
CS 52 |

LECTURE NOTES ON A COURSE IN SySTEMS PROGRAMMING
. BY

ALAN C. SHAW

ERAT SHEET INCLUDE D
- TECHNICAL REPORT NO. 52

DECEMBER 9, 1966

These notes are based on the lectures of Professor
Niklaus Wirth which were given during the winter and
spring of 1965/66 as CS 236a and part of CS 236b,
Computer Science Department, Stanford University.

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences
STANFORD UNIVERSITY

®

. A EFA

B

January 15, 1967

ERRATA 1in |

ALAN C. SHAW, LECTURE NOTES .ON A COURSE IN SYSTEMS PROGRAMMING

CS TR No. 52, Dec. 9, 1966

! 1" n rt "

p. 17, line 5, read S,4, for Siti .

p. 34, line 4, read "operand[O:m];" for "operands[O:m];" .

p. 35, line 3, read "real or" for "real of" .

p. 39, line —7, read "KDF-9" for "KDK-9" .

p. 50, line -8, read "careful" for "cardful" .

P. 5% add an arrow from "Data Channel" to "Memory" in the diagram.

p. 74, last box on page, read "TSX U, 4" for "rsx 4, &" in all cases.

p. 75, diagram, read "SQRT" for "SPRT" .

p. 86, line 10, append "s2 := 82 + a[j] Xx b(jl;" ,

line -10, read "C[1l:4,1l:n];" for "C[l:2,1l:m];" .

£. 91, last paragraph, replace by

"Dijkstra tH has developed a solution to the more general problem

where there are n processes, instead of only 2, operating in parallel.

See Knuth for a discussion and extension of Dijkstra's solution.".

p. 100, left, insert between lines —6 and -7, "TRA EQ" .

left, line -2, read "1" for "7" .

p. 105, Example, read - AX" for ",Ax ".pA 4
LDQ CLA

p. 117, second diagram, read

It tt for 1h tce lx [-F CT

p. 119, line -7, read "u,v (possibly empty)" for "u,w (possibly emtpy)".

p. 120, line 1, append to-first sentence

"where the elements of I’~ are of the form:

U= we Eo UV, xelx) |".

Se FERRIER
. Te

[4

[
H

CS 52 ERRATA, Alan C. Shaw

p. 131, lines 1 and 2, interchange "iterative" and "recursive".

p. 136, replace-program by

" So . = Py i:=03k = 1;
while P EL do

while S. > P, do
— 1 k —

begin while S01 = Zp do J := j-1;
S. .— Leftpart(S. . . .85.,);1 :=]jo p (j |); J

end

end

p. 137, replace (b) by

i 6 A 4 A A J ? ’ 1

— I
<head> <head>
IR[iUE — |

<head> <head>
-

<head>

<string>
I —

<head>

1

<string> "

line -2, read "of i<string>t ." for "of <string> ."

p. 140, line —-3, insert "The word "simple" is henceforth omitted.".

p. 147, lines 5 through 9, replace by

"directly reducible substrings (a) S eee and (b) SFRRRRLY . It
follows from the definition of precedence relations that Se © SnN J
and Sy > Sir] . Now if 1i< Jj, then also k < Jj, since 1< J<Kk

implies iy 17 5 If i=3 and k< {, then k = 1, since
J <k< 1 implies Si = Ser .

p. 151, line -13, read "conditional" for "condition" .

p. 154, line -7, read "<digit>" for "<digit" .'

p. 179, insert between lines -% and -5

"procedure Q(n); integer nj’

2

PARSE PI

Lecture Notes on a Course 1n

SYSTEMS PROGRAMMING

December 9, 1966

These notes are based on the lectures of Professor

Niklaus Wirth which were given during the winter and

spring of 1965/66 as CS 236a and part of CS 236b, Com-

puter Science Department, Stanford University.

Alan C. Shaw

1

Hol, PUR

JR Ch RETR ET

a ON

SYSTEMS PROGRAMMING

Page

I* Introduction . . + . « © « «i i i 4h 4 ees a vee a 1

I-1. Advanced Programming . . . « « os« « « o «os 000 a 1

| [-2. Purpose and Prerequisites of the course 2

I-3. Translators . . tv eetv 0 ov to ee 4 vv wee ee. 2

I-4. References . . « «vovw so« ow wy oop woeuw «hk

II. Assemblers . . . i... tiet ee hee ee eee 5

II-1. Basic Concepts . «« vv vv vv ee ee eee a 5

IT-2. Multi-Pass Systems &¢ ote « «oa « 00+.

II-3. Organizing and Searching Symbol Tables . , 11

II-5.1 Unordered Tables . . « + « « ¢ o « o o « oo 12

I1-5.2 Ordered Tables + +o + + ov « oe. 12

II-3.3 Sorting . « « + ov vv 4 eo 4 we wee we . . . 1k

II-3.3.1 Bubble SOTLt «+ «« oc« ooo « o« 1h

IT-3.%.2 Ranking By Insertion 16

II-%.%3.35 Other Common Methods -. «+«oo 17

II-3.4 Scrambling Methods . . «oe « ooo ooo. 17

II-4. One-Pass Assembly . «oe coo eo« =o 2 0eoees.. 18

II-5. Block Structure in Assemblers .. . «eo oo « +.. 21

II-6. RefETENCES vv vv voeo so0 6 aa o oo vo vw ou ov. . 26

II-7. Problems . oo oo« « vo vw 20 oo o ow as 06aoa+ +. . 206

ii

Page

III* Interpreters + «vv v vv vv ve eee ee eee 30

III-1* Definition and Examples + + « « « « « « « « « « « « 30

11X-2. Basic Interpreter of Sequential Code 31

III-3. Interpreter for a von Neumann Machine 33

III-4. Polish String or Stack Organized Machines 38

III-5. Interpretive Computers . « « « « « « « « « « « «. . . 41

: IIT-6. References «+ « « + « « +o oo vt ev eee ee ww. 43

ITI-T7. Problems. . . . v v v vv vv vv vee ee eas

IV. Input-Output Programming. , , , 48

IV-1. The Input-Output Problem 48

IV-2. Immediate I-0. « « «+ « « «vv «oo oo. 49

IV-2.1 No "Busy" Flag. =. .. « « « « «« « « . «. 50

Iv-2.2 "Busy" Flag, ., 50

IV-3. Indirect I-0 « . «+ + « « + « «oo... 51

IV-3.1 Channels + + « « « « « « «, «+52

IV-3.2 CPU Interrogates Channel 53

IV-3.3 Channei Interrupts CPU20

Iv-4., I-0 Processors. . . . + + vw vw wv vw vw wy « « « . . . 0660

IV-5. Experimental Comparison of Several Methods of I-O.

Organiiation. +. . vv vv « « «+ + bb

IV-6. 1-0 and Systems Programming. 08

V. Supervisory Programs (Monitors). . . , « « «+ «+ «+ « « . 69

V-1. Monitor Tasks .« . . «vo+s oo « os so 0 os so oo « oo 69

v-2. Types of Monitors. . . . o o o oo o o oo +o os a TL

V-2.1 Batch Processing Monitors (1

111

Page

V-2.2 Real Time Monitors 11

V-2.3 Time Sharing Monitors [2)

v-3. Storage Allocation Methods 13

v-3.1 Static Relocation 14

V-3.2. Dynamic Relocation , «+. 16

V-3.2.,1 Ferranti ATLAS Method '78

V-3.2.2 Burroughs B5500 80

V-3.2.3 Arden, et al. Scheme 80

V-3.3 Memory Protection 82

V-3.4 Invariant Procedures .. « 83

v-4 . Loosely Connected Parallel Processes 85

V-4.1 Programming Conventions for Parallel
Processing . . + + +o o vw vw « « « « + +... . 86

V-4.2 The Control Problem for Loosely Connected
PrOCESSES vv + ve ee ee ee ee ea.

V-4.3 Solving the Problem 388

V-4.4 The Use of Semaphores «.. 92

V-4.4.1 Two Processes Communicating via
an Unbounded Buffer 93

v-4.4.2 Processes Communicating via a
Bounded Buffer. 9

V-0., ReferenCesS . + «v o v wvso vw vo 4 vv wv ee ee. 9

V-6. Problem. ««4 « vv vv huee ee eee ee ee 99

VI. Compilers - An Introduction«. 100

VI-1. Tasks of a Compiler « . . 100

VI-2. Heuristic Techniques for Expression Compilation . . 103

1v

Page

VI-23 Rutishauser (1952) 10%

VI-2.2 FORTRAN Compiler (1954+) lob

VI-2.3 NELIAC (a dialect-of ALGOL 58) =... ... 103

VI-2.4 Samelson and Bauer (1959) =... 106

VI-2.5 Dijkstra (1960) « « « « « « « « « « «oo . 100

VI-3. Compilation of Expressions Using a Stack 106

VI-4. Phrase Structure Methods 111

VI-5. References « « « « « « « « « « « « « oo oo « « . 112

VI-6. DPrODIEmMS. «+ « « « o o o oo oe tv eee eee. 112

VII. Phrase Structure Programming Languages 11k

VII-1. Introduction . . . + + + vv vou vee 114

VII-2. Representation of Syntax « + « « « « « « « « . . . 115

VII-3. Notation and Definitions - - « « « 119

VII-4. Chomsky's Classification of Languages - - - - . . . 122

VII-5. The Parsing Problem = + « « « « « « « « « « « « . . 122

VII-6. Irons' Classification of Languages According to

Parsing Difficulty «. + + + + «o.. 126

VII-7. Parsing Methods + ov. oo... 128

VIi-7.1L A "Top Down" Method 128

VII-7.2 Eickel, Paul, Bauer, and Samelson 131

VII-8. Precedence Phrase Structure Systems 135

VII-8.1 Precedence Relations and the Parsing
Algorithm 133

VII-8.2 Finding the Precedence Relations 138

VII-8.3 Use of Precedence Functions - « « 141

vII-8.4 Ambiguities «+ « « «+ « « « « oo «oo... 14]

-

Page

VII-9. Association of Semantics with Syntax. 147

VII-9.1 Mechanism for Expressing Semantics. . . . 147

VII-9.2 Handling of Declarations 150

VII 9.3 Conditional Statements and Expressions. . 151

VII-9.4 GO TO andLabelled Statements 153

VII-G.5 Constants . . . + + « « « « « « « « « . ,154

VII-lo. References + « + « vv vw wv vv vv « «155

VII-11. Problems . . . + + + vv « «wv « v ww « « « . . . 156

VIII. Algol Compilation + vv vv uw vv ee ve vv 166

VIII-1.--' Problems of Analysisand Synthesis 160

VIII-29 Run Time Storage Administration. 167

VIII->. Treatment of Procedures 170

VIII-K. ATZAYS vv v 4 ot 4 ovto oe to to eee eee ew woo 176

VIII-50 References vv vw vw vw wv ew vv vw ww «18

VIII-6. Problems. . . + v v 4 4 4 tt ee eee eee eo 178

Val

I. INTRODUCTION

I-1. Advanced Programming’

In attempting to define "Advanced Programming", E. W. Dikstra -
described the purpose of the subject to be "Advancing Programming"; he

stressed "those efforts and considerations which try to improve ‘the

state of the art' of programming, maybe to such an extent that at some

time in the future we may speak of 'the state of the Science of Program-

ming."' Until recently, the design of machines almost always preceded

any serious thought about programming them; this had the unfortunate

result that programming languages and translators had to be severely

restricted to fit into the constraints imposed by machine designers.

Programming beyond these restrictions succeeded only "by using the ma-

chine in all kinds of curious and tricky ways which were completely

unintended and not even foreseen by the designers." Programmers "have

concocted thousands and thousands of ingenious tricks but they have made

this chaotic contribution without a mechanism to appreciate or evaluate

these tricks, or to sort them out."

) Dijkstra's remarks were made in 1962. Since then, the situation has

not changed significantly. New features, terminology, and "tricks" are

continually being introduced with very few attempts to order or evaluate

them in terms of a general framework or set of principles.

This 1s the challenge and function of Advanced Programming:

- to put order into the present chaos

- to develop useful principles of programming

- to apply these principles to programming languages,

translators, and applications.

1

I-2. Purpose and Prerequisites of the Course

The intent of the course 1s to treat the design and implementation

of Programming Systems in terms of some general principles that have been

extracted from this field. Emphasis is on general methods rather than

specific "tricks". It is assumed that the reader is familiar with the

fundamentals of computer programming including:

(1) coding in machine, assembly, and higher-level languages, and

(2) the use of a supervisory or monitor system. “

Because of 1ts important role in the evolution of language and compiler

design and its usefulness as a vehicle for expressing algorithms,

ALGOL 60° should be thoroughly understood. Most of the examples and

algorithms discussed in this course are presented as ALGOL programs.

Systems Programs, such as assemblers, interpreters, compilers, and

monitors can all be regarded as translators; from this point of view,

Systems Programming 1s the science of designing and constructing trans-

lators. It 1s thus worthwhile at this point to examine the 1dea of a

translator before looking into the specific details of various types of

translators.

1-3. Translators

A translator can be viewed as a device which transforms an input

string A into an output string B; schematically:

A-> T —->B

a

B := T(A)

2

Examples

A B T 1s called

(1) Binary Code Results Computer (or Interpreter)

(A) k(,) (r,)

(2) Symbolic Code Binary Code Assembler

A A

(3) Phrase Structure Language Symbolic Code Compiler
A

Multi-pass systems are those which require passes through several

translators to produce the final output string. For example, the familiar

translations—-from compiler language to assembly language to binary code

to computed results - can be represented:

oo A A,

where the notation corresponds to the last example.

5 = B 5 (I(T ())) = T (A)

where T = LT0 .

Translators are often multi-pass systems internally but appear as single

pass to the user. An assembler with "macro" facilities can be such an

"invisible" multi-pass system.

Symbolic Code —sfor |afa [spiny e

5

Here MI 1s a macro translator which expands all macro calls in the input

and T performs the basic assembly. A macro definition such as

MACRO X(Y, Z)(....Y"...Z) ,
macro body

where X 1s the macro name and Y, Z are parameters, signals MT to

replace macro calls in the input, such as X(A, B), by the "body" of

the macro, substituting A for Y and B for Z in this example.

I-4. References

1. Dijkstra, E. W. Some Meditations on Advanced Programming.

Information Processing 62, Popplewell, C. M. (Ed.)

535-538, North-Holland, Amsterdam, 1963.

2. Leeds, H. D. and Weinberg, G. M. Computer Programming Funda-

mentals. McGraw-Hill, New York, 1961.

5. Naur, P. (Ed.) Revised Report on the Algorithmic Language

ALGOL 60. Comm. ACM 6 (Jan. 1963), 1-17.

- bk. Barton, R. A Critical Review of the State of the Programming

Art. Proc. Spring Joint Computer Conference 1963. 169-177.

no

II. ASSEMBLERS

11-1. Basic Concepts

An assembler 1s usually understood to be a translator which produces

machine language code as output from an input language which 1s similar

in structure to the output; the natural symbolic units of the assembly

language or input correspond to the natural units of the computer for

which the assembly 1s intended. From another point of view, an assem-

bler can be considered a sophisticated loader. A loader accepts numeric

code containing machine language instructions, location addresses, relo-

cation designators, and header information, translates this into directly

executable code, and inserts the code into computer memory; this inter-

pretation of an assembler 1s sketched below:

TTTTTTT ITT TTT

mapped into

| | Memory

The form of an assembly language instruction, assembler record, or

natural symbolic unit 1is:

[tocion ras | Operation Code Operand Fields ;

for example, LOOP CLA RATE, 1 . This record corres-

ponds to one machine language instruction. The operation codes are

symbols defined by the assembler and correspond to machine operation

codes; operand fields contain programmer-chosen symbols which are trans-

lated into machine memory addresses; non-blank location fields define

the values of symbols. The basic task of an assembler 1s to establish

the correspondences between programmer-chosen symbols and machine addres-

A record-by-record total translation falls in general because 1t

1s not possible to translate operand field symbols until the entire pro-

gram has been scanned. This is illustrated in the following partial

flow chart:

| READ RECORD |

No

TABLE LOOK-UP FOR

OPERATION CODE

TRANSLATE OPERAND
FIELD SYMBOLS How?

In order for the operand field symbols to have any value, they must

appear in a location field; sequential total translation cannot be done

0

because location field definitions of symbols often follow their first

appearance in the operand field. In the skeleton program:

(1) BATE BSS 10

(2) LOOP CLA RATE, 1

the assembler can assign the symbol RATE to the next open address at

point (1); then, on reaching point (2), the assigned address for BATE

can be correctly inserted. However, 1f the program 1is

(1)! LOOP CIA BATE, 1

(2) BATE BSS 10

BATE has no value at point (1)' and complete translation of (1)' 1s

impossible.

II-2. Multi-Pass Systems

; The simplest and most common solution to the above problem is to

use a 2-pass system. The first pass assigns values (addresses) to all

symbols. A location counter (LC) steps through the assembler records

so that at each record, LC contains the address where the corresponding

machine instruction will be located in computer memory (ignoring reloca-

tion); when a symbol is encountered in the location field, it is assigned

the current value of LC. Symbols and their values are stored in a

symbol table. Pass 2 performs a record-by-record total translation,

referring to the symbol table for the values of location field symbols.

A general flow chart of this method of assembly follows:

1

SIMPLE TWO PASS ASSEMBLER

PASS 1

|

READ RECORD

GO TON . | |
PASS 2 | <P ‘INCREMENT LC

EXAMINE LOCATION

| FIELD FOR SYMBOL

_

ENTER SYMBOL IN

SYMBOL TABLE |
| ALONG WITH LC

PASS 2

"REWIND" INPUT

| READ RECORD |

Yes | |

INCREMENT LC

| ®@ 3 No | |
I TRANSLATE OPERATION CODE |

CO

a | TRANSLATE OPERAND FIELDS |

| ASSEMBLE AND STORE INSTRUCTION | |

8

These charts become more complex when the additional facilities

provided by practical assemblers are inserted. These are the 'pseudo-

codes" or assembly instructions; they do not translate into executable

code but are instructions to the assembler, for example, for the alloca-

tion of data and instruction space, and the assignment of values to

symbols. using examples from the MAP Assembler for the IBM 7090/7094

computers, © the most important pseudo-operations are:

1. Location Counter Pseudo-Operations

These allow the programmer to control the operation of location

counters, e.g. INES resets the location counter to
315 causing the assembler to start or continue the assembly from computer

storage location 315.

2. Storage Allocation Pseudo-Operations

The instructions in this class reserve blocks of storage and incre-

ment the location counter to reflect this, e.qg.,

assigns the current value of LC to the symbol MATRIX and increments LC

by 25, effectively allocating a 25-word block of storage identified by

. the symbol MATRIX.

5. Data Generating Pseudo-Operations

These are used to define constants of various types, e.g.,

instructs the assembler to insert the decimal

constant 1966 at the address defined by LC and to assign this address

to the symbol YEAR.

The 2-pass assembler outlined above can handle these pseudo-opera-

tions by adding some blocks to its flow charts at points A 1n pass 1

and 2:

9

oo _—

&

Yes PSEUDO
OPERATION?

No

INTERPRET

INSTRUCTION

INTERPRET 'INSTRUCTION usually involves incrementing LC and assigning a

value to a symbol.

Most assemblers allow the use of actual operands or literals in the

operand fields; for example, indicates that the

operand field 1s to contain the address of the constant 1 after trans-

lation. The easiest way to translate literals within our 2-pass assembler

1s to invent symbols for them during pass 1 and add definitions of these

symbols to the program; then, literals do not have to be considered in

the second pass, e.g., 1s translated during pass 1

to I. . At point C in the flow

*chart, the block

may be added.

Modern assemblers usually have a host of other features but most of

these can be easily handled within the simple 2-pass system described

here.

10

It 1s necessary at each pass of a multi-pass assembler to reread

the source program. Small programs may be stored in main memory for

the duration of the assembly. Systems allowing large programs usually

write the source program on second-level storage such as magnetic tape

or discs; the program must then be read from this storage at each pass.

Partial or complete overlapping of processing and input-output operations

can be accomplished by careful program organization; e.g., the following

sequence enables process and input-output overlapping:

_ Read Process Write

Record No. i+l 1 1-1

Defining and translating symbols during assembly requires the build-

ing and searching of symbol tables. Since assemblers spend much of their

time performing these functions, 1t 1s lmportant to investigate efficient

methods for table organization and searching.

IT-5. Organizing and Searching Symbol Tables

Tables of all types have the general form:

Argument Value

11

where the left-side 1s a list of arguments and the right side 1s a list

of values associated with the arguments. Here, the arguments are symbols

and the values are addresses.

IT-53.1 Unordered Tables

The easiest way to organize a table 1s to add elements as they

appear without any attempt at ordering. A table search requires a

symbol by symbol comparison with each element 1n the table until a match

1s found; for a table of n elements, 5 comparisons would have to be
made on the average, before a match between the input and table arguments

1s found. This method has merit only for extremely small tables which

are searched infrequently.

II-3.2 Ordered Tables

An ordered table is one in which (1) an ordering relation 2» (or <)

exists between any pair of arguments of the table, and (2) if S.

represents the ith element of the table, then for all 1 and j,

eh > s. if and only if i> J (or S; < s. if and only if i<j) .
The table 1s then ordered in ascending (or descending) sequence.

- The most efficient general method for searching ordered tables 1s

the binary search; starting with the complete table, the table subset

under consideration 1s successively divided by 2 until a match 1s found.

An ALGOL binary search procedure for a table ordered in ascending

sequence follows:

12

ee rr. emer EE...

procedure Binary Search (S, n, arg, Kk);

value n, arg; integer array S[1l]; integer n, arg, k;

comment S 1s array of table arguments, n 1s length of table,

arg is search argument, S[k] = arg on return;

begin integer 1, 3;

i = 15 3 :=n;

for k := (i+j) + 2 while S[k] # arg do

if S[k] > arg then j := k-1

else 1 := ktl

end Binary Search

It is assumed that arg 1s 1n the table in the above program. A binary

search requires log, n comparisons at most to search an ordered table

ofn elements. In order to find a match in a table of length 128(2'),

a binary search would require / comparisons at most while an element by

element scan would require 64 comparisons on the average.

Instead of using one large table, 1t 1s sometimes more convenient

; to set up several smaller tables; for example, one could set up 26

tables for an assembler symbol table, each table corresponding to symbols

starting with the same letter of the alphabet. The search then becomes

a multi-level search; at the top level, the particular table is found

and at the next level, the table 1s searched. In the above example of

26 tables, an even distribution of first letters of symbols over the

letters of the alphabet would be necessary for efficient use of table

storage. The advantage of multi-level schemes 1s that the relatively

small tables may be searched very quickly; however, organization and

13

searching 1s more complex and use of storage 1s not always as efficient

as the simpler l-level system. These alternate methods have to be

evaluated in terms of specific systems and goals 1n order to select the

best method for a particular application.

II-5.5 Sorting

If an ordered table 1s desired, some type of sorting method must be

employed to order the elements. There are many ways to sort a table or

a file; sorting may be done internally in main storage or, when large

files are to be sorted, with the aid of auxiliary storage devices such

as tapes, discs, or drums. Only a few of the most important will be

discussed here. Reference 2 contains a detailed presentation and evalu-

ation of many sorting methods.

II-5.5.1 Bubble Sort

The basic 1dea 1s to successively pass through the unsorted part

of the table, "bubbling" to the top the maximum (or minimum) unsorted

*element; this 1s done by repeated comparisons and interchanges as 1llus-

trated in the following example:

To sort the table: 13 2 18 5 4

[13] 2 2 2 2
First 2 JB, Bo, 1B, 1
Stage 18 18 J)

) 5 5 Ep 4

4 L- 4 4 48

14

2 2 2

13 1 5 5
Second -» © — —

5 5 J 4

Stage Ir4 : iE
18

:

5 5 4
Third 5 cls

TA

Stage

15

18

4 4

Last -» © 1
cc—-c——-

Stage

5

15

18

2

d

Sorted

5

Table

15

18

An ALGOL procedure for a simple Bubble Sort is:

15

procedure Bubble Sort (S, n);

value n; integer array $S[1l]; integer n;

comment Bubble Sort sorts array S[1l:n] in ascending sequence;

begin integer i, Jj, k; boolean tag;

procedure interchange (X, Y);

value X, Y; integer X Y;

begin integer T;

T (=X; X :=Y; Y :=T;

tag := true

end interchange;

tag := true;

for Jj:= 1 step 1 while tag do

begin tag := false; k:= n-J;

if s[i] > s[i+l] then

interchange (S[i], S[i+l1])

end

; end Bubble Sort

For fewer memory references, this may be modified to eliminate the

interchanges; instead, the largest element of the unsorted table 1is

found and interchanged with the top element at each stage.

IT-5.5.2 Ranking by Insertion

Starting with an empty ordered table and a given unordered table,

at each stage, the next element of the unordered table is inserted in

16

the correct position in the ordered table; this process 1s terminated

when the original unordered table is empty. Thus, 1if Sq So Coe. S. Si 41

Co 5, represents the ordered table (ascending sequence) at the kth

stage and the next element U of the unordered array 1s such that S.

<UL S41” thenU 1s inserted between S. and Si41 Sik ce. S,

then have to be moved to make room for U . This block movement can be

very inefficient unless the machine has a block transfer command. On

the other hand, a binary search can be used to rank U and in the case

of assembler symbol table construction, the table can be ordered contin-

uously as it is built up. ‘These features make the method useful for

large symbol tables.

II-3.%.5 Other Common Methods

There are many other sorting methods in common use as well as

variations of the above two methods. Other methods include the radix

sort, various merge sorts, odd-even transposition, and selection sort.

Sorting of a symbol table in a 2-pass assembler would occur at the

) end of pass 1 or beginning of pass 2.

II-3.4 Scrambling Methods

Scrambling or "hash addressing" 1s a fast method for converting

symbols to addresses. Addresses are obtained by performing some simple

arithmetic or logical operation on the symbol. For example, one method

1s to square the numeric representation of the symbol and select the

central bits or numbers of the result as its table address; 1f a partic-

ular symbol, say XI, 1s represented numerically as 23275 andwe wish

a 3-digit address, the computation would proceed as follows:

2

3275 = 10725625

address of XI = 725

Care must be exercised to either prevent or account for non-unique map-

pings of identifiers and to use table storage efficiently; this work often

negates the advantage of the fast address calculation.

II-4. One-Pass Assembly

One-pass assembly can be accomplished despite the problem raised

at the end of section II-1. The "forward reference" problem 1s solved

by maintaining a list of undefined symbols with pointers to the locations

where they are to be "fixed-up" upon definition. A flow of this scheme

is

Encounter a Symbol

(Except 1n Location Field)

Is It

Lb in Symbol 7 2 oe.
Table

Normal Enter Symbol in
Processing UST along with }

| Pointer to fix-up
location

UST: Undefined Symbol Table

18

During assembly, a symbol table (ST) and UST are constructed:

Partially

Assembled Program UST ST

H I=
CC « | Pointers to locations

On finding a symbol in the location field, the assembler flow 1is:

Encounter a symbol
in location field

Enter Symbol in Symbol Table

Check for occurrences in UST

[If in UST, fix-up code and
delete entry from UST

When the same undefined symbol 1s encountered more than once, a

chaining method provides a convenient means for recording their appear-

ances and for later fix-ups. Multiple appearances/of undefined symbols

can then be recorded as below:

19

Partially Assembled Program (UST, ST)

/ |

T=

_ } Lge

el

~ Address: Symbol Location

or

Fix-up Location

d/u : defined/undefined flag

The address part of the entry for the undefined symbol LYgP points to

the last location seen by the assembler where LP@P appeared; pointers

—-to 2 and' 1 produce a chain through the earlier fix-up locations for

loop. © (undefined) indicates the end of the chain. If L@PPP again

occurs at point 4 and is still undefined, the pointers change as indi-

cated by the dotted lines and the pointer from the address part of

LPP to 3 is deleted. When LPPP is defined, its addresses are

inserted in the places occupied by the chain pointers.

One-pass assembly has the advantage that the source program 1s

,.. read only once; this advantage 1s gained at the expense of more complex

routines for handling symbols. The assembled program and various tables

20

must be stored in main memory during assembly or the above advantage

over multi-pass systems no longer holds. Assemblers with block structure

can be constructed conveniently by the one-pass method.

IT-5. Block Structure In Assemblers

While few assembly languages have the block structure of ALGOL, it

1s still useful to study the implementation of block structure by assem-

blers for several reasons:

1. Many assemblers have limited forms of block structure,

usually allowing symbols to have local and global significance.

e.g., MAP programs may be structured through the use of the

QUAL pseudo-operation

2.. The basic methods employed by compilers to handle block

structure can also be used for assemblers and thus can be

illustrated in a less complex setting.

5. Many compilers translate source language into "intermediate"

languages which retain the original block structure and are

similar to assembly languages.

In general, a block 1s a delineated section of source language

code having explicit or implicit declarations for some of the symbols

used 1n the code; symbols may be declared explicitly by formal declara-

tions (e.g., ALGOL identifiers) or implicitly by their use (e.g., ALGOL

labels). Symbols defined within a block may only be referenced in that

block.

21

"

Example:

1

a, b
2 This representa a

c, d program with 4 blocks,
TT each having symbols

defined within it. a
and b may be referenced
throughout the program;

3 C and d are only
d, e, T "known" in block 2, d,

4 e, and f in block 3

E | and4%, and g is known
only in block 4. Note

| that the d in block 2
1s different from the d

in block 3; each has its own scope of validity.

The effect of a defined area of validity for symbols in assemblers

1s to allow sharing of symbol table storage among "parallel" blocks; in

the above example, blocks 2 and 3 are in parallel. If opening and

closing of blocks are indicated by left and right parentheses, the depth

or level of a block in a program can be found by numbering the matched

parentheses pairs; using our example again, we have

block No. 1 2 3 4

(a, b (cs 4) (4 &, f (g)))
- block level 1 2 2 2 3 3 2 1

In a one-pass assembler, symbol table space may then be released

on exiting from a block. On entering a block, a block marker is set;

when leaving the block, the marker is reset to that of the last enclosing

block. This scheme can be implemented by using the first symbol table

entry for each block as a pointer to the previous block 'head" or entry.

22

Let ST[i] be contents of the .ith symbol table entry and j be a

pointer to the first symbol table entry of the current block. Then

symbol table housekeeping can be done as follows:

1:=0; J := 0;

: block entry: i i= i+l;

ST[1i] := J;

J i= 1;

block exit: i= 3-1;

J i= stil;

The evolution of the symbol table of our previous example 1is:

ST = | 3
2 lt 3 | amli BEE EEE .

1 0 0 0 0 0 o |

= a a a a a a

3 | 2 [le fle {2 | ®

5 c (ec) | 4 d d (4)|

6 d (4) e e e | (e)]

- f f f (£)|
8 4 (&) |)

9 g (g) (g)

10 |

j= 0 1 4 1 4 8 1 1

ST, 1s the symbol table at blockentry for block k; ST 1s the symbol
table at blockexit for block k . Elements in parenthesis are in the

table (because they haven't been destroyed) but inaccessible.

This method has to be modified to handle forward references. For

the program with structure:

begin

begin

L Use of L

end;

L: Declaration of L

end

the global identifier L 1s used in an 1nner block before it 1s declared

in the enclosing block, On reaching block exit, all undefined symbols

may be carried out into the enclosing block and filled in the symbol

. table; undefined symbols may then be treated correctly using the chaining

and fix-up method described for one-pass assemblers. Care must also be

taken 1n generating the correct reference in the following case:

begin
L: First Declaration of L

begin

go to L; Use of L

L: Second Declaration of L

end

end

24

Here, the use of L refers to the L 1n the inner block (second decla-

ration); possible forward references within a block have to be considered

before treating symbols as global to that block.

5e conventional two-pass assembler can be modified for languages

with block structure properties by grouping the symbol table on a per

block basis and maintaining a dictionary pointing to the symbol table

blocks.

Example: 1: begin real a, b, c, d;

2: begin real e, £;

end;

3: begin real g;

4: begin real h;

end

end

end

Dictionary

Block Index to Number of Ancestor

Number Symbol Table Entries 1n Block Block

2 L2 2 1

i LL 1 3

3 L3 1 1

1 Ll 4 0

25

Symbol Table

L3:A

La: a]

Dictionary entries are made on exiting from a block. The symbol

table can be one large table grouped on a block basis. To translate

symbols during pass 2, the dictionary 1s searched with the block number

as the search argument; from the dictionary entry, the pointer to the

correct place in the symbol table is obtained. If a symbol is global,

the ancestor entry of the dictionary which points to the enclosing block,

can be similarly used.

II-6. References

I. IBM 7090/7094 IBSYS Operating System, Version 13, Macro Assembly

Program (MAP) Language. Form (28-6392-0. International

; Business Machines Corporation, 1963.

2 . Papers presented at an ACM Sort Symposium. Comm. ACM-, 6, 5

(Mey 1963).

II-7. Problems

1. One useful variant of the bubble sort 1s to alternately pass through

the table 1n both directions, bubbling the largest element in one

direction and the smallest in the other.

206

roo
a

¢—

-

Gee

EE

Code this variant as an ALGOL procedure.

, -.

Computer Science 236a N. Wirth
Winter 1966 Due Date: Feb. 10

Term Problem I

Design an assembler according to the following description.

Input: One instruction per record (card), consisting of location
fields (cols. 1-10), operation field (cols 12-14) and operand
field (cols. 16-72).

output: Listing of assembled instruction 1n hexadecimal form along
with instruction counter and given symbolic instructions.

Symbols: Symbols are either names, literals or constants not contain-
ing blank characters. A name 1s a sequence of 1 to 10
letters or digits starting with a letter. A constant 1s a
decimal integer, possibly preceded by a sign. A literal 1s
a constant preceded by an equal sign (=). It denotes the
address of any storage cell into which the constant is
assembled.

Fields: The location field 1s blank or contains a name (left-adjusted
in the field) in which case 1t 1s the definition of that

name. The operation field must contain an instruction code
(cf. Table 1), or an assembler instruction (left-adjusted
in the field). The operand field 1s divided into two or three

subfields depending on the form of the instruction. The

subfields are separated by commas. A missing subfield 1s
interpreted as 0.

2]

Target code: An array of individually addressable 8 bit characters
(bytes), listed in hexadecimal form, each character as a

palr of hexadecimal digits.

Instruction Formats: Instructions are grouped into two categories to

be translated into the following forms:

RR: Instruction occupies 2 bytes. Form of operand field 1is
"rl, r2" where rl and r2 are integers.

—
8 4 L bits

RX: Instruction occupies 4 bytes. Form of operand field is
"v1, a2, r2" where rl, r2 are integers, and a2 is a
symbol. --.

—AI

8 4 4 16 bits

Table 1: Instruction codes

RR Form RX Form

Symbolic Hexadecimal Symbolic Hexadecimal

AR 1A A DA

- BCR OT BAL 45

CR 19 BC 4]

DR 1D C 59

LR 18 D 5D

LCR 13 IC 43

MR 1C L 58

SR 1B LA 41
HLT 00 M 5C

R La
SL 48

SR 49
ST 50

STC 42
W LB

Assembler Instructions:

1. Define name and increment location counter. Symbolic code: DS .

28

The name 1n the location field 1s defined and subsequently the

location counter 1s incremented by the integer in the operand field.

(The loc. counter addresses bytes.)

2. Set the location counter. Symbolic code: ORG . The location

counter is set to the value of the constant in the operand field.

3. Terminate assembly and print the produced output in condensed hexa-
decimal form. Symbolic code: END .

Example of an assembly listing:

0000 41000000 START LA 0,0

0004 41100000 LA 1,0

0008 41200190 LA 2,400
000C 5A01001C LOOP A O,ARRAY,1

0010 1A12 AR 1,2

0012 591001AC C 1,=400
0016 4720000C BC 2, LOOP
O01A 0000 HLT

001C ARRAY DS 400

END

01AC 00000190

Notes:

1. Program the assembler in Extended ALGOL on the B5500 computer and
test it. The program should contain comments to explain the main

points and to facilitate the understanding of its principles. It

1s stressed that the program be presented in a neat and well
structured form.

2. A few days before the due date, a sample program will be available
| to test the assembler. It 1s advised that the student test his pro-

gram before that date with his own test cases.

3. At the due date, submit the program together with the output result-

ing from the distributed test case.

29

r fir ¥RRA
wns
RTP FY
LS

I] REI
Forearm Ew .

III. INTERPRETERS

ITI-1, Definition and Examples

Corresponding to each statement of a language, there exists an inter-

pretation rule or action representing its meaning. An interpreter is a

language translator whose primary task during translation 1s to perform

the actions dictated by the meaning of the statements of the language, In

more concrete terms, interpreters read and obey the statements of languages.

By contrast, assemblers translate assembly language into another language

which 1s later interpreted or obeyed.

Interpretersare commonly used in the following applications:

1. Simulation of real computers

A given computer can simulate the operation of another computer —-

either a proposed computer or one already in existence. For example, the

Burroughs B5500 can be simulated on the IBM T7090 and vice versa.

2. Simulation of hypothetical computers

Hypothetical machines are studied and used by simulating them on

. existing machines. Examples of such machines are the list processing ma-

chine (or language) IPL V and the "polish string" machines used by the

early ALGOL compiler systems.

5. Interpretive Compilers

Instead of translating higher-level languages into machine language

programs and then executing these programs, some systems execute the source

language directly via an interpreter. LISP 1.5 on the IBM gfa@@ is such a

system.

Hl

4. Simulation languages

Languages, such as SIMSCRIPT, SOL, and GPSS, which are designed to

describe parallel processes, are often implemented on conventional se-

quential machines by interpreters.

5. Monitor systems

Control of batch processing, real-time, and time-sharing monitor

systems 1s accomplished by user-written control instructions which are

interpreted by the system.

Instead of using interpreters for the above, one could translate

into equivalent machine language programs = as in assembler systems - and

then execute these programs. Both approaches are employed. Interpreters

are usually much easier to write, debug, and modify but can be extremely

slow and wasteful of storage. For these reasons, interpreters are writ-

ten 1. for research or exploratory purposes, <2. when the language 1s

not used on a "production" basis, 3. for very complex systems, or 4.

for a combination of the above.

This chapter examines interpreters of sequential computer code, as

opposed to higher-level language interpreters or systems allowing parallel

processing, The operation of typical von Neumann and stack machines are

described via interpreter programs.

ITT-2. Basic Interpreter of Sequential Code

Let Instr = a vector containing the instruction sequence, such that

Instr[i] contains the ith instruction in the sequence,

1 = instruction counter, and

C = current instruction.

51

The main loop of an interpreter of the program represented by Instr

15:

l: Fetch instruction designated by
instruction counter.

C := Instr[i]

2: Increment instruction counter.

1 := i+1l

5: Execute instruction.

(Branch to subroutine designated by c)

Step 1 may be divided into several substeps by breaking Instr[i]

into 1ts component parts:

Instr[i][0] = operation code

Instr[i][1], Instr[ill2],..., Instr[i]ln]

= operation parameters .

C 1s also divided into corresponding parts:

c[0], ec[1], « , cn] .

n=0 corresponds to a no-address computer;

n=l corresponds to a l-address computer;

32

n=2 corresponds to a 2-address computer;

etc.

Then, step 1 becomes:

c[0] := Instr[i][0];

c[1] := Instr[il[l];...; e[n] := Instr[i][n] ,

and step 5 may be expressed:

Execute (c[0](e[1], c[2],..., c[n])) .

111-3. Interpreter for a von Neumann Machine

These machines may be classified into (a) single address, single

register computers and (b) multi-address and/or multi-register computers.

In the former, operations on operands are performed 1n a single register,

usually called the accumulator; for operations requiring two operands,

the address of one 1s implicitly understood to be the accumulator while

that of the other is contained in the instruction, e.g., IBM T7090, DEC

PDP-1. In the latter, operations may be performed in one of several ad-

dressable registers and instructions may contain several addresses, e.g.,

IBM 360. An interpreter program for a simple single address, single

register machine 1s presented below:

55

PROGRAM REMARKS

integer array operator, address[0O:{], instr[i] = (operator[il,

address[i])

operands[0O:mjs data memory

integer op, operation code

adr, operation address

reg, single register

count; instruction counter

count := 0;

1: op := operator[count];

adr := address[count]; Fetch

2: count := count + 1; Increment instr. counter

bX if op = 1 then

reg := operand[adr] else Load

if op = 2 then

operand[adr]} := reg else Store

if op = 3 then

| reg := reg + operand[adr] else Add

if op = 4 then

reg := adr else Load immediate

1f op =5 then

count := adr else Transfer

if op = 6 then begin if reg = O

thenu n t := adr end else Conditional Transfer

go to 13

3h

While this program or a similar one may be adequate for some applica-

tions, there are several inaccuracies and omissions which must be corrected

in order to precisely describe the operation of any real of hypothetical

machine of this class:

1. The word length of the machine has been ignored.

2. Logical and arithmetic operations cannot be handled at the bit

level since all variables are of type integer.

5. Data and program should reside in the same memory.

An interpreter for a binary computer can be written in ALGOL taking

the above factors into account. The key change 1s to define all variables

as type Boolean.

comment The computer has (ntl) words of memory M and word length of

(4+1) bits. Operation code, op,is (11 + 1) bits; operation

address adr is (42+ 1) bits; (U1 +1) + (42 +1) =1+ 1 .

reg is a (+1) bit register and countis a (£3 + 1) bit instruc-

tion counter. ot (43 + 1) =n + 1;

Boolean array M[O:n, O:£], op[0:41], adr[0:L2], reg[0:4], count[0:43];

integer procedure number(x, k);

Boolean array x[0]; integer k;

comment number treats the array x as a positive binary number of (k+1)

bits and converts this to an integer;

begin integer 1, n;

n := 03

fori := 0 step 1 until k do

n :=nX2+ (if x[1i] then 1 else 0);

number := n

end number;

52

EE.

comment initialize number(count,£3) to 0;

for i := 0 step 1 until £3 do count[i] := false; To

comment begin interpreter cycle;

1: n := number (count, £3);

for i := 0 step 1 until£1 do op[i] := Mn, i];

fori := 0 step 1until{2 do adr[i] := M[n, {1 + 1 + i];

2: n = ntl;

binary (n, count, £3);

comment the procedure, binary, converts the integern to a 43 + 1 bit

binary number, count;

3: if number (op, £1) = 1 then

begin := number(adr, £2);

comment load;

for i := 0 step1 until £ do regi] := M[n,i]

etc.

If the reader has followed this program, he 1s aware of the awkward-

ness of ALGOL for describing the operation of an interpreter at the bit

level. Clearly, another language or notation 1s desirable. A powerful

notation for this type of description 1s the Iverson language. The fol-

lowing "Iverson" description of a single address, single register binary

machine 1llustrates the elegance and power of the notation. (The reader

should consult Reference 1 for more details on the notation and its appli-

cation.)

36

Variable Meaning;

M computer memory

v(M) = [+1 word length

w(M) = n+l no. of words in memory

r register

v(r) = iI+1 register length

S instruction counter

v(s) = 11 + 1, 2¢(41 + 1) = n+l

C instruction register

N v(c) = 1+1 instruction length

M, r, s, and c¢ contain binary components. See next page for Iverson program.

Language interpretation can thus occur at different levels of detail.

If the interpreter 1s testing the design of a new computer, then complete

details of word length, radix, registers, handling of address and arith-

metic overflows, etc. have to be included; on the other hand, interpreta-

tion at the level easily handled by ALGOL programs may be sufficient if the

purpose of the system 1s to evaluate the usefulness or power of a particular

language.

7

1 s «0

2 c MS -

+

3 op — 1ot? Le
2+

4 adr “ Lo Le

5 1s «1 + 41g

0 — (7,8, 0 8 03 8 0) op —————————————
T |— r RY Load

8 |— M29 Store

9 — ir eu 4 uy Add |
Load

1C |— lr «adr Immediate

11 |=— 1s tadr Transfer

£ oo
12 |=— reg : 0 Conditional

Transfer [

— Ls tadr

|

ITII-4. Polish String or Stack Organized Machines

Polish notation and stacks will be discussed further in Chapter VI.

In this section, some of the basic ideas are introduced to illustrate the

operation of stack machines.

The reverse or postfix polish form of a statement or expression of a

language 1s obtained by reordering the elements of the expression so that

operators appear after their operands rather than before or between them

as 1s normally the case.

38

| | —

Examples

Conventional Form Reverse Polish

1. a+b+c ab+c+
bt

2 x :=b Xctd -¢e xbed?X e — :=

=
— 1

3, a/(btc -e) + (e - £) xg apcte -/ gf -gX+
— —_— 1

(Note the elimination of

parentheses)

This form of an expression 1s very convenient for compilation or

interpretation and has led to the development of computer organizations

that can handle reverse polish expressions easily. These are the stack-

organized computers, such as the Burroughs B5500 or the English Electric

KDK-9. They contain a stack or "cellar" which is a first-in, last-out

store used for temporary storage of operands. Many of the instructions

in such a machine have no address fields but implicitly refer to the top

element or elements of the stack. "Pushing-down" or "popping-up" of the

'stack 1s performed automatically during instruction execution.

The following partial interpreter 1s for a machine with a stack

mechanism:

39

| PROGRAM
integer array instr[0:1], instruction sequence

M[O:m], data memory

S[0:n]; stack or cellar

integer op, operation code

count, instruction counter

S3 stack pointer

re S := 0; count := 0; Initialization

1: op := instr[count]; instruction fetch

2: count := count + 1; increment instr. counter

3: if op = 1 then

Begin = s + 1;

Sls] += M[instr[count]]; Load

count := count + 1;

end else

if op 2 then

begin M[instr[count]] := S[s]; Store

§ := s-1; count := count + 1

end else

ifop = 3 then

begin S[s-1] := S[s-1]+ S[s] Add

S := s-1

end else

etc.

Each word in instr[] is either an operation code or an operand; for

Loads and Stores, the required address 1s 1n the word following that

containing the operation code.

Using the expression in 2. from the reverse polish examples, the

instruction sequence in the program format is:

4()

i: 0123456789101

instr[il: 1b, 1c, 14d 651led 2instriil: Jb, 1c L4G Lt &
-—
—

where the operation codes have the meaning:

code: 1 2 3 4 5 0

meaning: Load Store Add Subtract Multiply Exponentiation

The stack contents are displayed below after each instruction is executed

in this example:

s[] after instr[l} instr{3} instr{5} instr{67 instr{7} instr9} instr[10] instr{lX] =

b b b b bXetd bXetd bXctd-e

Cc Cc ctd | e

d |

s = 1 2 3 2 1 2 1 0

Because all operations are performed on elements of the stack, the

stack access time must be small. Fast registers are therefore used for

the top elements of a stack; since these are expensive, their number must

be severely limited. This limitation causes major systems programming

problems related to stack administration, stack overflow, and code opti-

mization.

ITI-5. Interpretive Computers

The execution of machine language instructions by conventional com-

puters occurs via an interpretive process. Instructions are translated

41

into mechanical or electrical operations, such as opening or closing 'data

paths, setting and testing internal registers, switching memory cores,

etc.

Recently, the interface between hardware and software interpretation

has become less distinct. In many modern computers, machine language

instructions are executed interpretively by microprograms which reside

LL. 2

1n a read-only memory 1n the control unit. These microprograms translate

machine code into microilnstructions which are the basic executable instruc-

tions of the permanent hardware. Changes 1n machine language can be made

by reprogramming the control unit to perform the desired translation. A

schematic of the organization of such a computer 1is:

TE ah Mie ME SE SE EE ED EL A GMS mm a de wm mT = = = = = = = = = = = Tq
| Micro- Micro-

| Instruction Instruction
Register Counter |

| ! . | : Macro-
EN | a Instructions

|

and
Microprogram

In Data

Read-only |

| | Memory |
' |
i
Yd

Control Main Memory

Operations at this level follow the same basic interpretive cycle as the

other examples of this chapter.

42

III-6. References

1. Iverson, K. E. A Programming Language. Wiley, New York, 1962.

2. Fagg, J., Brown, J. L., Hipp, J. A., Doody, D. T., Fairclough, J. W.,

Green, J. IBM System/360 Engineering. AFIPS Conference

Proceedings, Fall 1964 , Spartan Books, Inc.

111-7. Problems

Computer science 236a N. Wirth
Winter Quarter, 1966 February 2, 1966

Term Problem II

Construct an interpreter which represents a computer with the following

specifications:

The computer consists of

| 1. A memory consisting of 4096 consecutively addressed bytes, each
byte consisting of 8 bits;

2. 16 registers, each with 32 bits;

5. A condition register, able to represent 4 distinct states;

43

4. An instruction register, (32 bits);

5. An instruction counter (12 bits).

Instructions have the formats as indicated in Term Problem I, and cause

the following actions to be taken:

(To identify-an instruction, the mnemonic codes of Term Problem I are

used, the instruction parameters are denoted by rl, r2, a2 .)

Group 1:

These instructions have an RR and an RX version. They designate two

operands, the first of which 1s the register designated by rl . The

second operand is the register designated by the r2 parameterin the RR
case, or the consecutive four bytes of memory, the first of which 1s desig-
nated by the sum of a2 and the value of register r2 .

Instruction Code Meaning

Add A, AR 01 := 01 + 02
Subtract S, SR 01 := 01 - 02

Multiply M, MR 01 := 01 x 02
Divide D, DR 01 :=01/ 02
Load L, LR 01 := 02

0) | =
Compare Condition register (= (15% , if OL ¢(< p 02

2 >

> 1 ooMoreover, 1f the result of any arithmetic operation is => & 1n absolute
value (overflow), or if a divisor is = 0, then the next-instruction in

sequence is taken from location 4 of memory. In the case of overflow,
the condition register is set to 3 .

Group 2:

The parameters of the instruction are interpreted as in Group 1.

Instruction Code Meaning

Branch BC Branch to 02, 1f the state bit*

corresponding to the condition register
value 1s 1 .

Branch BCR Branch to the address contained in register

r2, 1f the state bit* corresponding to

the condition registervalue 1s 1 .

Branch and Link BAL Branch to 02 . Assign the address of
the next instruction after the BAL to

register rl .

Load Compliment LCR 01 := -02

*The field rl -contains 4 bits, called state bits, numbered 0,1,2,5 .

Lh

(Continued)

Instruction Code Meaning

Insert Character IC The right-most 8 bits of register rl
are made equal to the single byte 02 .

Store Character STC The single byte 02 1s made equal to the
right-most 8 bits of register rl .

Load Address LA Registerrl 1s assigned the address

which designates 02 .

Store ST 02 := OL

Shift left SHL Shift to the left the bits in register rl

by as many positions as 1ndicated by az

plus the value of register r2 . Vacated

] bit positions are assigned O's .

Shift right SHR Analogous to SHL.

Read R Read a card, assign the 80 characters
read to the 80 bytes the first of which
1s (a2, r2) . In each byte, the first

two bits are set to 0, the remaining 6
bits are assigned the corresponding BCD
character.

Write W Analogous to Read; the register rl in-
dicates the number of characters to be

printed on the output line.

If in any instruction, an effective address > 4096 is created, the next
instruction in sequence will be taken from location 8 in the memory.

Programming Notes:

The interpreter 1s to be programmed in Extended ALGOL for the B5500 com-
puter. After debugging, it should be merged with the assembly program
of Term Problem 1 in the following way:

BEGIN COMMENT OUTER BLOCK;

BEGIN COMMENT ASSEMBLER;

END;

BEGIN COMMENT INTERPRETER;

END

END. g

45

The "outer block" contains declarations of quantities shared by'the two

programs, such as the array of assembled program instructions. The inter-
preter 1s then supposed to execute the code which was assembled by the
assembler.

You may assume that the first 4 bytes-of the memory will never be used.

Before the due date, a problem will be given to be programmed in the

assembly language as described in the Term Problem. At the due date,
submit

1. a listing of the combined assembler/interpreter program,

2. the solution of the programming problem in the form of

a. an assembly listing, and

b. the output from the interpreter executing this program.

Supply (but do not overburden) your program with comments at appropriate

places. =

C.S. 236a

Winter, 1966

) Test Programs for Term Problem II

The following are Test Problems to be programmed in the Assembly Code of

Term Problem I. They are to be assembled and interpreted by your Assem-

bler and Interpreter Programs.

1. Read a card, sort the first 30 characters according to their BCD key,
and print the resulting string of 30 characters. Repeat this process
for as many cards as provided.

2. (Optional) Read from cards the sequence of integers

Ny, 84s 8s a a ew Bs EAN IY b

compute and print .
n n n

Lag Lb Labs
i=1 i=] i=]

46

Perform reading and printing with the use of subroutines, which: read and
print one number respectively. A number should be acceptable if it con-

sists of a. sequence of digits, possibly preceded by a. sign, and 1f 1t 1s

separated from other numbers by at least one blank space.

7

IV. INPUT-OUTPUT PROGRAMMING

IV-1. The Input-Output Problem

The components of a large computer system can be ordered in a hier-

archy according to their speed of operation:

Central Processors

Control Circuitry

Registers

Arithmetic Units

Main Storage

e.g., Thin Film

Cores Increasing

Drums Speed

Secondary or Auxiliary Storage

e.g., Cores

Drums

Disks

Tapes

] Pure Input-Output Devices

e.g., Card Readers, Punches

Printers

Display Devices

Typewriters

Paper Tape Readers and Punches

The rate at which information can be handled varies fantastically through-

out this hierarchy = from one or fewer characters per second at the lowest

level to billions of characters per second in the central processor. This

1s a factor of approximately 107 :

L8

Each of the above components can be viewed as input-output (I-O)

devices 1n some contexts; for example, information on a secondary storage

device, such as a drum, can often be sent to or received from a central

processor, main storage, other secondary storage devices, or any of the

pure input-output devices. One of the most important objectives of I-O

hardware and program design 1s to utilize all components of the computer

system at their maximum rate; no component should ever be idle because

1t 1s waiting for another one to complete its operation.

Communication scheduling between the central processor and main

storage is performed mainly by hardware; to counteract the relatively long ac-

cess time to storage, instruction look ahead and interleaved storage are

used on some large computers. The systems programming problem 1s to sched-

ule and organize I-0 among the elements of main storage, secondary storage,

and the pure 1I-0 devices. To do this, various techniques and devices,

such as I-0 buffering, interrupts, channels, and I-O processors, may

be employed.

This chapter briefly examines some of the methods used to schedule

and organize I-O0. One multiple buffering scheme 1s presented in detail.

IV-2. Immediate I-O

Many of the earlier computers and some of the smaller modern computers

have immediate I-O instructions; by "immediate", we mean that the com-

plete I-0 operation 1s handled directly by the central processor imme-

diately upon receiving the I-O instruction. This includes initiating

the I-0, specifying the I-00 areas, maintaining a count of the number

of characters transmitted, and testing for errors.

49

ENi

IV-2.1 No "Busy" Flag

The most primitive implementation of immediate I-O 1nstructions

has no provision for testing, by program, the status of the I-00 units.

If a unit 1s busy when an I-O0 command is given for it, program execution

cannot continue until the unit 1s free and the command 1s accepted. Care-

ful spacing of I-O operations can minimize this waiting time. Often,

output instructions to a console typewriter are of this type.

Many computers have hardware buffering for pure I-0 devices with

fixed record lengths, such as card readers and printers, An input (out-

put) instruction empties (fills) the buffer into (from) storage and acti-

vates the device to automatically refill (empty) the buffer while the

program proceeds, The device 1s always one I-0O operation ahead of (behind)

the program. The advantage here is that, with cardful spacing, the I-0O

instructions are completed at electronic speeds while many pure I-00 de-

vices actually operate at electro-mechanical speeds.

Iv-2.2 "Busy" Flag

) A program-addressable flag bit 1s automatically set when an I-O

unit becomes busy and 1s reset when the unit becomes free, For a simple

computer with I -0 buffeansapdout, an I-O instruction produces the

following hardware actions:

50

Input output

flag = 1 Sr 1
0 | 0

flag := 1 flag):= 1

Initiate Device Initiate Device

where 1narea and outarea are storage areas for input and output. Since

the flag or "busy" bit is addressable, the programmer may use it to branch

to routines involving no I-O while waiting for the unit to become free:

1 Compute-0Only
tlag = Routines

oo Tsu 0]Command

This requires much programming of an administrative nature for testing

of the flag and computing when the I-O unit is busy.

IV-3. Indirect I-O

Most computers presently available have some form of indirect I-O.

The central processor only initiates the operation; the operation is

51

| | _

performed by an independent unit, such as a channel or I-O processor.

Once an I-00 operation has been initiated correctly, the computer can

continue processing concurrent with the execution of the I-O command.

IV-3.1 Channels

A data-channel 1s a control device which acts as an interface between

the processor and memory on the one hand and one or more I-O devices

on the other:

Command Reply

Data

Channel

I-O0 Devices

An I-O command from the processor consists of a request for an I-0O

operation and control information (or an address containing control in-

formation). The control information usually includes the device address,

I-O area address, and number of units of data to be transmitted. The

channel performs the work of initiating the I-O device, counting the

data units transmitted, and testing for errors. With concurrent computing

5e

and I-O, there 1s competition for memory cycles; the channel "steals"

its cycles when needed.

Two methods of communication between a data channel and central pro-

cessor are possible:

(1) The CPU may interrogate the status of the channel, e.g., Is the

channel busy? or

(2) The channel can interrupt the CPU on termination of the I-O

operation or on an error condition.

IV=-3.2 CPU Interrogates Channel

yA simple example of an input-output routine written in FAP for the

IBM 7090 with one channel is presented. In this program no use is made

of the channel as a separate independent unit since the CPU 1s held up

until the input or output is finished. A typical call of LINE 1s:

TSX LINE,4

PZE COUNT

PZE BUF

COUNT DEC 20

BUF BSS 20

- To allow overlap of I-O with computing, a simple software buffering

scheme may be used; LINE moves the information from the I-O area to a buf-

fer and the channel works on the buffer area. The IBM FORTRAN system on the

7090 handles I-00 in this way. The call of the modified LINE given below

1s the same as in the previous example:

02

Simple Example of Input-Output Routine

Where CPU Interrogates Channel

FAP

COUNT 100 -

LBL CRLN
ENTRY CARD

ENTRY LINE

TAPENO A 2

0 TAPENDA 3
1

CARD CLA 124

STA 101

RTD

RCHI 101

TCO *

TEF I» 2s4

TRCI=* 304
TRA ~ U4

| {

LINE CLA» 1,4

ALS 18

STD 100
CLA 2»4

STA 100

WTDO

HCHO 100
TCOO w

ETTO

TRA ETT

TRA 324
J

ETT RUNO

HTR LINE

- Y

101 JIORT wk,1 Ul
I10C IORT A FFEL

END

54

_—

Buffered Input-Output Routine Where CPU

Interrogates Channel

* FAP

COUNT 200 =

* CC ARD READER A NDLIN E PRINTER

LBL CRDLIN

ENTRY CARD

ENTRY LINE

* CALLING SEQUENCE« 0

* CARD (BUFFER, EOF EXIT, REDUNERR EXIT)
| I TAPENDA 2

CARD CLA 1,4

SXA X1,1

SXA X2»2

PAC 092

Cl TXH €C2,0,0

TRCI vél

TEFI ~ kt]

RTD

RCHI 10D

CLS Cl

STO Cl

C2 AXT Ss

TCO »

TEFI EOF

TRCI ERR

AXT 0r1

CLA INBUF»1

STO 0»2

TXI *+l1s2,~1

TX1 weirlsr=1

TXH t=l4sir=14

RTDI

RCHI 10D

X1 AXT kk,|

x2 AXT th,2

THA 4s4

: 2

‘EOF BSRI
TRA* 2,4 ENDOF FILE EXIT

ERR BSRI

RTD]

RCHI 10D

TIX C2+1,1»01

TRA 324 REDUNDANCY ERROR EXIT

100 IORT INBUF»0»14

INBUF BSS 14

55

* CALLING SEQUENCE IS,., LINE (WORDCOUNTs» BUFFER)
0 TAPENOA 3

LNEST 800L 77

LNCNT BOOL 141

LINECLA" 14 WORD COUNT
SXA Si,

SXA S22

SXA S4,4

PAX 0s1

TXL *+25 1822

AXT 22s1

SXD 10X»|

CLA 224 OUTPUT AREA

PAC 0»r2

AXT Or4

TCOO W

ETTO

TRA ETT

L2 CLA Or2

STO OBUF» 4

TX1 *+l2ds~1

TX] *+102,~1
TIX LY YANNI

WTDO

RCHO 10x

CAL LNCNT

ANA =077777

ADD =]

STA LNCNT

SUB LNEST
TPL QUIT

Si AXT AFR

$2 AXT ky,2

) s 4 AXT * ky4
TRA 354 EXIT "LINE"

w

QUIT CAL * TOO MANY LINES PRINTED
STP LNEST

: TSX $eEXITHa
_

ETT WEFO

RUNO

HTR L 2

10X IORT OBUF »0» * #

OBUFBSS 22

END

56

—

This scheme begins to take advantage of the ability of the channel

to function independently of the CPU; for example, in LINE, the CPU may

perform any non-I-O operation as the buffer is emptied by the channel

to the I-O device. However, an inherent limitation exists when the

CPU 1s required to interrogate the status of the channel. If bursts of

I-O0 occur at infrequent intervals during a program, the CPU would often

be idle while these bursts were taken care of. Interrupts allow the I-O

to be scheduled more uniformly over the processing time.

IV-3.3 Channel Interrupts CPU

Interrupts are automatic hardware transfers and "saves" that occur

when unusual or infrequent conditions result during program execution.

For example, 1f an overflow occurred during the execution of "a p= bc",

most machines would automatically reset the instruction counter to a fixed

location in the machine where an error routine resides, Without this

facility, at each add, the careful programmer would have to write the

equivalent of:

| a :=Db +c; 1f overflowthen goto error;

where overflow 1s a Boolean variable set by the add operation when an

overflow occurs and error is the error routine entry. In the same way,

interrupts occur on termination of I-O and I-O errors.

By using interrupts in conjunction with several buffers, channels

can operate almost completely independently of the CPU. The degree of

parallelism obtained depends on the number of buffers, the number of

channels, and the amount of I-0 called for. With a reasonable number

of buffers, the processor should rarely be in a "wait" loop waiting for

>7

a channel to be free. Buffer handling by interrupts by an output routine

can be organized as follows: J

Central

Processor Fill
Buffer

iI PY
(

Empty
Buffer

Channel

{or I-0
processor)

A detailed description of such a multiple buffering output routine using

interrupts 1s given on the following pages. The FAP program also includes

a similarly constructed input routine.

Multiple Buffer Output System Using Interrupts

1. Program, Buffer, and Pointer Organization

a Wrap Around - @ZB{1] follows @B[n] "~.
,’ N

/ \

.

Buffers

gB[1] gB[2] | #BN]

Buffer Address |

W 9
Q: Buffer Address

| Table

EE ~ busyS flag = { busy
58

Q : next free buffer, or

buffer that will be available first

Quy : buffer being emptied by channel |

The CPU fills buffer Qq and the channel empties buffer a . The

program 1S organized so that Q chases Uy . An interrupt occurs after

a buffer Qs has been emptied by the channel; the interrupt program

adjusts the Qs pointer and initiates another output if the- new OB[Q,]

1s full. The routine LINE 1s called from the main program whenever out-

put 1s required. LINE fills 0B[Q, | and increments Q .

2. Flow Charts

LINE : Activated by Main Program

Get word count and block address

Is ZB[Q s Output
empty? Busy?

Move info into pela,] | nitiate Ig|

Advance Q, |

N :

ToInitiate Ig B

59

Ips Initiate i) (subroutine)

Ts gq, N
full?

Y

|Set up channel command]

- Mark output busy

T2: Output Termination

Activated by a channel interrupt when channel terminates an

output instruction.

| Mark output free
_ Y

|Mark #B[Q,] empty

Advance Qs |

s gB[Q, HL
full?

Initiate IJ

60

5. FAP Program

w INPUT

I TAPEND A2

CARDS X A CEX»2

SXA CEX+1,t

CLA 124

STA C5

C2 LXA Psd

CLA Tr 4 ISBUFFERFULL
TM] C4 YES

ZET END

TRA QUIT
NZT BUSY!

TSX 11,4

ENR MSK

TRA c2

c4 PAC 0,2 TRANSFER INPUT DATA

AXT Vs4

CLA 0,2

CH STO A FX

TXI véi1s2,~1

TXI tdiolis=}

TXH to fsrl4,=14
*

LXA Psd MOVE POINTER P1

ZAC

STP Tr4

TIX *+2s54,1

AXT Ned

SXA Psd
*

NZT BUSY

TSX 11,4
*

. CEX AXT *hy2

AXT ‘Yu,4

TRA 04,4
*

I1 SXA Cé,4 INITIATE INPUT

LXD Psd

CLA Te4

TMI (of)

STA ICOM

RTOI

RCHI 1COM

CLA Ti

STO 11

STO BUSYI

Cé AXT wk,

TRA 1,4

EJECT

T1 TRA LED] INPUT INTERRUPT
SXA T12»,4 .
STQ MQ

LGR 2

61

STO AC

STZ BUSY] y

LXD 10.4

TXH ENDF» 4,2

TXH RED»4» 1

T13 CLA~* ICOM
SUB FINIS

TZE ENDF

LXD Psd

CLA Tr4

SSM

STO Tr 4 MARK SUFFER FULL

TIX k+4224,51

AXT Nod

SXD Psd

CLA Ts4

TMI * +2 IS NEXT BUFFER EMPTY

TSX --. 11,4 YES

T11 CLA AC

LGL 2

LDQ MQ

T12 AXT kklf

RCT

TRA* 10
W*

ENCF STL END END OF FILE

STZ BUSY!

TRA T11

RED AXT 3,4 REDUNDANCY CHECK ERROR

BSRI

RTDI

RCHI ICOM

TCOI *
TRC +2

. TRA T13

TIX REND+1,4,1

STL ERR

TRA ENDF
*

QUIT LXA CEX+1,4
ZET ERR

TRAx* 224
TRA + 304

62

bd OUTPUT
0 TAPENO BS

LIKE SXA LEX»1

SXA LEX+1,2

SXA LEX+2s4

CLA® 1,4

ALS 18

STO WC

CLA 2»4

STA LS

L2 L XA Qs4

CLA Sed

TPL L4

NZT BUSYO

TSX 10,4
ENB MSK

TRA L2
*

L4 PAC 0s2 TRANSFER OUTPUT DATA

CLA WC

STD Ss4

POX 0,1

AXT 0»4

L5 CLA wk,ld
STO 0s2

TXI *v+is2r=}

TX] *t+eislr=1

TIX *=l4s1,1

*

LXA Qs 4 MOVE POINTERQ1

CLS Ss4

STO Sed

TIX *+2s54,1

AXT Ms4

SXA Qs4
°

J NZT BUSYO
TSX 10,4

»

LEX AXT ex,]

AXT khy2

AXT *¥,4

TRA 34

EJECT

10 SXA Lé6s»4 INITIATE OUTPUT
LXQ Qs4

CLA S»4

TPL Lé

STA OCOM

STD O0COM

WTDO

RCHO OCOM

CLA T2

STO 13
STO BUSYO

63

Lé AXT I FY

TRA 1»4 g

LR

T2 TRA 0 4 QUTPUT NTERRUPT

SXA T2224

STQ MQ

LGR 2

STO AC
i STZ BUSYO

ETTO

TRA ETP

LXD Qs4
ZAC

STP Sed MARK BUFFER EMPTY

TIX *+2s4,1

AXT Ms»4

SXD ~~ Qs4
CLA ~~ S»4
TPL w+ IS NEXT BUFFER FULL

T21 TSX 10,4 YES
CLA AC

LGL 2

LDQ MQ

T22 AXT *%* yd

RCT

. TRA* 12

ETP RUNO

HTR T21

64

N EQU 4 NUMBER OF INPUT BUFFERS
M EQU 4 NUMBER OF OUTPUT BUFFERS

WC PZE LENGTH OF OUTPUT RECORD

ERR PZE FLAG SET BY REOUNOANCY ERROR

P PZE Ns»N INPUT TABLE POINTERS .

Q PZE Mrs M OUTPUT TABLE POINTERS

ENC PZE FLAG SET BY ERROR CONDITION

BUSY I PZE FLAG ON IF INPUT CHANNEL BUSY

BUSYO0 PZE FLAG ON IF OUTPUT CHANNEL BUSY

ICOM JORY kyl

OCCMI ORT why phk

MSK PZE 3551

FINIS BCI 1»FINIS

MQ PZE

AC PZE

*

PZE 181

PZE I1B2

PZE 103

PZE 1B4

T SYN w INPUT BUFFER TABLE
*

PZE 081540

PZE 082550

PZE 0B 3550

PZE 0B4»»0

S SYN " TABLE OF OUTPUT BUFFERS

*

181 BSS 14
182 BSS 14

183 BSS 14

I1B4 BSS 14
0B1 BSS 22
082 BSS 22

© 0B3 BSS 22

0B4 BSS 22

END

65

For computers with several channels, there is the possibility of

interrupts from different sources occurring simultaneously. To handle

this, there must be hardware or software provision for determining

priorities of interrupts and storing pending interrupts 1n a priority

queue. It 1s the task of monitor or supervisory programs to administer

these interrupts correctly.

IV-k. I-0 Processors

The next level of sophistication after channels 1s the use of sepa-

rate I-0O processors to process I-0. In this context, a channel 1is

a crude I-O processor. With I-O processors that approach the power

of a computer, I-O data can be edited, checked, and manipulated before

it reaches the central processor; that is, all the I-O housekeeping

tasks can be delegated to the I-O processor. An I-0O processor can

be a specifically designed unit for a particular machine, as in the DEC

PDP-6 system, or it may be another computer attached to the main machine,

as in the IBM 7090-7040 direct-coupled system.

IV-5. Experimental Comparison of Several Methods

of I-O Organization

Several methods of organizing 1I-O for the scanner portion of an

experimental ALGOL compiler on the IBM 7090 were examined by N. Wirth.

The basic problem 1s illustrated below:

66

ER — -

~ I ms
ALGOL Source : Input Copy

Code plus some
generated
information

Compiller

For the experiment, 630 card records were put on tape as the input and

then compiled into core producing an output tape (5,550g machine lan-

guage instructions were compiled). Four I-O schemes were 1nvestigated:

A: No Buffers

1 Channel

CPU interrogates channel

] B: 1 Buffer

1 Channel

CPU interrogates channel

‘Cc: 1 Buffer

2 Channels (one for input, other for output)

CPU interrogates Channel

D: 4 Buffers

2 Channels (one for input, other for output)

Channel interrupts CPU

(FAP program of section IV-3.2.)

67

Test Results

Method

A B C D

Compile Time

(Seconds) 16.11 12.12 7.05 6.31

*Comparison 1 1.33 2.29 2.55

Length of

I-0 Program 26g 51g 51g hg
Total

Buffer

Length 0 hhg hhg 220g

¥ The comparison gives the ratio of the Compile Time of A +o that of
B, C, and D .

For this particular application, the greatest gain is for method C where

separate channels are used for input and output. The multiple buffering

scheme 1s marginal here. However, the I-O0 occurs uniformly over the

processing time in this experiment. It is predicted that D would show

a greater gain for applications where the I-00 occur in bursts.

IV-6. 1-0 and Systems Programming

| Today the applications programmer seldom worries about the detailed

scheduling and programming of I-O. In fact, it is very difficult, if

not impossible in some 1nstances, for the user to gain access to the

machine I-O commands. Monitor programs carry out the details of the

'I-O tasks requested, even at the assembly language level for some sys-

Cems. Therefore, most I-O programming for computer systems is carried

out "centrally" by the systems programmer.

68

gtpa

TTT

V. SUPERVISORY PROGRAMS (MONITORS)

V-1. Monitor Tasks

Historically, monitor or supervisory programs were developed to en-

sure the continuous operation of computer systems with little or no human

intervention. As systems became more complex, monitors assumed the respon-

sibility of scheduling and allocating computer resources, such as storage,

channels, I-O units, and processors. To accomplish these tasks, 1t 1s

necessary that ultimate control within and among user jobs resides in the

monitor.

Monitor systems perform the following general functions:

1. Job-to-Job Control

This consists of the automatic termination and 1nitiliation of

jobs. Jobs may be terminated "naturally" or on error conditions;

termination tasks include sign-off accounting, closing of files,

and compilation of job statistics. Job initiation includes sign-

on accounting and interpreting user monitor control commands for

opening files and program loading.

2. Accounting

Records of use of the computer system components during a job

are kept and the user 1s charged accordingly.

3. Program Loading and Merging |

Prior to or during execution, user programs and subroutines must

be loaded into storage and linkages established among them. The

monitor allocates storage to the programs, loads them 1nto storage

performing the necessary address relocations, and sets up linkages

among the programs so-they may communicate with one another.

69

| -

4. Accessing and Maintenance of Library Programs

Most monitors maintain a library of systems and applications

programs that may be "called" by a user; these include compilers,

assemblers, I-O0 routines, and common mathematical functions. Load-

ing and merging, and inserting and deleting library programs are

handled by the monitor.

5, I-0 Processing

In order to maintain job-to-job control and to obtain optimum

use of I-O0 facilities, most modern systems delegate all I-00 to

the supervisors. These systems often have hardware supervisory and

problem modes of operation. Hardware I-O instructions are “super-

visory" type, that 1s, only the monitor 1s permitted to use them.

To perform an I-00 operation, the user 1ssues an I-0 request to

the monitor which does the actual execution.

6. Error Checking and Recovery

Run-time errors, such as overflow, use of illegal or "privileged"

instructions (e.g., I-O instructions), exceeding run time limit,

| memory-protect violations, etc., result in interrupts or calls on

the supervisor; the supervisor determines the cause of the error,

. decides whether to terminate execution or not, and produces diag-

nostic information for the user.

fT. Interrupt Handling

Monitors are responsible for the analysis and disposition of

all interrupts that may occur during systems operation; this may

include maintenance of pending interrupt queues and priority sched-

uling of interrupt handling.

70

8. Scheduling and Allocation of Resources

When computer resources are insufficient to satisfy the total

demand on them or when it 1s desired to maintain a high degree of

parallel operation of the system components, resource allocation and

scheduling routines are necessary. These become part of the monitor

program.

This chapter outlines the three basic types of monitors and discusses

some general methods of allocation and relocation which are central to

the above tasks. A separate section describes some approaches to solving

an important control problem for parallel processes.

v-2. Types of Monitors

V-2.1 Batch Processing Monitors

This 1s the simplest and oldest type of monitor. In this type of

systems, Jobs arrive sequentially in "patches" usually from one input

source. Normally, one job at a time 1s processed; where multiprogramming

1s possible, several jobs may be in storage simultaneously and the moni-

tor controls the switching among jobs. Typical conventional monitors

| are the IBM 7090/7094 IBSYS Systeml and the B5500 Operating System

(multiprogramming).

V-2.2 Real Time Monitors

Interrupts from external devices command the attention of the system

and must be processed within a given time interval. Interrupt times are

unpredictable but several may occur during the processing of another

interrupt. Airlines reservation systems: and computer control of physics

experiments are applications of this type.

T1

4

The major task of a real time monitor 1s the handling of interrupts.

In addition, most systems batch process "background" programs while there

are no interrupts pending; on an interrupt, the real time monitor transfers

control from the "background" program to the particular interrupt proces-

sing routine.

V-2.3 Time Sharing Monitors

A time-shared digital computer system’ 1s "a system from which many

people (or machines) may demand access and expect to receive responses

after short enough delays to satisfy them." Batch processing and real

time operations may be included as part of the capabilities of a general

time-sharing system.

The most common method of implementing a time-sharing system 1s through

multiprogramming where” "several programs are malntained in an active state

(with others probably waiting in a queue), and at various times each 1s

given control of some part of the computer, until one or another of them

1s finished, or until a new task 1s brought in to replace an older one,

according to some scheduling algorithm. Fast response by the computer

to many users (e.g., 150 to 200 or more) requires that each task be given

a "time slice", and 1f the task cannot be completed during its "time slice",

that it must be interrupted to allow another task its turn."

A time-sharing monitor has the following demands and requirements: °

"(1)At any moment in time one may expect to find a great many partially

completed programs, each waiting for a turn at the central processor, an

input-output processor or some other part of the computer.

72

we

(2) Very effective use must be made of high speed storage, since many

programs must have access to 1t, but usually only a fraction of these

programs can reside there at any one time.

(3) The overhead incurred in keeping track of the programs which are

partially completed or not yet begun and the overhead incurred in switch-

ing control among them (while protecting each from the others), must be

reduced to a minimum; otherwise, 1t will quickly become intolerable."

Methods for allocating high speed storage and satisfying requirement

(2) for any type of monitor are discussed in the next section. The papers

on the MULTICS system’ contain a good discussion and bibliography on time-

sharing. A

v-3. Storage Allocation Methods

Storage may be allocated to a program at the time it 1s translated,

before execution, or during execution. In the first case, a translator,

such as an assembler, generates absolute addresses for data and instruc-

tions and the entire program including subroutines must be translated at

the same time; merging of independently translated programs can only be

| done with great difficulty since address conflicts easily occur.

Because storage 1s allocated after translation in the latter two

cases, the translation must result in a program with relocatable addresses;

e.g., lnstruction addresses, data addresses, and operand addresses may

all be translated relative to a given base address, commonly 0 . Loading

of programs, parts of programs, or subroutines into storage 1s done before

or during execution by adding relocation constants to the addresses.

Relocation performed before execution is called static relocation; reloca-

tion performed during execution 1s called dynamic relocation.

13

_

V-3.1 Static Relocation

Static relocation 1s performed by a relocation loader as the program

is loaded into storage. A number of programs comprising a job may be

translated independently; the relocation loader allocates storage to the

programs, relocates addresses to reflect this allocation, establishes

linkages between programs, and places them in storage ready to be executed.

During translation, flags can be set for each instruction to indicate

which addresses in that instruction are relocatable and which are absolute

(e.g., immediate type addresses); calls on "external" programs and program

entry points are tabulated so these correct addresses may be inserted at

load time.

The IBM 7090 FAP system’ relocates statically as illustrated below:

Name Address

Table of entry Points

Name

Exit List (External programs)
P: C@S or
. SQRT Transfer Vector

Pl—»p Program

TSX 4, call on SIN

P2—p JTSX 4, 24 Call on CdS| TSX 4, | call on SQRT

Th

|

This 1s the input to the relocation loader. The loader reads P

and merges the library programs SIN, COS, and SQRT into storage per-

forming the required address relocations; linkages are made using the

transfer vectors:

Program P and Library Programs after Loading

Transfer Vectors SIN Routine

sw |
| | CPS Routine
CES

SQRT Es SZRT Routine

Entry Points

EN
| P2 |

The use of entry and exit point tables and transfer vectors 1s the most

common method for performing the loading task,

Loading with a relocation loader 1s a complex and time consuming

job. If a fast assembler or compiler 1s available, 1t 1s sometimes more

efficient to translate and load all programs required by a job each time

the job 1s run. This is the approach taken in the B5500 operating system.

Conceptually, a computer with base addressing, such as the IBM 360,

can perform relocations very easily. For example, an IBM 360 address is

75

formed from the contents of a specified base register and a displacement

(ignoring indexing):

address = (b, d), where b - base register

d - displacement

effective address := R[b] + d where R[|] - register

Translation could occur with respect to the displacement; in loading, a

relocation constant would be inserted in R[b]. This scheme requires that

certain registers be-unavailable for use by the programmer and that the

displacement cover a large address range.

V-3.2 Dynamic Relocation

When a program 1s too large for malin storage and auxiliary storage

is available, some method for dividing the program into manageable sel;-

ments and administering the swapping of these segments between main and

auxiliary storage is necessary. One static technique that has been used

is the following:

The monitor or translator, at translation time, (or the programmer

when -he codes the problem) divides the program into segments which will

fit into main storage and inserts "segment calls" to bring in new segments;

all segments are relocated statically before execution of the program

begins. This requires that the system (or programmer) know how much stor-

age will be available for program and data at execution time; when several

programs reside 1n core simultaneously as 1n a multiprogramming or time-

sharing environment, or when data can be dynamically declared, this|

76

knowledge is not available in general. A more satisfactory method is to

divide the program into fixed or variable size segments, each of which

can be dynamically relocated during execution.

A description and evaluation of this technique as used for the GIER

ALGOL system is given by P. Naur in Reference 8. A typical picture of

the allocation during execution 1s:

Main Storage Auxiliary Storage

Administration

of Program Storage

Program Na,
Segments’

ews |
The data area 1s dynamically allocated by the program during execution

using a stack mechanism. Programs are divided into small segments so that

there 1s room for several segments in main storage at any time; segment

to segment transfers are controlled by the Program Storage Administration -

if the required segment is in core, (a table 1s kept of all segments in

core) the transfer is made; if not, then the segment 1s brought into main

storage from auxiliary storage. Segments which are unused for the longest

1]

_

times are the candidates for replacement. Naur's conclusions were that

the simple segment administration method used yielded satisfactory results

in terms of run time efficiency and that a_ significant performance 1in-

crease could be achieved by adding a hardware instruction to perform seg-

ment to segment transition (and thus reduce the segment table searching

time).

This ability to insert segments anywhere 1n main storage during exe-

cution requires that all addresses be dynamically relocatable; addresses

take the form of a pair (s, 1) where s 1s a segment number and 1

represents the address within s . (This form of address was originated

in the Ferranti ATLAS computer.) During execution of a segment, the pair

(s, i) is translated to the correct absolute address, usually by hard-

ware (however, the GEIR ALGOL system does this by software). Some of the

hardware methods for implementing dynamic relocation are described next.

Reference 9 gives a good general discussion of these methods.

V-3.2.1 Ferranti ATLAS Method

The upper part of the 20 bit machine language address 1s 1nterpreted

as the page number (page 1s synonymous with segment here) and the low order

part as the address within the page or line number:

Address

| S | 1 |
<4—n—Pp4g—n bits —P n = 11

m= 9

The addressing structure thus allows a program of up to of pages, each

page consisting of ot words. —However, in general, main storage consists

78

+
only of pM K words, where k <n . Associated with each of the ok

pages that may be in main storage 1s a hardware page register. Generation

of the actual address from the relocatable address (s, 1) proceeds as

follows:

1. Search all page registers for s.

2. if value(Register[j]) = s then

address :=J X ot + 1

(i.e., page is in core)

3. Otherwise, fetch page from drum;

Steps 1 and 2 are performed by the hardware; a hardware interrupt to the

SUPEervisor occursif the page 1s not 1n core.

Example

k=2, m= 3

Page Registers Main Storage

R{O] 52 0 x 23:

RIL]

’ R[2] o7 1x23:

R31 90

2 x 23:

address = 2 x 2° + 6 3 x 2°:

79

ee.

Administration hardware keeps track of page usage; when a new page

is required from the drum and core is full, the page with the least usage

is replaced. The relocation method applies both to data and program.

The programmer sees a "virtual" memory of ™ words and does not have

any control over the segmenting and dynamic relocation processes.

V-3.2.2 Burroughs B5500:

B5500 ALGOL is compiled so that segments consist of ALGOL blocks,

data, and control information. A program reference table (PRT) contains

block and array "descriptors" which point to the core area containing the

segment. Addresses of the form (s, 1) are translated by:

Physical address := M{b+s] + 1

M: memory

b: base of PRT

Segments are not of fixed length but contain a size limit entry that

enables an automatic check, e.g., 1f subscripts exceed their declared

bounds. The advantage of making blocks equivalent to segments 1s that

segments (or blocks) can then only be entered from the top and left either

from the bottom or by a go to statement (ALGOL requirements).

V-3.2.5 Arden, et al. Scheme’

The scheme developed by Arden, et al., (and implemented on the General

Electric 645 and IBM 360/67 computers) considers a machine address to be

a triplet (s, p, i) rather than a pair (s, i) . Physical address gen-

eration can be 1llustrated by the following diagrams:

80

Segment Number Page Number Line Number

Segment D---
Table PageRegister oo Table
ef | | |

| TEE eT
/ 4

| Physical
Address

Physical Address := M[M[M[STR+S] + p] + i]

Ly and L indicate page table lengths and page lengths so that auto-

" matic error checks occur if p > L or i>14. .
In this scheme, which 1s proposed for time-sharing systems, each

user has his own segment table and the STR register contains the segment

table base for the user currently in control; the page and segment table

entries also have an availability bit to indicate whether the page or

segment is in memory or not. The triplet 1s used since 1t 1s anticipated

that pages and page tables will be shared by many users (see section on

Invariant Programs).

81

To save storage references through page and segment tables, several

associative registers containing (Ss, p, physical page base) can be used.

Address generation then consist of a parallel hardware search through the

associative registers; 1f a match is found, the line number 1s added to

the physical page base stored in the register; otherwise, the segment

and page tables must be searched, as before. The associative registers

are controlled by the monitor so that the most frequently used page ad-

dresses are stored there. It appears that this method will be in common

use 1n the future.

V-3.5 Memory Protection

When user programs run under the control of a monitor, it 1s impera-

tive that there be hardware and/or software to also control and restrict

the blocks of memory that are available and unavailable to a particular

user. A block, page, or segment of memory may have one of four types of

access allowed:

1. Read and Write

This is the "classical" type of access; the block may be

read from or written into = both loads and stores are

allowed. Program data blocks are usually read and write,

2. Read only

A block may be read but not written into = loads but no

stores. When several programs share the same procedure,

the shared procedure is read only.

3. Write only

Only stores are allowed to the block.

82

4. Neither read nor write

Both read and write access are prohibited. This protects

independent programs and data from access by other programs.

The IBM 360 provides read write, read only, and neither read nor

write access. A L-bit "key" identifies each memory block; each program

is also given its own "key". For read-write access, program keys must

match memory block keys: an additional fetch protect bit 1s used for

read-only protection, on the 360/67 . Hardware interrupts occur on pro-

tection violations.

Segment and page table entries have length indicators indicating

the segment or page size; these are checked during physical address com-

putation to further check for memory protect violations.

V-3.4 Invariant Programs

In the early days of computer programming, there was much emphasis

on computer instruction codes that modified themselves during the compu-

tation. For example, to compute a sum, the following self-modifying 1in-

struction sequence in MAP could be used:

Initialize

LOOP CIA *+3

ADD =1

STO *+1

ADD A

STO SUM

-end test-

TRA LOOP

SUM BSS 1

A BSS 1

BSS 100

&3

Later, the use of index registers to store and compute addresses made

instruction self-modification unnecessary. Looping and subroutine trans-

fers, the two principal areas where programs might have to change them-

selves, can be accomplished easily with index registers:

1. Looping:

The loop: "for i := 1 step 1 until M do S"

(M>1) can be written in MAP as:
CLA M

ALS 18

STD B

AXT 1, 1

L

S

A TXI *+1, 1,1

B TXL L, 1,%*

2. Subroutine Transfer and Return

TSX SUB,4 SUB SXA L,k4

L AXT *%,L4

TRA 1,4

The current trend is to eliminate self-modifying programs. In multi-

programming and time-sharing systems, invariant procedures, that 1is,

procedures that do not modify themselves, are shared by many programs

(page and segment tables of several programs point to the same area for

these procedures). The invariant procedures may be library programs of

several different types - evaluation of mathematical functions, sorting

routines, editing and formating routines, etc. It 1s these invariant pro-

cedures that must be read-only protected.

84

oo om

v-4. Loosely Connected Parallel Processes IV’ 11, 12, 13

To achieve faster speeds and allow computer-to-computer communication,

computer systems designers connect several independent processors to common

memory banks and control circuitry, and run these in parallel. This in-

cludes central processors, I-0O processors, data channels, and special

purpose processors, such as a floating point arithmetic processor. With

this type of arrangement, more than one program and parts of a single

program can be executed in parallel and communicate with each other.

In general, we have many processes operating in parallel and communi-

cating with one another by means of common variables. In such a situation

1t 1s necessary to ensure that no conflicts arise 1n accessing these vari-

ables. Two examples of these loosely connected processes should clarify

these ideas:

1. I-O processing

An I-O area 1n storage (or buffer area) may be filled or emptied

by the central processor or by I-O processors. The system must be

programmed so that the common variables, the I-0 area, are not accessed

by more than one processor at a time. One special method for this case

is the multiple buffer system described in chapter IV.

2. General file Processing

When several central processors have access to a common file, such

as a payroll, accounting, or inventory file, access must be restricted to

one processor at a time in order to maintain accurate files; if not, it

1s possible for the same item to be updated simultaneously by more than

one processor and only one of the updates would then be recorded instead

of all of them.

85

V-4.1 Programming Conventions for Parallel Processing

Following Wirth, T° the parallel execution of two or more ALGOL state-

ments will be indicated by replacing the -semicolon separating the statements
N

by the symbol and . For example, to compute Dab, in two parallel
i=1

parts, the program (minus declarations) 1s:

sl := s2 := 0;

for i :=1 step 1 until N + 2 do

sl := sl + a[i] X b[1i]

and

for j :=N+2+ 1 step 1 until N do

s := sl + s2

Co 10
A matrix multiplication program computing A := B X C, where all

elements of A can be computed simultaneously 1s:

integer array A[l:m, 1l:n], B[l:m, 1:2], C[1l:4, 1l:m];

procedure product(i, J);

; value 1, J; integer i, 3;

begin

integer k; real Ss;

s := 0;

for k :=1 step 1 until £ do

s := s + B[i, k] X Clk, JI;

Ali, Jj] := s

end product;

86

procedure column(i, j);

value 1, Jj; integer 1, J;

product(i, Jj) and

if j > 1 then colum(i, J - 1);

procedure row(i);

value 1; integer i;

column(i, n) and

if 1 > 1 then row(i - 1);

row (m)

V-4.2 The Control Problem for Loosely Connected Processes

The problem and its environment can now be stated more precisely.

We are given several sequential processors which can communicate with

each other through a common data store. The programs executed by the

processors each contain a "critical section" (CS) in which access to the

common data 1s made; these programs are considered to be cyclic. The

problem 1s to program the processors so that, at any moment, only one of

the processors 1s in its critical section; once a processor, say A,

enters its critical section, no other processor may do the same until A

has left its CS .

The following assumptions are made about the processors:

1. Writing into and reading from the common data store are each

undividable operations; simultaneous reference to the same location

by more than one processor will result in sequential references in

an unknown order.

2. Critical sections may not have priorities associated with them.

3. The relative speeds of the processors are unknown.

There are two possible types of blocking which the solution to the

problem must prevent:

87

1. A program operating well outside its CS cannot then be blocking

another program from entering its CS .

2. Several programs (or processors) about to enter their CS8's can-

not, by an "after you" ~- "after-you""“type of intercommunication,

postpone indefinitely the decision on which one actually enters.

We will now try to develop solutions to the problem and illustrate

some of the pitfalls that exist.

V-4.3 Solving the Problem

The problem will be restricted to 2 processors, each with its own

CS:

| Program | Program

(5) (2) |
Processor 1 Processor 2

L. Example 1

begin integer turn; turn := 2;

Pl: begin Ll: if turn = 2 then go to IL1;

CSl: turn := 2;

program 1; go to Ll

end and

P2: begin L2: 1f turn = 1 then go to LZ;

cs2; turn := 1;

program 2; go to I2

end

end

88

Unfortunately, neither Pl nor P2 may enter its CS twice in succession;

the program insists that they enter alternately.

2. Example 2

An attempt 1s made to avoid the mutual blocking in example 1 by

defining two common variables, Cl and C2 .

Begin 1 ean Cl, C2; Cl := C2 := true;

Pl: begin Ll: if = C2 thengo to Ll;

Cl := false; CSl;

Cl := true; program 1;

go to Ll

h end and

P2: begin LZ: if Cl then go to LZ;

c2 := false; CS2;

c2 := true; program 2;

go to IL2

end

end

When Cl or C2 is false (true), the corresponding process 1s 1nside

— (outside) its critical section. The mutual blocking of example 1 is now

not possible but both processes may enter their CS's together; the latter

can occur since both programs may arrive at Ll and L2 together with

Cl = c2 = true.

5. Example 3

The mutual execution of example 2 1s avoided by setting Cl and

C2 false at Ll and 12 respectively:

89

begin Boolean Cl, C2; Cl := C2 := true;

Pl: begin Al: Cl := false;

Ll: if = C2 then go to Ll;

CSly; Cl := true;

program 1; go to Al
end and

P2: etc. . . .

end

The last difficulty has been resolved but mutual blocking 1s now possible

again. Cl may be set false at Al at the same time that C2 is set

false at AZ: in this case, both Pl and P2 will loop indefinitely

at Ll and L2 . The obvious way to rectify this is to set Cl and C2

true after testing whether they are false at Ll and 12 .

4. Example &

begin Boolean Cl, C2; Cl := C2 := true;

Pl: begin Ll: Cl := false;

if 1 C2 then begin Cl := true;

go to Ll

end;

Col; Cl := true;

program 1; go to Ll

end and

P2: etc.——-

end

Unfortunately, this solution may still lead to the same type of blocking

as 1n the last example; if both processes are exactly in step at Ll

and L2 and their speeds are exactly the same for each succeeding

instruction, the same loop as before will develop around Ll and L2 .

90

The above attempts 1llustrate some of the subtleties underlying this

problem. The following solution was first proposed by Th. J. Dekker:

begin integer turn; Boolean "Cl, C2;

Cl := c2 := true; turn := 1;

Pl: begin Al: Cl := false;

Ll: if = C2 then

begin if turn = 1 then go_to Ll;

Cl := true;

Bl: if turn = 2 _thengo to Bl;

go to Al

end

- CSl; turn := 2;

Cl := true; program 1;

go to Al

end and

P2: etc. ——-

end

Cl and C2 ensure that mutual execution does not occur; "turn" ensures

that mutual blocking does not occur.

11

| Dijkstra has developed a solution to the more general problem where

there are n processes, 1nstead of only 2, operating in parallel. If

it was further stipulated that no individual process be indefinitely

blocked, both the above solution and Dijkstra's solution would fail; for

example, 1f 1n Dekker's program, the speed of processor 2 1s much greater

than that of processor 1, it 1s possible for processor 1 to loop inde-

finitely at ‘Ll while processor 2 executes its cycle continuously. This

problem is considered in Reference 13.

91

n_—

V-4.4 The Use of Semaphores

While Dekker's and Dijkstra's programs solve the given problem,

there are, nevertheless, two unappealing features of them:

1. The solution 1s mystifying and-unclear in the sense that a

simple conceptual requirement, mutual exclusion, leads to cumber-

some additions to programs.

2. During the time when one process 1s 1n 1ts critical section,

the other processes are continually accessing and testing common

variables; to do this, the waiting processors must "steal" memory

cycles from the active one. The result 1s a general slowing down

of the active process by other processes that are not doing any

useful work.

An improved solution can be obtained by adding two new primitive

or basic operations (Dijkstra 2). These primitives, designated V and

P, operate on integer non-negative variables, called "semaphores"; it

is the semaphores that perform the communications among processes. The

V and P operations are defined as follows:

1. V(S) (S a semaphore variable). S 1s increased by 1 . This

is not equivalent to S := S+1L . e.g., If S =5 and 2 proces-

ses call V(S) simultaneously, both V-operations will be performed

(in some order) with the result that S = 7; however, 1f the ALGOL

S :=3+t1l 1s executed by each process, 1t 1s possible for each

process to fetch S when it is 5, increment it by 1, leaving

S5 ~- i.e., S has only been incremented once 1nstead of twice.

V(S). does the fetch, increment, and store as one operation.

92

ha EE...

2. P(S) (s a semaphore variable). P(S) decrements S by one,

1f possible. If s = 0, then 1t 1s not possible to decrement S

and remain in the domain of non-negative integers; in this case, the

P-operation waits until it 1s possible.

Let us apply these primitives to the mutual exclusion problem with

Nn processes:

begin integer mutex; mutex := 1;

Pl: bagin . . nend_ d

P2: 4 4 ov oo o

Pi: begin Li: P (mutex); CSi; V (mutex);

h program 1; go to Li

end and

Pn: « « << . .

end

mutex = 0 when one of the processes 1s 1n 1ts critical section; other-

wise, mutex = 1 . Mutual execution of CS's cannot happen since mutex

can't be decremented below zero by the P-operation. It should be noted

how much simpler and clearer the solution is when the V and P-operations

are employed. Some more dgeneral applications of semaphores will be illus-

trated next.

V-4.4.1 2-Processes Communicating via an Unbounded Buffer

+ A "producer" process produces information for the buffer and a

"consumer" process consumes information from the buffer; this 1s analo-

gousto the situation where-a CPU fills an output buffer and a data

93

channel consumes or empties the buffer contents. The following two sema-

phores are used:

n= number of queued portions of output of the producer and input

to consumer,

0 indicates adding to or taking from buffer 1s occuring
b =

1 indicates buffer access routines are not active.

The critical sections are the buffer access routines, "Add To Buffer"

and "Take From Buffer".

begin integer n, b; n := 0;b := 1;

producer: begin Lo produce next portion of data;
P(b); Add To Buffer; V(b);

V(n); goto L_
end and

consumer: begin L P(n);

P(b); Take From Buffer; V(b);

Process Portion; go to L,
end

. end

The two most common methods of organizing a buffer are the cyclic method

(Chapter IV) and the chaining method, where each portion of the buffer

1s an element in a linked list or chain. In the latter case, adding or

taking from the buffer simultaneously can disturb the linkages; the

semaphore b ensures the mutual exclusion of the critical sections,

Add To Buffer and Take From Buffer.

Oh

In general, 1t 1s always possible to replace a general semaphore

(taking all non-negative integer values) by one or more binary semaphores

(taking0 or 1). Below, the last example is programmed using binary

semaphores only; the simple integer variable n and the binary semaphore

d are used instead of the general semaphore n :

begin integer b, n, d; b := 1; n :=d := 0;

producer: begin: Ly : produce next portion;
P(b); Add To Buffer; n := n+l;

if n = 1 then V(d);

V(b); go to L
- end and

consumer: begin integer oldn;

L.: P(d);
L P(b); Take From Buffer; n := n-1;

oldn := n; V(b); Process portion;

if oldn £ O then go to L else go to L,
end

end

Another solution, called "The Sleeping Barber", presents the actions

| of the producer and consumer more clearly:

begin integer b, n, d; b := 1; n := d := 0;

producer: begin Ly produce next portion;
P(b); Add To Buffer; n := n+l;

if n = 0 then V(d);

V(b); go to Ly
end and

95

consumer: begin Lg P(b); n := n-1;
1f n= -1 then

begin V(b); P(d); P(b) end; >

Take From Buffer;

V(b); Process portion;

go to L,
end

end

When n= -1 outside of CS execution, the buffer 1s empty and the

consumer, having noted this, 1s waiting. The "sleeping barber" story

goes as follows:

Barber's L
3 Chair

[Waiting Room Barbershop

Customers enter the waiting room and the Barber's room through a

sliding door that only admits entrance to ae of the rooms at a time

(mutual exclusion of customer producer and consumer); the entrances are

designed so that only 1 customer may come into or leave the waiting

room at a time. When the barber finishes a haircut, he inspects the

waiting room by opening the door (P(b) at L,)s if the room is not

empty, the next customer is invited in (n £ -1); if the room is empty

(n= -1), the barber goes to sleep (waiting at P(d)) . When a customer

enters and finds a sleeping barber, he awakens him.

96

V-4 4.2 Processes Communicating via a Bounded Buffer

The general semaphore 1s applied to the last problem in a. more

realistic setting = a bounded buffer. N 1s the buffer size, in portions

and 1s a global variable in the program. Two general semaphores are used:

n = number of empty portions in buffer

m = number of queued portions

b 1s a binary semaphore ensuring mutual exclusion of critical sections.

begin integer m, n, b; m := 0; n :=N; b := 1;

producer: begin L produce next portion; P(n);

P(b); Add To Buffer; V(b);

V(m); go to Ls
end and

consumer: begin L,: P(m);
P(b); Take From Buffer; V(b);

V(n); process portion;

go to IL,
end

end

V-5. References

l. Noble, A. S., Jr. Design of An Integrated Programming and Operating

System. Part I: System Considerations and the Monitor. IBM

Systems Journal 2, (June 1963),153-161.

2. Master Control Program Characteristics, B5500 Information Proces-

sing System. Bulletin 5000-21003-D, Burroughs Corp. May 1962,

91

5. Desmonde, W. H., Real-Time Data Processing Systems: Introduc-

tory Concepts Prentice-Hall, Ine.,N. J., 1964. -

4, Clark, R., Miller, W. F., Computer-Based Data Analysis Systems.

Methods of Computational Physics, 5 (1966). Academic Press.

pp. 47-98,

5. Arden, B. W., Galler, B. A., O'Brian, T. C., and Westervelt, F. H.,

Program and Addressing Structure in a Time-Sharing Environment.

J. ACM 13 (January 1966), 1-16.

6. A New Remote Access Man-Machine System. AFIPS Conference Pro-

ceedings Fall 1965 Part 1 Spartan Books. pp. 185-247.

7. IBM 7090/7094 Programming Systems, FORTRAN II Assembly Program

(FAP). Form (C28-6235-4. IBM Corporation, 1963.

8. Nauer, P., The Performance of a System for Automatic Segmentation

of Programs Within an ALGOL Compiler (GEIR ALGOL). Comm. ACM,

8, 11 (Nov. 1965) 671-676.

9. McGee, W. C., On Dynamic Relocation. IBM Systems Journal, 4,

3 (1965) 184-199.

10. Wirth, N., A Note on "Program Structures for Parallel Processing."

Comm. ACM 9, 5 (May, 1966), 320-321, (letter to the editor).

11. Dijkstra, E. W., Solution of a Problem in Concurrent Program-

ming Control. Comm. ACM 8, (September, 1965), 569.

12. Dijkstra, E. W., Cooperating Sequential Processes (Preliminary

Version). Mathematics Department, Technological University,

Eindhoven, The Netherlands, September, 1965.

98

13. Knuth, D. W., Comm. ACM 9, 5 (May, 1966), 321-322, (letter to the

editor).

14%. Dennis, J. B., Segmentation and the Design of MultiprogrammedCom-

puter Systems. J. ACM 12, 4 (Oct. 1965) 589-602.

v-6. Problem

"Prove" that Dekker's solution, to the mutual exclusion problem 1s

correct.

99

nl Te ._—

a

i

VI. COMPILERS ~ AN INTRODUCTION

The next J chapters are devoted to the description of the main

techniques and formal methods that are useful for designing mechanical

languages and their compilers. .

VI-1. Tasks of a Compiler

A translator whose input 1s a language with some "structure' will

be called a compiler; most interpretations of the word "compiler" are

included in this definition. Specific examples will be restricted to

compilers of algebraic languages - ALGOL and FORTRAN being the two most

common ones.

To understand the meaning of 'structure" in the above definition,

solutions to the same problem are coded in MAP, FORTRAN, and ALGOL:

Problem

Given: a,» Db, i= 1, 100

a. if a, > Db, i=1, 100

compute: ec. =(." . = 1) i Tb. 1f a. < b.
1 i= 1

MAP Solution FORTRAN Solution

AXT 1,1 DO 100 1 =1, 100

LOOP CLA A,l IF (A(1) - B(1l)) 10,10,20

CAS B,1 10 c(I) = B(1)

TRA UNEQ GO TO 100

TRA EQ 20 ¢(I) = A)

UNEQ STO C,l 100 CONTINUE

BUMP TXT *+1,1,1

TXL LOOP,1,101

HTR

EQ CLA B,T

TRA UNEQ

100

ALGOL Solution

begin real array A,B,C[1:100]; integer i;

for 1 :=1 step 1 until 100 do

c[i] := if' Ali] > B[i] then Ali] else B[i]

end

The most significant feature that distinguishes these three solutions

(and the languages) from each other 1s the degree of structure in the

programs. The logical flow of the MAP solution 1s indicated through

the extensive use of labels and transfer instructions. The statements

are simple, almost independent of each other, and it 1s easy to decom-

pose them into component parts. In contrast, the ALGOL solution 1s

highly structured; the structure itself exhibits the logical flow. Each

ALGOL statement must be analyzed into component statements and parts;

for example, 1n the above solution there 1s a Boolean expression which

1s part of an arithmetic expression which 1s part of an assignment state-

ment which 1s part of a block which constitutes the program. The FORTRAN

solution lies somewhere between these two extremes.

The basic tasks of a compiler are:

1. Recognition of the Basic Parts of the Source or Input Language.

The source program must be exhaustively scanned to recognize and con-

struct its primitive components; these may include identifiers, numbers,

delimiters, and other basic units.

101

2. Analysis of the Structure of the Language.

The scope and constituent parts of the input statements are deter-

mined. This 1s a recursive process since statements may consist of

sets of other statements each of which again must be analyzed for scope

and constituents. Output reflecting this structure 1s produced.

5. Processing of Symbolic Names.

The declaration and use of symbols must be linked; this 1s very sim-

ilar to the symbol processing performed 1n an assembler.

4. Transformation of Arithmetic Expressions Into a Sequence of Simple

Operations.

Arithmetic expressions are analyzed to transform them into sequences

of elementary arithmetic operations. Structure in arithmetic expressions

was a feature of most of the early algebraic languages and many techniques

were developed to analyze them.

5. Storage Allocation.

When the output language 1s a machine language, real or "virtual"

storage must be allocated for programs and data.

Expressions compilation methods are briefly surveyed in the remain-

der of this chapter. The environment is relatively simple, yet it pro-

vides insights and clues to compilation methods in general.

102

VI-2. Heuristic Techniques for Expression Compilation’

VI-2.1 Rutishauser (1952)

The expression 1s repeatedly scanned, each time extracting the

innermost subexpression; elementary arithmetic operations are generated

for the selected subexpression and it 1s replaced by a single operand

in the original. The first scan, from left-to-right, assigned level

numbers to each element of the expression =- operands and "(" increment

level numbers while operators and ")" decrement them. The innermost

subexpressions are defined by the highest level number; the numbers are

updated as subexpressions are replaced.

Example)

Level numbers appear under the expression elements.

Scan No. Expression After Scan Generated Operations

in + -1 (4, (A, As)) (Ay x A, x Az)
012 123 23 21012 12 1210

+ - R, := +(A, + BR) - (A) X Ay X Az)] Ay + A
012 121012 12 12 10

I

R, - (A; x A, x Az) Ry := A) + Ry
01 012 1 2 1 2 10

4 R, - Rs Ry := Ay X A, X Ay
01 010

op R R := R, - R,
010

am 103

VI-2.2 FORTRAN Compiler (1954 +)

The emphasis 1n the first FORTRAN compiler was placed on producing

efficient code for the 701 computer. Expression compilation was a D-pass

task with the following functions:)

PASS 1 : Replace all constants and subscripted variables by simple

variables. e.g., A +Bt3/Y(6) becomes A + BtC/D

PASS 2 : Insert all parenthesis in expression so that operator

precedences are explicit. e.g., A + B1C/D becomes

(((a))) + (((B)11(C))/((D)))

PASS 3 : Break expression into subexpressions or "segments." e.g.,

the expression (((A+B) - ¢)A(ox(E+F)/G) - H+J)) (extra

parentheses are omitted for simplicity) breaks into 6 segments:

1. (A + B)

2. ((A +B) -C)

3. (E + F)
4. (0 x (E + F)/a)
5. ((Dx (E+F)/G-H+J)
6. (((a+B) -C)/((Dx (BE+TF)G)-H+ J)

PASS 4 : Triplets of the form (segment no., operator, operand) are

compiled from each segment. The segments of pass 3 are trans-

lated into the triplets:

(1, +, A) (1, +, B)

(2, +, 1) (2, -, C)

(3, *» E) (3, +, F)

(4, x, D) (4, x, 3) (4, / G)

(55 +5 4) (5, =» H) (5, +, J)

(6, x, 2) (6, /, 5)

PASS 5 : Repeated scans of the triplets are made-deleting redundant

parenthesis, removing triplets corresponding to common subex-

pressions, re-ordering triplets to minimize fetch and stores,

and finally, generating assembly code.

VI-2.3 NELIAC (a dialect of ALGOL 58)°)

A tabular technique was used in which pairs of operators, the

current operator (COP) and the next operator (NOP), are used to generate

code 1n a single scan from left to right.

Example

NOP

COP ’ + —> ~ X

Lollew | com me
u ADD ADD ADD STO T

LDQ,

- Jeo ||]
) 4 MPY ADD T)

XCA MPY

XCA

ys AXB+ CD, generates LDQ A

a MPY B
| XCA

MPY ADD OC

XCA STO D

ADD

STO

The method 1s very fast but expressions are severely restricted so that

only 1 temporary storage cell T 1s needed-—-no parenthetical nesting

of expressions 1s allowed and only 2 levels of operator hierarchy exist.

The pair (COP, NOP) actually acts as a 2-dimensional switch to branch

to an appropriate subroutine.

105

VI-2.4 Samelson and Bauer (1959)°

: Two symbols at a time were compared as 1n the NELIAC method but

Samelson and Bauer introduced the push-down store (stack or cellar) for

saving operators and temporary results:' Symbol pairs were used to access

an element of a two-dimensional "transition matrix" which selected the

appropriate action.

Example: (a x b+ cxd)/(a-d is translated into:

Rl := a; R2 := b; Rl := Rl x R2;

R2 := cj; R3 := d; R2 := R2 x R3;

7 Rl := Rl+ R2; R2 := a; R3 := d;

R2 := R2 - R3; Rl := R1/R2;

where R1 are the stack elements.

VI-2.5 Dijkstra (1960)*

Dijkstra used an extension of the stack techniques of Samelson and

Bauer in his implementation of the first ALGOL 60 compiler. He demon-

strated that the cellar principle 1s also appropriate for other construc-

tions of ALGOL beyond expressions. Dijkstra's method and modifications

of it form the basis for many algebraic compilers; the next section

presents a general description of 1t.

VI-5. Compilation of Expressions Using a Stack’

An arithmetic expression can be easily converted to a reverse or

postfix Polish string with the aid of a stack. This string can be viewed

106

as the sequence of elementary arithmetic operations represented by the

original expression.

The process 1s analogous to a "T-shaped" railway shunting system with

the shunting or re-ordering performedin the vertical bar of the "T":

Output (Reverse polish string) Input (Expression)
—— PF +-—— —

~. | otack
Operands take the direct route to the output while operators pass through

the stack. Priorities are defined for the operators to reflect their

precedences; for example:

priority ("tt") > priority("X") > priority("+") .

Assuming the input string 1s an arithmetic expression consisting of

operators and operands, conversion to reverse Polish goes as follows:

1. if nextsymbol (input) = operand then pass it through to the output

else

2a. if priority(operator at top of stack) > priority(incoming operator)

then pass stack operator to output else

2b. move incoming operator to top of stack.

107

Example 1

Priority Table

Operator | Priority
+ 1

X 2

f bo)

i -® (expression termination operator)

—— ab + 1 —i i¥

yi Stack initialized to L

The termination symbol L at the end of the expression is not put into

© the stack (a special case); its use is to cause total unstacking at the

end of the expression.

Example2

abc X +L 4— ALP AA

108

Parenthesis may be handled by modifying the algorithm. Two kinds

of priorities are defined for operators - a stack priority which holds |

when the operator 1s in the stack and a compare priority which holds with |

the operator 1s the incoming symbol. The priorities are determined so

that a "(" is automatically stacked and remains there until its corres-

ponding ")" arrives; the ")" then causes unstacking to its" ('.

Step 2a. must be changed to:

2a'. if stackpriority(operator at top of stack) > comparepriority

(incoming operator) &hen pass statk operator te output _e

Example 3

Operator Stack Priority Compare Priority

(0 4

+ 1 1

X 2 2

t 3 3

) _ 1

1 —© 0

4¢—— abc + Xd + 1 4XP FE) FA

#
fF

oo f{
| X

f

109

")" is never stacked; after unstacking down to "(", both "(" and

")" are deleted. Disecting the operation of the method in this example,

we have:

Incoming Symbol After Processing S

S stack output

3, i a

X 1X a

(LX (a

b LX (ab

+ LX (+ ab

C LX(+ abc

) LX abc+

+ 1+ abe+X

d 1+ abc+Xd

1 abe+Xd+L

Relational operators (<, <, >, . ..), Boolean operators (A, V, =),

and the remaining arithmetic operators can be included by adding their

priorities to the table. Subscripted variables can be handled by treat-

. ing the subscript brackets, "[" and " I, and the commas separating

the subscripts 1n a similar manner as parentheses. Finally, conditional

expressions, simple statements, conditional statements, and compound

statements can all be transformed into a meaningful sequence of reverse

Polish operations by establishing priorities for the delimiters and using

the shunting algorithm.

The transformed expression ~ the reverse Polish representation of

the input string - can directly correspond to a sequence of instructions

for a stack computer (see the stack interpreter in Chapter III).

110

VI-4: Phrase Structure Methods

These methods use the formal definition of the language directly.

Expression compllation - and compilation in general - is based on a

mechanical parse of the input program which exhibits its structure.

These parses may be conveniently represented as trees:

Expression Tree Representation

a b Cc d

aXb+cxd Ne N A
NA

+

1]

a b C

: X

A\ +

:
a b Cc

aXb+c N/% L
EN

+

5

The numbering of the tree elements is performed by a left-to-right and

top-to-bottom systematic count. If the elements are ordered according

to number, the result is their reverse Polish representation. This 1s

111

not an accident. Precedences are implicit in the formal definition of the

language and the parse automatically produces the reverse Polish.

Present production compillers are based on the heuristic and stack

methods. The more formal phrase structure schemes are of recent origin

and have been applied to several successful experimental systems. They

appear to offer great promise for changing compiler writing from an art

to a science, The next chapter develops the main ideas of Phrase Structure

Programming Languages and their translators.

VI-5. References

1. Randall;' B., and Russell, L. J., ALGOL 60 Implementation.

Academic Press, London and New York, 1964.

2. Halstead, M. H., Machine-Independent Computer Programming.

Spartan Books, Washington, D.C., 1962.

5. Samelson, K., and Bauer, F. L., Sequential Formula Translation.

Comm. ACM, Vol. 3, pp. 76-83 (Feb. 1960),

L. Dijkstra, E. W., Making a Translator for ALGOL 60. Annual

- Review In Automatic Programming, Vol. 3, pp. 347-356 (1963).

VI-6. Problems

1. Produce the reverse Polish representation of the following

arithmetic expressions:

(1) a +b Xct(dte)/f

(2) (((axXb+c)Xd+e)xf+g)to

(3) a+ 3 X (b-c+d) - i x(j/et2x(p+3xi)+c)

112

2. Expand the priority tables to include the Boolean operators

(=, DO, 1, V, and A), the relational operators (>, >, $<, S$, =

and £), and all the arithmetic operators (+, - /, x, 1).

Note: special cases must be made for the unary operators. Use the

shunting algorithm to translate:

b<=-c=~ (dte) =e Xf + gth>iA—-j into reverse Polish.

113

VII. PHRASE STRUCTURE PROGRAMMING LANGUAGES

VII-1. Introduction

Intuitively, a language 1s a set of sentences or word sequences;

each sentence 1s formed by concatenating some words in the language vocab-

ulary according to given composition rules. The composition rules are

called the syntax of the language and define its structure. An analysis

of a sentence that produces 1ts structure or syntactical components 1s a

parse of the sentence. A language 1s ‘ambiguous 1f there exist sentences

to which more than one structure can be assigned.

Example 1

h |] \ TOWNpronoun verb \ fo
| \ phrase

+ subject Tene
sentence

A possible set of rules or syntax which underlies this parse 1is:

: pronoun —WE

pronoun - YOU

noun — CHILDREN

verb -» GO

verb —DRIVE

prepositionals -» TO TOWN

phrase

subject - pronoun

subject -noun

predicate -verb

predicate —verb prepositional-phrase

sentence = subject predicate

114

Example 2

z CAN'T SEE FLYING KITES
|EOTrSE

The sentence 1s ambiguous since it can have either of the two indicated

structures.

Usually, a set of rules and a string are given and the question

"Is the string a sentence of the language?" must be answered; 1f the

string can be parsed, the answer 1s "Yes". It is rarely required to do

the opposite - 1.e., generate a sentence from a given set of rules.

(In computing, programmers generate strings of code; compilers analyze

them.) A syntactic analysis can be used to help determine the meaning

or semantics of sentences; for example, given the meaning of the subject

and predicate in Example 1, the meaning of the entire sentence can be

determined. Meaning is obtained by associating a semantic or interpre-

tation rule with each syntactical rule. Semantic rules can also indicate

when "meaningless" sentences have been successfully parsed.

These notions will now be formalized, extended, and applied to

" programming languages and compilers.

VII-2. Representation of Syntax

The most common method for expressing the syntactical rules of a

language 1s by a straightforward list of productions, each of the form:

X7y

where x and y are strings over the vocabulary of the language. The

vocabulary consists of non-terminal symbols, such as (term) or (factor),

and basic or terminal symbols, such as begin, else, or + .

115

Example:

(1f clause) - 1f (Boolean expression) then

(term) - (term) X (factor)

ADC = XC

The representation used 1n the ALGOL report, the Backus Normal Form

(BNF), 1s an abbreviation of the above which allows several productions

to be given on one line and uses i= 1nstead of - .

Cee, (term) : := (factor)\ (term) X (factor)

Both will be used where convenient.

A graphical specification of syntax can be very useful, especially

when writing a compiler. B5500 ALGOL syntax is expressed in a chart’

using the following graphic symbols:

Symbol Meaning

QD symbol definition

reference to symbol

0 terminal

T: terminal symbol

NT: non-terminal symbol

Example

(term) ::=_(factor)] (term) X (factor)

116

1s expressed:

* gives a "coordinate" reference to the point of definition of the sym-

bol in the box.

Another graphical method replaces the coordinate references by dotted

2

lines pointing to the occurrences of the symbol:

Toss TTsT TTT TTT TT Term

A

!
)

Here the directions of the arrows have been reversed to indicate

reductions rather than productions. A complete specification for ALGOL

using this method 1s given on the next page.

117

TF i

LE RE | fe Et Ee WC mal

il A CEH Enhbyl, EE UT

BE : ¥ -

ah H i — | i —— E

vr E—h Eg ey

i i |b i El |2] 1s] [2 a

=k 3 | Le EL | oh oud Idisutssass
Eo aBE || A LE dl mld BL EEE Sod EH Ls =HEEE

ETETE ET 20 131 A fa :a | GEE be Ee il ai: esl= I = T8 | [8r in cm eeeet og plzInRE] fn : oF]
ils lin 1H | VTE Josos saa HELEiil ili Alen i sal HEE
it B 3 Lt gle FIA =f Ein AR EEShile] O BE gH — Ur al of bi 1 4

118

VII-3. Notation and Definitions”

Capital letters and letter sequences enclosed in "{" and ")"

denote symbols; e.g., (term), A, U, (sentence), T . Small letters de-

note strings of symbols. The empty string is designated A . Script

letters are used for sets; e.g., &, V, er.
*

: The set V of symbols is called the vocabulary. V is the set of

strings generated over V ; formally:

VE = {s]s = A or (s = s’S with s'eV™, Sev)}

Example: V = {A, B}

v* = (aA, A, B, AB, AA, AAB,....}

is a set of syntactic rules of the form:

X= yi x, yeV¥ |

A string x directly generates y 1f and only if there exist strings

u, W (possibly emtpy) such that x = uw, vy = uzw and Vv — ze rc

This is denoted x ®* y . e.g., Using Example 1 of section 1,

(verb) (prepositional phrase) = (verb) TO TOWN

Es

X generates y (x = y) 1f there exists a sequence of strings

X = xy Xy5 Xy5eee5 X= y such that x, 1 Xs i=1...,n . e.g.,
*

(verb) (prepositional phrase) — GO TO TOWN
*

(sentence) * WE GO TO TOWN

119

A phrase structure system 1s a pair (v, 2) . A phrase structure

language (V, Ve & S) is defined:

sv, v,®, 5) = (ssc, Vo CV, ser - 7,
*

and S — s}

V.. the set of basic or terminal symbols, is the subset of V such

that no element of Vip occurs as the left part of any production,

Example 1

V = {A B, C, 8]

®@ = (s ~ aC)

Example 2

Vv = {s, A, B, C, D, E}

® -{s~AaB, B~- CD, C~ EJ

Vr a {A, D, E}

The generation of £ from S is

S = AB * ACD = AED

"o£ = {AED}

120

Example 3

V=1{s,n B,C, D, E}

V, = {A, D, E}
@={s~AB, B~ CD, BDC, C= E)

of = {AED, ADE)

| Example 4

YE {Ss, A, B, C}

@ ={s "A, A —B, A" CA)

.£ = {B, CB, CCB, CCCB, . ..} or

A 1s defined recursively here, that 1s, 1n terms of itself.

The language derivation or generation can be represented as a tree:

RaIN

Example5 Replacing the rule A = CA by A — CAC in Example 4,

{ becomes:

£ = [B, CBC, CCBCC, ..}
= {c"c"|n=0, 1, . ..)

121

VII-4. Chomsky's Classification of Languages”
Chomsky has classified languages according to the type of productions

used to generate them:

Class 0: No restrictions.

Class 1: All productions are of the form:

VAV — uav

(u, v may be A)

This is sometimes called context-dependent since A ~ a

only in the context of u, v .

Class 2: Productions are restricted to the form:

A a

Class 2 languages are also called context-free.

Class 3%: Productions are severely restricted to either of the forms:

A B or A BC

with A, CeV - Vo

Bel,

This class of languages 1s also called finite-state.

There are class 1 languages which are not 1n class itl

(fori = 0, 1, 2), so that the class to which a language belongs is

. some indication of its power. Most programming languages can be (almost)

formulated as members of Class 2.

VII-5. The Parsing Problem

A direct reduction of b into a, designated b — a, 1s an ap-

plication of the production X — y, where b = uyv and a = uXv for

some Uu, veV™ . A reduction of b into a, Db Ng, 1s a sequence of

direct reductions X, = X;,q for i=0,..., n-1, such that xy = b,

X = a this 1s also called a parse.

122

Example 1 A = BC

B = DE

C — IG

Parsing or reducing the string DEFG gives:

(a) DEFG = BFG — BC —>A

or

(b) DEFG —> DEC ~~ BC =A

: *
..DEFG => A

These reductions may be expressed as trees:

(a) (b)

A E \/ A E PF GG
@ { oF © {No

3 A 3A

Circled numbers indicate the order of the reduction; the resulting

trees are:identical. The above difference in parsing, due to the order

of application of the reductions, is trivial and can be eliminated by

introducing a canonical ordering to parses. The canonical parse 1s the

one that proceeds from left to right in a sentence and reduces a left-

most part of a sentence as far as possible before proceeding further to

: = AN AN -
the right. Thus, 1f x X1X, and x, Ss X,, Sp then the re

duction x, — 84 1s performed first. In this example (a) 1s the can-

onical parse.

123

Example 2 A—-X XX XX

A - AX A
ed

A Parse
—

A
“a |ES |

A

The sequence of X's 1s defined using a left-recursive definition.

Example 3 A—-X

A— XA

XX XX We have run into a dead end by
bd

A starting the parse from the left.
7

XX XX A successful parse 1s obtained by
J

A starting from the right.
A

I

A

1

A

; Here, the sequence of X's 1s defined by a right-recursive defini-

tion.

Example 4 A—-X

A'XAX

XX XXX The parse must start at the middle
w

A
of the string at each stage.

A

A

124

Example 5 A BY| CZ
B ~ X|BX

c = X|xc

(a) (b)
XX XY X X X Z

| E J
B C

(I —
B C

JE— rdB

LL
A A

This example illustrates how the input string determines the direction

and position of the reductions.

Example 6 A — WX

B = AY

C = BZ|WD
D = XE

E — YU

(a.) (b)
WXYZ WXYU WXYU

—

A A E

5 5 —
— beeper breed

In (b), the first try leads to a dead end. The second, and suc-

cessful, parse starts with the next reducible substring from the

left, namely YU .

125

The parsing problem 1s to analyze sentences efficiently; the ideal

system would have a "recognizer" that recognizes productions and deter- i

mines the correct reduction to be made at any stage.

VII-6. Irons' Classification of Languages According to Parsing

Difficulty’

Irons suggests that languages be classified "according to the com-

plexity of interaction between parses or disjoint subs-kings of a parsed

string."” Several examples will illustrate the basic 1dea of his scheme.

Example 1 N A x|ax

In the string X X X X X, each X 1s i1mmediately reduced to A without

any need to examine 1ts surrounding symbols.

Example2 A ~ XB

B —~ Y|zB

X Z Z L Preceding symbols must be stored until
Bb Y 1s reached but each reduction can

a be made, e.g., ZB — B, without
|—

A examining any symbols not in the re-

duction itself.

126

Example 3 A — BY|cZ

B — X|BX

c ~ x |xc

XX XY ; X X X Z
J Lt

B C

[— —
B C

| — —
B C

; A A

To reduce X 1t 1s necessary to look ahead to the end of the string

to see whether the reduction should be to a B or to a C .

Example Lh —— A" wx

B = AY

c = Bz|wWD
D — XE

E ~ YU

(a) (b)

f Z WXYTU
\ \//

\

| The substring WX cannot be reduced to an A until we have looked

2 symbols to the right of it. This language is then classified as

OSL,28R . (SL - symbols left; SR - symbols right.)

- Co N) S)
Generally, Irons classifies a language as n{;}, m{;]R, where
s = symbol 1n input string

B = "bracketed" string, meaning a string that has already been

reduced

L = left

R = right

n, m are numbers.

127

This defines "the extent to which symbols surrounding a string

determine its parse. "’ Example 1 and 2 are both OSL,OSR (or "uncon-

nected") languages. Example 3 is OSL but it is impossible to fix m

since one must always look to the endof the string, whatever its length

may be.

Example A = WX

B = AY

c ~ Bz|UD
D = XE

E = YZ

(a) (b)
WXYZ UXYZ

| \/

\/

Here, YZ cannot be reduced in isolation. One must first look two

symbols to the left - 1f a UX 1s found, YZ can be reduced to E;

otherwise it cannot. This language is then 2SL,0SR .

By classifying a language in terms of its parsing difficulty, we

° gain a clearer understanding of what 1s needed for 1ts automatic analysis.

Some general parsing methods are discussed in the next section.

VII-7. Parsing Methods

VII-7.1 A "Top Down" Method?

A "bottom up" parse of the strings of the language L(V, v. #8)
starts with s and looks for a sequence of reductions so that g Ng

the parses in the examples of the last few sections have been implicitly

128

of this type. A "top down" parse starts with S and looks for a sequence

*

of productions such that S = s . The same parsing trees are produced but

they appear with the root at the top in the latter case and at bottom in

the former. The tree of Example 5(a) of the last section is:

bottomup Lop down

WXYZ |

Y /
NV AN% Y 2
%

-E ::= TIT+E,
Given the syntax T ::= F|FXT, the following ALGOL procedures, 1n

F ::= M(E)

conjunction with some symbol pointer and storage administration which have

been intentionally omitted, will perform a "top down" analysis:

Boolean procedure E;

E := if T then (if issymbol ('+') then E else true) else

false (1ssymbol (arg) 1s a Boolean procedure which com-

pares the next symbol in the input string with its argument, arg.)

Boolean procedure T;

T := if F then (if issymbol ('X') then T else true) else
false

Boolean procedure Fy

F := if issymbol ('A') then true else

if issymbol ('(') then (if E then

(if issymbol (')') then true else false)

else false) else false

If the last production in the syntax were changed to E ::= T|E+T, a

straightforward application of the general method will yield the new pro-

cedure for E :

129

Boolean procedure Ej;

E := if T then true else ifE then . . .

For the string, A +t A, the procedure E will callT which calls

F which tests for 'A'" and gives the result true; E then is true,

but only the first element of the string is in the analysis; 1.e., the

analysis stops before completion!

N+ A

—

F

(I

T

Ld

El

If the input string 1s not a member of the language, T 1s false and we

can easily get into an infinite loop on E . (The problem is that Eef(E)-

see next section on precedence grammars). The usual solution to the prob-

lem 1s to replace the recursive definition of E by an iterative definition:

oo.| Yes No

o> True
| No

False

130

A possible extension of BNF that replaces iterative definitions by

recursive ones 1S

E ::= T{ +71} ,

where the quantity in the braces can be repeated any number of times,

| including 0 .

This method has been implemented on several compilers, for example,

the BS5000 EXTENDED ALGOL compiler. It has the advantage of being concep-

tually simple. However, 1t has some severe disadvantages:

(1.) Many false paths can be tried before the correct one 1s found;

a failure on any path requires backtracking to the last suc-

cessful recognition.

(2.) It 1s difficult to insert semantic rules, such as code

generators, 1nto the system.

(3.) There 1s no systematic way to determine the success or failure

of the method, except by exhaustion.

| In general, we can classify the "top down" method as being a heur-

istic solution to the parsing problem.

VII-7.2 Eickel, Paul, Bauer, and Samelson

This method deals with productions whose right sides are of length

1 or 2; i.e., U ::= R and U ::= ST are the only forms allowed. No

generality 1s lost with this restriction since the production

U + i= 5,8, Co. 5 can be replaced by the equivalent set (U ::= SU;

Up i= 805,00 U i= 8} . A stack is used to store symbols and

151

| CT TT TT Se .
reduced. substrings; at any point, only the top two elements in the stack

need be examined. A table of possible symbol triples is built from the

syntax; each element of the table has the form (8,8,55) n N, with the
interpretation:

If 5155 are the top two elements of the stack and 3 1S
the incoming symbol of the input string, then we are in case n

and action N 1s performed.

case action

n=1 U::= S,5,¢€ @ Pop stackand replace 5S 5,byU .
n=2 U:= S,e &@ Replace So by U in stack.

n = 3 No production exists. Push down stack, insert 3s in stack,
and read next input symbol.

This 1s a systematic mechanical method for parsing strings; the

authors claim that the method can handle any unambiguous class 2 language.

Semantic rules could be easily included in the parsing algorithm at the

points where the triples and action are determined. The method should

be able to easily "recover" from syntax errors (an important consideration

"for programming languages). The main disadvantages are the large storage

requirements for the tables and the relatively long time it takes to

scan the table of triples for matches.

VII-7.3 Precedence Methods

Floyd’ has developed a method of syntactic analysis for class 2

languages, which 1s based on the use of "precedence" relations between

pairs of terminal symbols. Productions are restricted so they cannot be

of the form:

132

U xU, Uy; where Uj, U e(V - Vio) ;

the resulting language 1s called an operator language. The beauty of

Floyd's method is that it admits a very simple and efficient parsing

algorithm which produces the unique parse.

Wirth and Weber have generalized Floyd's results and shown how

efficient compilers for practical non-trivial programming languages may

be implemented using precedence methods in conjunction with semantic

rules. Wirth and Weber's precedence grammars and their application to

compiler writing 1s discussed in the remainder of the chapter.

VII-8. Precedence Phrase Structure Systems

VII-8.1 Precedence Relations and the Parsing Algorithm

For all 5:8,€V, 1t 1s either possible or impossible for the string

53% 4 to appear 1n a successful parse. When they do appear, there are
only 3 ways in which they may be reduced:

1. 00S. SS...
Ly

reducible

~~ substring

By 1s the first or left most symbol of a reducible substring. Using

Floyd's notation, this is indicated py 8, < So

2. AE TS
—t

54% 4 1s part of a reducible substring.

155

S. =
1 oF

L 1, J

S. 1s the last or rightmost part of a reducible substring

S, > 5,
1 J

<, = 4 are 3 precedence relations that may exist between ordered pairs

of symbols.

Example 1 h

Input String S51 So Ss S), Sg S¢
Given Relations < < = > >

I

Since 5, < S73! S = 8), § > Ses there must exist a symbol Uy ev
such that

Uy S55) € a

Reduced String 5, So Uy Ss S¢
Given Relations < = = >

3 UY such that U, = S_U.S.&
TR 2 2 1°5 :

The reduced string then is SUS

Let p be any input string, where p = P,P, . oe. P, ; enclose p

by the terminating symbol 4 so that Ps = Le = 13 for any symbol

134

SeV,L < S and S ®» L . Given one precedence relation between any two

symbols that may occur together, p may be parsed using the following

algorithm:

v

1 «= i+l

ji

Ss - Po
1]

1d k «~ k+l |
k «1

S, < L
1 “a

:
N

S. > ?s Py ?

(oi
N |

Reduce

S.....5,
J i

i «J

S., «U
i

| 155

S 1s a stack which contains the partially reduced string at any stage.

Pp is copied into S until the relation > is encountered, Then, we

retreat backward through S until the beginning of the reducible sub-

string 1s found. We are then guaranteed (if the string is in the lan-

guage) that there is a production whose rightsideisS,,..., Ss

"Reduce Soren 5." replaces the substring by'the left side of that
production.

An ALGOL-like program for the algorithm is:

1:= 0; k := 0;

while P_ A.'t' do
begin

while S. > P. do
—— i kK —

begin

Bhile . = ., do 7 := 7-1;

S. := Leftpart(S..... S.);
J J 1

1 i=

end

1 = J = 14138. i= Pr
k = k+l

end

Note that the algorithm involves no backtracking.

Example 2

(entire string) ::= L{string)L

(string) ::= (head)

(head) ::= ¢| (head) A | (head) (string)

136

The precedence relations may be described in a precedence matrix M:

(string)(head) AN ¢

(string) > > > > >

(head) = < 2

A > > > > >

¢ > > > > 2

’ > > > > >

The elements May represent the relation between the symbols S. and

5 : e.g., (head) =A
A > (head)

(a) Parse using algorithm:

1 (head) (head) » vy
< < = > >

L

= &ring) 9
1

< (head) =

< (string) >

(b) Parse using algorithm:

1 ¢ A ¢ A A ’ ’ 1

| FOU f——

(head) (head)

(head) (head)

(head)

(string)

(string)

The parse terminates while the stack contains L{string)’L instead

of L(string)l. This indicates that the string 1s not a member of the

language.
157

VII-8.2 Finding the Precedence Relations

The precedence relations definitions are first formalized:

1. 8, = Se if and only if there is a rule U - xS8.8.y .1 J

2. S. < So if and only if there-'is a rule U ~ x5.U,y and
U A S

3. S. > S if and only if there is a rule U ~ XU 8.¥ and
uy = Ww :28; ox U xU Uy and U ~ z8,

u, > s
p AL .

The strings w, X, Y, Zz may be empty in the above definitions.

Example 3

A = BC

B = WX

c — YZ

From definition 1. : B=¢C, W=X,Y = 7

From definition 2. : B< Y

From definition 3. : X >» C, X > Y

] The leftmost symbols of a non-terminal symbol U are defined

*

LU) = {s|3z(u = s2)} .

The rightmost symbols of a non-terminal symbol U are

*

R(U) = {s]|32(U = 28)} .

138

The precedence relations can now be alternately defined:

1. S. = 85 o Ip(p: U > x58 .y)
pe.(P

2. 8; < 54 o pp: U - xS,U,y)

A s ; L(V,)

5. 8, ® 8 oe 3p(p: U ~xU, Sy JAS eft (Uy)
v 3p(p: u -> x0, Uy) A 5,ef(U,)

A S,eL(Uy) .

The use of these definitions directly leads to an efficient mechanical

algorithm for finding the relations. The sets £ and R may be found

by using their recursive definition:

£(U) = {s|3z(u = 82) V

32, U'(U = U'z A Se£(U"))]

R(U) = {s|32(U ~ 28) V

3z, U'(U = zU’ A SeR(U’))]

These are easier to work with than the original definitions; however,

some complex administration 1s needed to ensure that the program does

not fall into an infinite recursion, for example, in the case where

A—B, B"A are in £

Example 4

S KE

E~E + T|T

T= T % F|F

F = Al (B)

159

U £(U) R(U)

FIA Ny)

Precedence Matrix

s| E| | t+ t*xi A |

slrr
| | lel[]]s
ofl or |fale]| ks
IEEE

alLIE]| 4] <
a I
SHEEN

LLL Jes] | Is

Note that there are 2 relations for the ordered pair (+, T) and

for the pair ((, E) . i.e.,

. + =T and + <T

(=E and (<E .

A syntax 1s a simple precedence grammar (or simple precedence syntax)

if and only if at most one of the relations =,<, and ® holds between

any ordered pair of symbols. Thus, example 4 is not a precedence grammar;

it can be made into a precedence grammar by modifying the syntax as fol-

lows:

140

SE E-E', E'=E' + TT, T~1T",

1" = T' * F|F, F = Al (E)

If none of the relations holds between a.given ordered symbol pair, then

the appearance of this ordered pair during a parse indicates a syntax

error, 1.e., the input string 1s not a member of the language.

For a practical language, the number n of symbols in the wvocabu-

lary 1s very large (ALGOL has n ~220, ~ 110 symbols in Vo and ~ 110
2

symbols inV - V.) . A precedence matrix then has n elements. To

compact the precedence information, Floyd' introduced "precedence func-

tions". ~

VII-8.3 Use of Precedence Functions

We try to find two functions, f£ and g, such that for any ordered

symbol pair (8, S):
J

£(s;) = gs) 8, = 3
< < SS,£(s;) g(s;) ©8, <8,

f(s.) > S, > 8S,(8) g(s;) © 8, >,

At least 2 functions are required since 2 symbols Sy and Ss may be
R._! = JR

related S R35 and S.B, Si where Ry» Rela, , <<, >} and Ry £ R,
(see Example 1). If f and g exist, then only 2n elements are nec-

cessary to store the precedence relations and the relations can be found

much faster.

141

Example 5

E~E'

=r’+ T|E - T

T = T')

' = Flr x Flt /F
F = F'

rt — PIF* p

P-Al(E)

Vo = ca, Go) *, %, /5 +, —3
v-v,=1E E', T, T', F, F',PF}

Uu | c(u) R(U

E |E' TT FF PA (| E'" TT FFPA)

E'" |[E' TT" FF' PA (TT'FF'PA)

T T'FEF'PA (T'FF' PA)
I TF F' PA FF'PA)

F F' Pa (F' PA)

F! FPA PA)

P A (A)

142

Precedence Matrix

g|8 87 6 6 5 4 Lk Lk 3 2 2» 2 1 1

AN (A px FP F / X T'T - + E')E
8) > 3 4 3 > >
8 A | > > > > > >

TP (> 3 3 > i

7x |< <= |
6 Fr J I> > > > >

)

6 F | | > >> > >
pl

5 / << <= |
5 X << < lz |

|

ho T! = = | > » >
-

LT | > > >
be mm mg TT TT

3a << < << < = |
StI << << < lz

.

2B BE Ra
1 | =

; = .
1 (|< < < << << & < =

The functions exist when we can permute the rows and columns of the pre-

cedence matrix so that 1t 1s divided into 3 areas, only one relation

| holding per area. This has been done in the above example. If the ma-

trix division 1s of the form [5 | , f£ and g function values
can be assigned starting from the bottom left corner of the array. An

algorithmfor determining f and g, if they exist, 1s published in

the Algorithm section of the Communications of the ACM. 2

Unfortunately, f and g do not always exist; however, 1t 1s

often possible to make minor changes to the syntax that allow ££ and

g to be found.

143

Example 6

T = PB}

P-{

B — xx | xT| Tx | TT

This grammar generates list structures,

C8.» { {xx}x]

U | £(U R(U)

~ T | P{ }

P| { {
B | xT{P xT}

Precedence Matrix

{ P x T B
> > > o> * >

Jl » > > >
PE

x |< <2 2 >
T |< <= =>

——l-———

Pl << <Q << =
|

B | =

The entry designated by * is empty; therefore, the f and g functions

may be found. However, 1f we add T = {} to the production 1n order

to allow the empty list, the relation {2} holds and * becomes = .

f and g then do not exist even though the syntax 1s still a prece-

dence syntax. If we change the first rule to T ~ PB} | P}, the empty

string 1s allowed but ff and g can be found.

144

po

A comparison of these results with Dijkstra's priority methods dis-

cussed 1n the last chapter leads to the following important connection: nN

The £ and g functions for precedence grammars are

exactly equivalent to the stack and compare priorities used

for the transformation of expressions into reverse Polish

form.

The contribution here 1s a formalization and extension of the early

priority ideas so that the following compilation problems can be handled

by general algorithms:

1. determining whether a given syntax 1s a precedence syntax

2. finding the precedence relations

3. computing the f and g functions, 1f they exist

Lh. parsing strings in a precedence language in an efficient manner.

An open problem 1s how to transform a syntax so that it 1s a prece-

dence grammar. As shown after example 4, 1t 1s presently necessary to

add some "artificial" productions to a grammar to make it a precedence

grammar.

. VII-8.4 Ambiguities

An unambiguous syntax 1s a phrase structure syntax (the ordered

quadruple & = (V, Vor 6,9) with the property that for every string
xel(d) there exists only one canonical parse.

145

Example 7

Z = UC|PV
U = Al3

Vv = BC _

PA

ABC ABC

— bl —_—

U PV

| — I
a Z Z

ABC has 2 canonical parses and 1s therefore ambiguous. A local ambi-

guity occurs where a substring may have more than one canonical parse:

Example 8

Z = UC|PB
U ~ AB

PA

ABC ABC
J bed

U Pp

; 7 °

1.e., local ambiguities lead to backtracking.

Theorem: The parsing algorithm described in this section yields the

canonical form of the parse for any sentence of a precedence

phrase structure language 1f there exist no two syntactic rules

with the same right part. Furthermore, this canonical parse

1S unique.

Proof:

This theorem is proven, if it can be shown that in any sentence its

directly reducible parts are disjoint. Then the algorithm, proceeding

strictly from left to right, produces the canonical parse, which 1s

146

unique, because no reducible substring can apply to more than one

syntactical rule.

The proof that all directly reducible substrings are disjoint 1s

achieved indirectly: Suppose that the string Sy Co. Sh contain two

directly reducible substrings STR Sy (a.) and S. io S, (b.),

where 1 <1 < j<k<I<n . Then because of a. it follows from the

definition of the precedence relations that 55.17 5, and §,_» S, ,,

and because of b. 55.1 5. and S, = S.41 + Therefore this sentence
cannot belong to a precedence grammar.

Since 1n particular the left most reducible substring 1s unique,

the syntactic rule--to be applied 1s unique. Because the new sentence

again belongs to the precedence language, the next reduction 1s unique

again. It can be shown by induction, that therefore the entire parse

must be unique.

By associating semantic rules with the syntactical rules of a pre-

cedence phrase structure language, the meaning 1s also unambiguous.

VII-9. Association of Semantics with Syntax

VIT-9.1 Mechanism for Expressing Semantics

An environment € is a set of variables whose values define the

meaning of a sentence. J is a set of interpretation rules each of which

define an action (or a sequence of actions) involving the variables in

€ . A phrase structure programming language £0, Vo, &, S, J, &) is
a phrase structure language £(V, vo, S) where J is a set of inter-
pretation rules in one-to-one correspondence with the elements of # and

€ is an environment for the elements of J . The meaning m of sentence

147

xed 1s the effect of the execution of the sequence of interpretation

rules ty IOYERRY t on the environment €, where Pi» Poseees Py

is a parse of x 1nto S and t. corresponds to P. for all 1 .1

The fact that the precedence grammar parsing algorithm never back-

tracks allows us to attach semantic rules to each syntactical unit or

reduction. It will therefore be assumed that we are dealing with pre-

cedence grammars. Corresponding to the symbol stack S used in the

algorithm, we maintain a value stack V . At the same time the syntac-

tical reduction U — S jg Ss 1s made, a similar semantic "reduction"

or rule 1s obeyed for the elements Vy coe Vs in the value stack.

Example 1 =

Syntactic Rules Semantic Rules

SAN :=E Vv. += V.
Vv. i
J

E-T|E + T AV, =v, + V
J J 1

T-FlT xX F AV, =v. x V,
J J 1

— A AY - VvF- AE) v. 1s S41
J

v. represents the value associated with the stack symbol S. . The

semantic rule Vs - Vit Vy corresponding to E ®* E + T can also be
written "value (E) * value(E) + wvalue(T)". The first way makes explicit

reference to the parsing algorithm block "reduce 5 5 Co 80 In the

rule vy TV, Ve originally holds the address of the particular vari-
J

able used. A is a representative for all possible variable identifiers.

148

Example 1 gives semantic rules for an interpreter, The next example

shows how semantic rules for a compiler for a stack machine may be asso-

ciated with the same syntax as above.

Example 2

Syntax Semantics

X=AN :=E store A

ET A

E"E+T add

T =F A

T 'TXF multiply

FA load A

TF ~ (E) A

A :=B + C X D The numbers indicate

4 1a 4 4-J A the order of the re-
A A

A 3" TL] 10 1 ductions.
F F F

Md 8 J
T T

5.1 11 |

BE T

EI ——
E

ce 1
S

Obeying the semantic rules, the statement compiles into:

Reduction Step

load B 3

load C /

load D 10

multiply 11

add 12

store A 15

149

- oo _—

In these examples, it has been assumed that the specific variable

names and values are available. v, of the interpreter, A in the

compller.) We now show how this nay be accomplished,

VII-9.2 Handling of Declarations

A common way of putting declaration lists (DIL) and statement

lists (SL) into the syntax is illustrated by the following simple

example:

Example 3

P - begin DL; SL end

~. DL - D|DL, D

SL —- S|SL, s

begin D, D, D; S end
—
— a

-_

The difficulty here 1s that when the parse reaches the statement S,

the stack contains "begin DL;". What is needed is to retain the

declarations D in the stack so the semantic rules for S may refer

to them for addresses or values of specific variables.

Example 4

P >Begin e n d

PB' -D; PB'|SL

SL — S|SL, s
PB —» PB'

(pB’ must be included to make the syntax a precedence grammar.)

150

begin D; D; S, S end
_-

SL

SL

PB'

I —
PB

—]
PB

PB

Syntax and semantics for declarations D and variables V are:

Syntax Semantics

D » real I vs « {q, 1}
V-o1I Search Stack for I

Q (undefined) is the initial value of I .

After reducing to D, the value stack contains a value (2) and a name;

when the statements S are reduced, they may refer to the values and

names in the stack. In a compiler, the declarations would produce

"reserve storage" instructions.

VII-9.3 Conditional Statements and Expressions

; For a first try, the syntax for a condition statement 1s defined

in an obvious way:

(conditional statement) ::= 1f (Boolean expression) then

(statement 1) else

(statement 2)

The reduction to (conditional statement) occurs when the symbol stack

of the parse contains:
if

(Boolean expression)
then

(statement 1)
else

(statement 2) “ top of stack

151

If code 1s being generated by the semantic rules, 1t 1s then too late

to compile "jumps" around the statements. The semantic rules should

compile:

code for (Boolean expression)

conditional jump (CJ

code for (statement 1)

unconditional Jump (UJ) s{

code for (statement 2)

The ALGOL definition of conditional statement is:

(conditional statement) ::= (if clause){statement 1)

else (statement 2)

(1f clause) ::= 1f (Boolean expression) then

Here, we may attach the semantic rule for (if clause):

Generate CJ

Set v((if clause)) = Pointer to Generated code CJ § .

This will take care of the first part of the conditional statement.

Unfortunately, the else 1s not reduced in time for a UJ; (statement 2)

has been reduced and its semantics obeyed before the entire (conditional

statement) with the else 1s recognized.

To allow the syntax to correspond with the desired semantics and

vice versa, the conditional statement is further divided:

152

(conditional statement) ::= (if clause){true part)

(statement 2)

(1f clause) ::= if (Boolean expression) then

(true part) ::= (statement 1) else

The desired meaning can then be attached; for example,

V({if clause)) = Pointer to Generated code CJ @

V({true part)) = Pointer to Generated code UJ

V({conditional statement)) = Insert Jump addresses

in CJ and UJ commands

Conditional expressions can be treated in a similar manner.

VII-9.4 GO TO and Labelled Statements

It 1s difficult to give a clean set of interpretation rules for the

GO TO statement, GO TO (label) for an interpreter since the (label)

might not have a value at that point. However, a compiler can use:

: Semantics (GO TO (label)) = Search Symbol Table for (label)

and emit UJ instruction

"Chaining" (see Chapter II-4 on One-Pass Assembly) or indirect addressing

can be used to solve the forward reference problem.

The ALGOL definition of (basic statement) 1s:

(basic statement) ::= (label) : (basic statement)

155

A problem similar to that in conditional statements exists here;

(basic statement) must be recognized and compiled before the label

definition " (label) :" is detected. The syntax is therefore changed

| to: .

(basic statement) ::= (label definition){basic statement)

I (label definition) ::= (label)

The location counter can then be assigned to the (label) before the

(basic statement) following 1t 1s compiled:

Semantics ((label definition)) = Enter (label) together with

the location counter into the

Symbol Table.

VII-9.5 Constants

Conversion of catenated symbols representing constants to their

numerical values can be handled by rules of the following type:

Syntax Semantics

(1nteger) c= (digit)] A

(integer) (digit vs ~ 10 X vs + Vv.
(digit) ::= 0] Vio

1} v, '1
| J eo

V, *9 3 9

154

The important point to note 1n the preceding examples 1s that it

1s both desirable and feasible to explicitly exhibit the natural rela-

tionship that exists between the structure and the meaning of a program-

ming language. An unambiguous syntax then guarantees that every sentence

(program) 1n the language has one and only one well-defined meaning.

Precedence grammars offer a powerful framework in which to design, ex-

periment with, and implement programming languages. The reader should

consult reference 3 for an example of a language more general than ALGOL

that has been implemented using these methods.

VII-10. References

1. Taylor, W., Turner, L., Waychoff, R., A syntactical Chart of ALGOL 60.

Comm. Acm 14,9 (Sept. 1961) 393.

2. Anderson, C., An Introduction to ALGOL 60.

3. Wirth, N., Weber H., EULER - A Generalization of ALGOL, and its

Formal Definition: Part I, Part II. Comm. ACM, Vol. 9, pp. 13-25,

89-99, (Jan/Feb. 1966).

4. Chomsky, N,, Schutzenberger, M. P., The Algebraic Theory of Context-

- Free Languates. Computer Programming and Formal Systems, North-

Holland, Amsterdam, 1963.

5. Irons, E. T., Structural Connections in Formal Languages. Comm.

ACM, Vol. 7,pp. 67-71 (Feb. 1964).

6. Leavenworth, B. M., FORTRAN IV as a Syntax Language. Comm. ACM,

Vol.7, pp. 72-80 (Feb. 1964).

155

T. Eichel, J., Paul, M., Bauer, F. L., Samelson, K., A Syntax-controlled

Generator of Formal Language Processors. Comm. ACM, Vol. 6, pp. 451-

455 (Aug. 1963).

8. Floyd, R. W., Syntactic Analysis and Operator Precedence. J. ACM,

vol. 10, pp. 316-333 (July, 1963).

9. Wirth, N., Find Precedence Functions. Algorithm 265. Comma ACM,

8, 10 (Oct. 1965) 604-605.

Additional References

l. Brooker, R. A., Morris, D., A General Translation Program for Phrase

Structure Languages. J. ACM, Vol.9 pp. 1-10 (Jan. 1962).

2. Knuth, D. E., On the Translation of Languages from Left to Right.

Information and Control, (1969).

5. Irons, E. T., The Structure and Use of the Syntax-Directed Compiler.

Annual Review of Automatic Programming. Vol.3, pp. 207-227 (1963).

- 4. Floyd, R. W., The Syntax of Programming Languages — A Survey. IEEE

Trans on EC, Vol. EC13, pp.246-353 (August, 1964).

VII-11. Problems

CS 236a Feb. 24, 1966
Problem Set III N. Wirth

1. Given 1s the following set &, of productions:
S —- A

A — BlBCB

B - DIE

156

Which are the sets of terminal and nonterminal symbols?

T & 0Which is the language &£ (V_, Vi, , §)°F
1V17 1771

2. Add to the set & the production
B = FBG

_ N T

obtaining &, . Which are the symbol sel. 5 andl, and which is
T oT!

the language £0, Vo, 8, S)?
Use the notation X@ for the n-fold concatenation of the symbol X,

and indicate which values n may assume.

3. Instead of B = FBG, add the production |

B = FAG

to @., thus obtaining & (and V_).
1 3. 5

Is the string

FFEGGCEDG

T

a sentence of £3(V3’ vs, &, S)?
Is it also a sentence of £5 ?

Does 4s differ from I, ?
If so, construct a string which belongs to one language (indicate which)

but not to the other; 1f not, show that they are equal.

L, Find a grammar which defines a language £ such that a string con-

sisting of any even number of B's with any number of A's between

two consecutive B's, 1s a sentence of the language.

5. Find a grammar defining a language whose sentences have the form

xyz? (n = 1,2,...)

157

oo —

0.

Le —(=

EC XX(C—O)

Starting out at "BEGIN" you choose a path according to the arrows in

: the above notework, each time appending the encountered letter to a

letter string, until you reach the "END" point.

Define the set of all strings you can construct in this way, and

call them a language. Which is this language? Use the same notation

as 1n problem 2.

f. Construct a set of productions which generate the language of prob-

lem 6. You should not need to introduce more than 6 or 7 nonterminal

symbols.

8, Consider an arithmetic expression to be defined by the following

syntax:

(expression) -~ (term) | (expression) + (term) | (expression) - (term)

(term) + (factor) | (term) x {factor)| (term) / (factor)
(factor) ~ (primary) | (factor) * (primary)

(primary) = (letter)|({expression))

(letter) = AlB|c|p|e|Fle|ulz|s|k|L|m|n|o|p|alr|s|T|ulviv|x]|¥|2

Which are the values of the priority functions used in the "railway

shunting yard" algorithm for producing a polish postfix notation of

such an expression.

158

EN EYSymbol priority priority

(

+

X

)

9. Write in B5500 ALGOL and test on the computer a program performing

the following tasks:

a. Read from a card an expression as defined in problem 8. (The

correctness of the input need not be checked).

b. Print this expression.

c. Use the "railway shunting yard" algorithm to produce polish

postfix notation of the read expression, and print it on one line.

d. From the result of step c., compile a sequence of "machine 1instruc-

tions" representing the read expression, and print it (one instruction

per line). The underlying machine 1s supposed to be a multi-register

computer, where all its 9registers are alike. The form of those

printed machine instructions shall be

(result) * (operand) (operator) {operand)

where

(operator)::= +|-|x|/|*

(result) ::= (register)

(operand) ::= (letter) | (register)

(register) ::= 1|2|3|4]5l6]|718]9

159

The sequence shall be such that the result 1s left in register 1.

Does your compiled code represent the minimum number of instructions

necessary to evaluate the expression, and is your code such that the

minimum number of registers 1s used necessary to evaluate the expres-

sions on this machine? Use the following expression as test cases:

AXB+C

A+BXC-D

AXB+C-D

AX(B+C)/D*E

A+B-CXD/F¥F

((AXB+C)XD+E) XF+G

a+ (B+ (C(D+ (E+F))))

10. Is the syntax of problem 2a (simple) precedence syntax? The one

of problem 3? For both syntaxes, construct the sets of leftmost and

rightmost symbols and the matrix of precedence relations.

11. Replace in the syntax of problem 2 the symbol G by the symbol F .

Is the resulting syntax (and language) unambiguous? Explain. Make

. the same replacement in the syntax of problem 3, and given the answer

to the same question.

160

Problem Set III: Solution to Problem 9

BEGIN COMMENT CS 236, NeWIRTHe EXAMPLE OF AN EXPRESSION COMPILER}
INTEGER 1sJsKsUsVsXrR)}

INTEGER ARRAY A,B8[0331), 5(029)s Fs»G[Ot63])}
FORMAT FO (32A1)}

LABEL. L1,L2)
FL"+") ¢ 33 FIL"=") t 33 Flwxnw) 5 3 FL"/") ¢ SI FL"*"] ¢ 73
GEM"+"] ¢ 23 GL"="] 23 G("x"] 4 3 GL"/") ¢ 41 G("*") ¢ 6)
FOM"(*) ¢ 13 GgE"(") ¢ R11 GI")") ¢ 1 3 GL" "]) ¢ 1}

Lit READ (FO» FOR 1e¢OSTEP1 UNTIL3t DO ALI} (L2)3
WRITE (FO» FOR 1¢O0STEPLUNTILI3It DO AL1}1)}

COMMENT PART 18Be¢ POLISH POSTFIX CA)J
]¢ JU ¢€ Ke Xe SIO) e¢ 0)
WHILE SIK) # " " DO

BEGIN X « A[I)} 1 ¢ 1e¢1)
IF GC(X) = 0 THEN
BEGIN BLJ) ¢ X3 J ¢ J+}
END ELSE

BEGIN WHILE FISIKII>» G(X) DO
BEGIN Bl[Jlé¢ S(KI} J € J#l} K ¢ Kt
END 3}

IF FISLKI) sGIXJ THEN K ¢ K-1 ELSE
BEGINK ¢ K+1} S(K)¢ X

END

END

END 3

B{J) ¢ " nj |

WRITE (FOsFOR | «0OSTEP | UNTIL J 00 BLI1)))
COMVENT PART2%1 GENERATE MACHINE INSTRUCTION SEQUENCE)

J ¢ K ¢€¢ R ¢ 0)

WHILE 8{Jl#"" DO

BEGIN Xe B([(J)3 J ¢ J¢l)
I FGIX1=s (0 THEN

BEGIN K ¢ K+13 SI(K)e X

ENDO ELSE

BEGIN U t SIKI} IF U < 10 THEN R ¢ R=1} Ke K=1}
Ve SEKI IF V € 10 THEN R ¢ R-1; StKle R ¢ R+t}
WHITE (<X32A1o" en, 3(X1sA8)>» RyVeXsU)

END

END 3

WRITE ((DBL})S GO Td 1}
L2}

END

161

AxB+(C

ARXC+

1 ¢« A X 8

1 «1 ¢ C

| A+BXC=D
ABCX+D=

i ¢« 8B x ¢

| I « A +1] «1 =D

AxB=CxD

ARXCDxX=

| « A xX B

2 ¢« (xD

|] « 1 = 2

Ax(B+C)/D+*E

ABC+xXNE*/
1 « B +

le A x |

2 ¢ DD «
1 ¢ 1 / 2

A+B=CxN/EwF

AR+COXEF«/=

1 ¢« A ¢ BRB

2 ¢« C xD

3 ¢E*F

2 & 2 /3

1 «1 =» 2

((AXB+CIXD+EIxF+5

ARXC+DXE+FXG+

1 « A x8

1 «1 + C

1e¢ | x D

1 «1 + E
i «1 x F

1 «YY + GQ

A+(B+(C+(D+(E+FI)))

ARCDEF++++4

1 « E + F

| « D + |

i « C + 1

1 « B + 1

1 ¢ A +

162

Problem Set A C.S3. 236Db
N. Wirth April, 1965

1. Devise grammars G(V,T,P,S) which generate strings according to the

following Spectiications;a. L(n)y(n , where on) signifies a string of n x's for arbitrary n.

b. strings consisting of a's and b's, such that there 1s always an
even number of b's in the string, and there are either 0 or more
than 1 a's between any two b's.

(0),(0) (n)

2. Devise a set of ALGOL procedures which analyse strings generated by
the following grammar:

S ::=A

A :i= AaB

A ..=B

B ::= BbC

B :.=C

C ::= cAc

C soma d

Assume the presence of a Boolean procedure "issymbol(x®)", which tests
the next symbol of the input string. Choose the names of the procedures
in correspondence with the nonterminal symbols of the vocabulary.

3. Consider the grammars given below. Determine whether they are precedence
grammars. If so, indicate the precedence relations between symbols and

find the precedence functions f and g; 1f not, indicate the symbol pairs
which do not have a unique procedence relationship. Also, list the sets
of leftmost and rightmost symbols L and R. .

"a. S::=E

E =F

E ::= FcF

F ii=x

- F ::= GEz

EF ve= (Gz
G ::= GE,
G i= a

b. S ::= A

A ..=B

A= X,A
B i= Byy

Bii=Y

163

Froblem Set A, Solutions c. s. 236b
- May, 1965

N. Wirth

la. S — A

A — afb |A

1b. S 3U|av|val ava

UV | W

VW| bwb

WoA | A

A 5 Aa | aa,

lc. S — A

A — abBAc | C

bBa — abB _

bBC -» Cb

aC 3 a

2. Boolean procedure S; S := A;

Boolean procedure A;

A := 1f B then

(if is symbol (‘a’) thenA else true) else false;
Boolean procedure B; BN

B := if C then

(if is symbol (‘b?) thenB else true) else false;
’ Boolean procedure C;

C := if is symbol (ec?) then

(ifA ¢h is symbol (fc?) else false) else is symbol (‘ad’);

164

Problem Set A, Solutions = C.S. 236b

3a. x R
S EF Gx a E F x 2

E FF Gx a F' x z

F G X a X Z

G G a y 4d

| S El FE G C X Z a,
S

E = =

F = > >

G = < < < us <
C = < < <

X > > >

7 > > >

a > > > > > >

, > > > EE

S BE 2) G C xX Z a,

f 1 1 2 1 2 3 3 4 4

of 1 1 2 3 2 3 1 3 1

G38 1s a precedence grammar.

5%. Zz | R
S ABxy ABy

A Bxy ABy

B By Y

G3b 1s not a precedence grammar, since

y <*Y and , = Y

165

VIII. ALGOL COMPILATION

VIII-1. The Problems of Analvsis and Svnthesis

The tasks of a compiler can be divided into two distinct phases--

the analysis of the source program and the synthesis of an equivalent

object language program. It was argued 1n the last chapter that these

phases may occur 1n parallel by obeying semantic rules as the input 1s

reduced to 1ts syntactic components. Some production compilers for

ALGOL generate object code as the source program structure 1s analyzed’

but most perform several analysis passes first; the analysis passes

check for errors and transform the input into a more convenient form.

For example,Naur's GEIR ALGOL compilers consists of 9 passes—--the first

6 analyze the input and the last 3 synthesize object code:

GEIR ALGOL COMPILER

Pass Task
1. Check and convert input to ALGOL symbols.

2. Associate each identifier with an integer.

5. Analyze and Check delimiter structure.

4. Collect declarations and specifications.

Rearrange procedure calls.

5. Allocate storage for variables.

6. Check operand types. Convert strings to

reverse Polish notation.

Ie Generate machine instructions for expressions.

8. Final program addressing and drum allocation.

9. Rearrange drum segments.

166

Much of the complexity (and challenge) in ALGOL compilers lies 1n

the allocation of storage for handling block structure, especially

recursive procedures and dynamic arrays. The latter two features make

1t impossible to compile pure machine language addresses for variables.

Instead, what 1s needed 1s the generation of calls to run time adminis-

tration routines (RTA) that allocate storage and compute addresses.

Assuming a stack computer, this chapter discusses one particular RTA

scheme that correctly reflects the dynamic behavior in an ALGOL program;

most of the material may be found in Reference 1. The reader should

review the discussion of assembler block structure in Chapter II.

VIII-2. Run Time Storage Administration

Execution of an ALGOL (block) requires that storage be allocated

for its declared variables and temporary results. Temporaries present

no problem since they are automatically created and destroyed in the

run-time stack. During compilation, reduction to a (block head) causes

the generation of the code BLOCKENTRY(bn, n), where n is the amount

~ of space to be assigned for variables (obtained from the variable declara-

tions), bn is the block number, and BLOCKENTRY is a RTA subroutine

that performs the storage allocation. An address for a variable 1s

produced as a pair (bn, on), where on 1s the order number or address

relative to the base of the variable storage area for block bn . The

block number bn indicates the level or depth of nesting of the block.

A call to the RTA subroutine BLOCKEXIT 1s produced at the end of the

block to release the storage.

167

—

Example 1

Program Skeleton Generated Code

A: begin real ap; ays--+s 8; BLOCKENTRY(1, 1)

B: begin real by,-. «,b; BLOCKENTRY(2, m)

end B; BLOCKEXIT

C: begin real Cys CS YARRFL BLOCKENTRY(2, p)

D: begin d,;. . +d3 BLOCKENTRY(3, q)

end D BLOCKEXIT

end C BLOCKEXIT

end A -- | BLOCKEXIT

d, has the address (3, k) .

(a) During execution of the block labeled B BLOCKENTRY(1, n)

and BLOCKENTRY(2, m) have been invoked and the storage is

allocated as follows:

1 block mark

|
.I is an index main- a
tained by the RTA which 2

points to the most recent]® 2 i Tm | block mark
block mark. by

—
|

I

|
I

| |
b
m

| Variable Storage
168

(b) After entry into block D, the variable storage has been

re-allocated:

2 | nm | ef vlockmark forA

NN

0 \\

NEAN ‘

p

3 | a | ef” vlockmark foro

|

|

dg

Variable Storage

_ Note the space for B has been released. The dotted arrow indicates

the change in I after BLOCKEXIT for D . To locate a symbol,

a, = (1, k), while in block D, we chain back through the block marks

until the bn in the block mark agrees with the bn in the address,

i.e., at the block mark for A; a, is then at the kthlocation following

the block mark.

Variables may be located more efficiently by adding a block mark

pointer array or display to the scheme described above. Then the address

(bn, on) is translated immediately to display[bn] + on. Example 1 (b)

can be redrawn to indicate the display:

169

1 |»|
21

| _display[bn]
NN]I

! . ro
I:= ;

1
|

i: /
+» > | a {

9
)

;

N iq

VITI-5. Treatment of Procedures

The RTA scheme of the last section must be expanded in order to

handle procedure calls correctly. Ignoring parameters for the moment,

storage for procedure variables can be allocated in the same way as that

for blocks; however, when a procedure 1s called, two types of information

. are needed:

(1) what variables are accessible to the procedure, and

(2) the return address of the procedure.

The first 1s given by the static block structure of the program, regard-

less of where the procedure was called from. The second 1s given by the

dynamic behavior of the program at execution time; both are complicated

by the possibility of recursion. The solution 1s to maintain two sets

of pointer chains, a static chain or display of the last section, and a

dynamic chain. The static chain determines which variables have currently

170

valid declarations; the dynamic chain points to the blocks that have

been activated and not yet completed. Calls to the RTA routines

BLOCKENTRY and BLOCKEXIT are produced for both procedure declarations

and blocks; procedure calls are compiled into transfers to the procedure

BLOCKENTRY . At run time, the RTA's allocate storage, update static and

dynamic pointers, and keep track of procedure return addresses (RA)

Example 1

A: begin real Bsr vy BO)

procedure rj;

begin real Tyseess To

R: ry = 0

end r;

B: begfn real EARREILNY

Bl: r

end B;

Al: r

end A

171

: Storage Allocation at R when r is called at Bl

Ce |
re|Display

or |

E Static b b —~ dynamic

® 2 | m | RA | .

SE RARER RRE Ea RA: return address
of r .

The variables of block B are inaccessible since B and r are at the

same level.

Storage Allocation at R when r is called at Al

® 1 | nn | +

> 2 | wm | ma -

Storage allocation for recursive calls are correctly administered by the

same method.

172

Example 2

A: begin real Bysrees 83

procedure rj;

begin real ro,..., Ip;

R: r

end r;

Al: r;

end A

r 1s called at Aly; after r 1s called recursively for the first time

at R, storage and pointers appear as follows:

— =)
| 2 m RA .

. SE EARLE
first call of r

2 m RA

| SEA SR
recursive call at R

The dynamic chain gives the correct linkage upon return from r; the

static chain makes inaccessible the original set of variables for r .

An additional mechanism 1s needed for procedure parameters:

175

Example 3

begin procedure P (a); real a;

a := atl;

B: begin real b;

P(b)

end

end

Normally, the variable Db is inaccessible to procedure P since B

and P are on the same block level. However, in this case, Db 1s called

by name and is therefore known in P .

On entering a procedure, storage 1s reserved for parameters as well

as the variables declared in the procedure body. The parameter locations

(called formal locations) contain transfers to implicit subroutines which

compute the value or address of the actual parameters; at each use of a

formal parameter inside a procedure, a transfer to the formal location 1is

complled (or the formal location could be indirectly addressed). Declara-

tions which are valid at the place, C, of the procedure call are made

accessible by regarding the implicit subroutine as a block inserted at C .

Example 4

begin real x;

procedure g(t); real t;

beginx := xtt; x := x/(1l-t)

end gj;

begin real yj;

y :=0.5;,x := 1.0;

g(y-0.2 x x)

end.

end

17h

During the execution of g(y-0.2 x x), storage allocation 1s as follows:

1 1 I <

display

HEE
oS — .

CC
2 1 RA | |

formal location

| 1

ts | EN
"\ block marker

for implicit
procedure to

compute y-0.2 XX.

When the program 1s in the implicit subroutine, the pointers labeled 1

are in force; inside g, the i pointers are deleted and display [2]

contains the g pointer.

It 1s apparent that a great deal of housekeeping must be done at

~ run time to cope with the full generality of ALGOL. The administrative

work can be reduced by eliminating the implicit subroutine for some types

of name parameters, such as constants and simple variables, and inserting

their value or actual address in the formal location. Value parameters

can also be compiled in a simple manner so that they appear in the formal

location. To avoid copying arrays, 1t 1s generally more efficient to

pass them as name parameters. Arrays have been neglected in the precced-

ing discussion; they present some special problems in storage allocation

and addressing, and are examined next.

175

Ge

VIII-4. Arrays

For each array declared in a block, a storage location with address

(bn, on) is reserved in the variable storage area. The RTA allocates

array storage 1n a separate area and inserts both a pointer to that area

and some mapping data in (bn, on) . Reference to a subscripted variable

generates a call to a mapping function that computes the physical address

of the element at run time.

One method for organizing array storage 1s to allocate a separate

area for each row or column. The B5000 ALGOL compiler stores each row

of an array as a linear string. For example, the declaration

real array A[l:m, l:n] results in the following run time organization:

eee

I
Block or 1 n | ERR
variable |

storage 2[n| A |
(on, om = | A fm |

n

m| n n P
length field |

for bound Row ! |
testing Pointers]

d

—

Array Element

Storage

The contents of element A[i, j] is then (((a) + i) + j) .

A second method 1s to completely linearize the array and store it

| ntiguous area. . : coin one contiguou All:m, 1:n] is stored Aq Alo , Ayo Bo

co Bysees A Apres A (by row). The element A[i, Jj] has

176

the address (i-1) xn+ j - 1 relative to the base of A's storage

area. The general case 1s treated as follows:

array All ug, £y1ugse «os AER
Let A, =u =-£{, +1

1 i i

The address of Aln ngye-os ny | is then:
- - ees tT - + -(+o (ny £8, + (ng £5) 004 + (n, 4 £1008, n= 4

(Covlmpote= +m play +m dy + oy

- (Cee (an, tees + hy NA Lt 18, +

= (Jd - B .

B can be computed by the RTA when storage is allocated for A;

a 1s computed by the mapping function when the element 1s accessed.

Storage allocation after run time processing of the array declaration 1s:

Storage of elements of A

Block or b
variable

storage

oo | - BEN Ao
£3

|

[

|

By

mapping
- constants

177

b 1s the physical address of the first element of A, 1i.e.,

ALL, boseees t 1

b - B 1s the address of the (fictitious) element A[O, O,..., 0] . :

The physical address of an element 1s then a + b - B.

The storage allocation problem for ALGOL compilers has been solved

by a run time interpretive scheme (the RTA's). There is a similarity

between this solution and that of the dynamic relocation problem described

in Chapter V. The paging and segmentation methods can be conveniently

employed to handle the dynamic allocation problems in an ALGOL compiler

-—-1in fact, the B5000 ALGOL compiler does this.

VIII-5. References

1. Randall, B. and Russell, L. J. ALGOL 60 Implementation. Academic

Press, London and New York, 1964.

2. Naur, P. The Design of the GEIR ALGOL Compiler. BIT 3 (1963)

124-140, 145-166.

VIII-6. Problems

CS235 B March 31,1966
Problem Set I Prof. N. Wirth

The purpose of this problem set 1s to draw your attention to certain

facilities and problems of ALGOL 60 which must be clearly understood

before one discusses the implementation of ALGOL 60 on any computer.

For each of the problems list the output produced by the "write

178

statements". Not all of the programs are correct ALGOL 60, and even

fewer can be handled by the B5500 system. Along with the numeric results,

state 1n a brief comment what, 1f anything, 1s incorrect or at least

controversial. Indicate where the B5500 system deviates from ALGOL 60.

You may do so, but you are not expected to use the computer for

this problem set. If you had to resort to the computer, indicate for

which problems. Give the answers on a separate paper.

1: begin integer i, Jj, m, n;

i :=3; j :=-2; Mm = 8 22ti; n = 8 +213;

write (m); write (n)

end

2: begin integer procedure f(x); value x; integer x; f := x + 0.25;

write(f(1.3))

end

3:begin integer i; array A, B, C[1l:1];

integer procedure J; begin j := 1; i := itl end;

| i «= 0; B[1) := 1; c[1] := 3:

for A[3] := B[j] step BI[j] umtil C[j] _;

write (1)

- end

Lh: begin integer i, k, f;

pntegec e d u r e nj begin n:= 5; k := k+l end;

procedure P(n); value n; integer nj;

for i := 1 step 1 until n do f:= ffxi;

xk := 0; f := 1; P(n); write(f,k);

k := 0; f£f:= 1; Q(n); write (f,k)

end

179

>: begin integer i, s; integer array A[O:n];

1 = nj; ee

while 1> 0 A Ali]#s do i := i-1;

comment anything wrong with this?;

end |

6: begin real x;

procedure g(t); valuet; real t;

begin t t= X+t; xX := t/(1-t) end;
x := 0.5;

begin real x; x:= 0.5;

g(x-0.2); write(x)

end;

write (x)

end

7: begin integer array A[1:5], B[1:5, 1:5];
integer 1i,J;

integer procedure S(k,t); integer k, t;

begin integer s; s := 0;

for k:= 1 step 1 until 5 do s := stt;
S !=8

end;

comment 1nitialize A and B to:

3 8 2 3 0 0

~2 5 3 2 1 0

A= 0 B = oc -1 7 1 0 ;

4 oc 0 4 6 3
-1 oO 0 8 5 9

write(S(i, A[i]));

write(S(j, A[J) x Bl3, 3l));

write(s(i, 8(j, B[1i, j1)))

end

180

8: begin

procedure p(r,b); value b; Boolean b; procedure r;

begin integer 1;

procedure q; 1 := itl;

1 := 0; |

if b then pq, —b) else r;

write (1)

end;

p(p,true)

end

9: begin procedure C(x); value x; integer x;

begin own integer Kk;

1f 1=0 then k := x else begin k := kx2; write (k) end;

if x > 1 then C(x-1) lB
end;

integer ;

for 1 := 0,1 do C(5)

end

10: begin integer i;

| real procedure P(k, x1, x2, x3, xk, x5); value k; integer k;
Qegin real procedure ;

begin k := k-1; Q := P(k, Q, x1, x2, X3, x4)

end Qj

P := if k < 0 then xk + X35 else Q
end Pj

for i :=1 step 1 until 4% dowrite(Pi, 1, 2, 3, 4,5)

end

181

11: TERM PROBLEM

You are to write an interpretive program for a simple programming language

to be described presently. The language 1s designed for simple computa-
tions of the desk-calculator type with immediate response. The computer
to be used 1s the Burroughs B>500, using a programmed character—-input
routine simulating characterwise input from a typewriter. The language

1s by no means a complete and very useful tool, but exhibits the basic
features upon which extensions could easily be built.

t Description of the Language

The elements are numbers, variables and operators. The numbers are
decimal integers denoted in standard form. The variables are named by
the letters A through Z. Thus there exist exactly 26 variables which
do not have to be declared. There exist the following operators; listed

in order of increasing priority:

$ logical OR

& logical AND

<< =#>> relational (resulting in 1 or 0)
"@ min, max

+ - add, subtract

X / multiply, integer divide

* exponentiate

These operators can be followed by a period (.) and are then to be under-
stood as unary operator-s with the following meanings:

$a = a

& a = a

<. a = 0< a (same for other relational ops.)

"e © H

@. a = a

+. a = a

-.a = 0 - a

X. a = a

/a = 1/a

¥. a = 2 ¥ g

182

The standard precedence rules can be over-ruled by use of parenthetical

grouping in the conventional way. Using numbers, variables, operators
and parentheses expressions can be formed, whose resulting value can
then be assigned to any variable through an assignment statement of the
form

Vv « Exp;

The multiple assignment shall be admitted and 1s of the form

Vl v2 e. . . . «vn «Exp;

The interpreter shall upon each execution of an assignment print the

name of the variable and the value to be assigned. (This constitutes

the output of the program.) Every assignment statement shall be termi-

nated by a semicolon (3).

So far we have described Subset A of the language.

The language 1s able to handle vectors (linear arrays), represented as
follows:

[E, F,H

where E, F through H are expressions. A vector can be assigned to a
variable, but only 1f this variable has been previously declared as vector.

A vector declaration takes the following form:

v : Exp;

and means that the variable v shall consist of as many elements as the

value of the expression Exp indicates. Upon assignment, the vector to

be assigned must be compatible, 1.e., of equal length, with the variable
v . A multiple vector declaration 1s written as

vi: ve::Exp;

All existing operators are now extended to apply to vectors (c.f. Iverson's
notation),

183

according to the following definitions:

Let a, b be scalars, X,y vectors, and 0 a binary operator, then

a 0x=1[a0 Xs a 0 x5 . yal x |

x 0b =[x0b, x 0b® “. x0b]

x 0y = [2 0 ¥15%05 o sume x, 0x]

Let xX be a vector and 0 an operator, then

0. x = [o. xX 0 pS 0... ..0 x] (reduction of x)

where 0. is the unary operator corresponding to the binary 0 .

Expressions involving vectors may, of course, also use parenthetical

groupings. N

Examples of statements:

X «<A + Bx C;

Y «A +[1. 4.9. 16]

z «+. (XxX 2) (scalar product)

Xe«*. ([1, Aa +B1l+[* 2, 55]).+1

Hints

The implementation of this interpreter requires a combination of what

. usually 1s called a translator and an interpreter of sequential code.

Instead of having the translator produce a list of code and then have

the interpreter process 1t after termination of the translation process,

the interpreter immediately processes an instruction when it 1s issued

by the translator. The implementation of this method is greatly facili-
tated by the absence of conditional and go to statements.

Vectors must be created dynamically. The interpreter shall be written
in such a fashion that after the execution of an assignment statement

all storage used for temporary vectors 1s released again. Upon termina-
tion your program should print out a message indicating how much total

vector storage space has been used up (through permanent vector declara-

tions). This space shall initially include 1000 cells.

An example of a character—-input routine 1s listed below and makes use of

the following declarations:

184

INTEGER CC, WC;

ARRAY CARD[O:1k];

LABEL EXIT;

STREAM PROCEDURE CLEAR (D); }

BEGIN DI «Dy; DS - 8 LIT " "; SI « D; DS - 14 WDS END;

STREAM PROCEDURE TRCH (S, M, D, N); VALUE M, N;

BEGIN DI «Dj; DI «DI + N; SI « S; SI « SI + M; DS « CHR END;

PROCEDURE INSYMBOL (S); INTEGER S;

BEGIN INTEGER T; LABEL IL;

L: IF CC = / THEN

BEGIN IF WC = 8 THEN

BEGIN READ (carpriL, lO, CARD [*]) [EXIT];

WRITE (PRINFIL, 15, CARD[¥];WC«O

END

ELSE WC «WC + 1;

cc « (

END

ELSE CC « CC + 1;

TRCH (CARD[WC], cC T, 7);

IFT ="" THEN GO TO L ELSE S « T

END

At the due date, submit

A: A statement whether you implemented Subset A or the entire language;
B. A syntactic description of the language you implemented;

C. A block diagram indicating the main principles of the system, (this

diagram should not exceed one page);

D. A table of the basic characters of the language and their priorities

(Lf you used such);

E. A B5500-AILGOL listing of the system followed by

F. The output produced by your system and a test program to be issued

one week before the due 'date. (One will be issued for Subset A; one

for the entire language.)

185

Solution To TERM PROBLEM

BEGIN COMMENT CLEVER TYPEWRI TER. NeWIRTH MARCH 1965;
I NTEGER Rj» Xs» NUMBER;

I NTEGER CC, WC) COMMENT INPUT POINTERS;

I NTEGER 13; COMMENT TRANSLATOR STACK POINTER:
INTEGER J3 COMMVENT ARRAY STORE POI NTER;

INTEGER K COMMENT WORKSTACK POI NTER:;
INTEGER ARRAY CARD [0:14]; COMMENT INPUT BUFFER;

INTEGER ARRAY TL02:311; COMMENT TRANSLATOR STACK:
ARRAY SsVI[02127)3 COMMENT THE WORKING STACK;

ARRAY A[011022)7 COMMENT SECONDARY ARRAY STORAGE;
INTEGER ARRAY F»G[0:631; COMMENT PRIORITY FUNCTIONS:

LABEL L1»L2»L3» NEXT, EXITS
LABEL DIG NL, MX ARY», GIR, GE®Q» ADD, VAR» DOT, LBKs LAN, LPA

LSS», ASS» MUL, LOR,» MIN, SUB, RPA, SCL» LEQ» DVD, CMA, NEQ, EQL,
RBK, PWR, UMX, UGR» UGOs UAD» UAN, ULS, UML, UCR, UMN, USB, UL,
UDD» UNQ» UEL, UPR)

SWITCH EVALUATE ¢

DIG,» DIG» DIG, DIG, NIG, DIG, DI G, DIG»
DIG,DIG, NIL, MAX, NIL, ARY, GTR, GEQ»,
ADDs VAR» VAR)» VARs VAR, VAR, VAR, VAR,

VAR, VAR, DOT, LBK, LANs LPAs LSS, ASS, .
MIL, VAH VAR, VAR, VAR, VAR VAR VAR

VAR, VAR, |OR» PWR, SUB, RPA SCL, LEQ»
NIL, OVD» VAR, VAR, VAR, VAR, VAR, VAR

VAR, VARs ¢cMA, RRK, NEQ EQLs, NL, MIN»
NIL, NIL, NIL, NIL, NIL, NUL, NL, NL,

NIL, NIL, NIL, UMX, NIL, NIL, UGR,UGQ,
UAD, NIL NIL, NILsNIULNILsNILNIL,

UAD, NIL, NIL, NIL, UAN, NIL, ULS, NI L,
UML, Nit, NIL, NIL, NILoNIL»NIL,NIL>»
NIL, NILs YOR, UPR, USB NIL, NIL, ULGQ»
NIL, UDD» NIL, NIL», NIL, NIL, NIL, NIL,
NIL, NIL, NIL» NIL» UNQ» UELs NIL» UMN;
DEFINE TYPE = [1:2) #, LOW =[10310)%#» UP = [20310] #5
DEFINE FLAG = [3t1) #, ADR = [30310] #3;

DEFINE VALTYPE = 1 #» ADRTYPE = 2 #» ARYTYPE = 3 #3

DEFINE THRU = STEP1 UNTIL #;
DEFINE Z = @56 #;

STREAM PROCEDURE CLEAR (D))

BEGIN DI e«D3DSe 8 LIT” "5 SleD; DSe¢ 14 WPS END

STREAM PROCEDURE TRCH (S5»2MsDsN)’; VALUE MsN;

" BEGIN DI « D3 DI €DI+N; SI ¢ S;3 SI ¢€SI+M3NSe CHR END 3

PROCEDURE INSYMBOL(S)} INTEGER S3}

BEGIN INTEGER T5 LABEL L3;

Le IF CC = 7 THEN

BEGIN IF WC=8 THEN

BEGIN READ (CARDFIL»10» CARDC*IDICEXIT];
WRITE (PRINFIL»15,CARD(*]); W ¢ 0

END

ELSE WC ¢WC+1;

cc « 0

END

ELSEC C¢CC+1;

TRCH (CARDLWCl» CC, T, 7);

186

IF T =" " THEN GO TO L ELSE S ¢T

END

PROCEDURE ERRNRIN); VALUE N? INTEGER N;

BEGIN LABEL 3 COMMENT PRINT MESSAGE AND RESUME PROCESSING;

SWITCH FORMAT TEXT¢

("PARENTHESES 00 NOT MATCH"),
("INCOMPATIRLE ARRAYS"),
("INCOMPATIBLE ASSIGNMENT"),
("ASST GNMENT TO UNKNOWN QUANTITY"),

("ILLEGAL LIST ELEMENT”1 »
("ILLEGAL OPERATOR"),

("ARRAYSPACE EXHAUSTED"),
("DIVISION BY ZERO");

WRITE ¢TEXTIN])
FOR K « K STEP =1 UNTIL 64 00

| FSCKILTYPE = ARYTYPEA N DSCK)FLAG=1THEN J ¢ SILK], LOW;
Le IF R # ";" THEN BEGININSYMBOL(R)>GO TO L ENDJ

I «0560 TO Ll

END]
PROCEQURE FETCHS

BEGIN VIK) ¢ VIS[KJI.ADR])> SICK) « S{SEK).ADR] END ;
PROCEDURE UNARY(FCT»NULL)}

REAL PROCEDUREFCT3 REAL NULL;

BEGIN INTEGERLsUsX;REALESE«NULLS

| FS{K),TYPE = ADRTYPE THEN FETCH;

IF S{X3},TYPE = ARYTYPE THEN

BEGIN Le¢SIKI.LOWSU¢SIKI,UP;

IF S[K).,FLAG= 1 THEN J «L3}

FOR XelL THRU U DD E ¢ FCT CE»AlX]))}

VIK) ¢ £3 SCK),TYPE ¢ VALTYPE:

END ELSE

VEKY ¢ FCT (NULL, VIKY);

END UNARY }

PROCEDURE BINARY(FCT);

REAL PROCEDURE FCT;

BEGIN

: I FS(K), TYPE = ADRTYPE THEN FETCH:
K ¢ K=1¢

| FSIKI, TYPE =ADRTYPETHENFETCHS

IF S(CK1,TYPE= AHYTYPE THEN
BEGIN IF S{K+11,TYPE= AHYTYPE THEN

| BEGIN INTEGER L1,L2,U1,U2:X,Y}
LY ¢ SIKISLLOWS Ul ¢ SIKI, UP; L2 ¢ SI[K+1)1.LOW:

U2 ¢ SCK+11,UP3 Y « 23

| FUL=L1ZAU2=L2T H E NERROR(C1);

IF S{K+1).FLAG= 1 THEN Je¢L2;
IFSIKI«FLAG =1 THEN Je¢iL1;
SIKI,LOW ¢ J} SIKI. UP ¢ J+Ul=L1; SIK).FLAG ¢ 13}

FOR X eo LITHRU UI DO

BEGIN AC J1 ¢ FCTCACX)» ALY1)} VY € Y+13 J & J+1 END}

END ELSE

BEGIN INTEGER L.»UsX3 REAL Y3}

L ¢« SIKI.LOWS U ¢ SICK UP} Y € V(K+11;

IFSIKI«.FLAG=1 THEN J eo L3J

SEKI, LOW ¢ Ji-SLK),UP & J+U*L3 SIKI.FLAG ¢ 13

187

FOR X ¢ L THRUU DO

BEGIN ALJl « FCT (ALX1» YY); J €J+1l END

END

END ELSE

BEGINIFSC(K+11.TYPE = ARYTYPE THEN

BEGIN INTEGER Il.»U»X3 REAL VY:

IF SCK+1) oFLAG = 1 THEN J €L; SIK].FLAG «13;
STKI,TYPE ¢ ARYTYPESZSIKI.LOWee Jj S[KI, UP ¢ J+U=L};
FOR X ¢ L THRUU 00

BEGIN ALJ) « FCT (Ys ALCX1)3 J « J+1 END
END ELSE

VIK] ¢ FCT(VIK)»VIK+11)

END5

ENDBINARY;

REAL PROCEDURE SUM(X»Y)?VALUE X»2Y3 REAL X»Y3SUM « X +Y;

REAL PROCEDURERDIFF(X»Y)} VALUE X»Y3 REAL X2Y} DIFF ¢ X = Y3}

REAL PROCEDURE PROD(X»Y)3 VALUEX»Y, REALXsY? PROD ¢ X x Y3
REAL PROCEDURE QUOT(X»Y)?VALUE X»Ys» REAL X2Y?

IF Y = 0 THEN ERROR(7) ELSE QUOTeX DIVY:

REAL PROCEDURE EXPO(X»Y)? VALUEX»Y> REAL X»Y3EXPD ee X *Y}

REAL PROCEDURE LESS(X»sY)> VALUEXsYS REAL X»sY3 LESS «¢REAL(XKY);

REAL PROCEDURE LEQL(X»Y)? VALUEXs»Y? REAL XsY3LEQLeREALIXSY)
REAL PROCEDURE EQUL(X»Y) VALUEXsY> REALXsYSEQUL«REAL(XEY)}

REAL PROCEDURENEQL(XsY)? VALUEXsYSs REAL XsYSNEQL*REAL(XZAY)]

REAL PROCEDURE GEQL(X»Y)? VALUEXsY>REALX»Y} GEQL«REAL(X2Y))

REAL PROCEDUREGRTR(X»Y)VALUE X»Y3> REAL X»Y? GRTR ¢REAL(X>Y)}

REAL PROCEDURE INFI(X»Y)? VALUE X»Y3 REAL X2Y5

INFI « [FF X<Y THEN X ELSE Y;
REAL PROCEDURE SUPR(X»Y)? VALUE X»Y» REAL XoY3

SUPR« IF X> Y THEN X ELSE VY’

REAL PROCEDURE UNON{X»Y)? VALUE X»Ys REAL X»Y»

UNON¢« REALCBOOLEANCX) OR BOOLEAN(Y)):
REAL PROCEDURE INSC(XsY),;VALUEXsYS REAL X»Y3J

INSC¢« REALCBOOLEANCX) AND BOOLEANCY));

COMMENT INITIALIZE POINTERS ANDTARBLES:

NC « 8; CC « 7: CILEAR (CARDIO));
: 1 « J € NUMBER € 0; TLO0) « mgr;

FORK ¢ 0 THRU 53 DOSIK],TYPE « VALTYPES K ¢ 63;

COMMENT PRIORITY FUNCTIONS OF RASIC SYMBOLS.

SYMBOL F G # (0OCTAL)

0 | 19 35

[20 19 33

p 4 | 19 73
$ (OR) 5 5 52

& (AND) A Q 34

< $$ = ¥ 2 > 10 11 36 57 75 74 17 16
w ® (MIN MAX) 12 77 13

+ = 14 13 20 54

x / 156 15 40 61
* 18 17 53

LETTFR 20 19
DIGIT 23 19

188

) 20 1 55

1 20 3 76

¢ 37

SEMICOLON 2 1 19 0 56

» 20 3 72

®

2 (FILEMARX)Y 20 =1 19 0 - UR)

: (ARRAY) 2 19 15 ’
FILL F{+*] WTH

205205200202205,20220220520520s=1512» 0s 2,10,10,
1485205202202205,20520»2205,20,20,20,20, 8s 1510, 2»
1622022020220, 20220220»,205,20» 6518,145,20» 1-510»
0r162205,20020,20,205,205,20,20,20, 1,105,10,20,123

FILL GU*] WITH

195195102192 19519519,19919519» 05,115» 0519» 98,90 |
13519219,192195195,19»19519,195195195 7519, 9,19,

159519919219219»519919,19519519» 5,17513» 1» 0s 9,
05,152195192195195195,19,19,19» 35,19, 9» 00 1,113

COMMENT READ AvD REORDER BASIC SYMROLSe BRANCH TO INTERPR,RULES)

L1¢ INSYMBOL(R)?
L2¢ IF FLTCIY.[042:6)) € GLR) THEN

BEGIN I « I+1; TI{Id¢«R3; GO TO L1 END

L3s IF FLTLI=1.042%6)) = GL{TL1).[42%6)]) THEN
BEGIN I «I=1::GO TO L3 END #

G OTO EVALUATELTIII+11};

NEXT? I ¢ J=1; GO TO LZ2}

ADD: BINARY €SUM)3 Go TO NEXT
sue : BINARY (DIFF? GOTO NEXT;

MUL: BINARY(PROD)S GOTO NEXT;

DVL : BINARY (QUOT) GO TO NEXT}:

PWR: BINARY (EXPO)»G O T o NEXT)

MIN: BINARY CINFI)? GO TO NEXT)

MAX: RINARY ¢SUPR)Y,G OTO NEXT:
LSS: BINARY (LESS); GO TO NEXT;
LEG: BINARY (LEQL)S GO TO NEXT;
EQL: BINARY (EQUL)SG O TONEXTS

NEG : BINARY (NEQL J)’ GO TO NEXT;

GEC: BINARY ((GEQL)> GOTO NEXT:
GTR: RINAHY ¢(GRTR)?G0 TO NEXT»

LAN? BINARY ¢INSC)Y> GO TO NEXT;

LORa BINARYCUNON)?GO TO NEXT:

UAC : UNAHY (SUM»0)2GOTO NEXT:

USB : UNARY(DIFF»0);GOTO NEXT:
UML : UNARY (PROD» 1) GO TO NEXT;

uoc : UNARY (QUOT»1)5> GO TO NEXT;

UPR : UNARY (EXP0Ds 2)3 GO TO NEXT;

UMN ¢ UNARY (INFI» Z)5 GO TO NEXT;

UMX: UNARY (SUPR»s=Z2); GO TO NEXT:
ULS: UNARY (LESS» 0)5 GO TO NEXT;

ULE: UNARY (LEQL» 0)5 GO TD NEXT:

UEL: UNARY(C(EQULs 0) GO TO NEXT;
UNC : UNARY (NEQLs 0)? GO TO NEXT;
UGE?! UNAHY(GEQL#0)’GOTO NEXT;

189

mM mm Z wn x > 0 rr >» O< CCC
= > ++ U OU own XD 8 8) L 2 I»OO > 0
oO — i mr > in > Xx x - —t 0 nn 3377I

- ef . Ce. a” Ce .. se 0 00D DDD DDD

eo I we .

—4 MOXe=eM XMOM CO et >< +4 4 4 XK +4 +4 NX XW 400 DMr ZX CCC
m 20 I RS Zim Z MMs 1M™m mM ™ ~~ as Nan BO | OM ™M Cc ZZ=z

A + 2 rC OO ow + T+ xr PX XX + oy Z rr>
~~ 3 ~1 wn OO - Z Mea {TT Zn WD wn nC nv wm ws “id (N § ~4re 0D 020
A LT OXON Kee Z2MITOMNr—= 0 Zc (Ny Pu a a) 2 X Xe » mp 0OZ2 Mm 3X << <<
~N i X ~~ 1 I = 2 a HX RV 1 XA + § M4 X ras ivT +
=: ~~ 2 re aD << Wn 4 C+ ArasXr FFa Der = a TX = X ala a
= LIT 71] em 8 as ws cm YT) XK iT Ze » J» sta Nes Feeee > De AM Pes Tra DD)
= IY ~4 ‘ee >< i Wn A A> 4 OO — ~4 OM A + >xX + O ZZxn
eo ~e {GY << w — ~N PT AA CX ey NYDNX € * LAN - a —f Z nS Ww

: > ~eO) T ra A = XUVe UV --<4N3r—TD YYRY Os ry ee XA CCZORA
~£ m A) > 3 — ZZ MMM > M << A mm C. XN Mm > + LT X XX» wv &
w -4 — CRNe 0 J RYEES BL we tL DO C1 = mM Lea
kt aon <Z » ™~ wa How TH MIX» NH » ws 0 jl ID es we ZZ Mas D+»OO
I> Lo ™ — 4 oe hd m [02 Be SE -< AAS I =A rr
O PA A LA JENS SN AV J 3 — T= (UN > WZ TU <> a I 4 ~~ + w — ee wo ua
mo Mm x w —d — iC 8 Ne Ae 0 my 3 xr 5 A TU << T or rr xX

x — -e - Ci sr < XxX 3 J =I A0 BEE SY BR a MY Ty TT = Pa MOOD
ont —4 =f = - NC * NH es —-4 J TC -— — PY xX + Mm — -e 1g —- oco0o
wn we + pr Vv - v» Xs «<< JV LL << or + ws » I
m 0 — X . (UN VIR TC -4CC ~~ TT ST So i {Ie| i -— — 4
1] ™m — a XX + rm nm << AQ mm pS wn Mm oO - + >000
oe -s | Mom oe = REE IS = * Dee FT o =
p >> mM O0O0Z n> C—4M AMMO OA ~£ >» —4 —4 mM — 0 ZZ=Z

= - 4 << 2 ™ = oI x ~— {LX CL A << << — TI oO ~~ Tn
\O + Oo ~~ ~ Tim >» “em—4 34 Be ETI Mm 1 <x MM TX»XK
o = xX A XMIJww3 ZX ZX WZ ee UVXXCOC ZZ = DH

- wn —s : CY 1» Mm Mo + we (Tw a DD im <TC wa (T] we ee ee
3 — * t= JC ¢ = Mm ZO ~~ AR we XM > > tee

PN + Z OU 3 Mm < IM — t im — —
oy — ~~ ee Mm —A 7 —t md ~~ un -e + -4 -a —4 w
Pasi I <7 2: = Is rs - J O20 XK a0 pa a ln | 0) —£ lun

™M x > 4 Cee NOX pn | we 73 ZZ a — es a JK {_ we “me 1] od
wn + I ws ~~ A Ma << +¢ + we °
: > - A T+ we ~~ ~ XX ~~ UO "Me Vv Wn >
Vv & — : CC » (AW) w im 3 SE — < 1]
- wa 7) ~~ wr us {_ IE XE wa ma ~~ x

H Eo CC > Lam “a ‘ve ww PR} OO wd A
7] 2: mY X + ha GY NO» — +

~ > oO » rr ws > + ONC
we — oOo ® “. A — LY; * —1

x oO O ww - — + OTT 4+ z —
mM Vv ~ = “, hd EE anf) :
4 pa - — .o U pt ZZ = ‘=e

m > NN m + m™m + ve
x pd (} a -- XM << m #3 J
—t - “ 2 nN | we — Bm po) oO

LJ we -e xX ws 13 A ‘we

< rr + m oo O wa A
wn ~ no : pr oO 0 1 pd oO
~™ > + w ~~ p> Lon

x — - | mn — On ~- z z
— ~~ Po 0 oO - XX m

LB < * 3 pA pp ») -4

x © ~ > +

~~ we

pd

-
we

—

cs 236 B April 5,1966

Problem 2 N. Wirth

Design a simple programming language for complex arithmetic and imple-

ment it on the B5500 computer. The implementation shall consist of a

translator based on a precedence syntax analyzer, and an interpreter of

the compiled code.

I. The language.

The language should include facilities to express arithmetic opera-

tions on complex numbers and variables, such as addition, subtraction,

multiplication, division, taking absolute value, sign inversion, compari-

son and possibly others. On the statement level there should exist the

assignment operation, an output operation, and facilities for conditional

and repeated execution of statements. Variables are designated by identi-

fiers in the usual sense. A program shall be preceded by some form of

declaration of those identifiers.

II* The translator.

The translator should consist of three main parts:

1. A routine reading basic symbols from the input source. It 1is

recommended that this routine reads entire identifiers (and possibly

) numbers) which are considered 1n the syntax as a basic symbol. The source

program should be listed by the printer.

2. A set of interpretation rules, corresponding to the syntactic

rules of the language.

5. The algorithm for syntactic analysis.

The compiled code should be printed in a readable form upon completion

of the compilation.

I[II* The Interpreter.

The interpreter executes the program compiled by the translator.

The computer represented by-this interpreter should consist of an instruc-

191

tion register, an instruction counter, a set of arithmetic registers,

and a memory, divided into a program-, and a data-part. The interpreter

shall not include a stack mechanism.

In order to determine the precedence relations and functions, a

syntax processing program is available on the B5500 computer. This

program accepts a sequence of syntactic productions, one per card,

punched in the following format: Each card consists of 6 fields, each

12 characters long, each representing a symbol (blank spaces count!).

The first field represents the left part symbol of the production; if

it 1s left entirely blank, then the left part symbol from the previous

production 1s copied into 1t.

The syntax processor 1s called in the following way:

a. In the "system" field of the type-II card write "DISKIO".

b. The type-11 card 1s followed by a card containing

? EXECUTE SYNTAX/PROCI

where ? 1s a 2-8 punch in column 1. This is followed by a

"Green card", followed by the data.

Use a time estimate of 2 minutes.

The total available machine time for this problem is 30minutes.

On April 19, submit the output producedby the syntax processor from

the syntax underlying your language. May6 is the final due date, when

you should submit:

| 1. your tested compiler and interpreter program,

2. a clear and systematic description of your language, and of the

organization and the instruction code of your interpreter, and

5. an output produced from a sample program. This sample program

should demonstrate the main features of your language, and the correct-

ness of your translator.

192

cs 236 B N. Wirth

May 1966

A SOLUTION TO PROBLEM 2

Introduction

A description 1s given of a simple programming language to express

computational processes involving complex numbers. The structure of the

language 1s defined by a syntax (described in BNF). To each syntactic

construction corresponds a certain operation which 1s systematically

described by the processor. This processor has been chosen to consist

of two parts:

1. a translator (compiler), and

2. an interpreter, closely reflecting the design and capabilities

of a present-day computer.

The Language

The basic constituents of the language are complex numbers and vari-

ables. They can be used as operands 1n expressions, containing the dyadic

operators of addition, subtraction, multiplication and division, and the

monadic operators of sign 1nversion, exponentiation (e), selection of

the real or imaginary part of a complex number (real X, im x), taking

the absolute value (modulus), and of identity.

] Expressions are constituents of assignment statements, which specify

that the value of the expression be assigned to a variable. Statements

can be executed conditionally, depending on whether a relation between

two complex numbers holds or not. In the same fashion, a statement may

be' executed repeatedly as long as (while) a relation 1s satisfied.

Sequences of statements may be bracketed and thus be subjected to condi-

tions as a unit. Relations on complex numbers are understood as the

ordering relations taken on their absolute values.

Variables are denoted by freely chosen names, so called identifiers,

1.e. sequences of letters and digits the first element being a letter.

All identifiers must, however, be declared in the heading of the program.

Since, due to the limited character set of the equipment available,

195

certain operators and delimiters are represented by sequences of letters,

the following such sequences may not be chosen as identifiers:

NEW, BEGIN, END, IF, THEN, ELSE, WHILE, DO, OUT, EXP, ABS, REAL, IM

Numbers are denoted as follows (they are treated as basic constitu-

ents of the language and are therefore not described 1n the general

syntax):

Syntax of numbers:

(number) ::= (real part)I(imaginary part)l|(real part)

| (real part) ::= (real number)

(imaginary part) ::= (real number)|-(real number)

(real number) ::= (digit sequence) |
(digit sequence) . (digit sequence)

(digit sequence) ::= (digit) | (digit sequence) (digit)

Examples of numbers:

1 12.5 91.5I23.8 0I-0.75 0.8311

The Processing System

The processing system 1s given as a B5500 Extended Algol program.

It utilizes the techniques of precedence syntax analysis as discussed

in class and as described in Wirth and Weber [1].

The syntax of the language 1s analyzed by a program which deter-

mines the precedence relations (printed below in the form of a matrix)

and the precedence functions (F and G) of the symbols of the language.

These functions, along with tables representing the productions of the

syntax (KEY and PRTB), occur in the program of the compiler. The

organization of the two latter tables 1s as follows:

KEY[i] represents for the i'th symbol the index in the production

table PRTB, where those productions are listed whose right part string

begins with the i'th symbol. For each production, the right part is

listed without its leftmost symbol, followed by the identification number

of the listed production and the left part symbol of the production.

The end of the list of productions referenced via KEY[i] is marked with

a 0 entry in PRTB.

194

This representation of the productions was chosen to speed up the

table lookup process. Clearly, even more efficient methods could be

devised.

A program listing the compiled code in mnemonic form 1s activated

before execution of the code.

The ficticious computer, represented by the interpreter, consists

of the following elements:

I. Aprogram storage area (PROGRAM), into which the code is compiled.

2. A data storage area (DATAR, DATAC), into which constants (numbers)

are compiled.

3. A set of 16 "registers" (REGR, REGC), upon which aritmnetic

operations can be performed.

4. An instruction register (IR), holding the currently executed

instruction.

5. An instruction counter (IC), holding the address of the next

instruction 1n sequence.

6.A condition register (TOGGLE), holding the result of a comparison.

The instruction formats are the following:

. OP # 3

.

In case (a), the OP field designates the operations of a fetch, a store,

or a branch, involving the register specified by the R field and the

storage cell addressed by the A field (in the case of a branch, the R

field determines whether the branch 1s taken unconditionally or depending

on the value of the condition register). In case (b), the OP field spe-

cifies the operation to take place on the registers specified by the Rl

and R2 fields.

Two Examples

Two examples of short programs are given below. The first is inten-

ded to 1llustrate the main features of the language. The second example

was executed with a modified output operator, providing a primitive

graphic representation of the complex plane.

Reference:

1. "EULER: A Generalization of ALGOL and its formal definition," Comm. ACM

9/1,2 (Jan. Feb. 1966)

195

PRODUCTIONS

<PROGRAMD ¢ $ <HFADING> <CNMP STAT> §
2 <HEADING> * <DECLAR> ;

3 <DECLAR> . NEW <In>

4 . <NDECLAR> ’ <I1D>
5 <CCOMP STAT> ¢ <CNMP ST H> END
) <COMP ST H> ¢ REGIM

7 ¢ <COMP ST H> <STAT> }

8 <STAT> - <STAT*>

0 <STAT +> « <SIM STAT

10 ¢ <COND STAT>

11 + <ITER STAT>

12 <COND STATS - <IF CLAUSE> <STAT+>

13 - <IF CLAUSE> <TRUE PART> <STAT«>

14 <IF CLAUSE> ¢ IF <RELATION> THEN

15 <TR{E PART> “ <SIM STAT> ELSE

1% <ITER STAT> e CWHILE CL> <STAT#>
17 <WHILE CL> ¢ SWHILE HN> <RELATION> DO

18 <WHILE HD> * WHILE

19 SRELATINN> ¢ <EXPR> < <EXPR>
20 ¢ <FXPR> < CEXPR>

21 - ¢ <CFXPRY> = <EXPR>
22 ¢ <EXPR> 4 <EXPR>

23 - <EXPR> 2 <EXPR>

24 . CEXPR> > <EXPR>

25 <SIM STATS ¢ KASS STAT»

26 ¢ <CNMP STAT>

27 ¢ <OUT STAT>

28 <OUT STAT» t nu T <EXPR>

29 «ASS ST AT> t <VARTARLE> « <EXPR>

30 & <VARTABLE> + <ASS STATS

31 <EXPR> t CEXPR®>

32 CEXPR*> - <TERM>

33 t CEXPR#*> + <TERM>
34 t <EXPRw#> - <TERM>
35 - + <TERM>

36 ¢ - <TERM>
37 <TERM> * CTERM¥>

38 CTERM*> ° <FACTOR>
| 39 ‘ <TERM*> X <FACTOR>

40 Re <TFRM*> / <FACTOR>

41 <FACTNOR> ¢ <PRI MARY>
42 « FXP <FACTOR>

4 3 ¢ ARS <FACTOR>

C44 « REAL <F ACTOR>
45 . IM <FACTOR>

46 <PRIMARY> ¢ CNUMRER?>

47 * <VARTIARBLF>

40 ¢ ¢ <E XPR>)
49 <VARIABLE> ¢ <I>

196

NONBASIC SYMBOLS

| <PROGRAM> 2 <HEADINGS 3 <DECLAR> | 4 <CNMP STAT> 5 <CNMP ST H>

é <STAT> 7 <STAT*> 8 <COND STAT> 9) <IF CLAUSE> 10 <TRUE PART
11 <ITFR STAT> 12 <WHILE CL> 13 <WHILE HD> 14 <RFLATION> 15 <SIM STAT,

16 <DUT STAT> 17 <ASS STAT> 18 <EXPR> 19 CEXPR®> 20 <TCRM>

21 <TERM=*> 22 <FACTOR> 23 <PRIMARY> 24 <VARIABLE>

BASIC SYMBOLS

25 4 26 NEW 27 BEGIN 2R IF 29 WHILE
30 OUT 31 + 32 - 33 EXP 34 ABS

35 REAL 36 IM 37 <NUMRER> 3A ¢ 39 <In>
N= ’ 41 » 42 END 43 ELSE 44 <

45 < ué = a? x 4R > 49 >

50 « 51 x S52 / 83 THEN 54 on
55)

J

AS

PRECEDENCE MATRIX

1 2 | 3
| [® ‘ >
2 = : |< . . <) :

, , id °
4 ® 3 ’ «=F ’
p <<< : : >?<<<, <<< <<< ¢ <<<¢,¥) ’
: : <, = .
» . ° o =8 ® [|] Y > ’K lL] ’ ’9 <€ BC nl «<<, < c<c.< +> ’

10 €< aC, <<< «(<< < <<<. < < ’
3 . : : Dg)[]

12 €¢ =<<, <<< << < <<<. < a ’| . &

y . = <<, <<<L< + €€CCLLLKLL, :® |)

In . .) : TF16 : : SON)
‘7 : *) ” p 0
8) : ® «” > .0 : ° oe” d>d=mumex, >=20 Co . = > IOO533>, >>>. : : | . 2. > DOO 3>>, >5>. © | : N >) > I3D223>, =E=mI>>>
23 : : R > WF OIOO3D>, >3>>>pr) : . > «2 2393333, 2533>>
26 . : :¢ } ’ |
’7 DI3333, >> >> , > >>>. 5 >: >)23 = | +0 |Cy | N NSN « €€CCCCKLL, ’29 . 2202 >>> « DO3353>>>, '¢ oe $€<LL . €€¢€C<CC<CKL, ’

| : OOO . . €€LCCLL, :
” eECLLC ° <<<, .
>) « BCL . << <<k<, . |) B<L< . <<<<c<<<, .3 : « BCL es €<€<«C<X<, .
: | « BSC . <<<, .¢ ° >> |N WF OOOBO3D>, >>>

* : BC ,CC<<< . €<CCCCKLL, : >>» 33335. 33> >>> oss : > «23 D3IXDIID 2205541 | ’ >e2 > 2 0 |J

10 , > 0 =,): . > >43 23 33>. 33> >>>) ’ ’4: . eee > 23>,.,> > . |1 | . Se <<< « €<CCLCLL, |: ° DADIIOY « €€<€C<CLLLKL, °10 . EDLDIPPY + €<<LCKL, x. : 0 $<C<< o« <€K<CLCKKLL, '
+8 . measiiss , €<€«<<<<LL,). 0 $<<CLL s €€<€<CCCLKLKL ’™ [J

30 N REC, CCg<C, €CeCLcLl, ’CC. =< <<< |
53 >> 332 ,.5>>> >>> > 555 > cess ’>> 53> ’ > |
> . 23> >>> > 323 .> >. ’; LJ. « D> WF IIDO33>, DO>>>

198

PRECEDENCE FUNCT TOMS

i <PRNGRAM>

? <HEADING> 3 I

3 <DECLAR> | 2

4 <COVP STAT> 3 3

9 <cCOMP ST H> ~ i 4

6 <STAT> | |

7 ¢STAT»> ? 2?

a <COND STATS 7 3

9 <1F CLAULSF> ? 3

10 <TRUE PARTS 2 2

11 <[{TER STAT> 3 3

12 <WHILE CL.» 2 3

13 <CWHILE HNO 3

14 CREATIONS

15 <SIm STATS rd 3
16 <QUT STAT> 3 3

17 ¢ASS STAT» 3 3

16 <EXPR> 3 3

19 CEXPR¥*> 0 4
20 _ <TERY> 5 4
21 CTERM®> 9 S

22 <FACTOR> 6 5

23 <PRIMARY> & é

24 <VARTARLF> é 6

25 < I 3

26 MEW 4 2

27 REGIN 7 4

28 1F 3

29 WHILE 7 3

30 ouTY 3 3
31 + 4 4

32 - 4 4

33 EXP 5 0

34 ARS 9 Hh

35 REA| by 6
36 IM 5 6

37 <NUMRF R> 6 6

38 (3 6

39 <IN> 7 6

40 ’ 7 I

41 ’ é 1
472 END 4 |
43 ELSH 7 2

44 < 3 3

45 < 3 3

46 L 3 3
47 4 3 3

48 2 3 3

49 > 3 3

50 ¢ 3 6

51 x 5 p

52 / 5 bo

53 THEN 7 H

54 DN 7

5) A 3

199

BEGINCOMMENT COMPILES CS?36Hs SPRING 1966. NyWIRTH}
INTEGER LENGTH; COMMENT LENGTH Of THE PROGRAM COMPILED:
INTEGER ARRAY PROGRAM IIN32551]} COMMENT PRCGRAM STORE:)
REAL ARRAY DATAR, DATAC [022553 COMMENT NATA STNRt RFEAL/IM PARTS
DEFINE ONE = (32%4)#, TWO =[36243%,T H R E E=[4034)#, FOUR =L4ASL4])#}
DEFINE ADR =C40tR1#%; .

LABEL ALLTHRU

BEGIV COMMENT THISBLOCK IS THE TRANSLATOR;
INTEGER IsJsXol COMMENT INDICE SUSED BY SYNTAX=ANALYSER}
INTEGER LNCS COMMENTINNEXODFDATA=STNRE}
INTEGER PLDC COMMENT INDEX Of PROGRAM=STORE}
| NTEGER NX3 COMMENT INNEX O {NAME LISTS
| NTEGER CHAR} COMMENT LAST CHARACTER RFAD RY "NEXTCHAR"}
BJOLEAN LORDS COMMENT "CHAR" IS A LETTER OR A DIGITS
| NTEGER W(C,CC3 COMMENT WORD= AND CHAR-COUNTER ON INPUT=BUFFER

| NTEGER SYMBOL»SYMBNLVALUES COMMENT LAST SYMBOL READ BY "INSYMAROL"™S
| NTEGER R; COMMENTREGISTERNN LAST USFDRY CODE
ARRAY BUFFERIOS14Y3 COMMENT INPUTRBUFFFR3}

INTEGER A RR A YWNRNNELIMITER, DFILIMITERNUMBER [021213
NTEGER A RR A YOPERATNR» NPCNDELO0315)3

| N\TEGERARRAYF,G[0N0:551]} COMMENTPRINRITY FUNCTIONS OF SYMBOLS)

{EAN KEY(0D:55]; COMMENT KFY INDEX TO PRODUCTION TABLESINTEGER ARRAYPRTR(N320513 COMMENT PRODUCTION TARLE!S

| NTEGER ARRAY S,V [0:49]; COMMENT SYMROL*= AND VALUE-STACKS)

|[UTEGER ARRAY NAME LOCATIONI[N399);DIEFINE ENDFILE = 25 #;

STREAM PROCEDURE CLEAR (D);
BEGIN NI « D3 15(NS « B LIT "w)

END

BOOLEAN STREAMPROCEDUREALFA(SsNsD)3 VALUE NJ
BEGIN TALLY ¢13S1€S3 SI «SI+N3 01 ¢ D3 NI « DI+7}

|F SC = ALPHA THEN ALFA « TALLY3n s« CHR
. END 3

PROCEDURE ERRNDR (N)Y3 VALUE N; INTEGER N3
COMMENTMARKPOSITIOMOF INPUTPOINTFRANDPRINTE RR O RMESSAGE

NO ATTEvP TTODCONTINUECOMPILATION IS MADE

BEGIN INTEGER K,M3}
" SWITCH FORMAT MESSAGE ¢

("SYNTACTIC ERROR IN PROGRAM"),

("ILLEGAL CHARACTER TN PROGRAM"),

("UNDECLARED INENTIFIER"),

("T00 MANY REGISTERS REQUIRED"),

(“PROGRAMISTOOLONG"),
("TOO YANY VARIABLES QRCNNSTANTS")

Me WCXB + CC:

WRITE (<80A1>sF O RX e¢ 1 STEP 1 UNTILMDO" "s "e")
WRITE (MESSAGEIN))Y

G OTOALLTHRU

END ERROR;

200

PROCEDURE NEXTCHAR

COMMENT ASSIGNS THE NEXT CHARACTFR IM THE SOURCESTRINGTO “CHAR”,
A'S SIGNS"TRUF"TO "LORD", TF THE CHARACTER S ALETTERA RDIGITS

BEGIN IF CC = 7 THEN

BEGIN IF 4C = R THEN
BEGIN REAN (CARDFIL, 10, SUFFERI*I)YSW Ce 0}

NRITF (PRINFIL», 15s RUFFER[*))

END ELSE
WC ¢« WC+1}

CC ¢ 0

END ELSE

cc ¢#CC+1;

LORD ¢ ALFACRUFFERIWCI»CC, CHAR)
END

PROCEDURE REANDNUMBERS
COMMENTRFADS A COMPLEXNIUMAFRAND ALLOCATES ITINTHERDATASTORE,
WOSYMBOLV ALLUFY | SASSIGNEDITSINDE X | NTHFE.DATA STORES

BEGIN ONN REAL MsN3ONN I NTE GE RI; BOOLEAN SIGNS
PROCEDURE READINTEGF2;

WHILE CHAR < 10 DO

BEGIN N « Nx10 + CHAR; 1 ¢ I=1; NEXTCHAR

END

Me N «03 «0;

READINTFEGERS M ¢ N3

IF CHAR="." THEN

BEGIN N «0; | « 03 NEXTCHARS REANDINTEGERS M ¢ 10#]IXN+M

END ;

DATARILOC]) « M;
IFCHAR="I"THEN

BEGIN M « N « 03 1 « 0; NEXTCHAR}

SIGN«C H A R="="; IF SIGN THEN NEXTCHAR}

READINTEGER; M « Nj

I FCHARS=S"."THEN

BEGIN N ¢ 03 I ¢« 03 NEXTCHAR} READINTEGERS M ¢ 10#IxXNeM
END

) DATACILNCY «IP ST G N THEN =M ELSE M3
END ELSE

DATACILOC) « 03
SYMBOLVALUF « LAC} LOC « LOC+Y

END READNUMBER 3;

PROCEDURE INSYMROL
COMMENT A S SIGNS THENUMERIC CONE OF THE NEXT SYMROL IN THE SOURCE

STRING TO"SYMROL"™. INENTIFIERSAND NUMBERSARECONSIDEREDAS

SYMBOLS, AND ARENODTFIURTHERDECOMPONSED BY THESYNTAX)

BEGIN INTEGER I,7} LABEL FXIT;
WHILE CHAR = " " DO NEXTCHAR}
IFCHA R<10 THEN
BEGIN READNUMRER:ISYMRQOLe 37

END ELSE
IF LORD THEN

BEGIN Te CHARSNFXTCHAR?S

WHILE LORD DO

201

BEGINTe¢C H A RR&T[172818:30)% NEXTCHAR
END3

FOR I ¢« O STEP 1 UNTIL 12 DO

IF WORDNDELIMITFRITIY = T THEN
BEGIN SYMBOL « DFELIMITERNUMRERLII?G OYTO EXIT

END? ~

SYMBOLVALUE ¢TISYMRNL «393 COMME NTIDENTIFIERS

END ELSE
BEGIN FOR1I « O STEP 1 UNTIL 15% DO

IF OPERATORLIYI=C H A R THEN

BEGIN SYMBOL « OPCNANELT)? MEXTCHARS GO YO EXIT
END

ERRNR(1)

END 3

EXITS

EN DINSYMBOL5

PROCEDURE ENITX (CLASS»REG, ADDR);

VALUECLASS,REG»ADDR? INTEGER CLASSsRFGs» ADDR}

BEGIN INTEGER CNM; COM ¢ 03
COM ONE ¢ CLASS? COM, THD ¢ REG COM,ADR ¢ ADDR

PROGRAM (PL.OC) « COM; PLDC ¢ PLLNC+1; IF PLOC > 255 THEN ERRORC4)
END 3

PROCEDUREEDI T3(NP,R1,R2);

VALUE OP»R1 ,R25 INTEGER 0OP»R1,R2;
BEGIN INTEGER COM} COM « 0

COM ONE « 3 ; COM, TWO « OP: COM THREE ¢ R13 COM,FOUR « R23
PROGRAM [PLOC) ¢ OM; PLOC « PLOC+131 F PLOC > 255 THEN ERROR(4)

END

PROCEDURE FIXUP (WHERE,WHAT)}

VALUE WHERE,WHAT: INTEGER WHERF,WHAT}

PROGRAMI WHERE) ADR WHAT;

PROCEDURE INTERPRET(N)S VALUE N; INTEGER NJ

COMMENT EXECUTES T H EN"TH INTERPRETATINN RULE;
CASE N OF BEGIN
3

}

BEGIN NAMEINX)Y ¢ VII)? NX « NX+1} (LOC « LOC+1 END

BEGIN NAMELINXY « VIII3 NX ¢ NX+13L O Ce LOC+1 END 3
}

3

3

3

}

}

3

FIXUP (VLJY,PLOC)S

BEGIN FIXUP (VILJ)»VIJU+114+1)3FIXUP (VLJU+1)sPLOCYE N D3
BEGIN V{J) ¢ PLOC; EDITX (2»000)E N D3

BEGIN VL J) ePLOCIEDITX(2»1»0)E N D3
BEGINEDITX(C2,1oVIJ)[168161)3 FIXUP (VIJI.[32316),PLOCY END 3

BEGIN V[JY,.[32%t16)¢ PiLOCs EDITX (2,0,0) ENO

202

ViJl. (16216) « PLOCS
BEGIN EDIT3 (5sR=1,R)5Re R-2 END3

BEGI N EDIT3(6sR=1»R)Y’ R¢ R-2 END

BEGIN EDIT3 (7»R=1»R); R ¢ R-2 END

BEGINE DI T3(8sR=1,R)YIRe¢R=2E N D3

BEGIN EDIT3(9»R=15»RY;Re R-2 END

BEGIN EDIT3(10,R~1,R)3 R ¢ R=-2 END;
’

3

3

BEGIN EDIT3(15,R,0)3 R ¢ H-1 END

BEGINERITX (1»R»VIJII} R ¢ Q-1 END}
EDITIX (Ci1sR+1,VIJ])))

3

BEGINEDIT3(0rR=1sRYIReR=tEND:;

BEGINEDIT3(1»R=1»RISReR=1FE ND 3;

’

EDIT3 (12,R»0)}
’

’

BEGINE D | T 3(2sR=1sR)3R « R=1END 3
BEGIN EDIT3 (3,R=15R)Y? R ¢ R=1 END }
|

EDIT3 (45R,0)3

EDIT3 (11,R»0))

EDIT3 (13,R»0)

EDIT3 (14,R,0)3

BEGINR¢R+I3IFR>15 THENERRNR(3);

EDITX (0,R,V([(JI);
END3

BEGINRCR+1IF R>15THENFERRNR(3)}

EDITX (0»RsV[JI))

END?

)

BEGIN INTEGER «»1D3 K ¢ nx; I DevlJ3s
WHILENAMELIKIZIDD O

BEGIN IFK =0 THENEPRPROR(2)YELSE Ke&¢K=1
END?

VIJ) ¢ K

END

END INTERPRET3

COMMENTINITIALIZFE THE TARLESAND READ THE FIST SYMBOL)
FILL WORDDELIMITERI*Y WITH

WIFEY, "THEN" > "ELSE" Ss "WHILE" »"DO"s "ABS", "OUT", "REAL" "IM", "EXP",
"BEGIN", "END"» "NENW";

FILL DELIMITERNUMBERI*] WITH

28553543,29,54,3U530,35,36533,27,42,26

FILL OPERATORI*Y WITH
He, "tu, New, xn, wyN, Nin, NW, ng, NaN, Ngn, HON, HWyN,

nen on) wooon ow, Negus
FILL OPCODEC*) WITH

50231532,51,52,480,44,45,06,47,4B,49,3B,%5,41,25}

FILL FU#) WITH

20%

oO . . 1» 3, 1, 3, 1) 1 2 2, 2 2» 2»
2, 1, 1» 2, 3 3, A 4, 5, 9 6» 6»
0, 1, As 7 1» (x LY) fh» 4 So» S9 9»
Soe 6, 3» 7, 7, Hy i) 7» 3» 3, 3» 3,
3, 3, 5, px 7s [a oH

3»

FILL GO*J1,WITH 1» 2, 3, Uy Ae 2 3, 3, 2 3,
3, 3, i» 3» 3 3» 3» i, 4, 5, 5» 6»
6» 3, 2 4, 3 3» 3» 4, 4, bs 6» b,
6s 6s 6s 6» 1) 1» ie 2» 3» 3s 3, 3
3 3s 6» Se Sy 1» 1» 3

FILL KEYL+) WITH
0, 1, 2 3, 11, 14, 22, 23, 26, 29, 37, 38,

41, 45, 50s S1s 57, 60s 63» BR» 0909, 102» 113, 116,
119, 130, 136,140, 143, 148, 151» 155» 159, 163, 167s 171%
175, 1 7 9 12, 187, 190, 191, 193, 193, 194, 19%, 196, 197,
198.1 9 9 , 200s 201, 202, 203, 204, 2053

FILL PRTBI(*)YWITH
0,» 0, O 14 0 ; 2 2» 41, 39, “4, 3) 0, =26,

15, Or 43, - 5, oo Hy 40» -7, So 0» Os =f,

6, Os =10% 7, 0» 7, =12 Ay 10, 7» =13» Rs
Or» CB» =11, 7, 0, 7, =16, 11, 0, 14, 54, ={7,
12, 0s Oo» -9, Tr» 43, =1%s 10, 0» -27, 15» Or

25, 15, 0» 44, tA =19, 14, 4s, {l, «20» 14» 46,
18, “21,14, 47, 18, =22» 14, 4A, 18, =23» 14, 49,
18, 24, 14» 0, =31, 1B» 31, 20, -33, 19, 32» 20,

-34, 19, Or =32, 19, Os =37» 20, 51» 22» =39» 21.
52,22, -40, 2 1 , 0, -38, 21» 0, =41, 22, Os 90,
18, w20, 17» 50, 17, =300» 17, =47, 33, 0» ry 4
25, -1, {5 0» 390, -3, 3s Oo» “8 So» 0» 14,
538 -14, 9, o, =1A4, 13, 0» 18, -28, 16, 0, 20,

35, 19, Or 200 =36, 19, 0s 23, -42, 22» Or 22»

-43, 22, 0» 32, -44, 22, Os 22» =45, 229» Or» =4h,
23» 0, 18» 5%, =4R, 23» Or =409, 24, OQ» 0» 0,
0» 0» 0» 0» 0» O» Oo» 0» Or O» 0» 0»

(0 J 0;
. CLEAR (BUFFERILD])S

CC t 73 WC t 83 NEXTCHAR; INSYMRBOLS
J « 13 S[1]) « ENDFILFS

NX ¢« LOC t PLOC ¢« 03 R ¢ =1; :

COMMENT ALGORITHMFNRPRECEDNENNE SY NT A X ANALYSIS}
WHILE SYMROL # ENDFILF DO
BEGIN le) « J+13 S[J) « SYMBOLS VIJ) « SYMBOLVALUE3 INSYMBOL

NHILE FISLJI) > GISYMARNL) DO

BEGIN WHILEFI(SIU=1]) = GISCJIYIAND JU >1D0 JU « J=1}
COMMENTSIJYsee SUIT IS THERFEDUCIBLE STRING, NOWFIND

THE CORRESPANDING LEFTPART FROM T H EPRODUCTION TABLES
L « KEYLS[J)Y)}

WHI L EFPRTRILIXZODO

BEGINKe +1

WHILE X<! AND SI[KI=PRTRIL1 DO
BEGIN K ¢ K+1, LL ¢ L+1

END ;

IF «>I ANDPRTB(LI<SOT H E N

204

BEGIN INTERPRET (=PRTR(LI)ISS[J)«PRTIRLL+1IIL*O
END ELSE

BEGIN WHILEPRTRILI>0OQO LelL+13LeL+2
END

END

IFLZ0 THE NFRROR(O0);)
l¢

END

END

LENGTH®PLOCIEDITX(4,0,0);

END COMPILER?

BEGIN COMMENT LIST THE COMPILED PRNGRAMU S | N GSYMBROLIC CODES
INTEGER K3 ARRAY MNEMONIC (0315)3
FILL MNEMONIC[*) WITH

" ADD "," SUB "," MUL "»" DIV “0” EXP %,

® LSs "," LFQ %"," FQL "," NEQ *"," GEQ ","™ GYR ",

“ ABS "," NEG "," REAL"»" IMAG"," OUT ";

WRITECLK/Z/*COMRILED CONE I"/>)}

FORKe¢(OO STEPIUNTIL LENGTHDO
CASE PROGRAMIK]I.ONE+1 OF BEGIN

"WRITE CelB," LOAD» 14,%"»%"513>,

Ks PROGRAMIK])TWO, PROGRAM(CK)I, ADR)
WRITE(<IB»" STOR"»14,",",13>,

K ,PRNGRAMIK).TW0, PRNGRAMIK).ADR)}

HRITE (<IB,A6»18>, Ky, IF BOOLEAN (PROGRAMLK),TWO) THEN
"JUMP ELSE " IFJP", PROGRAMIK]I,ANR)J

WRITEC(LIBsAOGs140"»"»13>»Ks MNEMONIC [PROGRAM[K]), TWO],
PRAGRAMIK]), THREF» PROGRAMIK) FOUR)

WRITE (<IB," HALT">) ‘K)

END 3

END LISTER 3

BEGIN COMMENT THIS BLACK I S THE INTERPRETER}
° BOOLEAN TOGGLF}

INTEGER IR,ICS COMMENT INSTRUCTION REGISTER AMD=COUNTER}

REAL ARRAYREGR, RE G cl01151} COMMENY REGISTERS: REALZIMPART}
LABEL CYCLE» FINIS}

REAL: PROCEDURE ARSV(I); VALUE 13 INTEGER 1}
BEGINR E A L XsY3X¢REGRII)SYe¢ REGCILI)}

ABSV ¢ IF Y = 0 THEN ABS(X) ELSE
I F x= 0 THEN ABS(Y)E |L 5s ESQORT (X*24Y%2)

ENDABSV;

WRITE (L//"EXECUTION"/>)}
1C « 0;

CYCLE!

IR ¢« PROGRAMIICI} IC « IC+1;
CASE IR,ONF +1 OF BEGIN

BEGIN REGRIIR.TWNI«DATARLIRLADRYS
REGCLIR.TWO)Y « DATACLIR.ADR)}

205

™m >» Mm ‘
&T @o rt
or SZ

-t = OOM

e I Ono Z0

L DD we =
Cc z | -4 MM MOM am
se RY) OQ -~02Z mazmZ MZ

- (w | O00 O00 oO
— <y Bd | ™m re r= =
7% -£ rt we JF PZ we Z we pg
xr Oo 2 oO w

rr r— = VDD wf ft —t 4 ~ 4M om om TM OM OM re — ID
we 3 WN AMMO OO D0 2 MZ mZzZ MZ MZ Mm = id | > 1»

oe TODO EDDDN0O oO oO QO GO LO = -—_
“4 DY eet L350) LED a Ma As A) XX re LL re = - J m™m (82) pa
em ZETTITTETT ee ™ LyMM Zee MFT ee Ze Ze OD QQ Lg JV
GY Mmm TEM Mmm #3IE <) wT joy - iM - ~~

~~ d vs TOT po pre Dose pv lap Ji » | > a ED gl — et
FN TIT 1 2 Pr ~ mM Lon MC BCAM | ™ [%} Rl | "M3 m x A)
TI DID T xX >» 2 = >» = > <<? 23 = > oe
nN LL O0> D> > Pr > “ Tr —t we TV - Py) As = > >
OD ™S~DT TT TR ~~ = — —- -
® we ve TT ZT ND ND ND + TX +t + 3 TT < ie ~ -e ~~ OC A
— _— ed CCC CLL Mv ~~. ht dt L™ | — ee Ee
2D ae Ne Te Ta Wan 9 JE» JRE 4 X ~ LX Fy; Mx hs)
Ld P+ TXT ZT XZ _= A er L wt ve SEED 4 * * . L A
2 al wd NT AS Ww: —™ in x oe o + |

I > ~ T + DD 0 + PY am x LL .3
-— LL XIANHH WV iV € wa (or BERS — BM TMG) —o 2 a BA
4 mw rr or ~~ or =z = =? = eg 1) Td Py
- DC >> >>> X we xD —- 7] po XZ gy JY
™ Dens DV DDD DW x — X DD a ~ —4 oO an Man

ND hand ~~ ZX BHD NNW we X Z Mm DI = = ut A sy
OO bo + Rw CLL LLL A et DD) iv] ™ -d Ld x T=
ON ® PRE a 0 ¢ ™m ol oy 2 ? + Mm — * ®

—-- hd 2 Z22Z22Z2Z2Z ag | S34 qr JEW LD Po mo — —
oO p « JE ENP EN RP pry J 0 pe Zz ~~ X EN ™ we ry x =
A"4 Zl we we we we we we om ™~ LT ws 2 a) 3 D =>
- mS ~ 2D Z™M x - iT) po be Z rr — a

or O =0 - 3) NS a) ™ ~~ m we ‘we
0 Tyr : — (] + I & Z T
dl | ~~ = f 4 ff — - db tt —4
oe XL L id pe 5 Jad .e we — po
prs) Sod ve XD «ss 0 Mow x ™
~ 2 w mx Mm > bv) 0 ® =
= * Ln =» 06 oJ | ™ m n
tt 2 rt 0 ~~ «*) ry | J a
- [> ~~ 23 ™ XX To | oO | oy @ :

zm -< TOHZ — MM ~~ ~~ = :
x nz ~ — Yd xX = - :
hd | aD OO x XxX Z = pr Me up tu
«3 oO b_4 A wa I) ™M Co]
. -y we . we TY} wr we ry BE 4 J <P» D
~~ hk <4 . fey } XD ud ®
k RS ON ~~ X Pr: pi »
ut ~~ Z2 20 9 ™ |»
= ™ rw ws 1M) y + 2 pr +4
we 4 -—t we -e 2) Ue | Fo

Le -r ' ~~ ~~
: XD r™ x x

.e ~ mZ - —r
3) wa | L 2

ue r~ ih | ™M

= (1 71
—t O a

Fe) rn
: 2 = =<

nd nd

>

NEW A»2BsC»sD}
BEGIN A ¢ 5153B ¢ =31=8,53 C ¢« Ax(B+A)=2,5} OUT CJ

OUT CABS B * REAL A ¢IM B)J
IF A> 0 THEN OUT -A ELSE OUT Aj
A e 03 D ¢ 010,7853908161343
WHILE A 10 DO BEGIN OUT EXP Al A ¢ A+D} END J

END $

COMPILED CODE?

0 LOAD 0» 4

$f STOR or 0

2 LOAD 0» 8S
3 NEG 0» O

4 STOR or |

5 LOAD 0» O
6 LOAD 1»
7 LOAD 2» O
8 ADO 1» 2

0 MUL or

10 LOAO 6

11 SUB 08

12 STOR 0» 2

13 LOAD 0, 2

14 0UTY 0» O
15 LOAD 0» |

16 ABS 0» O

17 LOAD i» O

18 REAL i» 0
19 SUB 0» 1

20 LOAD WIS |

21 IMAG 1» O

22 ADD or |

23 OUT 0» O

24 1.OAD 0» O

2% LOAD 1» 7

26 GTR 0» |

27 IFJP 32

28 LOAD 0» 0

29 NEG 0» 0

30 OUT or 0

| 31 Juwp 34
32 LOAD 08 ©
33 OUT 0» 0

34 LOAD 0, 8

35 STOR 0» O

36 LOAD 0» O

37 STOR 0» 3

38 LOAD Or 0

39 LOAD 1» 10

40 LSS 0» |

41 IFJP SO

42 LOAD 0, 0

43 EXP 0» 0°

207

44 OUT 0» O

45 LOAD 0» ©

46 LOAD i» 3

47 ADD 0» 1

48 STOR 0» O

49 JUMP 38

SO HALTY

EXECUTION

-6,0000000000P4+01 I 7,75000000008,01
4,013878188780+400 | 8,5000000000@8+00

=5,000000000084+00 I =5,00000000000,00
1.,00000000000+00 I 0.,0000000000€4+00

7.07106781198=01 IT 7,071067811968=«014
“1.,4551915228f=11 TI 1,00000000000400

«7,07106781200=01 T 7.07106781186=«01
«1,000000000004+400 1 =1,45519152280=11

«?7,07106781188=01 T =7,07106781200=0}
1,45519152280=11 IT =4,00000000000400
7,07106781200=01 1 =7,07106781188=01
1.,00000000000+400 | 1,455191522868=11
7.07106781160«01 1 7.,07106781200-01
0.0000000000#+00 | 1,0000000000@+00

«7,07106781258=01 1 7,07106781160=01
-1,00000000000400 | 0,00000000008400

NEW A} BEGIN A ¢ {3}

WHILE A < SS DO

BEGIN A ¢« A x 110,25 QUT AZ END 3}

END

COMPILED CODE:

0 LOAD 0,» 1

1 STOR 0, ©O
2 LOAD 0, 0

3 LOAD 1» 2 | |

4 LSS Oo» i
S IFJP 13

6 LOAD 0, O

7 LOAD 1» 3

8 MUL 0s

9 STR Os» 0
10 LOAD Os 0

11 uy 0» 0

12 JUMP 2?

13 HALT

EXECUTION

208

|
x |

x 1 x

)

’ .
| x
|

1

[] -~
1} x
|

|

t

[|]

[|

] x

|

Ny

’

i |
) |)

Co [] x
xX0

x | b 4

x |

{ 0X
x |

[] xX

4] x
. > x

|

|
|

X — xX X x
= FX

x [|] x
8 x X

X {] X
| x

X]
] x

X [|

S x x

x |

x [| Lo x
’ x |
¢ x

bol) Puc) pom) Dold ool] un Si] po Pol Pl) nf Pm Pol png bed bord pul I bend bg buf ef ped veg § r= bg Sl vd eg I mG PG PE pl bul poll el Pg Gol Dad Bund pf Def ef bed bon Gof be Bend
|

x | x
s x

4 ! x

| x
| x

x x

x § x
| x

x § X X

| x
[x

xX ?
) x

b |]
8 x

x]

xX x

X x xX
|

|

§

|

x |]
] x

]

)

)

X 1] x
[|

|

X 9

9 X

x |

 X x

[|

)

|

8

[|]

|

]

[]

8

]

|

|

” |

|]

209

