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ABSTRACT

Certain non-stationary relaxation iterations, which are commonly

applied to positive definite symmetric systems of linear equations,

are also applicable to a semi-definite system provided that system

is consistent. Some of the convergence theory of the former application

is herein extended to the latter application. The effects of rounding

errors and of inconsistency are discussed too, but with few helpful

conclusions. Finally, the application of these relaxation iterations to

an indefinite system is shown here to be ill-advised because these

iterations will almost certainly diverge exponentially.
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oo Relaxation Methods for Semi-Definite Systems = =

Relaxation methods like the Gauss-Seidel iteration are widely

used to solve linear systems of the form

Ay =¢

when A 1s a Hermitian positive definite matrix, but their usefulness

when A 1s semi-definite is less well appreciated. A recent paper

by H. Keller (1965) has expanded earlier results of G. Forsythe (1960)

and the author (1958, Ch. 2) concerning the convergence of stationary

iterations when the system1s consistent, though singular. The gist

of Keller's paper is that those iterations of the form

| Yaar = In + T(eoAg)

which are- usually used when A is definite also work when A is semi-

definite. This note is concerned with a non-stationary iteration

Yor = Zn * Tole-Ar,)

) and can be regarded as a supplement to Keller's work. In particular,

the results here imply that some of his stationary iterationsare

oo numerically stable; but there are other applications too, like eigen-

value problems, for this note. | | |

The hypotheses used in this work are intended to be as weak as

will fit methods likely to be used in practice. Consequently, the

results here do not completely generalize the work of A. Ostrowski

(1954) or S. Schechter (1959). There is also some overlap with recent |

independent work of Ostrowski (1965).
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The report is divided into four numbered sections. Section 1

is remeniscent of works by Kaczmarz (1937) and Agmon (1954) in that

it characterizes the relaxation iteration to be considered here as a |

sequence of partial projections in a suitable space. The iteration |

is shown to converge at least as fast as some geometric series.

Section 2 defines that "suitable space’ more precisely in terms

: of the given matrix A , and shows how convergence can be sustalned in

the face of certain rounding errors committed during the iteration. |
Section 3 mentions two applications and discusses some open

problems. The central problem is that the solution y of a singular

but consistent systemAy = c¢ 1s not a continuous function of A or

c . Therefore, it is no surprise that rounding errors in A and cc |
may obscure the criteria bywhich one judges whether or not an iteration |

has come close enough to a desired solution that further iteration is

worthless. Attempts have been made to iterate instead with a non-

singular system that is practically equivalent to the given singular

system Ay = c ; two such attempts are mentioned in this section.

Section 4 shows that relaxation diverges to infinity when the system

-Ay = ¢ 1s inconsistent, and 1s almost certain to diverge exponentially

if A is indefinite. |

1.) Relaxation in a Simple Case | |

To begin, consider the solution by relaxation of the trivial

| equation | oo

x=5 |

5 |



as follows:

Let (eq » E550 ey} be a given set of non zero vectors

which, though not necessarily linearly independent, do span x's

space. In other words, M 1s no smaller than the dimension of x

and both matrices |

(gy » Eo seve 8} and {ey » €5 ses Sv x}

| have the same rank for all vectors Xx . | |

Next let Py 5 Bo svves By seer be a sequence constructed by

choosing p = e; for some J = J(n) so contrived that each set of L
consecutive vectors (p, » BPogp 7°02 Dir) spans X's space.

I. is some fixed integer exceeding the dimension of Xx . |

Now the iteration to solve x =b for x can be defined.

Beginning with an arbitrary Xx, , Wwe define for n = 1,2,5,...

| ony =p, X(-x )/p *P,

5, is arbitrary except that 5 | <d<1l forall n ,

E = (148 )n_ ’ |

| Xl= En ty |

The numbers (148) are frequently called w, in the literature.

The values 5, can be complex, but when they are real they have the
following connotations:

| 5, = 0 means exact relaxation ,

| > 0 means over-relaxation |,

5 < O means under relaxation .°
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Each relaxation may be regarded as a nesr-projection;

b-x..=1{I-(+)p p*p¥pl (bx) .

Consequently, if the usual norm )

| lll = Vxxx

3 is used, then lo-x wl < ox| . To be more precise,
2 2 2 V2 42

engl = TeIF - (18,7) Ip(oxy)1leg

< o-x_|l unless p*(b-x ) = 0 : .

because 1 = Is |° >1 - a“ > 0 . | |

If we use the abbreviation

P(p,8) = I - (148) p p*/p*p > |

then it becomes convenient to write

. b =X = T (b-x_) where |

r =[[®p, , 5) over n<m<n+1L .

The next step is to show that I I <1, where the matrix norm is

defined by

Mrll = mex liTvli/llvll over v £0



Let us write XA = ll. Obviously A <1. If A =1 then there

mist be some non-zero vector v such that ||TYl = lwll - By examining

the factors P(p, , 8) of T, in turn, we conclude that

T v=v and
n — —

Because of the way the vectors p, Were chosen, there exists a com-

plete linearly independent subset among them, and since Pv = 0

for all p in that subset, v = 0 . This contradiction shows that
A < 1 ) ~
n -

| Now, A may be identified with a continuous function

Mo = MRy 2 Basa 2000s Bpare1 5 Bn 2 Buea otter Sparen)

of L vector and IL scalar arguments. The vector arguments are con-

| strained in such a way that there is only a finite number of permissible

sets of L vector arguments. Indeed, of the iM ways to choose the

L vectors oo

| Bn» Bhar 2002 Bpapa |

from the set (ey 5 Eo sees ey , most will be rejected because the
p-vector must include a complete set spanning x-space. The scalar

arguments So, are constrained to the compact set 15, | <d<l1l.
Therefore there must exist a number | |

0



A = max A coe FR: 5 cee,(Bey) 7» Biz) »oo0s Br) 5 B21) » Ba) »7°+ (1)?

over the set of allowed choices for p and B ,
~ B(m) (m) |

and this maximum is achieved, and A < 1 by virtue of the same argument

as was used to show x <1. | |
Therefore, the relaxation iteration converges at least as quickly |

: as a geometric series with a common ratio \L/L 3

lb-x | < AE [o-x | for k=1,2, 3 |— —n+kL" — —- ? ? ree ®

2.) Relaxation in Practice

The foregoing theory is applicable to the solution by relaxation

of the equation |

| Ay =c |

when A is Hermitian and positive definite or semi-definite, provided

the equation is consistent when A 1s semi-definite. Only the semi-

definite case 1s discussed here. |

The relaxation process for solving Ay = c consists in choosing

a set of spanning vectors f3 and a sequence of vectors 4 of which
each consecutive L vectors include a spanning subset of the f's ,

and a sequence of values 5, with Is | <d<1l. Then

n, =a *(e-Ay)/a *Aq

e, = (148)n,

6
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A

| Yor = In + 4. , for n=1, 2, 35 ,0e0e |

There is a formal requirement that g*Agq #£ 0 , whichis tantamount |

to requiring TAL, >0 for all j.. Alternatively, since
f£*¥Af = O implies Af =O and, because ¢ = Au for some u ,

| f*¥c= 0 , 1t suffices to define n, = O instead of using the inde-

: terminate 0/0 when g.*Ag = 0 . In practice one is unlikely to
have to worry about this contingency. |

} The relaxation process for Ay = c can be related to that for
Xx = b vie a non-singular linear transformation U which satisfies |

U*AU = diasg(1,1,1 ,..., 1,0,0 enn, 0) . |

The number of 1's and zeros depends only upon A ; otherwise there

1s a substantial degree of freedom in the choice of U. One possibility

| is tochoose U in such a way that U¥U is diagonal too. That such

a matrix U exists follows immediately from the fact that A 1s unli-

tarily similar to a non-negative diagonal matrix.

Let us impose a partitioning upon

G0)| U¥AU = |

and, conformally, upon | oo

x bp)

X b |

| = | ¥ |

fy -o(2), and a; -o() P\ E54 Rj.

; |



Note that the vectors {ey » 8 reves ey’ span the space of x be-

cause the vectors {f; gresy yr) span the space of y . Now, Ay =¢ | ,

is precisely equivalent to |

I O X b
| oS = A » Or
o o/ \x b

\ }

x=b end 0=b .

The last condition 1s necessarily satisfied because the equation Ay = c

is consistent by hypothesis. Furthermore, |

9,%Aq * = P.* P, > O and

Tn = (er,an *Ag, |

= pr(x))/p* py

Therefore the theory developed for x = Db 1s almost applicable to

Ay = ¢ , the defect being that while xX, —b we do not yet know what
Pa

happens to xX

~ Now, oo | |

IE TRVEL
R .

so we can deduce that x converges if we can prove that )) |e |
1

converges. Because |

8



le, < (144) [lp ll lox| , end

_ k
Io~x_ rll 27 lox|| for all n and Xk =1,2,5,... ,

and A is some number which depends upon (£,] »d,L and U

(actually upon A instead of U) , and A <1, the series

P AN a AN

5 * L En En
1 *

converges at least as quickly as a geometric series with common ratio

ZLL < 1l . Therefore the sequence NA converges too to one of the
finite solutions of Ay = c . |

The foregoing theory is easily generalized to include block relaxsa-

tion as well as point relaxation, but the theory is already too general

to permit anything useful to be said about the rate of convergence

of the iteration, nor upon how to choose ({f5) and {8} to minimize X\ .

However, convergence may be retarded if So, is chosen in a way which keeps

|8,| too large. More precisely, if B < 13, | <d for ell n , then
AYL > PB . This is so because |

2 2 2 2 2

fox117 = lo-xI = (2-12,17) |p *(x)*/ lip,

| Te 12 2 | |
> 5 | lo-x_ |© by the Schwartz inequality .

And if the values © and vectors g¢ are chosen cyclically (241, =q

and 8 . =8 forall n ) then |

> T1 j5_|*/F where R = rank (A) .

9



| The last inequality can be proved by generalizing a theorem due to

the author (1958); the theorem and proof can also be found in Varga's

book (1962). The proof of the generalization is a tedious computation |

too long to include in this report. oo

Finally, one aspect of numerical stability is considered here.

Let a semi-norm for the error (y-y) be defined by

| ly, -zll, = (gg *aly p12| Yo 2liy = Ugg aly,-pn

| = [lx-ell

~ 1 1/L 1/Lsince ly o-yll, <3 ly gl, ama <1,

Yq Can be replaced by a perturbed vector ¥,+1 which still satisfies

ly! 1-2 a < Klly, xl, for some K<1

1 -

provided the perturbation (x) Lop) is small enough to satisfy

let zal < (EYE) lg -gll,Ln+1"In+1 la Lila

Therefore, the relaxation iteration will appear to converge as long as

roundoff is kept sufficiently small. But the foregoing argument is too

superficial to be of much use in practice because one does not normally

know ly, ~x5 mor A, and therefore cannot tell when rounding errors
are small enough to be unimportant. When an iteration converges

slowly (because A is very nearly 1 ), it can be difficult to | |

supply criteria whereby a computer program will be stopped after the

10



iteration has achieved as accurate an approximate solution y, 8s oo
is desired or possible, but before a large quantity of time has been

wasted on iterations whose effect has been nullified by roundoff. |

For further discussion of these difficulties, consult papers by

Golub (1962) and Descloux (1963).

Fortunately, the relaxation iteration need not suffer intolerably

ks from these difficulties, because the iteration can be carried on usefuldy

until Ay remains smaller in magnitude than two or three units in

the last place of Y. after which there is no point in continuing.
This is so for the following reasons, which are adapted from Ch. U4 of

the author's thesis (1958). |

Let each vector £, be one of the coordinate vectors | |
| T

fy = (0,0 ,e4e, 0,1,0 5000, 0)" | | |

with a 1 in the 55h position. Since a, is chosen from the set of

f's , 1t too is a coordinate vector. Therefore |

— 3% - | ¢ K :Ny = 4% (e-AY, )/a, Ag,

can be computed to almost full single precision; to do so one must

compute the relevant component of the residual c¢ - Ay. with the aid

of double-precise accumilationof products of single precision numbers

before the residual is rounded to single precision. Next, the number :

En = (148 In can be computed tentatively to provide a value for the
formula, | | |

CY TX En Sy

| | 11 |



However, the vector NAN will be rounded before it is stored.

Therefore, the value of En actually used will be defined in fact
by the equation

En On = Yaa"Yn

in which only one component can be non-zero, and that component is the

| difference between the new value and the previous value stored in the

| array y In other words, when we let the symbol Y stand for a |
vector which is precisely represented by an array of numbers stored in

the computer, then all of the foregoing theory remains applicable

providedwe understand that E is finally defined after NA is |

rounded and stored. Therefore El may differ from the tentative value

(148 In which had been intended for it. Even so, convergence is

assured if the final value of £ satisfies

le /n -1] <d<1l forall n .

| This last condition can be satisfied easily unless My is not much

larger than a unit in the last place of the affected component of In

- Therefore, rounding errors may slow the iteration down, but they need |

not prevent the iteration fromprogressing to a point where the scaled

residual | |

) -1
(aiag(a))™™ (c-Ay,)

is scarcely larger than a unit in the last place of y, This is as

small a residual as might reasonably be hoped for, but whether it is |

worth walting for 1s a harder question. In my opinion, a good relaxation

12



program can confidently be expected to reduce the scaled residual

| to about ten units in the last place in NA beyond which point |
further progress is likely to be too slow to be economical. | |

3.) Open Problems Connected with Applications

There are two important applications of the foregoing theory.

t One is to the solution of

Ce (A-AB) u=0 oo |

for an eigenvector u corresponding to the smallest eigenvalue A |

of A with respect to B when both A and B are Hermitian and B

is positive definite. Since this application usually entails the

similtaneous calculation of A as well as u , the detalls are de- =

ferred to a later report (Kahan, 1966). IE

~ The second application is to the solution of the Neumann problem

in potential theory. Here the semi-definite matrix A represents a

discrete approximation to a partial differential operator, and c

in the equation | | | | | oo

depends upon boundary values assigned to a normal derivative. The |

boundary values must satisfy a compatibility conditionto permit a

solution y to exlst. Unfortunately, roundoff in c may prevent the

compatibility condition from being precisely satisfied. What happens

to the iteration in this case?

15



This questionwas considered in the author's earlier work (1958)

only for the stationary case of constant 5 = § and a cyclic choice

of g = 4.4 for all n . There it was shown that the sequence of

residuals |

c - Ay. |

converged like a geometric series even though the sequence I diverged

- like an arithmetic progression. The implicationwas that if c

deviated only slightly from consistency, then the sequence Yn would

diverge fairly slowly and, for n large enough, would adequately

approximate the solution of a nearby consistent system. Besides, if

the general solution of

fn = 0

were known then some iterates Yo couldbe replaced by yn - kn . with

k chosen to diminish ly, - kn|| conveniently. In particular, if A
came from the Neumann problem then n would represent a function every-

| where constant. | | |

But the situation is not so ¢lear for the non stationary relaxation

process. The best I can do is prove that for all large enough velues

of n the residuals c¢ - Ay, will be boundedby some expression of

the form |

| le - ay ll < x zl] |

where |r| is the minimum possible value of |c-Ay| for all y and KX |

depends upon the same data as determines A , i.e. upon 4, L , A | |

and the set £, . (Unfortunately, |zf| , » end KX are discontinuous

1h |
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functionsof A .) This 1s enough to establish numerical stability |

in the face of errors in c and in & but not enough to tell |
| a computer program when to stop iterating. The problem is acute when

"convergence" is slow, because the effect of inconsistency in ¢

is scarcely distinguishable from the effects of a value A very near oo

1 or a rounding errorin A . Co

3 One way to sidestep the problemof a slightly inconsistent right-

| hand side c¢ is to use a restricted relaxation iteration; a selected |

component of y. is forced to be constant for all n and then | |
relaxation is restricted to the other comporents. For example, in the

Neumann problem the value of the desired solution at one point in the |

region of interest could be fixed arbitrarily, and the values of the

solution elsewhere could be obtainedby solving the relevant difference

equations by relaxation. Such a procedure is described unenthuslastically
by Forsythe and Wasow (1960). The scheme is open to two criticisms:

First, the effect of an inconsistent right-hend side c¢ 1s con-
| centrated in the one equation of the system whose residual is never

relaxed. For the Neumann problem this can mean a cusp-like intrusion

| in the solution at the artificially fixed point. a 0

| Second, the rate of convergence of restricted relaxation cen compare

unfavourably with that of unrestricted relaxation. This possibility
is clear in those cases, as when A has Young's "property A", when | |
the rate of convergence of successive overrelaxation can be computed

directly in terms of the smallest non-zero eigenvalue of A ; these

cases must have been the ones that Forsythe and Hasow had in mind when

15



they advised against the restricted relaxation scheme. But in

general there is no way to estimate the rate of convergenceof successive

overrelaxation in terms only of the non-zero eigenvalues of A, and |

there are rare cases in which a restricted iteration is faster than

the corresponding unrestricted iteration. The following example is

one for which, if 8 is fixed at its best constant value for each

iteration separately, the restricted successive overrelaxation converges

3 almost twice as quickly as the unrestricted overrelaxation. |

Let A = (ay) be the symmetric semi-definite N X N circulant
matrix defined by |

8,3 =0 except that

| 8:3 = 1 and

84 = -1/2 whenever i= j +1 mod N.

The equation Ay =Db 1s consistent whenever

> b =0 ;

and successive overrelaxation with constant © and arbitrary yr

- produces a sequence of iterates | | |

| 1 2 n
. . NA J | J ’ y gee ey pA geese

via therecurrence | | |

ntl nn 1 n+l n 1.n
a (148)(v, TEV "Vnt 2 Ye)

in which it 1s to be understood that YN = Yin for all m. The

16



| | Ll

sequence of error-vectors u satisfy the same recurrence except that

b, 1s replaced by zero. The iteration is stationary; its eigenvalues NB

€ are the N complex numbers for which there exist complex error-vectors

wu satisfying EEE =

2? =e yP and uw? #0 .

i It can be shown that these eigenvalues satisfy | oo oo

¢ =z and 27 - (1+8)(2" t+z) + 26 =0 3; . =

this is done in Ex. 5 of the author's thesis (1958),and by further . |

tedious work along the lines discussed there and in Ex. 3 it is possi-

ble to approximate each of the N eigenvalues € as functions of §

with sufficient accuracy to support the author's claims. But the same

conclusions can be drawn more elegantly from an argument patterned upon

Garabedian's (1956):

When N 1s large the equation Ay =b can be approximatedby =

the differential equation |

: ay | | |
. —x =D

dx

with periodic boundary conditions |

y(x+n) = y(x) for all x . |

Then the error vectors a can be approximated by the function oo
u(mh , nk) , where u(x , t) satisfies the hyperbolic partial

)

differential equation

17



TU =P Uy ~ Uyg

with constants

op =h/k and T = ((1-8)/(1+8))/n .

Here h = n/N can be made arbitrarily small by making N large

N enough, and the error of approximation tends to zero as h — 0 ; note

| that k—->0 and 5-21 as N -»o, :

We deviate slightly from Garabedian by neglecting to transform

the partial differential equation into canonical form before separating

the variables. Instead, a trial solution

u(x , t) = X(x) T(t)

ylelds

(T/T) = p(X"/X) - (X*/x)(T'/1)

| for which the solutions are T = exp(At) and X = exp(ux) provided

TAN=0p ue - uA. |

Now we write the general solution u(x , t) symbolically in the form

u(x , t) = 2 on) exp(uwer(p)t)

summed over all permissible complex numbers pup , with | |

Mp) = pu/(THyu) . |

18 |



and ap) chosen to satisfy the periodic boundary conditions

u(x+n , t) =u(x, t) forall x and t . |

To any value A corresponds at most two values of pu for which

A= Mp), and if we call these values pu' and up" then

i f(x) = an!) exp(p'x) + alu") exp(p"x) oC

must be periodic too. This leads promptly to the conclusion that the

| only permissible values of un are

| | bh, = ni |

where n 1s an integer (positive, negative or zero) and 1° = =1 .

The corresponding values of A are | Co

| N= “kn? o(T-2n1)/(T5+kn°) .

Our object now is to choose T , and hence & , in such a way that

| max |exp() | oo
| | nfo

is minimized, thus ensuring that even if u(x , 0) (corresponding to |

ow ) is chosen in the worst possible way, the convergence of u to
its limiting form | oo

| u(x , ©) = constant for all x |

will be as fast as possible. Since

19



| max |exp(M)| = |exp())]

it is soon concluded that the best value for T is 2 ; then

, lexp(0)] = exp(-0)

The restricted successive overrelaxation differs from the fore-

3 going only in that the boundary conditions for u(x , t) are |

wo, t)=u(n, t) =0 forall t ,

whence the values A, are -

2 2

| A, = -2p(74ni Vn©-1© ) for +n=123,... ;

now the best value for T is 7 =1, and |

| |exp(r,)] = exp(-20)

The conclusion is that the restricted iteration is twice as fast as

_ the unrestricted iteration.

The example should not be taken too seriously; it is a counter-

example to a plausible conjecture, and atypical of most cases encountered

in practice. | | | |

Finally, a trick due to Riley (1955) deserves some attention.

The idea here is to approximate the semi-definite system Ay = c

by a definite system

(A+0A) z = ¢

20



in which ra is a suitably chosen positive definite matrix. To be
most useful, AA should be just large enough to swamp the uncertainties

in A and c¢ , but not too large lest z be useless. An attractive oo

choice for AA is an N XN diagonal matrix each of whose diagonal
elements is of the order of N or N° units in the last significant
decimal place of thecorresponding element of A . This choice may be

+ useful when MA is negligible compared with the smallest positive :
eigenvalue of the semi-definite matrix A . Otherwise one may be forced

to embed the relaxation iteration within an outer iteration process |

defined by |

Ceae-, oo

and designed to replace Zz, by a vector z,. = (z, + Az.) ‘which |
better approximates y . The relaxation process would be used to

| compute each re . Unfortunately, these wheels within wheels can be

troublesome, especially when they all turn very slowly, because it is

so hard to tell a computer which wheel should be turned and when to

stop. I am not convinced that Riley's trick is worth while when

relaxation methods must be used to calculate he , although it has

proved valuable when used with direct methods like Gaussian elimination

where it is much easier to deal with a matrix (A+AA) that stays
positive definite despite perturbation by roundoff than to desl with

a matrix A which may be made indefiniteby perturbation. (cf. sections

2 and 6 of the paper by Martin, Peters and Wilkinson (1965).) |

21



4.) Some Negative Results |

It is widely known that the relaxation iteration described in

section 2 of this report may fail to converge when the system Ay = C |
is inconsistent or when A is indefinite. (ef. Keller (1965, theorem

2) or Ostrowski (1954, theorem II) .) The results proved here are

somewhat stronger. We find that if Ay = ¢ has no solution y |

then the sequence of iterates Yo must diverge to infinity. We find.

that if A is indefinite (has both positive and negative eigenvalues)

then the sequence Yn is almost certain to diverge to infinity like an

exponential function of n . The proofs involve heavy computations, so

only brief outlines are sketched in here. oo

The assumptions about fj 4, and 5 in section 2 are .

repeated here with one extra restriction; we assume | f1 AL > o for |
all J . Moreover, to simplify the computations we shall assume that

~~ each z, has been scaled 80 that I¥AL, = 1 .

| The first step in the computation 1s the construction of matrices

D = diag(d_ » Bgq sees Bur4 ) and

UY = (9 7 G41 700 Spurr)

The matrix Q may have more columns than rows. Since its columns contain
a spanning subset, the equation Qu =y cen always be solved for u,

albeit not uniquely, whatever y may be. Also, Q*y = 0 implies
Y = 0 for the same reason. | |

Since gq "Ag, = 1 for all n , it is possible to write

| 22



¥* frond — a *
Q My, = 1 - 8, - R,

where R, is an upper triangular matrix with zero diagonal. The |
relaxation iteration can now be described conveniently in a closed

form; the reader is asked to verify that

=y +Q[(1+D )" +R*]7hQ *(c-ay).; Intl, © dy U n n n — AY, ’

(This relation may seem less mysterious after one observes that it is

possible to solve the equations

Q Yorn= nim for m=0,1,2 ,..., L

for vectors tm corresponding to the 1 intermediate steps from
u to u of one iteration of the extrapolated Gauss-Seidel Method
~- ~~ =n+L So

for solving

-R -R ¥ = Q *%

(I-R-R*)u=Q*c .

| Compare Kahan (1958), or Varga (1962) p. 59 where 8 = w-1 is held

constant for all n .)

| The second step in the computation is to define the quadratic functional

W(y) = v*Av - v¥c - c*V

The significance of W 1s clear when A is positive definite because

then c¢ = Ay and | |

25



| Wy) = (v-y)* A(v-y) - y*Ay

| _ 2 D
= lv-ylZ - gl

But if A is indefinite, then |---|, 1s not a norm; and if Ay =c

has no solution then (v-y) cannot be computed. Even so, W is

always computable. The reader is asked to verify the following connection

3 between W and the sequence of iterates Y,

- = ~ (c=Av }¥* - |Wy ,p) = W(x) (c-Ay)* B(c-Ay.) where

_ * -1 - * *¥1=1
B =Q[I+ (I+D_)R 1 (I D D (I + (I+D JR] x

Since |3 | <d<1 forall n, B 1s soon shown to be positive

definite (not semi-definite); and another compactness argument, like

that used in section 1 to establish the existence of A <1 , establishes

the existence of some constant Pf > 0 such that

vB v>py*y forall yv and all n.

. Therefore

2

| WY.) S Wy) = Blle-ay,7 -

| The discussion branches here to deal separately with each of two |
cases. |

Case 1: Suppose Ay = c has no solution. Then some positive constant

vy exists such that |

2



| lay-c|i® >y>0 forall y . |

Consequently, | |

W(X, pr) <W(y,)-kBy for k=1,23,...

-) = 00 as K > .

This implies that the sequence I, diverges to infinity at least as

quickly as Yn as n —»w . oo | | | | |

(If A is positive semi-definite, the preceding statement can be

| elaborated slightly; pi diverges to Infinity no faster than an

arithmetic progression. This follows from a lengthy computation in

which (c-ay, ) , and hence (¥pa1-¥,) , 1s shown to be bounded. The

crux of the computation consists in pre-multiplying the equation |

¢c - Ay = (I-AQ [(1+D_)"1 + mr *]7L q x )(c-4y )
= =n-+L n n n n — ¥n oo

by the matrix U of section 2 to obtain oo | oo |

| | | ™
) b= Xp = Tp(B-%,) TS, Rk

The matrix T was defined in section 1 where it was shown to be bounded

by ir <A<1l. The matrix S can be shown to be bounded too, say
by |

lis, <0 forall n . |

Therefore oo |
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/\

lo-x l < Mix[| + olpll , |

and hence | |

lo-x_oll < Mlo-x|| + oliRll/(1-0)

whence comes the desired result.)

Case 2: Suppose now that A is indefinite. We already know that

Yy, diverges when Ay =c has no solution, so suppose too that a

solution y exists. Now there can be no guarantee of divergence

because setting ¥y =X yields a convergent sequence Y,=¥ - . |

However, if any member of the sequence ¥, should fall into the open
cone |

(z,-x)* Alg~y) <0 ,

then the sequence Yo will subsequently remain in the cone as it

diverges exponentially to infinity. .This is so because

: (Ypap-¥r* Agr) - (n-y)* Alyy)

| C= (yy) - Wg) |

= - (yy) AB Aly -y)
| | 2

< - Blyx A (x,y)

 SoB(y,-y)* Aly,-y) <0 ,

where Qa 18 a positive constant defined by
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a = min(- V*ASV/v* Av ) over V¥Av<O |

= - (the negative eigenvalue of A closest to zero) .

Therefore it is possible to place a lower bound upon

2

: | > - (1408)(yg, -y)* Aly, -y) B

| which shows that y.. diverges to infinity at least as quickly as |
’ (1400 )%/© as k »o . The foregoing argument can be refined slightly |
to show that exponential divergence takes place whenever some member of

the sequence Y, falls into the slightly larger open cone

(gr (Ae) (gy)< ©IY YoY | |

Conversely, whenever the sequence Y, diverges exponentially, the

sequence ultimately falls into the cone (y,~x)* Aly, -y) < 0 and never

gets out. This is so because the exponential divergence of Y. implies

exponential divergence of (x,Yn) , which implies exponential
divergence of c¢ = Ay , which implies exponential divergence of

W(y,) to =», | | |

Exponential divergence 1s possible, but how likely is it? In a

sense to be made more precise later, divergence is almost certain provided

the sequences 9. and 5, are chosen in advence, as indicated in |
section 2, before YX is known. The proof is based upon the linear

relation between Yq and Y, 5
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y, -¥ = E (¥;-¥) where

E, =I and, for n = 1,2,5 ,e00 ,

Bay = [1 = (148) a a *A/gA gp] 5,

Note that E, is independent of Yq though it does depend upon A

‘and the sequences ¢ and 8 . Also, IE, | >© exponentially as

n > « because, if hay is any vector in the cone mentioned above,

= lg,~xl/ lly; -gll »~ exponentially .

On the other hand, suppose y, could be so chosen that [ly yl |

did not diverge exponentially. In other words, suppose |

| ly, ~x| < e lly, -xl for each n , where

| e exp(-nt)0 as n —»o forall t>0 .

Could such a ¥y exist; and if so, where?

The region in which NAY must lie to satisfy

is a closed cone ¢, : | | |

(x;-y* (EXEXx; -y) Se (3y-¥)* (3-3) -
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The shape of Cy depends upon the eigenvalues of

| BFE -T |

at least one eigenvalue must be negative if C, is not to collapse

to a point ¥) = ¥ - But no negative eigenvalue can be less than -1,

i while the largest eigenvalue is |

IE_[7/e® 5 as now . |

Therefore, as ne, C, tends to become flat 1ike a hyperplane, and
so the region common to all cones C mist be either the point y -

or a hyperplane H through y . Hy depends only upon A and the
sequences gq and § . The dimensionality of Hy is definitely less
than the dimension of the whole y-space . | | | -

Now it is clear that y will diverge exponentially unless y,

| lies in Hq . Since A is of measure zero relative to the space
in which y; might otherwise be chosen, the probability seems small |

} that y, will lie in 28 . And even if one were to succeed in placing |
y; in A , one faces a considerable risk that roundoff will throw

| some y out of its corresponding hyperplane KH, = EHy - From a

practical point of view there is ample Justification for concluding thatp

when A is indefinite, the relaxation iteration is almost certain :

ultimately to diverge exponentially unless the sequences q, and 8 |

are carefully correlated with Y, . | | |
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