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ON IMPROVING AN APPROXIMATE SOLUTION QF A FUNCTIONAL

EQUATION BY DEFERRED CORRECTIONS

by

Victor Pereyra

Introduction

Many problems of mathematical physics and applied analysis are par-

ticular instances of the problem ofsolving the functional equation
F(v) = £, (1)

with v and f belonging to appropriate general spaces and F being
an operator between these spaces.

Most of the time this equation cannot be solved in & closed form, and
some approximations are required. We are interested in considering the
case in which (1) 1s replaced by an associate, simpler problem depending

on a real (small) parameter h
0, (V) =g . (2)

In-this general formulatim many problems can be dealt with. For example,
Kantorovich [1948] has proved, under suitable hypothesis, several impor-
tant relationships between the solution of (1) and (2).

More recently, Stetter [1965] has discussed the asymptotic behavior
(for h » 0) of the error of discretization e = V - Ah v, obtaining
very general result and showing several applications. His main aim was
to have a rigorous basis for-the application of Richardson's extrapolation

to the limit.






In this paper we intend to analyze in general another method for
accelerating the convergence of certain approximate processes. In dif-
ferent contexts this method has been known as "the difference (or deferred)
correction method" (Fox and Goodwin [ll9h9]L

In Section 1 we state the problem and give the notation and some
definitions.

In Section 2 a special form of a theorem by Stetter is proved, stating
the existence of an asymptotic expansion for the error of discretization.

In Section 3 a linear deferred correction procedure is presented.

In Theorem 3.1 we prove that in fact this procedure will produce an im-
proved approximate solution.

Section 4 is devoted to the analysis of an iterative deferred cor-
rection.

Sections 5 and 6 provide means of proving some of the hypotheses used
in the former sections when some other hypotheses hold.

In Section 7 two applications are discussed. Finally in Section 8
some numerical results are presented.

A list of references has been included. Some of them are not alluded

to in the text but are nonetheless relevant.
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.. Statement of the problem and_definitions

We will consider the functional equation
F(v) =f. (1.1)

The (generally non-linear ) operator F will map a linear subspace of
a Banach space D into a Banach space E. Problem (1.1) will always
be assumed to have a unique solution u e];'CD.

We are interested in accelerating the convergence of approximate

methods for solving (1.1).

Let us consider now a_discretized version of (1.1)
o (V) = &0¢ (1.2)
o) = 8t

The operators @, will map certain Banach spaces D into Banach
spaces Eh" while Ah, Alq will be bounded linear transformations from
D into D, and from E into E respectively. The possible values
for the real parameter h will be: hy>h ...> 0, {hi}= H being
a vanishing sequence given in advance (hi\o)- In what follows the
norms of the different spaces will appear, and to avoid cumbersome no-
tation we will. use only the symbol ||.|| whenever this is not confusing.
The operator in (1.2) will be assumed to have the following proper-
ties:

For each V ¢ Dt and h ¢ H there exists an expansion*

*
The symbolic expression,

y(h) = O(hk) , y(h)e Banach space (possibly different for each h)

has the meaning,

ﬁh-k“y(h)[\g_ K , K constant,
h—0




N p.
o (& v) = Ag {F(v) + ¥ n? F v} + ol
J=1 J

(1.3)

where the linear operators FP' do not dépend upon h and are bounded
Jl
t
on D

The exponents appearing in (1.3) will be positive rational numbers
satisfying

O<pl<p2<...<pN . (L.4)

The operators F and ¢ will always be assumed to be at least twice

h

Fréchet—differentiab}e on D and D, respectively.

h

a fixed V € D and any h e H

Definition 1: If for any e € Dh’ h

there exists anon-negative constant K (which may depend on V) such that
llell < x llo) (Vell (1.5)

then we will say that the operator @h(V) is stable at V. Observe
that this is equivalent to say that if QA(V) is onto, then it has an

inverse and H[@é(V)]-lH < K.

Definition 2: Let g be a positive number. We will say that

U(h) € Dh is an approximate solution of (1.2) if it satisfies

llo, (wn)) - &) i <e - nd (1.6)
where C is a positive constant.

Whenever this is not confusing we will not mention in U(h) the

specific dependence on h.




Definition 3: If h € H, u is the solution of (1.1), and U(h)

is an approximate solution of (1.2), then the vector
e(h) = U(h) - & uoe Dy (1.7)

will be called _the global discretization error (g.d.e.) of (1.2).

Definition 4: The method (1.2) having an asymptotic expansion (1.3)

will be convergent of order ¢ if for any h e H, |le(n)||< ¢ h;, where

C is a positive constant,
In this case U(h)will also be called a {-approximate solution

of  (L.1).

Definition 5:g.d.e. admits an asymptotic expansion up to the order

Py > 0 if there exist eje D, independent of h ¢ H, such that

N p -
lle(n) - Ah ) p J ej\| < nP (1.8)
J=

with CN> 0 constant, and p > Py

2. Existence of an asymptotic expansion for g.d.e.

In Stetter [1965] it is proved that under certain conditions g.d.e.

has an expansion of the form (1.8) if ¢_has an expansion like (1.3).

h
We will present a simpler proof for the case in which only the first
term of such an expansion is needed,

Until something else is said we will assume that the operator ¢h(V)

has the property

() lley (v) || < 2k, for VeD ,




and also that

(B) F'(u) e = b has a unique solution e € D for any b € E

Now we can state
Theorem 2.1t Let U(h) be a pl—approximate solution with g > Pos

and let u be the exact solution of (1.1). If ¢h is stable at Ah u,

then e(h) = U(h) - Ah u admits an asymptotic expansion up to the order

pl (Def. 5), where el (independent of h) satisfies

F'(u) e =- glu . (2.1)

Proof: On one hand we have that, by the general Taylor-expansion and @):

lle, (1) - ¢, (a0) - o/(au) e(n)]| <

K, . lem)| . (2.2)
Also, by using (1.3),

P P
o (U) -0 (Au) =0 (U) - & [F(u) +h ' Fplu] yome) . (2.3)

" Hence, since Qh(U) - Ag £ = o(n?) and F(u) = f we obtain,
Py
cbh(U) - d>h(Ahu) . Ah(F u) . o(h °) ., (2.4)
Combining (2.2) and (2.4),
o/ (au) S(h) = - A2(F_w) + (k") (2.5)
h Ahu € - Ah plu) ’ ‘

- -p
where e(h) = h 1 e(h) and p¥ = min(Pl; Py - Pl)-



Consider now the equation

F'(u e=-F u, (2.6)
Py

which by (B) has a unique solution e € D.

We have, by differentiating (1.3) and combining (2.5) and (2.6%
/ - _ _ p*
Using the stability, it is found that
- *
e(n) -~ e = 0("), (2.7)

-

or in other words

lle(n) - a hpl eln <cC WP (2.8)

with p = p* + p; > .

3. Accelerating the convergence

A deferred correction

Once the expansion (2.8) has been secured, several procedures are
available in order to obtain a more accurate approximation than U(h),

A well known one is Richardson's extrapolation to the limit (Stetter
[1965]). This procedure requires the solution of (1.2) for two different
(h

values of h, say h;, h >>h2), and a suitable combination of these

2’ 1
D

two solutions permits the term h 1 e to be eliminated giving an approxi-

mation of order hg,

We intend now to describe a different approach aimed at serving the

same purpose. The underlying idea can be traced back to Fox and Goodwin



1949] and in its present restricted form to Bickley, Michaelson and Osborne
[1960], volkov [1957], and Henrici [1962]. It essentially consists in
calculating an approximate value of e by using the already computed

P
solution (of order h l), U. We will now assume the existence of an operator

.S such that

4)1 Fplu - spl(U) = o(n®") (3.1)

and range ﬁs ) ¢ range (o) .
1 h
Theorem 3.1:

Under the hypotﬁ?ses of Th. 2.1, and if (3.1) is valid, then
U =U-h"e* (3.2)
is an approximate solution of (1.1) of order EL that is,
o, - a, | 0P
Here e* is the solution of

@I;(U) e* = - Spl(U) ) (3.3)

Proof: Calling n = e(h) - e* and subtracting (3.3) from (2.5), we obtain

<I>1'1(Ahu) n = o(n®) , (3.4)

since

@I’I(Ahu) e(h) - @h(U) e* = ¢}’1(Ahu) n + O(h)

and (3.1).

From this and the stability
- *
Il = o(x®),
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or

Jo-n b ex -l = 0Py .

Observe that here we have only needed g > pl .

Remarks:

i) A procedure similar to this has been empirically employed for many
different problems (mainly linear) in differential and integral equations
(see Fox [1962] and Noble [1964]).

ii) From Theorem 3.1 it is clear that this procedure will give an
approximate solution with the same order of accuracy as the Richardson
extrapolation technique but with much less work. In fact, both procedures
consist of essentially two steps. The first step, common to both, is the
computation of aﬁ“pl—approximate solution U.

For Richardson's extrapolation one has now to compute another solu-
tion with a smaller parameter, say h/2. That involves solving once again
the non-linear problem (1.2), which in general will be of a "larger size"
than the one corresponding to the original h. On the other ﬁand, for com=
puting the deferred correction hp e¥*, one only has to solve the linear
problenl(i.i) (for the same h). The only drawback that we can point out
is the computation of QQ(U) and SPLL which are necessary for the de-

1
ferred correction but not for Richardson's .extrapolation.

With respect to¢l;(U) we can say that, 1f Newton's method is being
used for solving problem (l.QL then it will already be available from the

first part of the computation.

The extra computation (and derivation) of Spl(U) is rapidly compen-
sated for in problems wherein decreasing h by a factor @ increases the
size of the problem by a power n > 2 of 1/a (for instance, in elliptic
partial differential equations),

iii) The purpose of introducing the notion of an approximate solution

of amtedhebimiiien ) will appear clearly in the applications. At this




point we can say that since the exact solution of (1.2) will only be an
approximation to the solution of (1.1), it is of no use to solve (1.2) exactly.
Moreover, the condition g > p, says how incomplete this solution can be.
This idea is present in the works of J. Dodglas [1961] and Henrici [1962],
in connection with the solution of mildly non-linear elliptic equations
and two-point boundary value problems respectively, and it has a very im-
portant practical value since only "incomplete" solutions are computationally
available.

The expansion in Th. (2.1) will generally be needed for the construc-
tion of the operator Sp

~ -1

4, Tterated deferred corrections

In Section 3 we developed a way of eliminating the first term in the
expansion of g.d.e. It had the advantages of involving only the solution
of a linear problem and preserving the "size" of the main equation. If a
longer expansion is available one can ask whether it is possible to elimi-
nate further terms in a similar fashion. This seems to be unlikely, since
in eliminating the first term we have thrown information away which can-
not be regained within a linear process.

However, 1f we are willing to loose the linearity, then it is possible
to describe an iterative procedure which will give an asymptotically more
accurate solution for each (non-linear) step.

This procedure will have an advantage over the successive Richardson's
extrapolation in that the parameter h will not have to be changed.

It will also have a disadvantage in that for each special problem some
expressions will have to be worked out. 1In order to carry out the proof

of the next theorem we have to introduce a new definition.
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Definition 6: ¢h(V) is said to have the mean value property (m.v.p.)

(Schroder [1961]) if for Vi» V5 € Dy s there exists a linear operator

M(Vl, V2) such that

o, (V

0 - ¢h(v2) = M(Vl, V2) (vl -VE).

1)

Theorem 4.1:

Let ¢  have m.v.p. with MKVl,Vé) non-singular. Let us assume
-1
also that for Vl, V2 € Dh’ H[M(Vl, V2)] H < K , where K does not

depend on Vl’VQ'

If an expansion (1.3) is wvalid, U(k)(k < N) is a pk-approximate
solution of (1.1), and there exist operators S such that
5 J
SN (k) (rp(k) Prt1
h 4o iju - SPJ- (U) = o ™°7) » (4.1)

then the solution of the equation
k
k+1 0]

is a pk+l-approximate solution of (1.1).

Proof:
By (1.3) we have that
k D, p
0
0 (Au) = & [f + jgi p Fbsz] + o(n By (4 .3)

Hence, by subtracting (4.2) from (4.3), we obtain

b
) o K1) (1)




and the hypothesis on M implies

J(k+1) _ _ ylke) ='O(hpk+1)

Ahu

With this result it is simple now to describe the iterated deferred

corrections procedure (i.d.c.p.). In order to obtain approximate solutions

of increasing accuracy we will proceed as follows.

(1)

i) Obtain U by solving

q
|<1>h(U(l)) NG B

(k+1)

ii) For k =1,2,..., N-1 compute U satisfying

k q
|\¢h(U(k+l)) - [ Ag F o+ ‘jgl SI();{)(U(k))]“ < Kk_’.lh k+1

where K > o .

Ul = P10 K
U(k+1)

Then, and from Theorem 4.1, will satisfy

uAhU _ u(k+l )“ <C - hpk+l

» (4.6)

On writing (4.5) and (4.6) we have shown explicitly how "incomplete"

()

the approximate solutions can be.
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5. Operators of monotonic type

0 . .
n? Eh introduced in Section 1

have also a compatible structure of Archimedean lattices.

We will now assume that the spaces E

Thus it makes sense to considef operators °h whose Fréchet deriva-

tives are of monotonic type (Schroder [1961]).
74=1
h]

0 .
In the usual way, for any V e Eh (or Eh) we have a notion of

In this case ¢£ will be non-singular and [& will be isotone.

0
absolute value |v] e E, (or Eh):o <|v| = sup(v, - v)
In many practical problems of monotonic type one has information not

on ¢é(V) but on a certain (generally simpler, and independent of V)

linear operator, say Bh.

The following Theorem gives a sufficient condition for the operator

¢, to be stable, in terms of assumed bounds for “B£1“~

-1
Theorem 5.1: TIf ¢£(V); B, and (QQ(V) - B) are operators of mono-

h
tonic type, and

Bt <x (5.1)

then ¢h is stable.

Proof: It is enough to prove that for any w > 0,

/ -1
o, w< B w . (5.3)
In fact,
-1 -1,- / -
(3,7 - [o,1 ™)™ = 0/(e) -8) " 5. (5.5)

Since the product of inverse-monotonic operators is inverse-monotonic,
it follows that B;l - [Qﬁl-l is isotone and from the definition of

isotonicity we obtain that, 0 < (B;l - [Q’]'l) w and (5.3) follows.

11




We can write now,

and from this
-1 ,
lell < llB.™ To el Il < x o) ell

and, according to Definition 1, Qh is stable.

6. A sufficient condition for convergence

In many cases convergence can be proved from the properties of

Section 2 if some additional hypothesis is valid. For instance,

Theorem 6.1: If all the hypotheses assumed in Theorem 2.1 are valid (ex-
cept the convergence), @h has the mean value property and the M(Vl’VE)
of Def. 6 has an inverse bounded in norm, then the method (1.2) is con-

vergent of order P, -

Proof: If instead of using the development (2.2) we use the mean value

property, then we obtain instead of (2.4) the equations
Me(t) =0t ~) |, (6.2)

and if K > HM-HL then it follows that

1%

le @l <xnt,

Observation:
. 2
The point in using m.v.p. is that it eliminates the term in He(h)n
from the discussion. Observe that m.v.p. 1s not an automatic property for

arbitrary, (let us say) twice Fréchet differentiable non-linear operators.

12




T. Applications

We will consider now several applications of the methods described

in the preceding Sections.

7.1 Two-point boundary vealue Problem

We want to solve the problem
Piy) = - ¥(x) + 205, y(x), y'(x)) = 0 for x ela,b]
F(y) = y(a) -a =0
0 (7.1)

F(y) = y(b) - B

In Pereyra [1965] the author has considered a simpler instance of (7.1)

for which y'(x) was not present in the differential equation. We would
like to discuss this problem at length, since we feel that all the important
features of d.c.p. can be displayed here in an environment of median tech-
nical difficulty, not so complicated as to obscure the issues and not too
simple as to be trivial. Furthermore, besides the paper mentioned above,

we do not know of any publication in which this application has been dis-
cussed rigorously and in detail.

In order to insure existence and uniqueness of a solution of (7.1)

we will assume that
fy(x: ¥ Z) > 0, |fz(x, ) Z)l < KX (7-2)

in a certain bounded region Q = [a,b] X B X B’. Let us call that solu-

tion y(x).

The different spaces are D = C [a,b], the space of continuous func-

tions on [a,bl, and E =C[a,b] X R2' F(y) will be defined on Ce[aﬂﬂ.

13




In order to define a discretization of (7.1), we introduce the vanishing

b-a

sequence H = {hi}, where h, = —1— (q:L positive integers, g —* for
i »®), and hy < 2/K.
q;+l
Then D = Eh =R the qi+l - ‘dimensional real space. The
h

i i
link between the spaces corresponding to the continuous and discrete cases

will be provided by the operators

Ahi:y(x) —»{y(xj)} with x5 = a + Jj hy J = 01,0005 qy

Agl= y(x) - {Y(xj)}jzl,._. .

4.
i a1

00,

a7 y(x) —y(a) Zﬁ?% y(x) - y(b)

1 T

In what follows we will use p to symbolize a fixed, but otherwise arbitrary q..
The norms involved will be the Lw norms for vectors and matrices.

We can now define a discrete version of (7.1):

-2 .
= V. 1 +2 V.-V + fx,, V., (V
[0, (V)1 = b (v, : ) 3 Ver €

- V. h) = O

g+l

3 =1..., p-1
= - =0
[0, (V)] = V- @

[e, (V)] =V -B =0, (7.3)

where H h = (b-a)/p

-The Fréchet derivative of (I>h is

. : h .J
{‘I’Q(V)e}j _ h-2{_(1 + -g. fg(v))ej_l + (2 + hefg(V)-)ej - (1 - 5 f‘;(V))ej+l}

{Q};(V)e}o =

1
]
o

[}
(]

lo, (V)el,

14



The notation for the partial derivatives of f in (7.4) is,

J -
fZ(V) = fz(xj’ VJ'J ( J+l J -1

+
21\]‘B[a,,b] = DT we have the expansions

)/2n), and so on.

For v ¢ C

o (8v) =g {FH(v) + 2 el y(23+2)

23+2 .
2311 £ (v) V(23+1)” + O(h2N+l)

(7.5)
00 -0

o (a¥) = 47° F(v)

QE QQQY)= Agg 2(v) .

Since @h(V) clearly has the mean value property (with [M(Vl"ﬁ)% ¢ﬁ J)
the subindex meaning the j-th rowsof the corresponding matrices, where ié
are different intermediary points for each row), if we are able to show

that it is also stable then, by Theorem 6.1, we will have that it is con-
vergent of order 2.

We will next show that ¢£(V) is of monotonic type. The order con-

sidered is componentwise in P

Lemma 7.l.
The operator QQ(V) of (7.4) is of monotonic type for any V eD .

Proof: Let e € Eh , and assume that
/
¢ (V)e >0

We want to prove that e > 0. Suppose that for some j, 0 < j<p,

ej < ey for all 0 < i < p and e.a< 0

15




J
or
- 5
O>e, >2.(N, a._ + +
5220y g+ Ay ey, )/ [em
with
MtEA=L o, A, N >0
Hence, we obtain that
> mi
e 2 m1n(ej_1' ej+l) ,
and from this follows that e = e, = e,
- j-1 J+1l -

L oin2 ¢
M €51+ 5 [2*h £ (V)] e - A

2 ©j+1 205,

ff,(V)] ,

Repeating this argument we will finally obtain that for all

0<i<p , e, = ej < 0.

But this is a contradiction.

From Lemma 7.1 we have in particular that QA(V) is invertible

and that [¢£(V)]-l has positive elements.

Corollary 1:

If e is the solution of

[@k’l(v) e]J =0 i =1,..., p-1
€y =@ ep =B
then
min (0, min(a,p)) < %._< max (0, max(a,B)) .
Proof:

It is enough to observe that, for 1 < j < p-1,

ej < max(ej_lf ej+l) if ej >0

16
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or

) if e, < 0,

> mi
e 2 mln(ej_l, €1 3

and a reasoning similar to the one used in Lemma 7.1 shows that ey

cannot have either a positive maximum or a negative minimum at an interior
point (maximum principle). Observe that both Lemma 7 .l and its corollary

are also valid for the operator M(Vl, VE)’ since the arguments of fg(v)
did not play any role in the proof, the only relevant property being the

positivdty of fy(v)‘ .

Theorem T.l:
@h(V) is stable on D (uniformly in h and V). Moreover, the

operators M(Vl’ V,) are non-singular and their inverses are uniformly

o)

bounded in norm.

Proof: If in Theorem 5.1 we take M(Vl’ V2) as ®£(V) and diag(fg(vs))

as B, then it is clear that these operators and (V) = Mﬁﬁj V2)_

- diag(f;(V)) satisfy the hypothesis of the theorem and, consequently

M(Vl’ V,) will have an inverse bounded in norm if © has this property.

5)
Since this will be valid for arbitrary arguments ﬁ} in M, let
V} =V for J=0,..., P. In this case M = QQ(V) and we have from the
above result that ® is stable. That these properties are uniform will

h
stem from the fact that the bounds on “e—l“ will be independent of ¥,
J
and h.
Hence we will show that "@-1H is bounded. Let @(x) ¢ Ce[a,b] be

a negative function for which

8(V)(A9) <0 , and ﬁﬁ%%“g%%gc (K, (b-a)) . (7.7)

xela,b]

17




We have that

pzl ~ -
0 <[40l = S{jl (07, (e, + (671, lo)] + (071, le (o)

and from (7.7) we obtainthe inequality

pzl
Lo 1, e | < max(loa)], lo®)] ), (7.8)
since max([67'],, [@'1]ip) <1

Finally we obtain from (7.7) and (7.8) that

1
max ) |[® ]isl < _C(K, b-a)
i s=1

or, in other words, ’“®-1Hw < C , where C only depends on the bound K
of the partial derivative fZ and on the length of the interval [a,b].
That a function @(x) with properties (7.7) exists is shown in detail

in Bers [1953], Section 3.

Theorem T .1l has been proved.

In conclusion, @h is stable and convergent of order 2, and we can
apply any of the deferred correction algorithms of Sections 3 and 4. We
will now assume that f(x, y, y') is sufficiently differentiable as a
function of its three arguments, which in particular will imply that the
solution y(x) of (7.1) has continuous derivatives up to the order neces-
sary in the following discussion.

For the linear, one-step correction, which will give a fourth order
approximate solution, we will develop some special formulas in order to
approximate y'"(x) and fwfx) at the interior points. Since
p* = min(pl, D, - pl) = 2 we needthese approximationstobe of order h2

(see (3.1)).

18



Lemma T7.2: Let U be an approximate solution of (7.3) with g > 2. The

expressions

5f, = 8£(xy, Uy, (U U /2h)

3 )/2h) =f (x

j+1° ,jl J+1’ J+1’

- f(xj_l} U;]'l, (UJ = Uj-2)/2h)
and the similarly defined 82f3 satisfy

y"(x;) - (82;)/2n = o(n®)
(7.9)
v (xy) - (6%2,)/0° = o(x®)

for 3 =1,..., —p-1.

Proof: We will prove (7.9) for ij and exactly the same argument can be
used in order to obtain the second formula.
First of all we recall that
i) ¥ (x) = £(x, y(x), v'(x)),
=y - y(x,) = o(a%) ,

J J
i) e"(x) = £ el 4 Eue'(x) + (59 (x) - ¢ SR

ii) e

and finally

iv) - n? e(x,) + O(hu) .

Also from (i) we have that

v) oy (x) = 82(x, y(x), y'(x)) = 2h y"(x) + O() .

Hence, it is enough to show that 8f, approaches Bxf(x) as 0(h3).

J
In fact,
8[£(x, y(x), y'(x)) - £(x, U, 8U/2n)] =

= hab[f‘y e(x) + fb!r—.(ae(x)/eh +y"(x))] + o(hl*)
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and

2 L

a / .
5[ f(x) - f&]/Eh = h" o [fy.e(x) + fy/(e (x) + y'(x))] + o(n") ,

and from the differentiability properties of all the involved functions

we have that

of (x) - 8f, = o) ,

and Lemma 7.2 is proved.

From this lemma we can now define

R 2 o
_ B < .10
[sg(U)]Ji 2% - 15 fy/(U) BT, (7.10)

-~

which satisfies condition (3.1) since also f;/(U) - fy/(y(xj» = O(hz) )

Hence, by Theorem 3.1 we can obtain by solving (3.3) and using (3.2) an

approximate solution U, of order 4.

1
For the iterated deferred corrections, besides the increased differ-
entiability requirements, it is necessary to define the operators Sék)

i

of (4.1).
As before, the approximations to the different derivatives will be in

terms of differences, either of the successive approximate solutions

U(k) or of the values of the right hand side f(x, y, y') at this U(k)‘

Formulas (7.5) and (4.1) show that at the k-th step we need to approxi-

' 23 (23 249 (25+2 .
mate' the quantities h ‘Ju(ga+ ) (x) and h ]u( J ')(x)(JSk) up to the order

2k + 2 in h.
From Milne - Thomson [1960], Chap. 7 we take the following formulas
for numerical differentiation.
i) forward differences,
n-1 n-m

o0 0L ol ) et | By o

som s-m)!'s
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ii) backward differences,
-1 m+n b
(m),_y _ ,-m " (s) ,s -1 (n) £(n)
£79(x) =0 L 5t sB_mA £ (x-sh) + iy (n) ,
s=m
and

iii) central differences,

(2m) _ . -2m (2s) 2s on-2m+2

MO im)— 2e-sm(®) O £+ 0T
. (omt+1) -(2m+l) (2s+2) 2s+1 2n-2m

() 2 TEm)T Pascenm (541 1 850 £00 ¢ o(ER)
Bgn)(x) stands for the Bernoulli polynomial of order n and degree v ,
defined Dby -
tnext © vV (n)
—3 3= Lo () . (7 .12)

(et-l)n v=0

The Bernoulli number Bén) is equal to the value of the corresponding
polynomial at x = 0.

The expressions in (iii) make it clear that the use of central differences
will soon require points outside of the interval [a,b]. Even if unsym-
metric differences are used, care would have to be taken in order to have
enough points, especially if several iterations are planned. In fact the
maximum number of iterations desired and the set of formulas chosen for
approximating the derivatives at the different points will impose a new
restriction on the largest step h0 (minimum number of points p) which
can be allowed.

A highly sophisticated scheme might be to take symmetric differences
at all points where possible, and for the remaining points to take unsym-
metric formulas using all the points up to the closest boundary. This
technique will give the smallest truncation error at each point but it

will require many different formulas. 1In order to avoid this proliferation

21



of formulas, another possibility can be to take, as before, symmetric
expressions wherever possible and to use for the remaining points either
forward or backward differences. Still another scheme may be to eliminate
the symmetric, formulas altogether, to take forward differences until the
right boundary is reached, and then to switch to backward differences.

Any of these schemes is feasible, and we will now discuss the second
of them.

For completeness it may be interesting to present a general algorithm,
but that would take us too far and too long. Hence, we will restrict the

discussion to the case N = 2, where all the relevant questions are present*.

. . . I
As we observed above, it 1s necessary to approximate ¥ V(x) and
VI \' .
y"(x) up to orders 2 and 4% and y and y up to the order 2 in h.
I
As we did in Lemma 7.2, recalling the observation at the end of Theorem 4.1

it is possible to show that if L is a linear operator involving finite

differences) such that,

) =1 w1+ om?)

then it also holds that, if y(x) 1is sufficiently differentiable,

y(t)(x) _ T f(x, U(k), Ll(U(k))/h] + o(nZ¥2)

)

where' L has the same form as L with all the difference orders decreased
by two, and h_l Ll is a difference operator approaching y'(x) up to the
order 2K in h. DIV w

For K = 1 the approximations to y and y  are obtained from

(iii) with n = 2. Those will be enough for the whole interval since we

*
Professor M. Lees of CASE Institute of Technology has mentioned to the

author that a general procedure has been developed, but it has so far not
been published.
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will later drop two orders in the differences. 1In fact this first step
coincides with the one already described for the linear deferred correction.
For K = 2 we have the following situation:
if j = 3,..., p~3 then all the approximations are obtained from (iii)
with n = 3. For j =1, 2 yIV(xj) and yVIb%) are obtained from (i)
with n = 8, while ym(xj) and be%) are obtained also from (i) but
with n = 7.
Finally, at the right end (j = p-1, p-2) formula (ii) is used with

the same values of n as at the left boundary.

T.2. Mildly nonlinear partial differential equations of elliptic type

Here the continuous problem is

1
F(z) = 2dx, y) - £(x, ¥, 2, 2, zy) =0 for (x, y) €D
o (7.13)
F(z) = z(x, y) - g(x, y) =0 for (x, y) €d D,
where g(x, y) 1is a given function.
Let ﬁ%] be the nodal points of a square mesh of width h which
covers D.
The discretization will be given as usual (Forsythe and Wasow [1960])
by the system of difference equations

2 S S LB Wy,
[0, (V)1 = n7(bv, v};‘ vj v? V)

+ £y, Vg (V? - V;.I)/Qh, (\11;.I - vsj)/eh)= 0 (7.14)

for each Vj which with its four closest neighbors is contained in D.
This problem has been discussed in Bers [1953], and all the necessary

properties and conditions can be obtained from there. In Volkov [1957]
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an iterated deferred corrections algorithm for A u = f£(x, y) 1is discussed.
The treatment of a general boundary, needing interpolation, can be taken
from there. In order to make our description simpler we will assume that
the boundary o D is such that it does not require interpolation, for any
h e H, or in other words that all the interior grid points V.J are reg-
ular. We will also assume that the given functions g(x, y) and

f(x, y, z, Z s zy) have enough regularity properties to insure that the
solution z(x, y) of (7.13) is sufficiently differentiable. In this case

the boundary equations will simply be
/
[e, (V] =V, - glx, ¥) . (7.1%)

Both in formulas (7.14%) and (7.14') the (x, y) represents the node
in D corresponding to VU'

With these hypotheses the treatment parallels the one of Section T .1

L b
, , . 1 [(3'z, 0z
and we will not repeat it here. The quantity F2 =13 S_E + S;E

needs to be approximated in order to compute the linear deferred Correction.
If, instead of using the approximate solution V, one uses the values

of the right hand side at V, then it is possible to approximate F2

using only second differences in every given direction. This will reduce

the complexity of the problem at points close to the boundary.

In fact, for any sufficiently differentiable function z(x, y)

hoo_

d'z ,dz

12F ——+-B—I—
y

L
: Oz (7.15)
2 Ox

Aez(x, y) 2 8x28y2 .

In turn, if VJ -z(x, y) = o(he), then

12F, = 2h f(x, y, z, sz/eh, Byz/Eh) -2 8(z) + O(hg) , (7.16)

2l




where S(z) 1is defined by
8(z,) = h-h(hz -2(z, vz, vzt 2 )tz oz +z, 4 2g)
0 0 1 3 p) 7 2 L 6 g’/

with z, defined in Fig. 1.

L 2

Va N

LD

8
g
Fig. 1

Formula (7.16) would be used every time that at least one z; (1 =1,..., 8)
belongs to the boundary o D.

When solving the system of nonlinear equations (7.14) (or any similar
discretization) some iterative technique will be needed. Let us suppose
that Newton's method can be applied successfully. At each stage of this
outer iteration it will be necessary to solve a large system of linear
equations.

In order to do so, generally, an iterative technique will also be
used. To minimize the amount of work in this inner iteration it is im-
portant that the matrix which represents the Fréchet derivative @é be
as simple as possible.

If a fourth order approximation in h is desired then, broadly speak-
ing, we have available three different kinds of techniques.

i) We may use a fourth order discretization instead of the one of

second order in (7.14). For instance, one may use the g-point

approximation given in Bramble and Hubbard [1962].
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ii) We may solve (7.14) twice with different steps and then use
Richardson's extrapolation to the limit.

iii) We may solve (7.14) once and then perform a linear deferred
correction as described above.

Let us suppose, as an example, that D is a square with sides of
length one.

The most significant figure here is the number of nodal points, which
in turn gives the number of equations involved. Suppose h is such that
we have 100 equations. It is clear that (i) will have a more compli-
cated matrix (less zero entries) than either (ii) or (iii), which in turn
will imply more arithmetic operations at each inner iteration step. More-
over, the outer iteration will need to be more "complete" than in the
latter cases. (ii) and (iii) have already been compared in Section 3.
This is one instance in which method (iii) noticeably involves less com-
putation than (ii).

The conclusion is that for multidimensional problems (iii) may be a
valuable technique.

For the iterative deferred correction we will have an increasing task
in setting up the necessary approximations to the successive error terms,
but the possibility of obtaining more and more accurate results with a
fixed h must also be born in mind.

To end this Section we can say that many other applications are
possible. A few more are listed in Stetter [1965], and those examples
show that most of the time many of the necessary properties will have al-
ready been proved. One need only follow the general guidelines in either

Theorem 3 .1 or Theorem 4.1 in order to generate approximations with the

proper accuracy.
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”U(l)

8. Numerical examples

Let us consider the two-point boundary value problem

- y/r = x y./ e-2y
y(1) = 0~
y(2) =In 2

whose solution is y(x) = 4n x.

An Extended Algol program which implements the discretization described
in Section 7.1 has been written for the Burroughs B5500 at the Stanford
University Computation Center.

The system of non-linear equations was solved by Newton's method

2 _ APP. on Table "1), and then a linear de-

(this solution 4s called h
ferred correction (Section 3) was applied (hu - APP.). The results ob-
tained are displayed in Table 1. A linear interpolation between the two
ends was taken as the initial approximation.

The step used for the results in Table 1 was h = 1/8.

The same problem was solved using i.d.c.p. and the same step size.
The results of this experiment are shown in Table 2. The norms of the

corresponding g.d.e. were,

-aull =7 bk X 107, ||U(2) - ol = oz x 10'6, ||U(5 ). AhuH - 7.59x1070

-The number of inner iterations were respectively 3, 3 and 5 in order to

7

reduce the norms of the residuals below 2 X 10—5 , 4 x 107" and

6 X 10-9 those being the bounds indicated by the theory.
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g2

INIT. VAL.

2 - APP.

EX. SOL.

L - app.

8,66433975718=02 1.1773379749€=01 1.17770797958=01 1,17783035668=01

1,73286795148=01 2.,23073407686=01 2,23134103298=01 2.23143551328=01

2,59930192728=01 3,1337933305€=01 3,1R446368278=01 3,18453731178=01

3,86573590299-01 4,05396602138=01 4,05459375478=01 4,0546510811€=01

4,33216987860=01 4,85451569838=01 '4,85503407798=01 4,85507815788=01

5,19860385438~01 5.59575899138=01 5.59612496918=01 5.59615787948=01

6,06503783008=01 6.28537818128=01 6.28606341278=01 6.28608559438=01

Table 1
INIT, VAL, 2=APP, a=APP, 6=APP, EX.SOL,

8,66433975718=02 1,17733797498 =01 1.,17779007788=01 1.,17783000478=01 1,17783035668=01
1,73286795148=01 2.,23073407688=01 2,23140883438=01 2,23143491858=01 2,23183551328~01
2,59930192728<=01 3,183793330568=01 3.184518995598=01 3,18453655263=01 3,18453731120=01
3,86573590298<01 '4,05396602186.01 24,05463805338=01 4.,054650362308=01 4,05465108118=01
4,33216987868=0 4,85451569830 <01 4,85506860298=01 4,85507754538=01 4,85507815788=0%
5,19860385339~01 5.59575899138=01 5,59615067888=01 5.59615742838=01 5.59615787948=01
6,06503783008-01 6,28587818128~01 6.28608101708=01 6.28608634748=01 6,28608659438=01

Table 2
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