of CASE Institute of Technology has mentioned to the

author that a general procedure has been developed, but 1t has so far not

been published. }
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will later drop two orders in the differences. In fact this first step

coincides with the one already described for the linear deferred correction.

For K = 2 we have the following situation:

if Jj = 3,..., p—3 then all the approximations are obtained from (iii)

_ INVA VI

with n = 3. For j =1, 2 y (xj) andy (x) are obtained from (i)

with n = 8, while y" (x) and y (x) are obtained also from (1) but
with n = 7.

Finally, at the right end (J = p-1, p-2) formula (ii) is used with

the same values of n as at the left boundary.

7.2. Mildly nonlinear partial differential equations of elliptic type

Here the continuous problem 1is

1 |

F(z) = A Ax, y) - f(x, Ys Z, 20? 2.) = 0 for (x, y) €D
> (7.13)
F(z) =z(x, y) - g(x, y) = 0 for (x, y) €dD ,

where g(x, y) is a given function.

Let tv, } be the nodal points of a square mesh of width h which
covers D.

The discretization will be given as usual (Forsythe and Wasow [1960])

by the system of difference equations

-2 W[0 (V)],= b™5(bv, - VY = V° = V5 = v7) +h J J J J J 5
W

+ f(x,y, V,, (Vv - V.)/2h, (V) = v5)/2h) = O (7.14)J J J J J

for each vs which with 1ts four closest neighbors 1s contained in D.
This problem has been discussed in Bers [1953], and all the necessary

properties and conditions can be obtained from there. In Volkov [1957]
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an 1terated deferred corrections algorithm for A u = f(x, y) 1s discussed.

The treatment of a general boundary, needing interpolation, can be taken

from there. In order to make our description simpler we will assume that

the boundary 0 D is such that it does not require interpolation, for any

h € H, or in other words that all the interior grid points ve are reg-
ular. We will also assume that the given functions g(x, y) and

f(x, y, z, Z z,) have enough regularity properties to insure that the
solution z(x, y) of (7.13) is sufficiently differentiable. In this case

the boundary equations will simply be

[eo(V)]. =V. - ax, y) . (7.1K)

Both in formulas (7.14) and (7.14) the (x, y) represents the node

in D corresponding to Ves
With these hypotheses the treatment parallels the one of Section 7.1

1 3s 32

and we will not repeat it here. The quantity Fy = 15 (2% + =)needs to be approximated in order to compute the linear deferred Correction.

If, instead of using the approximate solution V, one uses the values

of the right hand side at V, then it 1s possible to approximate Fy

using only second differences in every given direction. This will reduce

the complexity of the problem at points close to the boundary.

In fact, for any sufficiently differentiable function z(x, y)

12F RN . - os (7.15)
2 ox oy A“z(x, vy) 2 Ox“ dy

In turn, if v. - z(x, y) = o(h%), then

12F, = Ah f(x, y, z, 6, 7/ 2h, 5, 7/ 2h) - 2 8(z) + 0(h°) , (7.16)
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where S(z) 1s defined by

S(z.) = h™ (bz -2(z, +z, tz. +z tz, tz tz, + 25)
0 0 I 2 4 "6 "87 7

with z, defined in Fig. 1. )

Fig. 1

Formula (7.16) would be used every time that at least one 2, (1 =1,..0, 8)

belongs to the boundary od D.

When solving the system of nonlinear equations (7.14) (or any similar

discretization) some iterative technique will be needed. Let us suppose

that Newton's method can be applied successfully. At each stage of this

outer iteration it will be necessary to solve a large system of linear

equations.

In order to do so, generally, an iterative technique will also be

used. To minimize the amount of work in this inner iteration it 1s 1im-

portant that the matrix which represents the Fréchet derivative °, be

as simple as possible.

If a fourth order approximation in h 1s desired then, broadly speak-

ing, we have available three different kinds of techniques.

1) We may use a fourth order discretization instead of the one of

second order in (7.14%). For instance, one may use the g-point

approximation given in Bramble and Hubbard [1962].
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ii) We may solve (7.14) twice with different steps and then use

Richardson's extrapolation to the limit.

iii) We may solve (7.14%) once and then perform a linear deferred

correction as described above.

Let us suppose, as an example, that D is a square with sides of

length one.

" The most significant figure here 1s the number of nodal points, which

in turn gives the number of equations involved. Supposeh is such that

we have 100 equations. It 1s clear that (1) will have a more compli-

cated matrix (less zero entries) than either (11) or (iii), which in turn

will imply more arithmetic operations at each inner iteration step. More-

over, the outer iteration will need to be more "complete" than in the

latter cases. (11) and (111) have already been compared in Section 3.

This 1s one instance in which method (i111) noticeably involves less com-

putation than (11).

The conclusion 1s that for multidimensional problems (111) may be a

valuable technique.

For the iterative deferred correction we will have an increasing task

in setting up the necessary approximations to the successive error terms,

but the possibility of obtaining more and more accurate results with a

fixed h must also be born 1n mind.

To end this Section we can say that many other applications are

possible. A few more are listed in Stetter [1965], and those examples

show that most of the time many of the necessary properties will have al-

ready been proved. One need only follow the general guidelines in either

Theorem 3 .1 or Theorem 4.1 in order to generate approximations with the

proper accuracy.
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8. Numerical examples

Let us consider the two-point boundary value problem

yy =xy
y(l) = O~

y(2) = In 2

whose solution is y(x) = In x.

An Extended Algol program which implements the discretization described

in Section 7.1 has been written for the Burroughs B5500 at the Stanford

University Computation Center.

The system of non-linear equations was solved by Newton's method

(this solution 4s called h? - APP. on Table "1), and then a linear de-

ferred correction (Section 3) was applied hn - APP.). The results ob-

tained are displayed in Table 1. A linear interpolation between the two

ends was taken as the initial approximation.

The step used for the results in Table 1 was h = 1/8.

The same problem was solved using i1.d.c.p. and the same step size.

The results of this experiment are shown in Table 2. The norms of the

corresponding g.d.e. were,

TAS - A ul] — 7 Lh x 107° luo(®) - | = 4.0% X 1076 lu ) A, ul = 7 59 X1070
-The number of inner iterations were respectively 3, 3 and 5 in order to

reduce the norms of the residuals below 2 X 107° Cc Lox 1071 and

6 X 1077 , those being the bounds indicated by the theory.
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INIT. VAL. 2 - APP. L - APP. "Ex SOL.

8,66433975719=«02 1.177337974968=01 41 ,17770797958=01 1.,17783035668=01

1,73286795148=01 2,230734074688=01 2,23134103298=01 2.23143551329=0Q1

2,59930192728=01 3,13379333050=014 3.,1R446368278=01 3,184537311768=01

3,46573590298=01% 4,05396602180=01 8,05459375478=01 4,05465108118=01

4,33216987868=01 4.,85451569838=01 '4,85503407798=01 4,85507R15788=01

5,19860385438=014 5¢59575899138=01 5.,59612496918=01 5.596157879408=01

6,06503783008=01 6.28537818128=01 6.28606341278=01 6.286084559438=01

Table 1

no
oo

INIT, VAL, 2=APP, a=APP, &6=APP, EX,SOL,

8,66433975718=02 1,17733797498=04 1.,1777900778@=01 1.17783000478=01 1.17783035668=01

1,73286795148=01 2,23073407688=01 2,23140883438=01 2.23143491858=01 2,23183551328~01

2,59930192728~01 3,18379333058=01 3.18451899558=01 3,1845365526@=01 3,18453731120=01

3,846573590298=01 4,05396602188-01 4,05463805338=01 4,054650362308~=01 4.,054651081108=01

4,33216987860~=01 4,835451569R830=014 4,85506860298=~01 4,85507754538=01 4,855078157R8=01

5,19860385338~01 5.9957589913@8=)1 S5.59615067888=01 5¢296157428308=01 5¢59615787948=01

6,06503783008=01 6,28537818120~=91 6,28608103708=014 6,28608634740=01 6,28608659438~=01

Table 2
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