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Relaxation Methods for Semi-Definite Systems

Relaxation methods like the Gauss-Seidel iteration are widely

used to solve linear systems of the form
Ay =¢

when A 1s a Hermitian positive definite matrix, but their usefulness
when A is semi-definite is less well appreciated. A recent paper -
by H. Keller (1965) has expanded earlier results of G. Forsythe (1960)
and the author.(l958, Ch. 2) concerning the convergence of stationary
iterations when the system is consistent, though singular. The gist

of Keller's paper is that those iterations of the form

Yney = ¥ * oAy

which are usually used when A is definite also work when A 1s semi-

definite. This note is concerned with a non-stationary iteration

Y1 = Ly * Tole-Ay,)

and can be regarded as a supplement to Keller's work. In particular,
the results here imply that some of his stationary iterations are
i numerically stable; but there are other applications too, like eigen-
value problems, for this note.

The hypotheses used in this work are intended to be as week as
will fit methods likely to be uséd in practice. Consequently, the
results here do not completely generalize the work of A. Ostrowski

(1954) or S. Schechter (1959). There is also some overlap with recent

independent work of Ostrowski (1965).



The report is divided into four numbered sections. Section 1
15 remeniscent of works by Keczmarz (1937) and Agmon (1954) in that
it characterizes the relaxation iteration to be considered here as a
sequence of partial projections in a suitable space. The iteration
1s shown to converge at least as fast as some geometric series.
Section 2 defines that "suitable space' more precisely in terms
of the given matrix A , and shows how convergence can be sustained in
the face of certain rounding errors committed during'the iteration. |
Section 3 mentions two applications and discusses some open
problems. The central problem is that the solution y of a singular
but consistent system Ay = ¢ 1s not a continuous function of A or
¢ . Therefore, it is no surprise that rounding errors in ‘A and ¢
may obscure the criteria by which one judges whether or not an iteration
has come close enough to a desired solution that further iteration is
worthless. Attempts have been made to iterate instead with a non-
singular system that is practically equivalent to the given singular
system Ay = c¢ ; +two such attempts are mentioned in this section.
Section 4 shows that relaxation diverges to infinity when the system

-Ay = ¢ 1s inconsistent, and is almost certain to diverge exponentially

if A i1s indefinite.

1.) Relaxation in a Simple Case

To begin, conslider the solution by relaxation of the trivial

equation




as follows:

Let {gl » € stes &y} be a given set of non zero vectors
which, though not necessarily linearly independent, do span E'S
space. In other words, M 1s no smal}er than the dimension of Xx

and both matrices
{El > 8o 5o SM} and {El » &5 50005 Sy x}

have the same rank for all vectors X .

Next let By s Bp seves By see be a sequencé constructed by
choosing 2, - Ej for some J = J(n) so contrived that each set of
congecutive vectors [En » Bpag 20002 En+L-1] spans X's space.

I, is some fixed integer exceeding the dimension of X . )
Now the iteration to solve X =b for x can be defined.

Beginning with an arbitrary x we define for n = 1,2,3,...

1’
n, = ¥ (X )/p e,

8, 1s arbitrary except that ls,l <d<1 forall n ,

£, = (l+8n)nn s

oy = &y By s B0

Xl T Ty -

The numbers (1+8n) are frequently called @, in the literature.
The values 5n can be complex, but when they are real they have the

following connotations:

(o4
]

0 means exact relaxation ,
85 > 0 means over-relaxation ,

5 < 0 means under relaxation .-




Each relaxation may be regarded as a near-projection;
- = - * -
b - xpyy = (1 - (148) B, B*/Rg* B,) (-x,) -
Consequently, if the usual norm

lxll = Vxxx

is used, then "_‘p_-zc_n +l" < ||_1_)_-_)£n | . To be more p?ec?.se,
2 2 2 2 2
lo-x_, 1P = lo-x |2 = (2-15_|?) |p*(b-x_)(%/llp,

~ 2
< ||p_-:_{n|| unless p *(b-x ) =0
2

because 1 - |8n|2_>_l-d >0.

If we use the abbreviation
P(p,d) = I - (1+#8) p p*/p*p ,
then it becomes convenient to write

b-x .= Tn(l_)_-x_n) where

Tn=HP(P-m’ Sm) over n<m<n+L .

The next step is to show that ||Tn|| <1, where the matrix norm is

defined by

Il = max fir vll/lvll over v £0




Let us write X = IITn | Obviously A, S1. If A =1 then there
mist be some non-zero vector v such that HTn!“ = |vll + By examining

the factors P(Bm s Sm) of T in turn, we conclude that

T v=v and
n— —

Pﬂl*!=o fOI‘ m n’n+l ,0.-,n+L"l .

Because of the way the vectors p, wvere chosen, there exists a com-
plete linearly independent subset among them, and since Bm*! =0

for all Py in that subset, v =0 . This contradiction shows that
xn <1l. =~

-

Now, Xn may be ldentified with a continuous function

M = >"(:En » Bned 2002 Brare1 5 Bn s Bpag s 8n+L-l)

of L vector and L scalar arguments. The vector arguments are con-
strained in such a way that there is only a finite number of permissible
sets of L vector arguments. Indeed, of the LM ways to choose the

L wvectors
Bn s By 7000 Bpapa

from the set {gl 2 €5 secey EM} s, most will be rejected because the
p-vector must include a complete set spanning x-space. The scalar
arguments am are constrained to the compact set |5m| <d<1l.

Therefore there must exlst a number




b= max Megyy s Bz) e B G 1) 2 O2) 0t Sw))

over the set of allowed choices for R(m) and S(m) s

and this maximum is achieved, and A < 1 by virtue of the same argument
as was used to show Xn <1l.
Therefore, the relaxation iteration converges at least as quickly

as a geometric series with a common ratio Xl/L 3

X .
"E—)—cnﬂ:L" <A "E"_cn" for k=1,2,3 ,ce0 o

2.) Relaxation in Practice

The foregoing theory is applicable to the solution by relaxation

of the equation
Ay =¢

when A 1is Hermitian and positive definite or semi-definite, provided
the equation is consistent when A 1s semi-definite. Only the semi-
definite case is discussed here.

The relaxation process for solving Ay = ¢ consists in choosing
a setéof spanning vectors Eﬂ and a sequence of vectors gn of which

each consecutive L vectors include a spanning subset of the f's ,

and a sequence of values 8 with |8n|2 <d<1. Then

=
!

n = St (eAY /g xAg,

( l+5n )ﬂn ’

uve
n




o, = by g, o0

Xn'l'l:Xn-'.%n’ for n=l,2,5,‘.. -

There 1s a formal requirement that gn*Agn # 0 , which is tantamount

to requiring £ *¥Af > 0 for all jﬁ. M ternatively, since

J =)
£¥Af = O implies Af = O and, because ¢ = Au for some u,
f*c = 0 , 1t suffices to define n, = O instead of using the inde-
terminate O0/0 when g.*Ag =0 . In practice one is unlikely to
have to worry about this contingency.

The relaxation process for Ay = c can be related to that for

x = Db via a non-singular linear transformation U which satisfies

U*AU = disg(1,1,1 ,..., 1,0,0 ,..., O) .

The number of 1l's and zeros depends only upon A ; otherwise there

is a substantial degree of freedom in the choice of U . One possibility
is to choose U 1in such a way that U¥U is diagonal too. That such

a matrix U exists followslimmediately from the fact that A 1s uni-
tarily similar to a non-negative diagonal matrix.

Let us impose a partitioning upon

I O
U*AU =
0 O:

dnd, conformally, upon




Note that the vectors {gl » 8p seees S-M] span the space of x be-

cause the vectors {_:g‘_l geeey EM} span the space of y . Now, Ay =¢

is precisely equivalent to

The last condition 1s necessarily satisfied because the equation Ay = ¢

is consistent by hypathesis. Furthermore,
_qn*A_qn* = Bn* 2, >0 and

Ty = 9 (e-AY, Mg *Ag,

= *(x )/ B, -
Therefore the theory developed for x =b 1s almost applicable to

Ay = ¢ , the defect being that while X, —b we do not yet know what

N\
happens to x -

. Now,
A ~ 1l A
5,75 L kg

[+ ]
s0 we can deduce that X, converges if we can prove that Z |§n|
1

converges. Because



le | < (1+d) fip Il flo-x Il , =and

ol < M Jo-x || for all n and k =1,2,3,...

and A is some number which depends upon {23} , 4, L and. U

(actually upon A instead of U) , and A < 1 , the series
. 2

[N

b ~
2S5 ¥ %; E'n By

converges at least as quickly as a geometric series with common ratio

xl/L

< 1 . Therefore the sequence y,, converges too to one of the
finite solution;mof Ay =c .

The foregoing theory is easily generalized to include block relexsa-
tion as well as point relaxation, but the theory is already too general
to permit anything useful to be said about the rate of convergence
of the iteration, nor upon how to choose {EJ} and {Sn] to minimize X\ .
However, convergence maykbe fetarded if Gn is chosen in a way which keeps

|8,| too large. More precisely, if B < |8,| <d forell n, then

Xl/L > B . This 1s so because

lo-x_ 1 IP = o IP - (1-18_17)|p*(b-x, ) 1%/ llg, I

v

5 _|° |b-x_|° by the Schwartz inequality .
n' ==

And if the wvalues Sn and vectors g, éare chosen cyclically (gn+L = gﬁ

and B =8 for all n ) then
n n

+L

L 1/R
»>TT el where R = rank (4) .
m=1



The last inequality can be proved by generalizing a theorem due to
the author (1958) ; the theorem and proof can also be found in Varga's
book (1962). The proof of the generalization is a tedious computation
too long to include in this report.

Finally, one aspect of numerical stability 1s considered here.

Let a semi~-norm for the error (Xn-_y_) be defined by

'1)31/2

ly,xll, = (g aly,

t

I, bl -

1/L

~.1/L
stnce [y, -yll, S gyl ena W P<a,

1
L,4y can be replaced by a perturbed vector RAY which still satisfies

"I;l.,_l'I“A < Kl[{n-z" A for some K< 1

provided the perturbation (Ir'l +1-Xn+l) is small enough to satisfy

Iy s aa g < M) Ty yll, -

Therefore, the relaxation iteration will appear to converge as long as

rou%ldoff is kept sufficiently small. But the foregoing argument is too
supérficnial to be of much use in practice because one does not normally
know |l -yll, mor X, end therefore cannot tell when rounding errors
are small enough to be unimporteant. When an iteration converges

slowly (because A is very nearly 1 ), it can be difficult to

supply criteria whereby a computer progrem will be stopped after the

10




iteration has achieved as accurate an approximate solution y, @as
is desired or possible, but before a large quantity of time has been
wasted on iterations whose effect has been nullified by roundoff.
For further discussion of these difficulties, consult papers by
Golub (1962) and Descloux (1963).

Fortunately, the relaxation iteration need not suffer intolerably
from these'difficulties, because the iteration can be carried on useful;g
until Agh remains smaller in magnitude than two oy three units in '
the last placevof ¥, after which there is no point in continuing.
This is so for the following reasons, which are adapted from Ch. 4 of
the author's thesis (1958).

Let each vector iﬁ be one of the coordinate vectors

T
£y = (0,0 ,44e, 0,1,0 ,..., O)

with a 1 in the jth position. Since [+ is chosen from the set of

f's , 1t too 1s a coordinate vector. Therefore

Ny = 4 *(e-Ay)/a,*Ag,

can be computed to almost full single precision; to do so one must
compute the relevant component of the résidﬁal c - Alh with the aid
Tof double-precise accumulation_bf products of single precision numbers
before the residual is rounded to single precision. Next, the number
gn = (l+8n)nn can be computed tentatively to provide a value for the
formula |

Yord “¥n * 5 Sy

11




However, the vector BN will be rounded before it is stored.
Therefore, the value of §n actually used will be defined in fact

by the equation
0 3y T LT 4y

in which only one component can be non-zero, and that component is the
difference between the new value and the previous value stored in the
array y. . In other words, when we let the Bymbol‘ I stand fdr a
vector which is precisely represented by an array df numbers stored in
the computer, then all of the foregoing theory remains applicable
provided we undergténd that §n is finally defined after Yo+l is
rounded and stored. Therefore gn may differ from the tentative value
(l+8n)nn which had been intended for it. Even so, convergence is

assured 1f the finsl value of §n satisfiles

le /n-1l <a<1 forall n .

This last condition can be satisfied easily unless M, is not much
larger than a unit in the last flace of the affected component of pA
Therefore, rounding errors may slow the iteration down, but they need
not prevent the iteration from progressing to a point where the scaled

residual

(aiag(a))™ (c-ay,)

is scarcely larger than a unit 1n the last place of ¥yt This is as
small a residual as might reasonably be hoped for, but whether it is

worth waiting for is a harder question. In my opinion, a good relaxation

12




program can confidently be expected to reduce the scaled residual
to about ten units in the last place in ¥, » beyond which point

further progress is likely to be too slow to be economical.

3.) Open Problems Connected with Applications

There are two important applications of the foregoing theory.

One is to the solution of
(A-XB) u = 0

for an eigenvéctor u corresponding to the smallest~eigenvalue A
of A with resﬁéct to B when both A and B are Hermitian and B
is positive definite. Since this application usually entails the
similtaneous calculation of A as well as u , the detalls are de-
ferred to a later feport (Kahan, 1966).

The second application is to the solution of the Neumann problem
in potential theory. Here the semi-definite matrix A represents a
discrete approximation to a partial differential operator, and ¢

in the equation
oy =¢

éepends upon boundary values assigned to a normal derivative. The
5oundary values must satisfy a compatibility condition to permit a
solution y to exist. Unfortunately, roundoff in ¢ may prevent the
compatibility condiﬁion from being precisely satisfied. What happens

to the iteration in this case?

15




This question was considered in the author's earlier work (1958)
only for the stationary case of constant Sn = 8 and a cyclic choice
of L = Ly, for all n . There it was shown that the sequence of

residuals

e - Ay,
converged like a geometric series even though the sequence PN diverged
like an arithmetic progression. The implication was that if c
deviated only slightly from consistency, then the sequence y would
diverge fairly slowly and, for n large enough, would adequately
approximate the solution of a nearby consistent system. Besides, if

the general solution of

fn =0

were known then some iterates I could be replaced by Yo - kn . with
k chosen to diminish "z’m - kn|| conveniently. In particular, if A
came from the Neumann problem then n would represent a function every-
where constant. |

But the situation is not so c¢lear for the non stationary relaxation
process. The best I can do is prove that for all large enough velues
of n the residuals 34- Alh will be bounded by some expression of

the form

e - Al s % el

where |zl is the minimm possible value of |[c-Ay|| for all y and K
depends upon the same date as determines A , i.e. uwpon 4, L, A

and the set f (Unfortunately, |z}l , A and X are discontinuocus

3

1




functions of A .)‘ This is enough to establish numerical stability
in the face of errors in ¢ and in Agh, but not enough to tell

a computer program when to stop iterating. The problem is acute when
"convergence" is slow, because the effect of inconsistency in ¢

is scarcely distinguishable from the effects of a value A very near
1 or a rounding error in A .

One way to sidestep the problem of a slightly inconsistent right-
hand side ¢ 1is to use a restricted relaxation itefation; a selected
component of Y is forced to be cbnstant for all n and then
relaxation is restricted to the other comporents. For example, in the
Neumann problem Ehe value of the desired solution at one point in the
region of interest could be fixed arbitrarily, and the valués of the
solution elsewhere could be obtained by solving the relevant difference
equations by relaxation. Such a procedure is described unenthusiﬁstically
by Forsythe and Wasow (1960). The scheme is open to two criticisms:

First, the effect of aﬁ inconsistent right-hand side ¢ 1s con=-
centrated in the one equation of the system whose residual is never
relaxed. For the Neumann problem this can mean a'cusp-like intrusion
in the solution at the artificilally fixed point.

_ Second, the rate of convergence of restricted relaxation can compare
ﬁnfavourably with that of unrestricted relaxation. This possibility

is clear in those cases, as when A has Young's "property A", when
the rate of convergence of successive overrelaxation can be computed
directly in terms of the smallest non-zero eigenvalue of A ; these

cases must have been the ones that Forsythe and Wasow had in mind when

15




they advised against the restricted relaxation scheme. But in
general there is no way to estimate the rate of convergence of successive
overrelaxation in terms only of the non-zero eigenvalues of A , and
there are rare cases in which a restricted iteration is faster than
the corresponding unrestricted iteratian. The following example is
one for which, if & 1is fixed at its best constant value for each
iteration separately, the restricted successive overrelaxation converges
almost twice as quickly as the unrestricted overrelaxation.

Let A= [aij) be the symmetric semi-definite N X N circulant
matrix defined by

a,. =0 except that

iJj N
8,4 = 1l and
854 = -1/2 whenever 1= j+1 mod N.

The equation Ay =b is consistent whenever

and successive overrelaxation with constant ® and arbitrary x}

- produces a sequence of iterates

2
z} s ¥ z? seeey XP seae

via the recurrence

ntl _ n 1 n+ n in
Ym =¥t (1+8)(bm *E5Vp1 "Vt 2 yﬁ+l)

in which it i1s to be understood that YN = Y for all m . The

16




sequence of error-vectors EP satisfy the same recurrence except that
bm is replaced by zero. The iteration is stationary; its eigenvalues
€ are the N complex numbers for which there exist complex error-vectors .

u"  satisfying

n+l _ c EP and EP # o .

It can be shown that theseveigenvalues satisfy

-

€ =20 and 24 - (l+8)(zN-l+z)r+ 286 = 0 ;

this is done in Ex. 5 of the author's thesis (1958), and by further
tedious work alongAthe lines discussed there and in Ex. 3 it is possi-
ble to approximate each of the N eigenvalues € as functions of B
with sufficient accuracy to support the author's claims. But the same
conclusions can be drawn more elegantly from an argument patterned upon
Garabedian's (1956):

When N is large the equation Ay = b can be approximated by

the differential equation

& 1%
:‘

with periodic boundary conditions

y(x+n) = y(x) for all x .

Then the error vectors uz can be approximated by the function
u(mh , nk) , where u(x , t) satisfies the hyperbolic partial
. ' :

differential equation

17




with constants
p=h/k and 7T = ((1-8)/(1+8))/n .

Here h = n/N can be made arbitrarily small by maeking N large
enough, and the error of approximation tends to zero as h -0 ; note
that k20 and 85-1 as N -ow.

We deviate slightly from Gerabedian by neglecting to transform
the partial differential equation into canonical form before separating

the variables. Instead, a trial solution

u(x , t) = X(x) T(t)

yields
o(T'/T) = p(X"/X) - (X*/X)(T'/T)

for which the solutions are T = exp(At) and X = exp( px) provided

Now we write the general solution wu(x , t) symbolically in the form

u(x , t) = E“ a(p) exp(ux+r(n)t)

summed over all permissible complex numbers p , with

Mu) = /() .

18




and a(p) chosen to satisfy the periodic boundary conditions

u(x+n , t) =u(x, t) forall x and t .

To any value A corresponds ét most two values of pu for which

A = AMp) , and if we call these values u' and p" then
£,(x) = ') exp(p'x) + ou") exp(p"x)

mist be periodic too. This leads promptly to the conclusion that the

only permissible values of pu are

By = eni
where n 1is an integer (positive, negative or zero) and 12 = =1 .

The corresponding values of A are

M, = -4n2'p(1-2n1)/(12+hn2) .

Our object now is to choose T , and hence & , in such a way that

max Iexp(xn)|
nfo

;s minimiZed, thus ehsuring that even if wu(x » O) (corresponding to
ui ) 1is chosen in the worst possible way, the convergence of u to
its limiting form

u(x , ©) = constant for all x

will be as fast as possible. Since

19




2;9(; lexp(x )| = |exp(r)]

it is soon concluded that the best value for T is 2 ; then
. lexp(r)] = exp(-p) .

The restricted successive overrelaxation differs from the fore-

going only in that the boundary conditions for wu(x , t) are
w0, t)=u(x, t) =0 forall t ,

whence the values Xn are

-

Xn = -2p(T+ni V'n2-T2 ) for +n=123,... ;

now the best value for T is 7T =1, and
lexp(r, )| = exp(-20) .

The conclusion is that the restricted iteration is twice as fast as
_ the unrestricted iteration.

The example should not be taken too seriously; it is a coﬁnter-
example to a plausible conjecture, and atypical of most cases encountered
in ‘practice.

Finally, a trick due to Riley (1955) deserves some attention.

The idea here is to approximate the semi-definite system Ay =c

by a definite system

(A+MA) z = ¢




in which AA is a suitably chosen positive definite matrix. To be'
most useful, AA should be just large enough to swamp the uncertainties
in A and ¢, but not too'large lest 2z be useless. An attractive
choice for AA is an N X N diagonal matrix each pf whose diagonal
elements is of the order of N or N2 ~units in the last significan£
decimal place of the corresponding element of A . This choice may be
useful when AA is qegligible compared with the smallest poéitive
eigenvalue of the semi-definite matrix A . Otherwise one may be forced
to embed the relaxation iteration within an outer iteration process

defined by

(A+MA) &z = ¢ - Az
-n - -

and designed to replace z. by a vector =z + Ag ) which
=n - =n - .

= (2,
better approximates y . The relaxation process would be used to
compute each A_z_n . Unfortunately, these wheels within wheels can be
trwblesoﬁe, especially when‘they all turn very slowly, because .ﬁ: is
so hard to tell a computer which wheel should be turned and when to
stop. I am not convinced that Riley's trick i1s worth while when
relaxation methods must be used to calculate AEn , although it has
px_'oved valuable when used with direct methods like Geussian elimination
where it is much easier to deal with & matrix (A+AA) that stays
positive definite despite perturbation by roundoff than to deal w:lth

a matrix A which may be made indefinite by perturbation. (cf. sections

2 and 6 of the paper by Martin, Peters and Wilkinson (1965).)

21




4.) Some Negative Results

It is widely known that the relaxation iteration described in
section 2 of this report may fail to converge when the system Ay = ¢
is inconsistent or when A 1is indefin:ﬁ:e.’ (ef. Keller (1965, theorem
2) or Ostrowski (1954, theorem II) .) The results proved here are
somewhat stronger. We find that if IAX = ¢ has no solution ¥y
then the sequence of iterates ¥, must diverge to infinity. We find:
that if A is indefinite (has both positive and negative eigenvalues)
then the sequence In is almost certain to diverge to infinity like an
exponential function of n . The proofs involve heavy computations, so
only brief wtlin;s are sketched in here. |

The assumptions about f 3 _qn and Bn in section 2 are
repeated here with one extra restriction; we assume f J*A£J > O_ for
all J . Moreover, to simplify the computations we shall assume that
each f _ha.s been scaled so that f *Af,6 =1 .

=J J =J
The first step in the computation 1s the construction of matrices

D
n

diag(sn » Baq reees 5n+L-1 ) and

n

Qn = (Qn 2 Doy 2000 Sa1-1 ) .

thle matrix Qn may have more columns than rows. Since its columns contain
a spanning subset, the equation in_l = y can always be solved for u,
albeit not uniquely, whatever y may be. Also, Qn*z =0 dimplies

Y = 0 for the same reason.

Since %*Agn =1 for all n , 1t is possible to write

22




QA = I - R, - R

where Rn is an upper triangular matrix with zero diagonal. The
relaxation iteration can now be described conveniently in a closed

form; the reader is asked to verify that

Yoap, 4y * Qn[(I+Dn)_l * Rn*]-l Qn*(E_AXh) )
]

(This relation may seem less mysterious after one observes that it is

possible to solve the equations

Qn YWim = Ynim for m=0,1,2 ,..., L
for vectors Yot corresponding to the 1L intermediate steps from
u to u of one iteration of the extrapolated Gauss-Seidel Method
-n - =n+L v
for solving

-R -R ¥ = *
(I-R-R*)u=@Q*c .

Compare Kehan (1958), or Varga (1962) p. 59 where 8 =w-1 is held
constant for all n .)

The second step in the computation is to define the quadratic functional
W(y) = y*AV - v¥c - c*v

The significance of W 1s clear when A is positive definite because

then ¢ = Ay and

25




w(v)

]

(v-y)* A(y-y) - y*Ay

I

le-glls - lglf -

But if A is indefinite, then ||---llA is not a norm; and if Ay = c
has no solution then (XTX) cammot be computed. Even so, W is
always computeble. The reader is asked to verify the following connection

between W and the sequence of iterates ¥, ¢

Wy ) - Wy ) =- (c-Ay )* B (c-Ay ) where

B =q[I+ (1+1):;)1=¢n]'l (I-DF D )T + (I+Dn)R:]-l Q* -

Since lﬁhl <d<1 forall n, Bn is soon shown to be positive
definite (not semi-definite); and another compactness argument, like
that used in section 1 to establish the existence of A < 1 , establishes

the existence of some constant £ > 0 such that
v* Bn v>p X# v for all v and all n .

Therefore
W) < W) - Ble-ay I -

The discussion branches here to deal separately with each of two

cases.

Cese 1: BSuppose Ay = ¢ has no solution. Then some positive constant

7 exists such that

24




lay-clf>7>0 forall y .
Consequently,

WY, yp) SW(y,) -k By for k=1,23,...

This implies that the sequence diverges to infinity at least as
In : ‘

)
quickly as ¥Yn as n —ow .

(If A is positive semi-definite, the preceding statement can be
elaborated slightly; ¥, diverges to infinity no faster than an
arithmetic progression. This follows from a lengthy computation in
which (E‘AZh) , eand hence (yh+L-xn) s 1is shown to be bounded. The

crux of the computation consists in pre-multiplying the equsation
&= Ay o= (T-8Q (14D )™t + R ¥17h Q% )(e-ay )
by the matrix U of section 2 +to obtain
b -

N\
a1, = Ta(2%) + 8, B -

The matrix Tn was defined in section 1 where it was shown to be bounded
by HTnH <M<1. The matrix S  can be shown to be bounded too, say
by

"Sn" <o for all n .

Therefore
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/N
o-x o | < Mib-x, I| + olpll
and hence

oyl < ¥l | + o/ (2-2)

whence comes the desired result.)

Case 2: Suppose now that A is indefinite. We already know that
¥, diverges when Ay = c¢ has no solution, so suppose too that a
solution Y exists. Now there can be no guarantee of divergence
because setting X =¥ yields a convergent sequence Y, =Y -
However, if any member of the sequence ¥, should fall into the open

cone
(Z-2)* Alg,y) <o

then the sequence I will subsequently remain in the cone as it

diverges exponentially to infinity. .This is so because

(Fpap, 2 Mypag-x) - (L -y)* Ay,-y)

(L) = W)
- (ggh* A B, Algy)

n

- By, -y * Ay -y)

IN

< oB(y, ~y)* Aly-y) <o ,

where a 18 a positive constant defined by
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min( - X*Azyz*A_Y_) over V¥A v <O

Q
1l

- (the negative eigenvalue of A closest to zero) .

Therefore it is possible to place a lower bound upon

I e A L N AP)

> - (1408)(y, -y)* Ay -y)

which shows that Lk, diverges to infinity at least as quickly as

(l&o@)k/2 as k »® . The foregoing argument can be refined slightly

to show that exponential divergence takes place whenever some member of

the sequence y  falls into the slightly larger open cone
2
-v)* (A- -
(x,-x)»* (A-pA") g, -y) <O

Conversely, whenever the sequence ¥, diverges exponentially, the
sequence ultimstely falls into the cone (Zh'l)* A(Xh'l) < 0 and never
gets out. This is so because the exponential divergencé of ¥, implies
exponential divergence of (zh+L-zh) , which implies exponential
divergence of ¢ = Agh » which implies exponential divergence of

W(zh) to - ., |

. Exponential divergence is Bossible, but how likely is it? In a
sense to be made more precise later, divergence is almost certain provided
the sequences 9, and Sn are chosen in advance, as indicated in

section 2, before X, is known. The proof is based upon the linear

relation between y, and y ;
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I, -¥= En(xl-y_) where
E, =I and, for n=1,23%,... ,
Bl = (T - (l+8n) 4, gn*A/-qn*A g'n] By e

Note that B, is independent of ¥y though it does depend upon A
‘and the sequences g and 8 - Also, HEn | >~ exponentially as

n -« because, if ¥, is any vector in the cone mentioned sbove,

\%

el > 1, (=) Ny -

lyy=xll/ gy -gll - exponentially .

On the other hand, suppose could be so chosen that -
s L L

did not diverge exponentially. In other words, suppose

I[zn-x" < en||xl-x|| for each n , where

e exp(-nt) -0 & n - forall t>0 .

Could such a b2y exist; and if so, where?

The region in which ¥, must lie to satisfy
-zl = e, Gry =2l < e lly; -y
is a closed cone Cn

(x-xr* (B *E )y -y) < eﬁ (-)* (3-¥) -
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The shape of Cn depends upon the eigenvalues of

-2
* - .
e, En En I ;

-~

at least one eigenvalue must be negative if Cn is not to collapse
to a point Hn=y- But no negative eigenvalue can be less than -1,

while the largest eigenvalue is
"En“2/e§ —wo  as n-ow .

Therefore, as n-w, Cn ténd-s to become flat like; a hyperplane, and
so the region common to all cones ‘Cn must be either the point y
or a hyperplane 741 through y . ‘Nl depends only upon A and the
sequenceg _c_;n and Sn . The dimensionality of 7‘1/1 is.definite.ly less
than the dimension of the whole y-space .

Now_ it is clear that ‘xn will diverge exponentially unless xl
lies in 7/, . Since X

1
in which ¥ might otherwise be chosen, the probability seems small

is of measure zero relative to the space

that pAY will 1lie in 7‘/1 « And even if one were to succeed in placing

Xl in #. one faces a considerable risk that roundoff will throw

1 )
some y. out of its‘ corresponding hyperplane Nn = EnHl « From a
practical point of view there is ample Justification for concluding that s
when A 1is indefinite, the relaxation iteration is almost certain
ultimately to diverge exponentially unless the sequences 4 and B N

are carefully correlated with Y, -
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