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1. INTRODUCTION

We study a class of new methods for the calculation of zeros.

pan In Sections 2 to 8 we treat the case of a polynomial with all distinct

zeros and one zero of largest modulus. We studied this case in detail

- in [16]. Here we give a simplified treatment and also obtain some new

results. In Sections 9 and 10 we treat the case of a zero of smallest

modulus.

— In the remaining sections we discuss the calculation of multi-

ple zeros and equimodular dominant zeros of polynomials and zeros of anal-

= ytic functions. Detailed analysis of these matters as well as material

concerning the calculation of subdominant zeros will appear elsewhere.

2. DESCRIPTION OF THE BASIC ALGORITHM FOR

wen | THE DOMINANT ZERO OF A POLYNOMIAL

Let

— n _y
(2.1) P(t)= } at d,a =1

J 0
| 3=0

J—

be a polynomial with complex coefficients and with zeros Pr Posvess Po

_ In Sections 2 to 8 we assume the zeros are distinct and |e, | > lo. | ’
i> 1 . We generate a sequence of polynomials as follows. Let B(t) be

~- an arbitrary polynomial of degree at most n-1 such that B(p, ) £0.
Define

(2.2)

— G(M1,t) = ta(xh,t) - a(MP(t)

where a (2) is the leading coefficient of G(A,t} . Then all the

G{»,t) are polynomials of degree at most n-1 .
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We generate the G(A,t) until we have calculated, say, G(A,t)
E

We use G(A,t) to construct an iteration function. (In the remainder of

— this paper we do not distinguish between the running index MA. and a fixed

value of A equal to A J) We choose an initial approximation t, and
- generate a sequence {t; } by BE

(2.3) tip = (Nt) |
— where |

a(A)P(t)
(2.4) Pp{N,t) = t ~ BCC N . oo

_ |

The t, form the approximeting sequence for pL ‘

We have described a two-stage algorithm.

-— a. Preprocessing stage: This is specified by the recursion

for the G polynomials given by (2.2).

| b. Iteration stage: This is specified by (2.3) and (2.4).

| 5. A NUMERICAL EXAMPLE

= | For illustration we calculate the dominant zero of

P(t) = (t+1)(t-2)(t+3) = t° + 2t° - 5 - 6

We choose |

G(O,t) =t7 = P(t) = -2t° + 5¢ + 6

(The reason for this choice of G(Qt) is explained in Section 4.) Then

_ G(1,t) = gt” - 4 - 12

= | G(9,t) = 5341745 - 52052t - 105468
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| We now iterate using |

— a_(9)
| (9) = t - P(t) zro57

pn

and choosing t = 100000 as our initial approximation. We calculate

— the sequence of approximations exhibited in Table 1. The sequence is

converging alternatingly towards the zero at -3 which is the largest

~ zero in modulus. In the righthand column we exhibit the ratios of suc-
cessive errors. After the first iteration these ratios are constant. |

This is as expected because the method used here is first order. (The

— extension to higher order is described in Section 4.) Observe that all

the ratios are small and that the initial ratio is particularly small.

a These facts are characteristic of the method and are quantitatively

- explained in Section7.

pan



— | , ty (ty 700) (t5=p) a

nN 0 100000.

- = -2.97 0.6x1077 |

- 2 -3.0001 _5.0x10™2

} 3 -2.9999995 5.1X10™

] 4 -3 . 000000003 -5.1x10™2

_ > -2.99999999998 -5.1x10™7 |

_ 6 3. 0000000000000 5.1X10™0

— || | . .
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B Note that the rate of convergence of the iteration "looks"
—_ numerically quadratic over the entire range of the iteration even though

it is asymptotically a first order process. The explanation for this lies

- in that the error at each step is the product of two small errors, one

of which is the error at the previous step. See Section 7. This should |

B be contrasted with the behavior of, say, the Newton-Raphson iteration
— which is asymptotically quadratic but which behaves linearly when the

approximations are far from the zeros. (The reader is referred to

- Forsythe [6] for an example of this.) |

© 4. COMMENTS ON AND EXTENSIONS OF THE

BASIC ALGORITHM

— Note that the recursion for the G polynomials defined by (2.2) |

1s easlly performed by hand or machine. The multiplication by t is only

- a shift. All that is then required is a scalar-vector multiplication at
each step. Another method for generating the G{(\,t) which calculates

G(2n,t) directly from G(A\,t) , G(M1,t),..., G(Mn-1,t) is described

p— in Traub [16, pp. 126-129]. |

| | From (2.2) it follows that ¢(A,t), which is defined by

a (AN)

a (4.1) ent) = t - P(t) 36D)

— | may also be written as

- CC (k.2) p(n,t) = Hah)
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Since, as we verify in Section 6, a (A) does not vanish for A suf-

— | ficiently large, (4.2) exhibits the iteration function as the ratio of

- polynomials of degree exactly n-1 . This form is used when t is large.

= Equation (k.1) exhibits ¢{A\,t) in incremental form.

It may be shown that if any of the zeros of P have magnitude

greater than unity, then the coefficients of G(A,t) increase without

—_ limit. On the other hand,if all the zeros lie within the unit circle,

| G(A,t) converges to the zero polynomial. This difficulty is taken care

~ of as follows: Let h(t) denote a polynomial h(t) divided by its

| leading coefficient. We show in Section 6 that

—_ lim G(A,t) = Hy) :
| A 1

= Hence G(A,t) has well-behaved coefficients. The G(A\,t) satisfy the

recursion

_ | c(M1,t) = tG(N,t) - P(t), if a(n) Eo
(4.3) _ _

G(M1,t) = tG{N,t) if a (A) =o .

We can write the iteration function as

— BN P(t)(4.4) p(n, t) = t sods . j

We turn to the question of choosing the arbitrary polynomial

B(t) that appears in (2.2). Recall that B(t) can be any polynomial

of degree at most n-1 such that B(py) £ 0 . Two natural choices
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for B(t) are B(t) = P(t) and B(t) =1. If B(t) =c(0,t) = 1,

— it is easy to show that G(n,t) = t* - P(t) . Hence we might as well

take B(t) = G(0,t) = t" - P(t) and this was done in the numerical ex-

- ample of Section 3. Additional discussion of the choice of B(t) may

be found in Section 11.

The iteration function ¢(A,t) is first order. From g(\,t)

— and its derivatives and P(t) and its derivatives one may construct

iteration functions of arbitrarily high order. A general treatment is

= | presented in Traub [16, pp. 116-119].

Because of the rapidity of convergence of this type of method

we would generally not use an iteration function of order greater the

— two. The second order iteration function is given by |

— _ P(t)G(N\,t)
p(t) = t P7(£)G(N,t) - P(B)C(N, 0)

We give a simple numerical example of a second order iteration.

— Let P(t) = gt - h6t + 508° - 1090t + 2175 . The zeros are py = 29,
oy, = 15, Pz), =1+2i . We take B{(t) = 1, A = 16 and choose our ini-3

— tial approximation as t= 100000 . We calculate

ty = 28.9996 |

t, = 28.9999999999997 -

The other iteration functions discussed in later sections of

— this paper could also be made of arbitrary order. For the sake of sim-

plicity of exposition we shall confine ourselves to the first order case.
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po 5. GLOBAL CONVERGENCE | oo

| We state without proof the theorem of global convergencefor the |

~ iteration functions o@(A,t) . A proof of this theoremin a form which

covers the extension to iteration functions of arbitrary order may be

found in Traub [16, pp. 121-122]. | |

THEOREM. Let the zeros Ps of the polynomial P be distinct with:

lo, | > ERP i =2,3,..., n. Let vo be an arbitrary point in the

a extended complex plane such that t, £ Pps Pzseees Pg and letol2 5 Tn

| tig = (nt) . Then for all sufficiently large but fixed A, the

sequence t, 1s defined for all i and t. —»p. . |
) i 1 1

_— The phrase "global convergence" is used in the following sense,

For any polynomial whose zeros are distinet and which possesses a largest

— zero and for any choice of t, which does not coincide with a subdominant

zero, we can conclude that for all sufficiently large A the sequence t,o
defined by tig = P(A, t.) exists and wonverges to oy The size of A |

— depends on P and too It is determined primarily by the ratio of the

magnitude of the largest subdominant zero to the magnitude of the dominant
— Zero. | -

i. | 6. PROPERTIES OF THE G POLYNOMIALS : |

We obtain the principle properties of the G polynomials from |

= the defining recursion |

_ (6.1) G(0,t) = B(t)
| G(A + 1,t) = GAL) - a (A) P(t), EE

— where a(MA) is the leading coefficient of G(A,t) . co |



.. L

— The G polynomials can be introduced in a number of different

ways. In [16, p. 114], we define G(A,t) as the remainder of the division

of B(t)t by P(t). The G polynomialscan also be defined as the

_ sequence generated by a Bernoulli recurrence with initial conditions which

depend on the choice of B(t). oo |

—- From (6.1) it follows that G(x + 1, e;) = 0;G(A 0, ).
Hence |

) A =p. ) = p,B(p,) .(6.2) G(A,p,) = p,G(O,p,) o1B(p, )
—_ Since G(A,t) is a polynomial of degree at most n-1, we conclude from

Langrange's interpolation formula that

n | B(p.)A P(t i

(6.5) (Mt) = J cp; ne J TAN

— Since B(p, ) £0 by hypothesis, cj £ 0. |
Let B(MA) be the weighted power sum

i=1

From (6.3)

(6.5) oan) =A).

= Hence for A sufficiently large, a_(M) £0. | |
From (6.3), (6.4) and (6.5) we obtain immediately the most

important property of G(A,t), ramely

(6.6) lim G(A,t) = 1im Sut) | BGH) | |
Ao Amy 00 a (A) t - oy |

for all finite +t.
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Furthermore the rate of convergence depends on the ratio of the magni- :

tude of the largest subdominant zero to the magnitudeof the dominant

— zero. |

| To see the importance of (6.6), consider a general iteration

function, |

| Pit

E where V(t) is some function which is yet to be specified. If

| P(t
(6.7) v(t) = 2=P

— 1

| then y(t) = py and we always obtain -
the answer in one step. In the Newton-Raphson method, V(t) = P(t)

_ and (6.7) is satisfied only at t = po; + Equation (6.6) shows that
when V(t) = G(\,t) , then (6.7) is satisfied for all finite +t as X

— goes to infinity and is satisfied arbitrarily closely for A sufficiently

large. |

We obtain an interesting interpretation of the recursion for |

_ the G polynomials by considering the Laurent expansion of G(\,t)/P(%).

Let |

d

—_ (6.8) GN) _ 3 4,0) |
P(t) rg (51 |

Clearly, a (x) = a_ (A) = B(N) . Write the recurrence for G(n,t) as

—_ G(A+1,t tG(A, }(6.9) rt - RE cam
— ‘Then we conclude that

.10 = |_ (6.10) do (0) =a, (m1)
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— Hence the right side of (6.9) may be viewed as the operation of performing

a left shift upon the vector of coefficients of the Laurent expansion.

= From (6.10), |

— da, (A) = da (Mk) = B(A+k)k 0

— a result which could also have been obtained directly from the partial

fraction expansion of G(\,t)/P(%) . |
- Hence

cnt) ABE) NS pk)—_ (6.11) Slat) =t ES; - L K+ 1| k=0 +t

- Thus, except for a factor of £ , G(n,t)/P(t) is just the remainder of

the series for G(0,t)P(t) after AN terms.

Finally we mention that the recursion for the G polynomials

- may be cast as a matrix-vector multiplication where the matrix is the

companion matrix of P . We do not pursue this here. The interested

— reader is referred to the papers by Bauer in the bibliography.

7. THE BEHAVIOR QF THE ERROR

In the numerical example of Section 5 we noted that the ratios

— of successive errors were small, and that the initial ratio was particu-

larly small when was large. We now study the behavior of the error

- quantitatively.

Let |

- P(r, t)-pq
E(N,t) = ——

ey

- From (4.2) and (6.3),

: WN
_ 2, 4,(p./p1) (0:00)

=e “top,
—_M1 ’ —

(7.1) E(A,t) = = | N d; =cy/cy
i=2 —_

| t-p,
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— This result is exact. We draw a number of conclusions.

. A ny .
"E(\,t) is of order (p/p) and can be made arbitrarily small.

For the remainder of this section we strangthen our assumption to

| lim _E(\,t) (ppp;)— (7.2) . = 4, —=
| po Pq |

- The asymptotic error constant (Traub [1%, p. 9]) is defined by |

- C(N\) = 1im E(A\,t) . |

t-n

We conclude

_ Ln BOL) PTR |

This result explains why the initial error ratio in the example of -

Section 3 is so small. For that example, py = 5, Py = 2, t = 100000

and the initial ratio should be smaller than the asymptotic ratio by about

-— 5X10” . This is indeed the case in the example. oF

If B=P we can draw an additional conclusion from (7.2).

In this case a =1. Let P(t) and Q(t) be two polynomials with

- the same dominant Zeros Py and Py We calculate two approximating |

sequences for Py » both starting at t but with one sequence calcu- |

lated from P and the other from Q. On a computer, for A suf-

— ficiently large, the two sequences are essentially identical. To

put it another way, the sequence of approximants depends only on the two

— dominant zeros of P and is essentially independent of the remaining |

: Zeros. |
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8. TWO VARIATIONS OF THE BASIC ALGORITHM
—_————————

~ In the following two variations the same sequence of approximants
ts » except for roundoff, is calculated as in the basic method described

in Section 2. However the way in which the t, are obtained is different.
—_ Both variations are based on the following analysis. In Section 6

we showed that

G{O,t Blt k

(8.1) | Ss Be. poe) | |
k=0 t

rr

n-1 .
n-1-1 ) . .

Let B(t) = ), 5g bit . By comparing coefficients in (8.1), we conclude

that for B(t) given, B(0), B(1l),..., B(n-1) are determined by

B (8.2) : 2, B(j-r) = b. } J = 0,1,..., n-1 a
Tr Jr=0

~~ For Jj >n the PR(j) satisfy |

| n

- (8.5) Yap(j-r) =o .
r=0

_ We can now associate B(0) , B(1), ..., B(n-1) with B(t) in either of

two ways. We can choose either the set B(0) , 8(1),..., B(n-1) or B(t)

- arbitrarily and determine the other by (8.2) . In either case B(j) , 3>n,

is calculated using (8.3). (We might add parenthetically that if B = P’ ,

then (8.2) are Newton relations for the power sums PB(A).)

_ We now turn to variation one. Define a (A) by _
n-1 nel:

G(A,t) =) a(td

It follows from (6.3) that

8. a. (A) = $ a, Ar)(8.4) jO) = Zag pwr)
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B This variation may now be described as follows. Compute the B(j) up to

- B(Mn-1) using (8.2) and (8.3) and compute as (N) using (8.4). This
gives an explicit formula for G(A\,t) and hence for p(n,t)

~ Observe that this variation consists of a Bernoulli calculation

followed by iteration. )

- The second variation is based on the fact that in the iteration

B ti, = PONE)

- only the numbers GN ty) , not G(A\,t) itself, are required. We form

| the B{(j) up to B(A-1) using (8.2) and (8.3). Then form the sequence

B | of numbers |

u (8.5) GL) = £2GI) - BUIR(E) , J = 01, ML,

- and use Gt) to calculate ©, . Then use (8.5) with t, replaced

by ty , and so on. |

~ 9. AN ITERATION FUNCTION FOR THE SMALLEST ZERO

— The iteration function @(N,t) is used to calculate the largest

zero of P . To calculate the smallest zero, we could calculate the largest

— zero of t"P() We introduce a sequence of polynomials H(A,t)
which may be used to construct iteration functions for the smallest zero

| directly. |

—_ It is convenient in this section to assume that p(t) , the poly-

nomial whose smallest zero we seek to calculate, is normalized so that

= p(0) = 1 . Let the zeros of p(t) bea, , a, , ..., @ with

a, | < la, | , i>1 . | let b(t) be an arbitrary

~ polynomial of degree at most n-1 such that bla) £ 0 .
—
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| Define |

~ H(O,t) = b(t)

oo (5.3, H(n,t)-5_(Mp(t)
H(AM1,t) =mr

s— -

where |

fi :

| An approximating sequence is defined by

prt .

(9.2) tog = 00t,)

| where

. | |

- (9.3) *(Mt) = Toy |
H(A, t) a.

- with |

| Hn, t) = HO, E)/8 (MN)

From (9.1), we also have | |
a

NE H{N, Tt

(9.4) d(N,t) = TOL.t :

10. PROPERTIES OF THE H POLYNOMIALS

From the defining recusion for the H polynomials,

H(0,t) = b(t) |
(10.1) (0,%) ( )

| H(N,t)-8_ (M)p(t)
- HMW1,8) = ————7  , |

p— we obtain the representation

I iY bla, )
_ (10.2) H(A, t) = 1 qr, p(t) YR

i=1 t-a, i
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It follows that

n

- -A=-1

i=1

and hence that 5,0) does not vanish for A sufficiently large.
_ From (10.2) and (10.3) we conclude that

(10.4) lim H(\,t) = lim Hat) _ p(t) :o (A t
- A> AR 0 1l—

9
1

FN

for all finite t .

- The H polynomials possess a property which is analogous to

a G polynomial property discussed in Section 6. We expand Hx, t)/ p(t)

- into a Taylor series around the origin. Let

HOt) | © x
- (10.5) Ns = > e (Mt

| P k=0

Let | | |
J— oo

n ny

i=1

Clearly, e (N) = 5 (A) = -y(A1) . Write the recurrence for H(\,t)

- as | |

H{A+1,t 1 H(A, T |
- = = - 5 (A :(10.6) A Eo 0 J
— Then we conclude that

| (10.7) eq (MN) = e, (A+1)

Hence the right side of (10.6) may be viewed as the operation of performing

| a left shift upon the vector of coefficients of the Taylor series. |

f— :



From (10.7) |

e(A) =e (Mk) = -y(Mk+l) .
oh

Hence |

- A=-1

| Hut) =A ES kpit PLL) xo

| Thus, except for a factor of — , H(N,t)/ p(t) is just the remainder

of the series for H(O,t)/p(t) after A terms.

oo 11. CALCULATION OF MULTIPLE ZEROS :
FN . a

| Until now we have restricted ourselves to polynomials all of

-— whose zeros are simple. We turn to the case where the polynomial has

multiple zeros. There are no essential difficulties. If the dominant

zero is multiple, P(t) can only be evaluated to a certain accuracy but

- this is common to all iterative methods which require the evaluation of

P(t) . |

i. We first prove a fundamental

THEOREM. Let P have n distinct zeros Py where the multiplicity

of p. is m, . Then for all A
i i

n m oN
GIA, T ivi

— (11.1) Rh =) —Pit i=l Py |

— PROOF. We proceed by induction on A, If A =0, the result is well

known. Assuming it holds for A and substituting (11.1) into the re- |

= cursion formula for the G polynomials yields the result immediately.

Observe that (11.1) implies that for all A, G(A,t) has zeros

| of multiplicity m, - 1 at ps - Furthermore,

p_— - —

| 1im G(A,t) = Bt) :
: NO Py

_— -
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Hence, for A sufficiently large, the remaining n-1 zeros of G(A\,t)

pan lie arbitrarily close to the subdominant zeros of P . Thus the iteration

function will have no poles in the neighborhood of Py

- Observe that the theoremis based on the choice B(t) = P(t) .

_ | ~ This shows that the restriction B(p,) £ 0 is not the appropriate con-
dition in the case of a multiple zero. The reason for this is apparent if

— one compares the partial fraction expansion of G{(\,t)/P(t) in the simple

and multiple zero cases.

B A detailed analysis of the multiple zero case will appear

- elsewhere. ©. OL . SE oo

12, CALCULATION OF COMPLEX CONJUGATE ZEROS |

_— So far we have dealt with polynomials which have a zero of largest

modulus or a zero of smallest modulus. We turn to the case of equimodular

B dominant zeros. Fortunately in the case of polynomial zeros it 1s suf-

— ficient to consider the case of either one zero of largest moduius or of
a pair of complex conjugate zeros of largest modulus for the following

m_— reason. |

A translation in the t plane replaces zeros of equal modulus

B by zeros of unequal modulus. In the case of a polynomial with real coef-

- ficients, a real translation will remove all zeros of equal modulus except
for a pair of complex conjugate zeros. Hence only the two cases mentioned

-— need be considered.

A discussion of how to effect the translation so as not to

- damage the zeros of P will appear elsewhere.

- We turn to the calculation of a pair of complex conjugate zeros.
In [17] we recently announced a theorem on global convergence of an iterative

— method for calculating complex zeros. In this section we describe one
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- method for calculating complex zeros and state the theorem of global con-

pen vergence. Variations on and extensions of this method as well as proofs

of our results will be published in a forthcoming paper.

= The theory holds no matter what the relation between p, and o,

oo requiring only le, | > lo, | and le, | > lo. | , 1 >2 ., Here we restrict

B ourselves to Py and Poy complex conjugate.
oa | If lo, | = le, | , then the normalized G polynomials do not

converge, Let

| Int) = B(MGOWL,E) - B(MLIG(A,t)

— (12.1)
J(h,t) = B(NG(M2,8) ~ B(AM2)G(N,t)

~ Then |
| = P |

S000)St
~— 1 2

— Recursions involving only the I and J polynomials and not

| depending on the G polynomials have been developed. These recursions |

= may be of advantage in numerical calculations.

From the I and J polynomials an iteration function may be

Bb constructed as follows. We define a polynomial which is quadratic in u

— | and has coefficients which are polynomials in t of degree at most n-2,

_ F (uA, t) = In, tu” - JO, tu + I(+1,t8)

Let AN be a fixed integer and let to be an arbitrary point in the |
B extended complex plane not equal to a subdominant zero. Define an iteration |

—- by
F(t, J t;) =0
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It can be shown that for all t, , and for XA sufficiently large, this

| quadratic has a zero in the upper half plane and a zero in the lower half

plane. Chhose tig as the zero in the upper half plane and define

- by ti, = v(Nt) Label p, as the zero in the upper half plane.
Then we have the following.

THEOREM. Let the zeros p, of thepolynomialP bedistinct with p,

te and Po complex conjugate and lo, | > lo. | , 1 > 2 . Let t be an

| arbitrary point in the extended complex plane such that t, £ Pg «+2 Po

and let t,., = v(t) . Then for all A sufficiently large but fixed,

the sequence ts is defined for all 1 and t, =p

= 13. A NUMERICAL EXAMPLE

| For illustration of the method discribed in the previous section

we calculate the dominant zero of

— 4 3 2
P(t) =t - L4.2t” + 8.7125t - 9.025t + 4.625

= Its zeros are

py = 1.1 + 1,051

Py = 1.1 - 1.051 |

| Pz

: pp = 1-1 a

Note that the zeros are pairwise quite close together.

—_ We choose B(t) = P(t), A = 96, and choose our initial ap-

proximation as t, = 1000 . We obtain the sequence of approximations
pi

exhibited in Table 2. In the right hand column we exhibit the ratios of

— the moduli of the errors. As in the example of Section 3 we observe
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_ TABLE 2. SEQUENCE OF APPROXIMANTS

- Cd ty PANI

) | 0 1000.

_ | 1 © 1.10009 + 1.049974 9. 5X10"

_ 2 1.10000003 + 1.049999921 9.0x10~*

~ 5 1.09999999997 + 1.04999999992i 9.0x10™"

~ py = 1.1 + Lost
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that all the ratios are small and that the initial ratio is particularly

— small. Again this can be quantitatively explained.

| 14. CALCULATION OF ZEROS OF ANALYTIC FUNCTIONS

- Let
© .

_ f(t) = po at a = 1

— be a power series which converges in a circle about the origin. Suppose

that f(t) has a zero of smallest magnitude. Then we can define

- analytic functions H(A,t) by the recursion of (9.1). Results analogous

to those in the polynomial case can be developed here.

B | Since we cannot actually form the analytic functions Hn, t) ,

_ we cannot use the basic method. There are a number of other possibilities

and we merely sketch two of them.

p= The first takes a section of the power series of degree n and

uses 1t instead of f itself. A section of degree 1000 would offer

~ no difficulties. The size of A which is needed to separate out the

— effect of the dominant zero depends on the ratio of dominant to subdominant

zero and not on the degree of the section one takes. Hence quite a modest

- choice of A , much smaller than the degree of the section, should be

sufficient. Since G(A,t) can be formed in An multiplications and

B since each iteration takes about 2n multiplications, the process is

— reasonably economical even for large values of 1 .

A second possibility is to use the second variation of the

- basic method as described in Section 8. The variation is used with the

H recursion rather than the G recursion. The constants appearing in

~ the H recursion can be precomputed by an appropriate generalization of

_ (8.2) and (8.3) which amounts to calculating the coefficients of the
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Taylor series for H(O,t)/f(t) . This last mentioned process is just

or the computation required for the application of Konig's method [10].
15. COMPUTER IMPLEMENTATION

~ In the computer implementation of the type of methods described

_ here, the program should decide automatically on the value of A at which

| to start iteration, and as to whether or not there is a zero of largest

= modulus. Such decisions should be made by monitoring the numbers produced

during the calculation of the G polynomials. A number of strategies are

a available and will be discussed elsewhere.

- 16. BIBLIOGRAPHIC REMARKS

Schrader [12] in his classic 1870 paper introduced certain sym-

- metric functions of zeros. These symmetric functions are just the deri-

vatives of the rational functions G(\,t)/P(t) . He derived a number of

the properties of these functions. Since Schroder restricted himself to

p—— | low values of A for which explicit formulas could be obtained,he did not

find globally convergent iteration functions.

— In 1941, Sebastiac e Silva [13] defined G polynomials as the

a remainder of the division of £™ by P(t) and gave a long proof that the
normalized G polynomials converge to P(t)/ (t-p) . His work has been

_— \ continued byAparo [1], [2].

G polynomials are used by Bauwer [3], [4] in an important series

— of papers which appeared in the mid-1950's. H polynomials appear in a

paper by Bauer and Samelson [5].

Sebastiao e Silva, Aparo, and Bauer are concerned with quad-

p-— ratically convergent versions of Bernoulli-Jacobi-Aitken type methods

| for the factorization of polynomials. Thus they continue the first

— state of our two-stage process to the limit. |



a °

=o

a Underlying many of the methods for calculating zeros are theorems

concerning the coefficients of a function which has poles on its circle

| of convergence. Papers byKonig [10] and Hadamard [7] are classic. A

pn perceptive I is given by Householder [9, Chapter 3]. The method
we have discussed here may be incorporated in this framework.

— Our work has links with the QD algorithm (Rutishauser [11],

Henrici [8]) which will be explored elsewhere.

Finally we note a different application of G polynomials.

— | Traub [15] uses G polynomials with the variable t replaced by the

| translation operator E , to give a new derivation of the formula for

- the general solution of a linear inhomogeneous difference equation with

constant coefficients.

| Additional bibliographic references may be found in Traub [16]

— and in the papers byBauer.

~ |
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