

CS42

WHEN TO NEGLECT OFF-DIAGONAL ELEMENTS OF
SYMMETRIC TRIDIAGONAL MATRICES

BY

W. KAHAN

TECHNICAL REPORT NO. CS42

JULY 25, 1966

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

WHEN TO NEGLECT OFF-DIAGONAL ELEMENTS OF SYMMETRIC
TRI-DIAGONAL MATRICES.

by
w. Kahan*

ABSTRACT

Given a tolerance $\epsilon > 0$, we seek a criterion by which an off-diagonal element of the symmetric tri-diagonal matrix J may be deleted without changing any eigenvalue of J by more than ϵ .

The criterion obtained here permits the deletion of elements of order $\sqrt{\epsilon}$ under favorable circumstances, without requiring any prior knowledge about the separation between the eigenvalues of J .

*Stanford University Computer Science Department and University of Toronto
-Departments of **Mathematics** and Computer Science.
Prepared Under Contract **Nonr-225(37) (NR-044-211)** Office of Naval Research.
Reproduction in whole or in part is permitted for any purpose of the
United States Government.

Introduction:

The computation of the eigenvalues λ_j of the symmetric tri-diagonal matrix

$$J = \begin{pmatrix} a_1 & b_1 & & & & \\ b_1 & a_2 & b_2 & & & \\ b_2 & \cdot & \cdot & \cdot & & \\ \cdot & \cdot & \cdot & \cdot & \cdot & \\ \cdot & \cdot & \cdot & \cdot & b_{N-1} & \\ b_{N-1} & a_N & & & & \end{pmatrix}$$

can be shortened, sometimes appreciably, if any off-diagonal element b_i happens to vanish. Then the eigenvalues of the two shorter tri-diagonal matrices, of which J is the diagonal **sum**, can be computed separately.

This is the motive for seeking off-diagonal elements b_i which are merely small. The deletion of several $b_i \neq 0$ cannot cause any eigenvalue of J to change by more than $2 \max_i |b_i|$, so the interests of economy may be well served when zero is written in place of all the b_i which satisfy, for example,

$$|b_i| < \frac{1}{2} \epsilon ,$$

where ϵ is some pre-assigned tolerance compared with which any smaller error in the eigenvalues is negligible.

But experience suggests that there must be many circumstances when the deletion of a $b_i \neq 0$ causes an error much smaller than $|b_i|$; something of the order of $|b_i|^2$ would be more typical. Indeed, Wilkinson (1965, p. 312) shows that the error so induced should not much exceed ϵ if b_i is deleted whenever

$$|b_i|^2/\alpha < \epsilon ,$$

where

$$0 < \alpha \leq \min. | \lambda_k - \lambda_j | \text{ over } k \neq j .$$

Unfortunately, the constant α of minimum separation between the eigenvalues is unlikely to be known in advance of a knowledge of the eigenvalues λ_j being computed, so the last criterion for deleting a b_i could stand some improvement.

One might easily be tempted to approximate α in some sense by a difference $|a_k - a_j|$ between diagonal elements. For example, we might ask whether b_i can be deleted whenever

$$b_i^2 < \epsilon |a_{i+1} - a_i| ?$$

The answer is definitely-no. And the condition

$$b_i^2 < \epsilon \min. |a_k - a_j| \text{ over } k \neq j$$

is not acceptable either. The example

$$J = \begin{pmatrix} 1 & \sqrt{2} & 0 \\ \sqrt{2} & 2 & b \\ 0 & b & 0 \end{pmatrix}$$

has eigenvalues two of which change by roughly $\sqrt{\frac{1}{3}}b$ when a tiny value of b is replaced by zero.

Evidently any criterion for deleting off-diagonal elements of the order of $\sqrt{\epsilon}$, instead of ϵ , must be more complicated. The following theorem is complicated enough to give a useful indication that b_i may be deleted whenever all three of b_{i-1}^2 , b_i^2 and b_{i+1}^2 are of the order of $\epsilon |a_{i+1} - a_i|$.

Theorem: Let J be the symmetric tri-diagonal $N \times N$ matrix shown above,

and let $b_0 = b_N = 0$. For any fixed i in $1 \leq i < N$ define

$$h_i = \frac{1}{2}(a_{i+1} - a_i) \quad \text{and}$$

$$r_i^2 = (1 - \sqrt{\frac{1}{2}})(b_{i-1}^2 + b_{i+1}^2).$$

Then the changes $\delta\lambda_j$ in the eigenvalues λ_j of J caused by replacing b_i by zero are bounded by satisfying the inequality

$$\sum_j (\delta\lambda_j)^2 \leq \frac{b_i^2}{h_i^2 + r_i^2} \left\{ 2r_i^2 + \frac{h_i^2 b_i^2}{h_i^2 + r_i^2} \right\}.$$

For example, if $b_{i+k}^2 < \frac{1}{3} |a_{i+1} - a_i| \epsilon$ for $k = -1, 0$ and $+1$, then the deletion of b_i will not change any eigenvalue λ_i of J by so much as ϵ .

Here is a proof of the theorem. Nothing irretrievable is lost by considering simply the 4×4 matrix

$$J = \begin{pmatrix} a_1 & b_1 & 0 & 0 \\ b_1 & a-h & b & 0 \\ 0 & b & a+h & b_3 \\ 0 & 0 & b_3 & a_4 \end{pmatrix}$$

and taking $i = 2$, $b_1 = b$ and $a_{i+1} - a_i = 2h \neq 0$.

Changing J to $(J + \delta J)$ by replacing b by zero changes J 's eigenvalues λ_j to $(J + \delta J)^{-1}$'s eigenvalues $(\lambda_j + \delta \lambda_j)$. But another way can be found to change b to zero without changing the eigenvalues λ_j . Let us apply one step of the Jacobi iteration to liquidate b .

This requires the construction of an orthogonal matrix

$$P = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & c & s \\ 0 & 0 & -s & c \end{pmatrix} = (P^T)^{-1}$$

in which c and s are specially chosen so that $c^2 + s^2 = 1$ and $P^T J P$ has zero in place of b . The choice consists in the determination of φ in the interval

$$-\pi/4 < \varphi < \pi/4$$

such that

$$\tan 2\varphi = T = b/h ; \quad (*)$$

then

$$c = \cos \varphi \quad \text{and} \quad s = \sin \varphi .$$

The following abbreviations will be useful in what follows:

$$c = \cos 2\varphi = 1/\sqrt{1 + T^2} ,$$

$$s = \sin 2\varphi = Tc ,$$

$$c = \cos \varphi = \sqrt{\frac{1}{2} (1 + c)} ,$$

$$s = \sin \varphi = \frac{1}{2} s/c \quad \text{and} \quad$$

$$\sigma = \sin \frac{1}{2} \varphi .$$

Then we define $D = J + \delta J - P^T J P ;$

$$D = \begin{pmatrix} 0 & 2\sigma^2 b_1 & -sb_1 & 0 \\ 2\sigma^2 b_1 & 2s(cb - sh) & Sh - Cb & sb_3 \\ -sb_1 & Sh - Cb & 2s(sh - cb) & 2\sigma^2 b_3 \\ 0 & sb_3 & 2\sigma^2 b_3 & 0 \end{pmatrix} .$$

No use has been made yet of the relation (*) above ; on the contrary, the best value for φ might very well satisfy

$$\tan 2\varphi = T \neq b/h ,$$

and it could be much worth our while to leave Φ unfettered for now while preserving the foregoing definitions for T, C, S, c, s, σ , and D in terms of Φ .

The significance of D is revealed by the Wielandt-Hoffman theorem, which is stated and proved in an elementary way in Wilkinson's book (1965, p. 104-9):

If A and B are symmetric matrices with eigenvalues

$$\alpha_1 \leq \alpha_2 \leq \dots \leq \alpha_N \quad \text{and}$$

$$\beta_1 \leq \beta_2 \leq \dots \leq \beta_N \quad \text{respectively ,}$$

then

$$\sum_j (\alpha_j - \beta_j)^2 \leq \text{tr. } (A - B)^2 = \sum_i \sum_j (A_{ij} - B_{ij})^2$$

Let this theorem be applied with

$$A = J + \delta J , \quad \alpha_j = \lambda_j + \delta \lambda_j ,$$

$$B = P^T J P , \quad \beta_j = \lambda_j ,$$

$$\text{and } A - B = D .$$

Then

$$\begin{aligned} \sum_j (\delta \lambda_j)^2 &\leq \text{tr. } D^2 \\ &= 8\sigma^2(b_1^2 + b_3^2) + 2b^2 - 4Sbh + 8s^2h^2 \end{aligned}$$

The right-hand side is minimized by one of the values of Φ at which its derivative vanishes; i.e. when

$$\frac{1}{2} s(b_1^2 + b_3^2) - Cbh + Sh^2 = 0 .$$

This equation seems too cumbersome to solve precisely, but it does show that there is a value of $|\varphi|$ between 0 and $\pi/4$ at which $\text{tr. } D^2$ is minimized. Over this range

$$\frac{1}{2} \leq \sin \frac{1}{2} \varphi / \sin \varphi = 1/(2 \cos \frac{1}{2} \varphi) \leq 1/(2 \cos \pi/8) ,$$

so the bound we seek will not be weakened much if σ^2 is increased to $s^2/(4\cos^2 \pi/8)$. Therefore, let us now choose φ to minimize the right-hand side of

$$\sum_j (\delta \lambda_j)^2 \leq 2b^2 - 4 Sh + 8s^2(h^2 + r^2)$$

where

$$r^2 = (1 - \sqrt{\frac{1}{2}})(b_1^2 + b_3^2) .$$

The minimizing value of φ satisfies

$$\tan 2\varphi = T = bh/(h^2 + r^2) ,$$

and therefore $|d|$ lies between 0 and $\pi/4$ as is required to justify the simplifying inequality $\sigma/s \leq 1/(2\cos \pi/8)$ used above.

Substituting the foregoing value for T yields

$$\sum_j (\delta \lambda_j)^2 \leq \frac{2C}{1+C} \frac{b^2}{h^2 + r^2} \{2r^2 + cb^2h^2/(h^2 + r^2)\} .$$

This inequality is much too clumsy to be useful, so it will be weakened slightly by using the fact that $C \leq 1$; in most cases of practical

interest C is not much less than 1. The weakened inequality is

$$\sum_j (\delta \lambda_j)^2 < [2r^2 + h^2 b^2 / (h^2 + r^2)] b^2 / (h^2 + r^2) ,$$

and is just the inequality in the theorem except for a change of notation.

The theorem's most promising application is to those compact square-root-free versions of the LL^T and QR iterations described, for example, in Wilkinson's book (1965, p. 565-7). In these schemes, each iteration overwrites J by a new tri-diagonal matrix J' with the same eigenvalues as before but with off-diagonal elements which are, hopefully, somewhat smaller than before. The element located at b_{N-1} usually converges to zero faster than the other b_i 's; and the theorem proved here can be a convenient way to tell when that b_{N-1} is negligible. For example, b_{N-1} can be deleted whenever

$$\frac{b_{N-1}^2}{(a_N - a_{N-1})^2 + b_{N-2}^2} \left\{ b_{N-2}^2 + (a_N - a_{N-1})^2 \frac{b_{N-1}^2}{(a_N - a_{N-1})^2 + b_{N-2}^2} \right\} < \frac{1}{4} \epsilon^2$$

without displacing any eigenvalue by more than ϵ . This simplified criterion has been used satisfactorily in a QR program written by the author and J. Varah (1966), but the program is not much slower when the simpler criterion

$$|b_{N-1}| < \frac{1}{2} \epsilon$$

is used instead.

Acknowledgement:

This work was done while the author enjoyed the hospitality of Stanford University's Computer Science Department during a six months leave of absence from the University of Toronto.

References:

W. Kahan and J. Varah (1966) "Two working algorithms for the eigenvalues of a symmetric tridiagonal matrix" Computer Science Department Technical Report CS43 August 1, 1966 - Stanford University

J. H. Wilkinson (1965) "The Algebraic Eigenproblem" Oxford U. P.