CS 52

LECTURE NOTES ON A COURSE IN SYSTEMS PROGRAMMING
BY
ALAN C. SHAW

E,C{RF}I;P SHEET INCLVIE D
TECHNICAL REPORT NO. 52
DECEMBER 9, 1966

These notes are based on the lectures of Professor
Niklaus Wirth which were given during the winter and
spring of 1965/66 as CS 236a and part of CS 236b,
Computer Science Department, Stanford University.

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

January 15, 1967

ERRATA in
ALAN C. SHAW, LECTURE NOTES .ON A COURSE IN SYSTEMS PROGRAMMING

CS TR No. 52, Dec. 9, 1966

"

p. 17, line 5, read "Si+l'~' for "Si+k
p. 34, line 4, read "operand[O:m];" for "operands[O:m];"
p. 35, line 3, read "real or" for "real of"

p. 39, line -7, read "KDF-9" for "KDK-9"

p. 50, line -8, read "careful" for "cardful" .

5% add an arrow from "Data Channel" to "Memory" in the diagram.

74, last box on page, read "TSX (\, 4" for "TsX 4, " in all cases.

p. 75, diagram, read "SQRT" for "SPRT"
p. 86, line 10, append "s2 := s2 + a[j] X b[j];" ,
line -10, read "C[1l:¢,1:n];" for "C[l:2,1:m];" .
p. 91, last paragraph, replace by
"Dijkstra 1 has developed a solution to the more general problem

where there are n processes, instead of only 2, operating in parallel.

See Knuth]'5 for a discussion and extension of Dijkstra's solution.".

p. 100, left, insert between lines -6 and -7, "TRA EQ"
left, line -2, read "1" for "7"

p. 105, Example, read E'I,A x" for ",AX ".
LDQ CLA

p. 117, second diagram, read

" " " 1"

for
e Ix |- |- | x|~
p. 119, 1line -7, read "u,v (possibly empty)" for "u,w (possibly emtpy)".

p. 120, line 1, append to-first sentence

"where the elements of P ° are of the form:

"
.

U= e £ . UV, xel*) .

CS 52 ERRATA, Alan C. Shaw

p. 131, lines 1 and 2, interchange "itérative" and "recursive".

p. 136,

SO = P51
while P, F L’ do

replace-program by

:=o;k =1;

begin i := j:= i+l; 8, := Pk;
while §;, > P, do-
begin while Sj_l = 540 Ji=J-13
sJ. - Left'part(SJ. C si); 1=
end
end
p. 137, replace (b) by
1 ¢ A ¢ A A ’ ! ’ i
head> . <head>
;head> l;head> "
‘ <head> :
<string>
' <head>
‘ <string> ‘ "
line -2, read "of i<string>L ." for "of i<string> ."

p. 140, line -3, insert "The word "simple" is henceforth omitted.".

replace by

p. W47, lines 5 through 9,
"'SZ It

"directly reducible substrings (aﬁ Si'”'sk and (b) Sj'
follows from the definition of precedence relations that 83_1_4 S,
- J

and Sk > Sk+l . Now if i< j, then also k < j, since i< j<k
implies Sj 17 If i=3j and k< {, then k =1, since
. . . LR 1"
J< k<t implies Sk = Sk+l'
p. 151, line -13, read "conditional™ for "condition"

line =7, read "<digit>" for "<digit" .

p. 154,
insert between lines -4 and -5

p. 179,
"procedure Q(n); integer n;"

Lecture Notes on a Course in

SYSTEMS PROGRAMMING

December 9, 1966

These notes are based on the lectures of Professor
Niklaus Wirth which were given during the winter and
spring of 1965/66 as CS 236a and part of CS 236b, Com-

puter Science Department, Stanford University.

Alan C. Shaw

I*

IT.

Page
Introduction 0 0 0 0 b he e e e e 1
I-1. Advanced Programming ¢ ¢ v o v . 1
I-2. Purpose and Prerequisites of the course 2
I-3. TranslatorsS . . vt e v o v o o v v v e 0 e e e 2
I-b. References . . v «cv v v v v v 4y sy e ..k
Assemblers et e et e e e e e e e 5
II-1. Basic Concepts . « . +« v v v v v i o 4t e 4w 5
IT-2. Multi-Pass Systems ¢« . ot ¢ o 0« oo
II-3. Organizing and Searching Symbol Tables . , 11
II-3.1 Unordered Tables . . & & « « o o o o o« o« o 12
II-3.2 Ordered Tables « . ¢« v o « o.. 12
II-3.3 SOrting . « . v o v « v 4 o v v vow . . .1k
II-3.3.1 Bubble SOrt .«o oo oo 14
II-3.3.2 Ranking By Insertion 16
II-5.3.35 Other Common Methods . . « &+ o & 17
II-3.4 Scrambling MethodS . . « e e « o oo oo« 17
IT-4. One-Pass Assembly . « o e ooe o« « 2 0eoeas. . 18
II-5. Block Structure in Assemblers . . . ¢+« .oo e « o ., 21
IT-6. RefErences .« o e oo o v o e oo v oo « « o0 « o . 26
IT-7. ProblemsS . v o oo v« + o & v o o « v 600005 . . 26

SYSTEMS PROGRAMMING

ii

Page
III* Interpreters . . . v v « v v v v v v v e e e e e e e e e 30

III-1* Definition and Examples - - - « « « « « « « 30
11X-2. Basic Interpreter of Sequential Code 31
III-3. Interpreter for a von Neumann Machine 33
III-4. Polish String or Stack Organized Machines 38
III-5. Interpretive Computers . . « « « « « « « « « « . . . 41
III-6. RefEIreNnCeS « « « « o o o o o o o e e e e e e o v o 43

III-7. Problems. . . . + + +v v v v v e e e e e e e ... 43

IV. Input-Output Programming., ., ., ., ., ., 48
Iv-1. The Input-Output Problem 48
IV-2. Immediate I-0. . . v v v v v v v v o v« v « o o . 49

IV-2.1 No "Busy" Flag. . « « « « « « « « « 50

Iv-2.2 "Busy" Flag.,50
IV-3. Indirect I-0 . . © « v v v v v v v v v v v51
IV-3.1 Channels « « « « < <, .52

IvV-3.2 CPU Interrogates Channel 5%

IV-3.3 Channei Interrupts CPU20

Iv-4. I-0 ProcessSorsS. . . v v v v v v v v vy v v v . . . b6

IV-5. Experimental Comparison of Several Methods of I-O.

Organiiation. v 06

IV-6. 1-0 and Systems Programming. 68

V. Supervisory Programs (Monitors). . . , 69
V-1. Monitor Tasks ..« . . «. o o ¢ o o o o o o o o o o 69

v-2. Types of Monitors. . . . « o o« o + o o o o o 0 . T1
V-2.1 Batch Processing Monitors T1

iii

VI.

V-2.2 Real Time Monitors
V-2.3 Time Sharing Monitors
v-3. Storage Allocation Methods
V-3.1 Static Relocation
V-3.2. Dynamic Relocation,
V-3.2,1 Ferranti ATLAS Method .
V-3.2.2 Burroughs B5500 .
V-3.2.3 Arden, et al. Scheme
V-3.3 Memory Protection
V-3.4 Invariant Procedures
v-4 .mLoosely Connected Parallel Processes

V-4 .1 Programming Conventions for Parallel
Processing .

V-4.2 The Control Problem for Loosely Connected
Processes .

V-4.3 Solving the Problem

V-4.4 The Use of Semaphores

V-4.4.1 Two Processes Communicating via
an Unbounded Buffer .

v-4.4.2 Processes Communicating via a
Bounded Buffer.

v-5., References e

V-0. Problem. « « & v « v v v v e e e e e e

Compilers - An Introduction

VI-1. Tasks of a Compiler

VI-2. Heuristic Techniques for Expression Compilation

iv

Page
71

.72

73
74
76
'78

. 80
. 80

82

. 83

85

86

.92

93

100
100

103

VII.

VI-23 Rutishauser (1952) .
VI-2.2 FORTRAN Compiler (1954+)
VI-2.3 NELIAC (a dialect-of ALGOL 58) =« « « . . .
VI-2.4 Samelson and Bauer (1959) .« « « « .« o ¢ .
VI-2.5 Dijkstra (1960)
VI-3. Compilation of Expressions Using a Stack . . . - .
VI-4. Phrase Structure Methods .
VI-5. References
VI-6. Problems.
Phrase Structure Programming Languages
VII-1. Introduction .
VII-2. Representation of Syntax
VII-3. Notation and Definitions
VII-4. Chomsky's Classification of Languages - - . « - . -
VII-5. The Parsing Problem
VII-6. Irons' Classification of Languages According to
Parsing Difficulty
VII-T7. Parsing Methods
VII-7.1 A "Top Down" Method .
VII-7.2 Eickel, Paul, Bauer, and Samelson
VII-8. Precedence Phrase Structure Systems .
VII-8.1 Precedence Relations and the Par31ng
Algorithm .
VII-8.2 Finding the Precedence Relatlons
VII-8.3 Use of Precedence Functions - . . « . . .

vII-8.4 Ambiguities

Page
103
104

105
106
106
106
111
112

112

114
114

115
119
122

122

126

128
128

131

. 133

Page

VII-9. Association of Semantics with Syntax. 147
VII-9.1 Mechanism for Expressing Semantics. . . . 147
VII-9.2 Handling of Declarations 150

VII 9.3 Conditional Statements and Expressions. . 151

VII-9.4 GO TO and Labelled Statements 153
VII-9.5 Constants « « +« & « « « « . . ,154
VII-lo. References v v v & « v v « v v o« « « . . . 155
VII-11. Problems « « + v v v &« « « « « « « 156

VIII. Algol Compilation . . . v & v v v e v e e e e e e e e e .. 166

VIII-1.--' Problems of Analysisand Synthesis 166
VIII-29 Run Time Storage Administration. 167
VIII-3>. Treatment of Procedures 170
VIII-Kk. ATYTay¥S v +v v v v o v o v o v e e e e e e v v v oo 176
VIII-50 References « «v v v v v o w « v v v o . .. 118

VIII-6. Problems. . . + & v v v v v v v e e e e e e e e e 178

vi

I. INTRODUCTION

.1
I-1. Advanced Programming ’

In attempting to define "Advanced Programming", E. W. Dijkstra1
described the purpose of the subject to be "Advancing Programming"; he
stressed "those efforts and considerations which try to improve ‘the
state of the art' of programming, maybe to such an extent that at some
time in the future we may speak of 'the state of the Science of Program-
ming.""' Until recently, the design of machines almost always preceded
any serious thought about programming them; this had the unfortunate
result that programming languages and translators had to be severely
restricted to fit into the constraints imposed by machine designers.
Programming beyond these restrictions succeeded onlyl "by using the ma-
chine in all kinds of curious and tricky ways which were completely
unintended and not even foreseen by the designers." Programmers "have
concocted thousands and thousands of ingenious tricks but they have made
this chaotic contribution without a mechanism to appreciate or evaluate
these tricks, or to sort them out."

Dijkstra's remarks were made in 1962. Since then, the situation has
not changed significantly. New features, terminology, and "tricks" are
continually being introduced with very few attempts to order or evaluate
them in terms of a general framework or set of principles.

This is the challenge and function of Advanced Programming:

- to put order into the present chaos

- to develop useful principles of programming

- to apply these principles to programming languages,

translators, and applications.

I-2. Purpose and Prerequisites of the Course

The intent of the course is to treat the design and implementation
of Programming Systems in terms of some general principles that have been
extracted from this field. Emphasis is on general methods rather than
specific "tricks". It is assumed that the reader is familiar with the
fundamentals of computer programming including:

(1) coding in machine, assembly, and higher-level languages, and

(2) the use of a supervisory or monitor system.2
Because of its important role in the evolution of language and compiler
design and its usefulness as a vehicle for expressing algorithms,

ALGOL 605 should be.thoroughly understood. Most of the examples and
algorithms discussed in this course are presented as ALGOL programs.

Systems Programs, such as assemblers, interpreters, compilers, and
monitors can all be regarded as translators; from this point of view,

Systems Programming is the science of designing and constructing trans-

lators. It is thus worthwhile at this point to examine the idea of a
translator before looking into the specific details of various types of

translators.

1-3. Translators

A translator can be viewed as a device which transforms an input

string A into an output string B; schematically:

Examples

A B T 1is <called
(1) Binary Code Results Computer (or Interpreter)
(a,) () ()
(2) Symbolic Code Binary Code Assembler
A
(a,) (a,) (1))
(3) Phrase Structure Language Symbolic Code Compiler
A
(a,) (a,) (1,)

Multi-pass systems are those which require passes through several

translators to produce the final output string. For example, the familiar
translations-from compiler language to assembly language to binary code

to computed results - can be represented:

A=A T =T, |—»[T |1 4 = B

where the notation corresponds to the last example.

A, =B ="T/(T (T.(8))) = T(n)

3 32

1

where T = TBTETI

Translators are often multi-pass systems internally but appear as single
pass to the user. An assembler with "macro" facilities can be such an

"invisible" multi-pass system.

Symbolic Code —pCMT g |—Bidbry e

Here MI' is a macro translator which expands all macro calls in the input

and T performs the basic assembly. A macro definition such as

MACRO X (Y, Z)(....Y-...Z),
macro body

where X is the macro name and Y, Z are parameters, signals MT to
replace macro calls in the input, such as X(A, B), by the "body" of

the macro, substituting A for Y and B for Z in this example.

I-4. References

1. Dijkstra, E. W. Some Meditations on Advanced Programming.

Information Processing 62, Popplewell, C. M. (Ed.)

535-538, North-Holland, Amsterdam, 1963.

2. Leeds, H. D. and Weinberg, G. M. Computer Programming Funda-

mentals. McGraw-Hill, New York, 1961.

3. Naur, P. (Ed.) Revised Report on the Algorithmic Language

ALGOL 60. Comm. ACM 6 (Jan. 1963), 1-17.

- 4. Barton, R. A Critical Review of the State of the Programming

Art. Proc. Spring Joint Computer Conference 1963. 169-177.

II. ASSEMBLERS

11-1. Basic Concepts

An assembler is usually understood to be a translator which produces
machine language code as output from an input language which is similar
in structure to the output; the natural symbolic units of the assembly
language or input correspond to the natural units of the computer for
which the assembly is intended. From another point of view, an assem-
bler can be considered a sophisticated loader. A loader accepts numeric
code containing machine language instructions, location addresses, relo-
cation designators, and header information, translates this into directly
executable code, and inserts the code into computer memory; this inter-

pretation of an assembler is sketched below:

Symbolic Numeric
Code Code
. 2
Assembler Loader
\ J \ 4
Machine Language Machine Language
mapped into
Memory

The form of an assembly language instruction, assembler record, or

natural symbolic unit is:

Location Field Operation Code Operand Fields 3

for example, LOOP CLA RATE, 1 . This record corres-

ponds to one machine language instruction. The operation codes are
symbols defined by the assembler and correspond to machine operation
codes; operand fields contain programmer-chosen symbols which are trans-
lated into machine memory addresses; non-blank location fields define
the values of symbols. The basic task of an assembler is to establish

the correspondences between programmer-chosen symbols and machine addres-

A record-by-record total translation fails in general because it
is not possible to translate operand field symbols until the entire pro-
gram has been scanned. This is illustrated in the following partial

flow chart:

TABLE LOOK-UP FOR
OPERATION CODE

v

TRANSIATE OPERAND
FIELD SYMBOLS How?

;

In order for the operand field symbols to have any value, they must

appear in a location field; sequential total translation cannot be done

because location field definitions of symbols often follow their first

appearance in the operand field. In the skeleton program:

(1) BATE BSS 10

(2) LOOP CLA RATE, 1

the assembler can assign the symbol RATE to the next open address at
point (1); then, on reaching point (2), the assigned address for BATE

can be correctly inserted. However, if the program is

(1)* LOOP CLA BATE, 1

(2)’ BATE BSS 10

BATE has no value at point (1)' and complete translation of (1)' is

impossible.

IT-2. Multi-Pass Systems

The simplest and most common solution to the above problem is to
use a 2-pass system. The first pass assigns values (addresses) to all
symbols. A location counter (LC) steps through the assembler records
so that at each record, LC contains the address where the corresponding
machine instruction will be located in computer memory (ignoring reloca-
tion); when a symbol is encountered in the location field, it is assigned
the current value of LC. Symbols and their values are stored in a

symbol table. Pass 2 performs a record-by-record total translation,

referring to the symbol table for the values of location field symbols.

A general flow chart of this method of assembly follows:

SIMPLE TWO PASS ASSEMBLER

PASS 1

(=

I READ RECORD

GO TO

Yes .
PASS 2 END2 INCREMENT LC

S— @ 11\]0 I
EXAMINE LOCATION >
FIELD FOR SYMBOL

- L
ENTER SYMBOL IN

SYMBOL TABLE
ALONG WITH LC

|

PASS 2

"REWIND" INPUT

® %

READ RECORD

Yes
END? INCREMENT LC

@D"rNo

&TMW&AE WMGNDNC@E]
L 2

TRANSLATE OPERAND FIELDS

.

ASSEMBLE AND STORE INSTRUCTION

These charts become more complex when the additional facilities
provided by practical assemblers are inserted. These are the "pseudo-

codes" or assembly instructions; they do not translate into executable

code but are instructions to the assembler, for example, for the alloca-
tion of data and instruction space, and the assignment of values to
symbols. using examples from the MAP Assembler for the IBM 7090/709+
computers,l the most important pseudo-operations are:

1. Location Counter Pseudo-Operations

These allow the programmer to control the operation of location

counters, e.g. _ ORG 315 resets the location counter to

315 causing the assembler to start or continue the assembly from computer
storage location 315.

2. Storage Allocation Pseudo-Operations

The instructions in this class reserve blocks of storage and incre-

ment the location cbunter to reflect this, e.qg., MATRIX | BSS | 25

assigns the current value of LC to the symbol MATRIX and increments LC
by 25, effectively allocating a 25-word block of storage identified by
the symbol MATRIX.

3. Data Generating Pseudo-Operations

These are used to define constants of various types, e.g.,

YEAR DEC 1966 instructs the assembler to insert the decimal

constant 1966 at the address defined by LC and to assign this address
to the symbol YEAR.

The 2-pass assembler outlined above can handle these pseudo-opera-
tions by adding some blocks to its flow charts at points A in pass 1

and 2:

IS THIS A
PSEUDO
OPERATION?

Yes

INTERPRET
INSTRUCTION

& ,

INTERPRET'INSTRUCTION usually involves incrementing LC and assigning a

value to a symbol.

Most assemblers allow the use of actual operands or literals in the

operand fields; for example, ADD =1 indicates that the

operand field is to contain the address of the constant 1 after trans-
lation. The easiest way to translate literals within our 2-pass assembler
is to invent symbols for them during pass 1 and add definitions of these

symbols to the program; then, literals do not have to be considered in

the second pass, e.g., ADD =1 is translated during pass 1

to ADD ONE] ... {ONE DEC 1 . At point C in the flow

*chart, the block

TRANSLATE LITERALS

may be added.
Modern assemblers usually have a host of other features but most of
these can be easily handled within the simple 2-pass system described

here.

10

It is necessary at each pass of a multi-pass assembler to reread
the source program. Small programs may be stored in main memory for
the duration of the assembly. Systems allowing large programs usually
write the source program on second-level storage such as magnetic tape
or discs; the program must then be read from this storage at each pass.
Partial or complete overlapping of processing and input-output operations
can be accomplished by careful program organization; e.g., the following

sequence enables process and input-output overlapping:

Read Process Write

Record No. i+l i i-1

Defining and translating symbols during assembly requires the build-
ing and searching of symbol tables. Since assemblers spend much of their
time performing these functions, it is important to investigate efficient

methods for table organization and searching.

II-3. Organizing and Searching Symbol Tables

Tables of all types have the general form:

Argument Value

11

where the left-side is a list of arguments and the right side is a list
of values associated with the arguments. Here, the arguments are symbols

and the values are addresses.

II-3.1 Unordered Tables

The easiest way to organize a table is to add elements as they
appear without any attempt at ordering. A table search requires a
symbol by symbol comparison with each element in the table until a match
is found; for a table of n elements, g comparisons would have to be
made on the average, before a match between the input and table arguments

is found. This method has merit only for extremely small tables which

are searched infrequently.

II-3.2 Ordered Tables

An ordered table is one in which (1) an ordering relation » (or <)
exists between any pair of arguments of the table, and (2) if Si
represents the ith element of the table, then for all i and j,

-85 > 5, if and only if i > j (or 8; < P if and only if i< j) .
The table is then ordered in ascending (or descending) sequence.

- The most efficient general method for searching ordered tables is
the binary search; starting with the complete table, the table subset
under consideration is successively divided by 2 until a match is found.
An ALGOL binary search procedure for a table ordered in ascending

sequence follows:

12

procedure Binary Search (S, n, arg, k);

value n, arg; integer array S[1l]; integer n, arg, k;

comment S is array of table arguments, n is length of table,
arg is search argument, S[k] = arg on return;

begin integer i, 7j;

i = 1; 3 :=n;
for k := (i+j) + 2 while S[k] # arg do
if 8[k] > arg then j := k-1
else i := ktl

end Binary Search

It is assumed that arg 1s in the table in the above program. A binary
search requires log2 n comparisons at most to search an ordered table
of n elements. In order to find a match in a table of length 128(27),
a binary search would require 7 comparisons at most while an element by
element scan would require 64 comparisons on the_ average.
Instead of using one large table, it is sometimes more convenient

to set up several smaller tables; for example, one could set up 26

tables for an assembler symbol table, each table corresponding to symbols
starting with the same letter of the alphabet. The search then becomes

a multi-level search; at the top level, the particular table is found
and at the next level, the table is searched. In the above example of

26 tables, an even distribution of first letters of symbols over the
letters of the alphabet would be necessary for efficient use of table
storage. The advantage of multi-level schemes is that the relatively

small tables may be searched very quickly; however, organization and

13

searching is more complex and use of storage is not always as efficient
as the simpler 1l-level system. These alternate methods have to be
evaluated in terms of specific systems and goals in order to select the

best method for a particular application.

II-3.3 Sorting

If an ordered table is desired, some type of sorting method must be
employed to order the elements. There are many ways to sort a table or
a file; sorting may be done internally in main storage or, when large
files are to be sorted, with the aid of auxiliary storage devices such
as tapes, discs, or drums. Only a few of the most important will be
discussed here. Reference 2 contains a detailed presentation and evalu-

ation of many sorting methods.

II-3.3.1 Bubble Sort

The basic idea is to successively pass through the unsorted part
of the table, "bubbling" to the top the maximum (or minimum) unsorted
*element; this is done by repeated comparisons and interchanges as illus-

trated in the following example:

To sort the table: 13 2 18 5 4

15 2 2 2 2

First 2 L3 5 1B o, 13, 13
Stage 18 18 18 5 5
5 5 5 IH18 4
4 L- 4 4 18

14

13 l%_ 5 5
Second - € - -
5 5 4 4
Stage
¢ 4 4
18
2 2 2
5 5 4
Third -
4 4 5
Stage
13
18
2 2
4 4
Last - © 1
cc-c——-
Stage
5
13
18
2
4
Sorted
5
Table
13
18

An ALGOL procedure for a simple Bubble Sort is:

15

procedure Bubble Sort (S, n);

value n; integer array $[1]; integer n;

comment Bubble Sort sorts array $S[l:n] in ascending sequence;

begin integer i, J, k; Dboolean tag;

procedure interchange (X, Y);
value X, Y; integer X Y;

begin integer T;

T :=X;, X:=Y; Y :=T;
tag := true
ggg interchange;
tag := true;

for j:= 1 step 1 while tag do

begin tag := false; k:= n-j;

for i := 1 step 1 until k do

if s[i] > s[i+l] then
interchange (S[i], S[i+1])
end

end Bubble Sort

For fewer memory references, this may be modified to eliminate the

interchanges; instead, the largest element of the unsorted table is

found and interchanged with the top element at each stage.

II-3.3.2 Ranking by Insertion

at each stage,

Starting with an empty ordered table and a given unordered table,

the next element of the unordered table is inserted in

16

the correct position in the ordered table; this process is terminated

when the original unordered table is empty. Thus, if Sl 82 C e Si Si+l

Sk represents the ordered table (ascending sequence) at the kth
stage and the next element U of the unordered array is such that Si

<UL Si+l’ then U is inserted between Si and Si+l 'Si+l ... Sk

then have to be moved to make room for U . This block movement can be
very inefficient unless the machine has a block transfer command. On
the other hand, a binary search can be used to rank U and in the case
of assembler symbol table construction, the table can be ordered contin-
uously as it is built up. These features make the method useful for

large symbol tables.

IT-3.3.3 Other Common Methods

There are many other sorting methods in common use as well as

variations of the above two methods. Other methods include the radix

D , 2
sort, various merge sorts, odd-even transposition, and selection sort.

Sorting of a symbol table in a 2-pass assembler would occur at the

end of pass 1 or beginning of pass 2.

II-3.4 Scrambling Methods

Scrambling or "hash addressing" is a fast method for converting
symbols to addresses. Addresses are obtained by performing some simple
arithmetic or logical operation on the symbol. For example, one method
is to square the numeric representation of the symbol and select the
central bits or numbers of the result as its table address; if a partic-

ular symbol, say XI, 1is represented numerically as 3275 and we wish

17

a 3-digit address, the computation would proceed as follows:

327 5 = 10725625

address of XI = 725
Care must be exercised to either prevent or account for non-unique map-
dngs of identifiers and to use table storage efficiently; this work often

negates the advantage of the fast address calculation.

II-4. One-Pass Assembly

One-pass assembly can be accomplished despite the problem raised
at the end of section II-1. The "forward reference" problem is solved
by maintaining a list of undefined symbols with pointers to the locations
where they are to be "fixed-up" upon definition. A flow of this scheme

is

Encounter a Symbol
(Except in Location Field)

A 4
Normal Enter Symbol in
Processing UST along with) .
Pointer to fix-up
location

UST: Undefined Symbol Table

18

During assembly, a symbol table (ST) and UST are constructed:

Partially
Assembled Program UST ST
_________,———0 —_—
< o] B
/1‘ ——
« —

< Pointers to locations
to be fixed up

On finding a symbol in the location field, the assembler flow is:

Encounter a symbol
in location field|

[Enter Symbol in Symbol Table]

[Check for occurrences in UST]

If in UST, fix-up code and
delete entry from UST

When the same undefined symbol is encountered more than once, a
.chaining method provides a convenient means for recording their appear-
Multiple appearances/of undefined symbols

ances and for later fix-ups.

can then be recorded as below:

19

Partially Assembled Program (UsT, ST)

Address Symbol d/u
Q g) 1
l/
| + 2
/—_—_—7 Lppp v
| <. >
) e
l' "
-&]--""y

~ Address: Symbol Location
or
Fix-up Location

d/u : defined/undefined flag

The address part of the entry for the undefined symbol L¢¢P points to

the last location seen by the assembler where L@PP appeared; pointers

-to 2 and' 1 produce a chain through the earlier fix-up locations for

loop. © (undefined) indicates the end of the chain. If L@PFP again

occurs at point % and is still undefined, the pointers change as indi-
cated by the dotted lines and the pointer from the address part of
LPFP to 3 is deleted. When LPPP is defined, its addresses are

inserted in the places occupied by the chain pointers.

One-pass assembly has the advantage that the source program is

., read only once; this advantage is gained at the expense of more complex

routines for handling symbols. The assembled program and various tables

20

must be stored in main memory during assembly or the above advantage

over multi-pass systems no longer holds. Assemblers with block structure

can be constructed conveniently by tpe one-pass method.

IT-5. Block Structure In Assemblers

While few assembly languages have the block structure of ALGOL, it
is still useful to study the implementation of block structure by assem-
blers for several reasons:

1. Many assemblers have limited forms of block structure,

usual%y allowing symbols to have local and global significance.
e.g., MAP programs may be structured through the use of the
QUAL pseudo-operation

2.. The basic methods employed by compilers to handle block
structure can also be used for assemblers and thus can be
illustrated in a less complex setting.

3. Many compilers translate source language into "intermediate"
languages which retain the original block structure and are
similar to assembly languages.

In general, a block is a delineated section of source language

code having explicit or implicit declarations for some of the symbols
used in the code; symbols may be declared explicitly by formal declara-
tions (e.g., ALGOL identifiers) or implicitly by their use (e.g., ALGOL
labels). Symbols defined within a block may only be referenced in that

block.

21

Example:

&
o

2 This representa a

c, d program with 4 blocks,

- - each having symbols
defined within it. a
and b may be referenced
throughout the program;

3 C and d are only

4, e, T Tnown" “in block 2, d,

4 e, and f in block 3

g and 4, and g is known

‘ only in block 4. Note

that the d in block 2

is different from the d

in block 3; each has its own scope of validity.

The effect of a defined area of validity for symbols in assemblers
is to allow sharing of symbol table storage among "parallel" blocks; in
the above example, blocks 2 and 3 are in parallel. If opening and
closing of blocks are indicated by left and right parentheses, the depth
or level of a block in a program can be found by numbering the matched

parentheses pairs; using our example again, we have

block No. 1 2 3 4
(&, b (c, 4) 4, e £ (g))
block level 1 2 2 2 3 3 2 1

In a one-pass assembler, symbol table space may then be released
on exiting from a block. On entering a block, a block marker is set;
when leaving the block, the marker is reset to that of the last enclosing
block. This scheme can be implemented by using the first symbol table

entry for each block as a pointer to the previous block 'head" or entry.

22

Let ST[i] be contents of the . ith symbol table entry and j be a
pointer to the first symbol table entry of the current block. Then

symbol table housekeeping can be done as follows:

block entry: i = i+l
ST[l] = J7
J =1
block exit: i:= 3-1;
j :=8T{il;

The evolution of the symbol table of our previous example is:

lST st, | s, s7” sz, | st st* | st | st
1 0 0 0 o |0 0 0

2 a a a a a 2 a

3 b I} b b b b b.
4 1 (1) 1 ;1 1 (1)
5 c | @ a e] & | @
6 d (4) e e e | (e
7 £ £ £] @
8 4 (4) (%)
9 g (g) (g)
10

= 0 1 4 1 4 8 1 1

STk is the symbol table at blockentry for block k; STk is the symbol
table at blockexit for block k . Elements in parenthesis are in the
table (because they haven't been destroyed) but inaccessible.

This method has to be modified to handle forward references. For

the program with structure:

L Use of L
) end;
L: Declaration of L
end

the global identifier L is used in an inner block before it is declared
in the enclosing block, On reaching block exit, all undefined symbols
may be carried out into the enclosing block and filled in the symbol
. table; undefined symbols may then be treated correctly using the chaining
and fix-up method described for one-pass assemblers. Care must also be

taken in generating the correct reference in the following case:

L: First Declaration of L
80 to L; Use of L
L: Second Declaration of L
end e

ek

Here, the use of L refers to the L in the inner block

ration); possible forward references within a block have to be considered

before treating symbols as global to~that block.

5e conventional two-pass assembler can be modified for languages
with block structure properties by grouping the symbol table on a per

block basis and maintaining a dictionary pointing to the symbol table

blocks.
Example: 1: begin real a, b, ¢, d;
2: begin real e, f;
end;
3: begin real g;
4: begin real h;
end
end
end
Dictionary
Block Index to Number of Ancestor
Number Symbol Table Entries in Block Block
2 L2 2 1
4 Lk 1" 3
3 3 1 1
1 L1 4 0

25

(second decla-

Symbol Table

Ll: |a, b, c, d

L2: e, f

L3: éﬁ
L4: cpl

Dictionary entries are made on exiting from a block. The symbol
table can be one large table grouped on a block basis. To translate
symbols during pass 2, the dictionary is searched with the block number
as the search argument; from the dictionary entry, the pointer to the
correct place in the symbol table is obtained. If a symbol is global,
the ancestor entry of the dictionary which points to the enclosing block,

can be similarly used.

II-6. References

1. IBM T7090/7094 IBSYS Operating System, Version 13, Macro Assembly
Program (MAP) Language. Form C28-6392-0. International

Business Machines Corporation, 1963.

2 . Papers presented at an ACM Sort Symposium. Comm. ACM-, 6, 5

(May 1963).

II-7. Problems
1. One useful variant of the bubble sort is to alternately pass through
the table in both directions, bubbling the largest element in one

direction and the smallest in the other.

26

EEmee——
<
»
‘,
4’
Code this variant as an ALGOL procedure.

2. N

Computer Science 236a N. Wirth

Winter 1966 Due Date: Feb. 10

Term Problem I

Design an assembler according to the following description.

Input:

output:

Symbols:

Fields:

One instruction per record (card), consisting of location
fields (cols. 1-10), operation field (cols 12-14) and operand
field (cols. 16-72).

Listing of assembled instruction in hexadecimal form along
with instruction counter and given symbolic instructions.

Symbols are either names, literals or constants not contain-
ing blank characters. A name is a sequence of 1 to 10
letters or digits starting with a letter. A constant is a
decimal integer, possibly preceded by a sign. A literal is
a constant preceded by an equal sign (=). It denotes the
address of any storage cell into which the constant is
assembled.

The location field is blank or contains a name (left-adjusted
in the field) in which case it is the definition of that
name. The operation field must contain an instruction code
(cf. Table 1), or an assembler instruction (left-adjusted

in the field). The operand field is divided into two or three
subfields depending on the form of the instruction. The
subfields are separated by commas. A missing subfield is
interpreted as 0.

27

Target code:
(bytes),

Instruction Formats:

An array of individually addressable 8 bit characters
listed in hexadecimal form,
pair of hexadecimal digits.

each character as a

Instructions are _grouped into two categories to

be translated into the following forms:

RR: Instruction occupies 2 bytes. Form of operand field is
"rl, r2" where rl and r2 are integers.
code rl| r2
8 4 L bits
RX: Instruction occupies 4 bytes. Form of operand field is
"rl, a2, r2" where rl, r2 are integers, and a2 is a
symbol. --.
code rl r2 a2
8 b 16 Dbits
Table 1: Instruction codes
RR Form RX Form
Symbolic Hexadecimal Symbolic Hexadecimal
AR 1A A oA
BCR 07 BAL 45
CR 19 BC 47
DR 1D C 59
IR 18 D 5D
LCR 13 IC 43
MR 1C L 58
SR 1B LA 41
HLT 00 M 5C
R La
SL 48
SR 49
ST 50
STC 42
W LB

Assembler Instructions:

1. Define name and increment location counter.

28

Symbolic code: DS

The name in the location field is defined and subsequently the
location counter is incremented by the integer in the operand field.
(The loc. counter addresses bytes.)

Set the location counter. Symbolic code: ORG . The location
counter is set to the value of “the constant in the operand field.

Terminate assembly and print the produced output in condensed hexa-
decimal form. Symbolic code: END

Example of an assembly listing:

0000 41000000 START LA 0,0
0004 41100000 LA 1,0
0008 41200190 LA 2,400
000C 5A01001C LOOP A 0,ARRAY, 1
0010 1A12 AR 1,2
0012 591001AC C 1,=400
0016 4720000C BC 2, LOOP
0014 0000 HLT
001C ARRAY DS 400

END

0lAC 00000190

Notes:

1.

Program the assembler in Extended ALGOL on the B5500 computer and
test it. The program should contain comments to explain the main
points and to facilitate the understanding of its principles. It
is stressed that the program be presented in a neat and well
structured form.

A few days before the due date, a sample program will be available
to test the assembler. It is advised that the student test his pro-
gram before that date with his own test cases.

At the due date, submit the program together with the output result-
ing from the distributed test case.

29

III. INTERPRETERS

ITII-1, Definition and Examples

Corresponding to each statement of a language, there exists an inter-

pretation rule or action representing its meaning. pap interpreter is a
language translator whose primary task 225129 translation is to perform
the actions dictated by the meaning of the statements of the language, In
more concrete terms, interpreters read and obey the statements of languages.
By contrast, assemblers translate assembly language into another language
which is later interpreted or obeyed.

Interpreters are commonly used in the following applications:

1. Simulation of real computers

A given computer can simulate the operation of another computer —-
either a proposed computer or one already in existence. For example, the

Burroughs B5500 can be simulated on the IBM 7090 and vice versa.

2. Simulation of hypothetical computers

Hypothetical machines are studied and used by simulating them on
existing machines. Examples of such machines are the list processing ma-
chine (or language) IPL V and the "polish string" machines used by the

early ALGOL compiler systems.

3. Interpretive Compilers

Instead of translating higher-level languages into machine language
programs and then executing these programs, some systems execute the source
language directly via an interpreter. ©LISP 1.5 on the IBM Zaa@ is such a

System.

4, Simulation languages

Languages, such as SIMSCRIPT, SOL, and GPSS, which are designed to
describe parallel processes, are often implemented on conventional se-

quential machines by interpreters.

5. Monitor systems

Control of batch processing, real-time, and time-sharing monitor
systems is accomplished by user-written control instructions which are
interpreted by the system.

Instead of using interpreters for the above, one could translate
into equivalent machine language programs =- as in assembler systems - and
then execute these programs. Both approaches are employed. Interpreters
are usually much easier to write, debug, and modify but can be extremely
slow and wasteful of storage. For these reasons, interpreters are writ-
ten 1. for research or exploratory purposes, 2. when the language 1is
not used on a "production" basis, 3. for very complex systems, or 4.
for a combination of the above.

This chapter examines interpreters of sequential computer code, as
opposed to higher-level language interpreters or systems allowing parallel
processing, The operation of typical von Neumann and stack machines are

described via interpreter programs.

TIIT-2. Basic Interpreter of Sequential Code

Let Instr = a vector containing the instruction sequence, such that
Instr[i] contains the ith instruction in the sequence,
i = instruction counter, and
C = current instruction.

31

The main loop of an interpreter of the program represented by Instr

is:

d-

1: Fetch instruction designated by
instruction counter.

C := Instr[i]
2: Increment instruction counter.
1 = i+1

:

5: Execute instruction.
(Branch to subroutine designated by c)

Y

Step 1 may be divided into several substeps by breaking Instr[i]

into its component parts:

Instr[i][0] = operation code

Instr[i][1], Instr[il[2],..., Instr[i]ln]

= operation parameters

C 1s also divided into corresponding parts:

c[0], c[1], « , c[n]

n=0 corresponds to a no-address computer;

n=l corresponds to a l-address computer;

32

n=2 corresponds to a 2-address computer;
etc.

Then, step 1 becomes:

c[0] := Instr[i][O];

c[1] := Instr[il[1];...; c¢[n] := Instr[il[n] ,

and step 3 may be expressed:

Exegute(c[O](c[l], cl[2],..., c[nl]))

111-3. Interpreter for a von Neumann Machine

These machines may be classified into (a) single address, single
register computers and (b) multi-address and/or multi-register computers.
In the former, operations on operands are performed in a single register,
usually called the accumulator; for operations requiring two operands,
the address of one is implicitly understood to be the accumulator while
that of the other 1is contained in the instruction, e.g., IBM 7090, DEC
PDP-1. In the latter, operations may be performed in one of several ad-
dressable registers and instructions may contain several addresses, e.g.,
IBM 360. An interpreter program for a simple single address, single

register machine is presented below:

35

PROGRAM
—_—

integer array operator, address[0:!],

integer

count

op :=

count

Af op

if op

if op

if op

operands[0O:m]s
op,
adr,
reg,
count;
= 05
operator|[count];
adr := address[count];
:= count + 1;

= 1 then

reg := operand[adr] else

= 2 then

opérand{adr] := reg else

= 3 then
reg := reg + operand[adr] else
=L then

reg = adr else

= 5 then

count := adr else

= 6 then begin if reg = 0

thenu n t := adr end else

34

REMARKS

instr[i] = (operator[i],
address[i])

data memory

operation code

operation address

single register

instruction counter

Fetch

counter

Increment instr.

Load

Store

Add

Load immediate

Transfer

Conditional Transfer

While this program or a similar one may be adequate for some applica-
tions, there are several inaccuracies and omissions which must be corrected
in order to precisely describe the operation of any real of hypothetical
machine of this class:

1. The word length of the machine has been ignored.

2. Logical and arithmetic operations cannot be handled at the bit

level since all variables are of type integer.

3. Data and program should reside in the same memory.

An interpreter for a binary computer can be written in ALGOL taking
the above factors into account. The key change is to define all variables
as type Boolean.
comment The computer has (n+l) words of memory M and word length of

(1+1) bits. Operation code, op, is (11 + 1) bits; operation
address adr is (2 + 1) bits; (L1 + 1) + (412 + 1) =4+ 1

reg is a (4+1) bit register and count is a (43 + 1) bit instruc-
tion counter. 2%(43 + 1) =n + 1;

Boolean array M[O:n, 0:£], op[0:41], adr[0:£2], reg[0:4], count[0:£3];

integer procedure number(x, k);

Boolean array x[0]; integer k;

comment number treats the array x as a positive binary number of (k+1)

bits and converts this to an integer;

begin integer i, n;

for i := 0 step 1 until k do

n :=nX2+ (if x[i] then 1 else 0);

number := n

end number;

35

comment initialize number(count, £3) to 0;

for i := 0 step 1 until I3 do count[i] := false;

comment begin interpreter cycle;

1: n := number (count, £3);

for i := 0 step 1 until {1 do op[i] := M[n, i];

for i := 0 _step 1 _until £2 do adr[i] := M[n, {1 + 1 + i];
2: n := ntl;

binary(n, count, £3);

comment the procedure, binary, converts the integer n to a £3 + 1 bit

binary number, count;

3: if number(op, £1) = 1 then
begin := number(adr, £2);

comment load;
for i := 0 step 1 until £ do reg[i] := M[n, i]

end else

etc.

If the reader has followed this program, he is aware of the awkward-
ness of ALGOL for describing the operation of an interpreter at the bit
level. Clearly, another language or notation is desirable. A powerful
notation for this type of description is the Iverson language.l The fol-
lowing "Iverson" description of a single address, single register binary
machine illustrates the elegance and power of the notation. (The reader

should consult Reference 1 for more details on the notation and its appli-

cation.)

36

Variable Meaning;

M computer memory

V(M) = {+1 word length

u(M) = n+l no. of words in memory
r register

v(r) = I+l register length
S instruction counter

v(s) = 11 + 1, 2t(41L + 1) = n+l
C instruction register

v(c) = #+1 instruction length

M, r, s, and c contain binary components. See next page for Iverson program.

Language interpretation can thus occur at different levels of detail.
If the interpreter is testing the design of a new computer, then complete
details of word length, radix, registers, handling of address and arith-
metic overflows, etc. have to be included; on the other hand, interpreta-
tion at the level easily handled by ALGOL programs may be sufficient if the
purpose of the system is to evaluate the usefulness or power of a particular

language.

o7

1C|—

11 |=~

™~

12 |=—

s « 0
ceMS

+
op 1t Y/c

-+
adr « J-cnlz2 l/c

ls «1 + Lis

- (7’8”'°°")op

RPN
lr « adr
is tadr
reg : 0

ls tadr

Add

Load
Immediate

Transfer

Conditional

Transfer

ITI-4. Polish String or Stack Organized Machines

Polish notation and stacks will be discussed further in Chapter VI.

In this section, some of the basic ideas are introduced to illustrate the

operation of stack machines.

The reverse or postfix polish form of a statement or expression of a

language 1is obtained by reordering the elements of the expression so that

operators appear after their operands rather than before or between them

as is normally the case.

38

Examples

Conventional Form Reverse Polish

1. a+b+c ab+c+
"
I —

2. x = b Xectd - e xbedt X e - :=

| S—
e

—
L $

3, a/(btc - e) + (e - £) xg apete -/ gf-gx+
L | |]

(Note the elimination of
parentheses)

This form of an expression is very convenient for compilation or
interpretation and has led to the development of computer organizations
that can handle reverse polish expressions easily. These are the stack-
organized computers, such as the Burroughs B5500 or the English Electric
KDK-9. They contain a stack or "cellar" which is a first-in, last-out
store used for temporary storage of operands. Many of the instructions
in such a machine have no address fields but implicitly refer to the top
element or elements of the stack. "Pushing-down" or "popping-up" of the
'stack is performed automatically during instruction execution.

The following partial interpreter is for a machine with a stack

mechanism:

39

PROGRAM

integer array instr[O:Z], instruction sequence
M[O:m], data memory
S[0:n];) stack or cellar
integer op, operation code
count, instruction counter
S stack pointer
§ := 0; count := 0; Initialization
1: op := instr[count]; instruction fetch
2: count := count + 1; increment instr. counter
3: if op = 1 then
begin i=s + 1;
S[s] += M[{instr[count]]; Load
count := count + 1;
end else

if op 2 then

begin M[instr[count]] := S[s]; Store
§ := s-1; count := count + 1

end else

if op = 3 then

begin S8[s-1] := S[s-1] + 8[s] Add
§ :=s-1

end else

etc .

Each word in instr[] is either an operation code or an operand; for

Loads and Stores, the required address is in the word following that
containing the operation code.
Using the expression in 2. from the reverse polish examples, the

instruction sequence in the program format is:

40

s[]

i: 01234567 891011

instr[il: 1b, lc, 1465 1ed?2
(E—

l !

where the operation codes have the meaning:

code: 1 2 3 4 5 6

meaning: Load Store Add Subtract Multiply Exponentiation

The stack contents are displayed below after each instruction is executed

in this example:

-

after instr[1} instr{3} instr{5} instr{61 inst#[71 instr[9} instr[10] instr{i2]

b b b b bXetd bXetd bXctd-e
c c ctd ’ e
s = 1 2 3 2 1 2 1 0

Because all operations are performed on elements of the stack, the
stack access time must be small. Fast registers are therefore used for
the top elements of a stack; since these are expensive, their number must
be severely limited. This limitation causes major systems programming
problems related to stack administration, stack overflow, and code opti-

mization.

ITI-5. Interpretive Computers

The execution of machine language instructions by conventional com-

puters occurs via an interpretive process. Instructions are translated

41

into mechanical or -electrical operations, such as opening orirclosing 'data
paths, setting and testing internal registers, switching memory cores,
etc.

Recently, the interface between hardware and software interpretation
has become less distinct. In many modern computers, machine language

instructions are executed interpretively by microprograms which reside

in a read-only memory in the control unit.2 These microprograms translate
machine code into microinstructions which are the basic executable instruc-
tions of the permanent hardware. Changes in machine language can be made
by reprogramminq'the control unit to perform the desired translation. A

schematic of the organization of such a computer is:

———————— —————— - ——— - -~ -~ - - - - - -

: Micro- Micro- \
: Instruction Instruction]
| Register Counter f
|
: - !
I T P \ Macro-
I — ";‘ @—» Instructions
|) A
| . . and
1 Microprogram |
; In l Data
; Read-only !
| Memory :
) |
1 |
l-- - - - - - - e v W o- - - - - - - - - - c <d
Control Main Memory

Operations at this level follow the same basic interpretive cycle as the

other examples of this chapter.

Lo

III-6. References

1. Iverson, K. E. A Programming Language. Wiley, New York, 1962.

2. Fagg, J., Brown, J. L., Hipp, J. A., Doody, D. T., Fairclough, J. W.,

Green, J. IBM System/360 Engineering. AFIPS Conference

Proceedings, Fall 1964, Spartan Books, Inc.

111-7. Problems

Computer science 236a N. Wirth ‘
Winter Quarter, 1966 February 2, 1966

Term Problem II

Construct an interpreter which represents a computer with the following
specifications:

The computer consists of

1. A memory consisting of 4096 consecutively addressed bytes, each
byte consisting of 8 bits;

2. 16 registers, each with 32 bits;

3. A condition register, able to represent 4 distinct states;

b3

4. An instruction register, (32 bits);

5. An instruction counter (12 bits).

Instructions have the formats as indicated in Term Problem I, and cause
the following actions to be taken:

(To identify-an instruction, the mnemonic codes of Term Problem I are
used, the instruction parameters are denoted by rl, r2, a2 .)

Group 1:

These instructions have an RR and an RX version. They designate two
operands, the first of which is the register designated by rl . The
second operand is the register designated by the r2 parameter in the RR
case, or the consecutive four bytes of memory, the first of which is desig-
nated by the sum of a2 and the value of register r2

Instruction Code Meaning
Add A, AR 01 := 01 + 02
Subtract S, SR 01 := 01 - 02
Multiply M, MR 01 :=01 x 02
Divide D, DR 01 :=01/ 02
Load L, LR 01 := 02
0 =
Compare Condition register := <15 , if 01 (< p 02
2 >
. . , . , 231 .
Moreover, if the result of any arithmetic operation is > in absolute
value (overflow), or if a divisor is = 0, then the next-instruction in
sequence is taken from location 4 of memory. In the case of overflow,

the condition register is set to 3 .

Group 2:
The parameters of the instruction are interpreted as in Group 1.

Instruction Code Meaning

Branch BC Branch to 02, if the state bit*
corresponding to the condition register
value is 1

Branch BCR Branch to the address contained in register
r2, 1if the state bit* corresponding to
the condition registervalue is 1

Branch and Link BAL Branch to 02 . Assign the address of
the next instruction after the BAL to
register rl

Load Compliment LCR 01 := -02
*The field rl -contains 4 bits, called state bits, numbered 0,1,2,3

Ly

(Continued)

Instruction Code Meaning

Insert Character IC The right-most 8 bits of register rl
are made equal to the single byte 02

Store Character STC The single byte 02 is made equal to the
right-most 8 bits of register rl

Load Address LA Register rl 1is assigned the address
which designates 02

Store ST 02 := 0L

Shift left SHL Shift to the left the bits in register rl
by as many positions as indicated by a2
plus the value of register r2 . Vacated
bit positions are assigned O's

Shift right SHR Analogous to SHL.

Read R Read a card, assign the 80 characters
read to the 80 bytes the first of which
is (a2, r2) . In each byte, the first
two bits are set to 0, the remaining 6
bits are assigned the corresponding BCD
character.

Write W Analogous to Read; the register rl in-
dicates the number of characters to be
printed on the output line.

If in any instruction, an effective address > 4096 is created, the next
instruction in sequence will be taken from location 8 in the memory.

Programming Notes:

The interpreter is to be programmed in Extended ALGOL for the B5500 com-
puter. After debugging, it should be merged with the assembly program
of Term Problem 1 in the following way:

BEGIN COMMENT OUTER BLOCK;
BEGIN COMMENT ASSEMBLER;

END;
BEGIN COMMENT INTERPRETER;

END
END.

b5

The "outer block" contains declarations of quantities shared by'the two
programs, such as the array of assembled program instructions. The inter-
preter is then supposed to execute the code which was assembled by the
assembler.

You may assume that the first 4 bytes—of the memory will never be used.

Before the due date, a problem will be given to be programmed in the
assembly language as described in the Term Problem. At the due date,
submit
1. a listing of the combined assembler/interpreter program,
2. the solution of the programming problem in the form of

a. an assembly listing, and

b. the output from the interpreter executing this program.

Supply (but do not overburden) your program with comments at appropriate
places. -

C.S. 2%6a
Winter, 1966

Test Programs for Term Problem II

The following are Test Problems to be programmed in the Assembly Code of
Term Problem I. They are to be assembled and interpreted by your Assem-—
bler and Interpreter Programs.

1. Read a card, sort the first 30 characters according to their BCD key,
and print the resulting string of 30 characters. Repeat this process
for as many cards as provided.

2. (Optional) Read from cards the sequence of integers

N, 815 8y @ 0w 8 bl,b2) Y bn
compute and print .
a,, .b., a.b,
i=1 © ial b 4=l 7

46

Perform reading and printing with the use of subroutines," which:redd and
print one number respectively. A number should be acceptable if it con-

sists of a. sequence of digits, possibly preceded by a. sign, and if it is
separated from other numbers by at least one blank space.

u7

Iv. INPUT-OUTPUT PROGRAMMING

IV-1. The Input-Output Problem

The components of a large computer system can be ordered in a hier-
archy according to their speed of operation:

Central Processors

Control Circuitry
Registers
Arithmetic Units

Main Storage

e.g., ?hin Film
Cores Increasing

Speed

Drums P

Secondary or Auxiliary Storage

e.g., Cores
Drums
Disks
Tapes

Pure Input-Output Devices

e.g., Card Readers, Punches

Printers

Display Devices

Typewriters

Paper Tape Readers and Punches
The rate at which information can be handled varies fantastically through-
out this hierarchy = from one or fewer characters per second at the lowest
level to billions of characters per second in the central processor. This

is a factor of approximately 109 :

L8

Each of the above components can be viewed as input-output (I-O)
devices in some contexts; for example, information on a secondary storage
device, such as a drum, can often be sent to or received from a central
processor, main storage, other secondary storage devices, or any of the
pure input-output devices. One of the most important objectives of I-O
hardware and program design is to utilize all components of the computer
system at their maximum rate; no component should ever be idle because
it is waiting for another one to complete its operation.

Communication scheduling between the central processor and main
storage is performed mainly by hardware; to counteract the relatively long ac-
cess time to storage, instruction look ahead and interleaved storage are
used on some large computers. The systems programming problem is to sched-
ule and organize I-0 among the elements of main storage, secondary storage,
and the pure I-0 devices. To do this, various techniques and devices,
such as I-O buffering, interrupts, channels, and I-O processors, may
be employed.

This chapter briefly examines some of the methods used to schedule

and organize I-0. One multiple buffering scheme is presented in detail.

IV-2. TImmediate I-O

Many of the earlier computers and some of the smaller modern computers
have immediate 1I-O instructions; by "immediate", we mean that the com-
plete I-0 operation is handled directly by the central processor imme-
diately upon receiving the I-O instruction. This includes initiating
the I-O, specifying the 1I-0 areas, maintaining a count of the number

of characters transmitted, and testing for errors.

49

IV-2.1 No "Busy" Flag

The most primitive implementation of immediate I-O instructions
has no provision for testing, by program, the status of the I-O units.
If a unit is busy when an I-O command is given for it, program execution
cannot continue until the unit is free and the command is accepted. C(Care-
ful spacing of 1I-O operations can minimize this waiting time. Often,
output instructions to a console typewriter are of this type.

Many computers have hardware buffering for pure I-0 devices with
fixed record lengths, such as card readers and printers, An input (out-
put) instructioqbempties (fills) the buffer into (from) storage and acti-
vates the device to automatically refill (empty) the buffer while the
program proceeds, The device is always one I-0 operation ahead of (behind)
the program. The advantage here is that, with cardful spacing, the I-O
instructions are completed at electronic speeds while many pure I-0 de-

vices actually operate at electro-mechanical speeds.

Iv-2.2 "Busy" Flag

A program-addressable flag bit is automatically set when an I-O
unit becomes busy and is reset when the unit becomes free, For a simple
computer with I-0O0 buffdnspd out, an I-0 instruction produces the

following hardware actions:

50

Input output

- -
1 Y 1
flag = , flag =
0 0
v v
inarea :== @ out := outarea
flag := 1 flag := 1
4 v
Initiate Device Initiate Device

v v

where inarea and outarea are storage areas for input and output. Since

the flag or "busy" bit is addressable, the programmer may use it to branch

to routines involving no I-0 while waiting for the unit to become free:

y |

flag =} 1 p| Compute-Only

Routines
lIssue I—Ol
Command

This requires much programming of an administrative nature for testing

of the flag and computing when the I-O unit is busy.

IV-3. 1Indirect I-O

Most computers presently available have some form of indirect I-O.

The central processor only initiates the operation; the operation is

ol

performed by an independent unit, such as a channel or I-O processor.

Once an I-O operation has been initiated correctly, the computer can

continue processing concurrent with the execution of the I-O command.

IV-3.1 Channels

A data-channel is a control device which acts as an interface between

the processor and memory on the one hand and one or more I-O devices

on the other:

~ CPU < » Memory
Command Reply

Data

Channel

I-0 Devices

An I-O command from the processor consists of a request for an I-O

operation and control information (or an address containing control in-
formation). The control information usually includes the device address,
I-0 area address, and number of units of data to be transmitted. The
channel performs the work of initiating the I-O device, counting the

data units transmitted, and testing for errors. With concurrent computing

52

and I-0, there is competition for memory cycles; the channel "steals"

its cycles when needed.
Two methods of communication between a data channel and central pro-
cessor are possible:
(1) The CPU may interrogate the status of the channel, e.g., Is the
channel busy? or
(2) The channel can interrupt the CPU on termination of the I-O

operation or on an error condition.

Iv-3.2 CPU Interrogates Channel

;A simple example of an input-output routine written in FAP for the
IBM 7090 with one channel is presented. In this program no use is made
of the channel as a separate independent unit since the CPU is held up

until the input or output is finished. A typical call of LINE is:

TSX LINE,4
PZE COUNT
PZE BUF

COUNT DEC 20
BUF BSS 20

" To allow overlap of I-O with computing, a simple software buffering
scheme may be used; LINE moves the information from the I-O area to a buf-
fer and the channel works on the buffer area. The IBM FORTRAN system on the
7090 handles I-O in this way. The call of the modified LINE given below

is the same as in the previous example:

23

CARD

LINE

ETT

101
100

Simple Example of Input-Output Routine

FAP
COUNT
LBL
ENTRY
ENTRY
TAPENO A
TAPENO A

CLA
STA
RTDI
RCHI
TCOI
TEFI#
TRCI*
TRA ~

CLAw
ALS
STD
CLA
STA
WTDO
HCHO
TCOO
ETTO
TRA
TRA

RUNO
HTR

I10RT
IORT
END

Where CPU Interrogates Channel

100
CRLN
CARD
LINE
2
3

124
101

101

2+, 4
304
4,4

154
18
100
2+ 4
100

100

ETT
3»4

LINE

wkyp 1l
kg phh

5k

Buffered Input—-Output Routine Where CPU

Interrogates Channel

FAP
COUNT 200

C ARD READEHR
LBL CRDOLIN
ENTRY CARD
ENTRY LINE

CARD

Cl

c2

X1

‘EOF

ERR

100
INBUF

CALLING SEQUENCE « o

A NDLIN E PRINTEHR

CARD (BUFFER, EOF EXIT, REDUNERREXIT)

TAPENDO A 2

CLA 1,4

SXA X1,1

SXA X2,2

PAC 092

TXH €2,0,0
TRCI v+q

TEFI ~ k4]

RTDI

RCHI 10D

CLS Cl

STO Cl

AXT 521

TCOI *

TEFI EOF

TRCI ERR

AXT 0,1

CLA INBUF» 1
STO 0s2

TXI *+1s2,~1
TX1 *+i1rir~1
TXH *=4sis=14
RTDI

RCHI 10D

AXT *hy |

AXT *h,2

THA 4sy

BSRI

TRA+* 224

BSRI

RTDI

RCHI 10D

TIX C2+1s101
TRA® 394

IORT INBUF»0,14
BSS 14

55

END OF FILE EXIT

REDUNDANCY ERROR EXIT

* CALLING SEQUENCE IS,., LINE (WORDCQUNTs BUFFER)
0 TAPENO A 3
LNEST B0OL 77
LNCNT BOOL 141
LINECLA" 1,4 WORD COUNT
SXA Si,1!
SXA S2,2
SXA S4,4
PAX 0»1
TXL *+2, 1822
AXT 221
SXD 10X» |
CLA 224 OUTPUT AREA
PAC 0,2
AXT Or 4
TCOO "
ETTO
TRA ETT
L2 CLA Or2
STO 0BUF» 4
TX1 *+1sd4,=]
X1 *+192,"1
TIX =9l
WTDO
RCHO 10x
CAL LNCNT
ANA =077777
ADD =]
STA LNCNT
SuUB LNEST
TPL QUIT
Si AXT k|
S2 AXT w,2
s4 AXT wk,l
TRA 3,4 EXIT "LINE"
w
QUIT CAL * TOO MANY LINES PRINTED
STP LNEST
) TSX $EXITH»
L 4
ETT WEFO
RUND
HTR L2
10X IORT OBUF » Qs **
OBUFBSS 22
END

56

This scheme begins to take advantage of the ability of the channel

to function independently of the CPU; for example, in LINE, the CPU may
perform any non-I-0 operation as the buffer is emptied by the channel

to the I-O device. However, an inherent limitation exists when the

CPU is required to interrogate the status of the channel. If bursts of
I-O0 occur at infrequent intervals during a program, the CPU would often
be idle while these bursts were taken care of. Interrupts allow the I-O

to be scheduled more uniformly over the processing time.

IV-3.3 Channel Interrupts CPU

Interrupts are automatic hardware transfers and "saves" that occur
when unusual or infrequent conditions result during program execution.
For example, if an overflow occurred during the execution of "a @ = b+c",
most machines would automatically reset the instruction counter to a fixed
location in the machine where an error routine resides, Without this
facility, at each add, the careful programmer would have to write the

equivalent of:
a :=b+c; if overflow then goto error;

where overflow is a Boolean variable set by the add operation when an
overflow occurs and error is the error routine entry. In the same way,
interrupts occur on termination of I-O and I-O errors.

By using interrupts in conjunction with several buffers, channels
can operate almost completely independently of the CPU. The degree of
parallelism obtained depends on the number of buffers, the number of

channels, and the amount of I-O called for. With a reasonable number

of buffers, the processor should rarely be in a "wait" loop waiting for

o1

a channel to be free. Buffer handling by interrupts by an output routine

can be organized as follows: ‘

Central
Processor Fill
Buffer
4 ! 2
Y L —— -~ -—-—» ---- * Buffers
Empty
Buffer
Chaﬁnel
{or I1-0
processor)

A detailed description of such a multiple buffering output routine using
interrupts is given on the following pages. The FAP program also includes

a similarly constructed input routine.

Multiple Buffer Output System Using Interrupts

1. Program, Buffer, and Pointer Organization

e T e e e o am —— —— - - ———————— ——— - —

/ \
/ A\
! J
_____________ - output

#Bl1] #B[2] JBIN] Buffers

flag| Buffer Address)

[4

4
Qp Q‘l/ |

O
y/
\

Buffer Address
< Table
busy
S flag = (free}

58

Q

: next free buffer, or

buffer that will be available first
Q,2 : buffer being emptied by channel“

The CPU fills buffer Ql and the channel empties buffer QE . The
program is organized so that Ql chases QE . An interrupt occurs after
a buffer Q2 has been emptied by the channel; the interrupt program
adjusts the QE pointer and initiates another output if the- new OB[QE]
is full. The routine LINE is called from the main program whenever out-

put is required. LINE fills OB[Ql] and increments Ql

2. Flow Charts

LINE : Activated by Main Program

y

| Get word count and block address

nitiate I¢

Move info into ﬁB[Ql]

I

\
Advance Ql

Is Output

Initiate Ig

29

Ips Initiate IP (subroutine)

Y

|set up channel command

Write |

v
- Mark output busy

T2: Output Termination

Activated by a channel interrupt when channel terminates an

4

Mark output free
\

-
|Mark #B[Q,] empty |

output instruction.

v
Advance Q2

Initiate Ig

D

60

5.

»

FAP Program
INPUT
I TAPEND A2
CARDS X A CEX»s2
SXA CEX+1,t
CLA 154
STA c5
c2 LXA Ps4
CLA Ts4 ISBUFFERFULL
T™I c4 YES
ZET END
TRA QUIT
NZT BUSYI
TSX 11,4
ENR MSK
TRA c2
c4 PAC 0,2 TRANSFER INPUT DATA
AXT 04
CLA 0,2
(.} STO wkpl
TXI w+1,2,~1
TX1 tdislis=l
TXH "o lrl4,=1L
LXA Ps b4 MOVE POINTER P1
ZAC
STP Ts4
TIX *+2s4,1
AXT N2 4
SXA Pst
NZT BUSYI
TSX 11,4
CEX AXT *wy 2
AXT v,y
TRA 04,4
11 SXA CoH,4 INITIATE INPUT
LXxD Psa
CLA Tr4
™1 (of]
STA ICOM
RTOI
RCHI 1COM
CLA Ti
STO 11
STO BUSYI
Cé AXT wky 4
TRA 1,4
EJECT
T4 TRA *+q INPUT INTERRUPT
SXA Ti2.4
STQ MQ
LGR 2

61

*

STO
STZ
LXD
TXH
TXH
T13 CLA*
SuB
TZE
LXD
CLA
SSM
STO
TIX
AXT
SXD
CLA
™1

TSX -

T11 CLA
LGL
LDQ

T12 AXT
RCT
TRAw

ENCF STL
STZ
TRA
RED AXT
BSRI
RTDI
RCHI
TCOI
TRCI
TRA
TIX
STL
TRA

QUIT LXA
ZET
TRA«*
TRA+

AC

BUSY]
10.4
ENDF 24,2
RED»4»1
ICOM
FINIS
ENDF

Psd

Tr4

Tr4 MARK SUFFER FULL
*+254,51

Ns d

Psd

Ts4

*+2 IS NEXT BUFFER EMPTY
11,4 YES

AC

2

M@

'Y

10

END END OF FILE

BUSYI

Ti1

3,4 REDUNDANCY CHECK ERROR

ICOM
*

"+ 2
T13
RED+1,4,1
ERR
ENDF

CEX+1s4
ERR
224
304

62

]

0

OUTPUT

TAPEND

LIKE SXA

L2

L4

L5

LEX

10

SXA
SXA
CLA+
ALS
STO
CLA
STA
LXA
CLA
TPL
NZT
TSX
ENB
TRA

PAC
CLA
STD
POX
AXT
CLA
STO
TXI
TX1
TIX

LXA
CcLS
sTo
TIX
AXT
SXA

NZT
TSX

AXT
AXT
AXT
TRA
EJECT
SXA
LXQ
CLA
TPL
STA
STD
WTDO0
RCHO
CLA
STO
STO

B3
LEX»1
LEX+1,2
LEX+2,4
ir4

18

WC

24

LS

Q4

S»4

L4
BUSYO0
10,4
MSK

L2

0,2 TRANSFER OUTPUT DATA
WG

S»4

0.1

0r4

ti'“

0,2

*+1225=1

*+1s4,=1

*=l4,1,1

Qs 4 MOVE POINTER Q1
S»4

S»4

*+254,1

M4

Qs4

BUSYO
10,4

ek,]
2 Y
kw,y 4
3,4

Lésd INITIATE OUTPUT
Qry

S»4

Lé

ocoM

0COoM

OCOM
T2

13
BUSYO

63

L6

T2

T21

T22

ETP

AXT
TRA

TRA
SXA
STQ
LGR
STO
STZ
ETTO
TRA
LXD
ZAC
STP
TIX
AXT
SXD
CLA
TPL
TSX
CLA
LGL
LDaQ
AXT
RCT
TRA#*

RUNO
HTR

**,ll
154

LIy
T2224
MQ

2

AC
BUSYO

ETP
Q4

S» b
*+254,1
Ms 4

Qs 4

S»4

*+2
1024

AC

2

MQ
ﬁ“pa

12

T21

QUTPUT NTERRUPT

MARK BUFFER EMPTY

IS NEXTBUFFERFULL
YES

N EQU
M EQU
WC PZE
ERR PZE
P PZE
Q PZE
ENC PZE
BUSY I PZE
BUSYO PZE
1COM IO0RTY
OCCMIORT
MSK PZE
FINIS B8C!
MQ PZE
AC PZE
PZE
PZE
PZE
PZE
T SYN
PZE
PZE
PZE
PZE
S SYN
181 BSS
182 BSS
183 BSS
184 BSS
0B1 BSS
082 BSS
083 BSS
0B84 BSS
END

N2»N
MrsM

wkyo iy
Wy Rk
35,1
1,FINIS

181
182
103
184
*

081,50
0B2,50
0B3»»0

0B4s»0
*

14
14
14
14
22
22
22
22

NUMBER OF INPUT BUFFERS
NUMBER OF OUTPUT BUFFERS
LENGTH OF OUTPUT RECORD

FLAG SET BY REOUNOANCY ERROR
INPUT TABLE POINTERS

OUTPUT TABLE POINTERS

FLAG SET BY ERROR CONDITION
FLAG ON IF INPUT CHANNEL BUSY
FLAG ON IF OUTPUT CHANNEL BUSY

INPUT BUFFER TABLE

TABLE OF OUTPUT BUFFERS

65

For computers with several channels, there is the possibility of
interrupts from different sources occurring simultaneously. To handle
this, there must be hardware or software provision for determining
priorities of interrupts and storing pending interrupts in a priority
queue. It is the task of monitor or supervisory programs to administer

these interrupts correctly.

IV-4. 1I-O Processors

The next level of sophistication after channels is the use of sepa-
rate I-O processors to process I-O. In this context, a channel is
a crude I-O processor. With I-O processors that approach the power
of a computer, I-0 data can be edited, checked, and manipulated before
it reaches the central processor; that is, all the I-O housekeeping
tasks can be delegated to the I-O processor. An I-O processor can
be a specifically designed unit for a particular machine, as in the DEC
PDP-6 system, or it may be another computer attached to the main machine,

as in the IBM 7090-7040 direct-coupled system.

IV-5. Experimental Comparison of Several Methods

of I-O Organization

Several methods of organizing 1I-0 for the scanner portion of an
experimental ALGOL compiler on the IBM 7090 were examined by N. Wirth.

The basic problem is illustrated below:

66

Tape Tape
(Inpue:: p- Scanner output

ALGOL Source . Input Copy
Code plus some
generated
ALGOL information
Compiler
Compiled
Code Core

For the experiment, 630 card records were put on tape as the input and
then compiled into core producing an output tape (5’5508 machine lan-
guage instructions were compiled). Four I-O schemes were investigated:
A: No Buffers
1 Channel

CPU interrogates channel

B: 1 Buffer
1 Channel
CPU interrogates channel
‘C: 1 Buffer
2 Channels (one for input, other for output)

CPU interrogates Channel

D: 4 Buffers
2 Channels (one for input, other for output)
Channel interrupts CPU

(FAP program of section IV-3.2.)

67

Test Results

Method
A B C D

Compile Time

(Seconds) 16.11 12.12 7.05 6.31
*Comparison 1 1.33 2.29 2.55
Length of
I-0 Program 268 51g 518 2hh8
Total

Buffer

Length 0 hh8 h48 2204

*¥ The comparison gives the ratio of the Compile Time of A to that of
B, C, and D .

For this particular application, the greatest gain is for method C where
separate channels are used for input and output. The multiple buffering
scheme is marginal here. However, the I-O occurs uniformly over the

processing time in this experiment. It is predicted that D would show

a greater gain for applications where the 1I-0 occur in bursts.

IV-6. 1I-0 and Systems Programming

Today the applications programmer seldom worries about the detailed
scheduling and programming of I-O. In fact, it is very difficult, if
not impossible in some instances, for the user to gain access to the
machine I-O commands. Monitor programs carry out the details of the
'I-0 tasks requested, even at the assembly language level for some sys-

tems. Therefore, most I-O programming for computer systems is carried

out "centrally" by the systems programmer.

68

V. SUPERVISORY PROGRAMS (MONITORS)

V-1. Monitor Tasks

Historically, monitor or supervisory programs were developed to en-

sure the continuous operation of computer systems with little or no human
intervention. As systems became more complex,monitors assumed the respon-
sibility of scheduling and allocating computer resources, such as storage,
channels, I-O units, and processors. To accomplish these tasks, it 1is
necessary that ultimate control within and among user jobs resides in the
monitor.

Monitor systems perform the following general functions:

1. Job-to-Job Control

This consists of the automatic termination and initiation of
jobs. Jobs may be terminated "naturally" or on error conditions;
termination tasks include sign-off accounting, closing of files,
and compilation of job statistics. Job initiation includes sign-
on accounting and interpreting user monitor control commands for

opening files and program loading.

2. Accounting

Records of use of the computer system components during a Jjob

are kept and the user is charged accordingly.

3. Program Loading and Merging

Prior to or during execution, user programs and subroutines must
be loaded into storage and linkages established among them. The
monitor allocates storage to the programs, loads them into storage
performing the necessary address relocations, and sets up linkages

among the programs so-they may communicate with one another.

69

4, Accessing and Maintenance of Library Programs

Most monitors maintain a library of systems and applications
programs that may be "called" by a user; these include compilers,
assemblers, I-O routines, and common mathematical functions. Load-
ing and merging, and inserting and deleting library programs are

handled by the monitor.

5, I-0 Processing

In order to maintain job-to-job control and to obtain optimum
use of I-O facilities, most modern systems delegate all I-O to
the supervisor.. These systems often have hardware supervisory and
problem modes of operation. Hardware I-O instructions are “super-
visory" type, that is, only the monitor is permitted to use them.

To perform an I-O operation, the user issues an I-O request to

the monitor which does the actual execution.

6. Error Checking and Recovery

Run-time errors, such as overflow, use of illegal or "privileged"
instructions (e.g., I-O instructions), exceeding run time limit,
memory-protect violations, etc., result in interrupts or calls on
the supervisor; the supervisor determines the cause of the error,

- decides whether to terminate execution or not, and produces diag-

nostic information for the user.

T. Interrupt Handling

Monitors are responsible for the analysis and disposition of
all interrupts that may occur during systems operation; this may
include maintenance of pending interrupt queues and priority sched-

uling of interrupt handling.

70

8. Scheduling and Allocation of Resources

When computer resources are insufficient to satisfy the total
demand on them or when it is desired to maintain a high degree of
parallel operation of the system Eomponents, resource allocation and
scheduling routines are necessary. These become part of the monitor

program.
This chapter outlines the three basic types of monitors and discusses
some general methods of allocation and relocation which are central to
the above tasks. A separate section describes some approaches to solving
an important control problem for parallel processes.

-

v-2. Types of Monitors

V-2.1 Batch Processing Monitors

This is the simplest and oldest type of monitor. In this type of
systems, jobs arrive sequentially in "batches" usually from one input
source. Normally, one job at a time is processed; where multiprogramming
is possible, several jobs may be in storage simultaneously and the moni-
tor controls the switching among jobs. Typical conventional monitors

are the IBM 709Q/709h IBSYS Systeml and the B5500 Operating System2

(multiprogramming) .

V-2.2 Real Time Monitors

Interrupts from external devices command the attention of the system
and must be processed within a given time interval. Ipterrupt times are
unpredictable but several may occur during the processing of another
interrupt. Airlines reservation systems3 and computer control of physics

experimentsL+ are applications of this type.

T1

The major task of a real time monitor is the handling of interrupts.
In addition, most systems batch process "background" programs while there
are no interrupts pending; on an interrupt, the real time monitor transfers
control from the "background" program to the particular interrupt proces-

sing routine.

V-2.3 Time Sharing Monitors

5

A time-shared digital computer system” is "a system from which many
people (or machines) may demand access and expect to receive responses
after short enough de}ays to satisfy them." Batch processing and real
time operations may be included as part of the capabilities of a general
time-sharing system.

The most common method of implementing a time-sharing system is through

. . 5
multiprogramming where” "several programs are maintained in an active state

(with others probably waiting in a queue), and at various times each is
given control of some part of the computer, until one or another of them

is finished, or until a new task is brought in to replace an older one,
according to some scheduling algorithm. Fast response by the computer

to many users (e.g., 150 to 200 or more) requires that each task be given

a "time slice", and if the task cannot be completed during its "time slice",
that it must be interrupted to allow another task its turn."

A time-sharing monitor has the following demands and requirements:5
"(1) At any moment in time one may expect to find a great many partially

completed programs, each waiting for a turn at the central processor, an

input-output processor or some other part of the computer.

T2

(2) Very effective use must be made of high speed storage, since many
programs must have access to it, but usually only a fraction of these
programs can reside there at any one time.
(3) The overhead incurred in keeping track of the programs which are
partially completed or not yet begun and the overhead incurred in switch-
ing control among them (while protecting each from the others), must be
reduced to a minimum; otherwise, it will quickly become intolerable."
Methods for allocating high speed storage and satisfying requirement
(2) for any type of monitor are discussed in the next section. The papers

on the MULTICS system' contain a good discussion and bibliography on time-

sharing.

v-3 . Storage Allocation Methods

Storage may be allocated to a program at the time it is translated,
before execution, or during execution. In the first case, a translator,
such as an assembler, generates absolute addresses for data and instruc-
tions and the entire program including subroutines must be translated at
the same time; merging of independently translated programs can only be
done with great difficulty since address conflicts easily occur.

Because storage is allocated after translation in the latter two
cases, the translation must result in a program with relocatable addresses;
e.g., instruction addresses, data addresses, and operand addresses may
all be translated relative to a given base address, commonly 0 . Loading
of programs, parts of programs, or subroutines into storage is done before
or during execution by adding relocation constants to the addresses.

Relocation performed before execution is called static relocation; reloca-

tion performed during execution is called dynamic relocation.

13

V-3 .1 Static Relocation

Static relocation is performed by a relocation loader as the program
is loaded into storage. A number of programs comprising a Jjob may be
translated independently; the relocation loader allocates storage to the
programs, relocates addresses to reflect this allocation, establishes
linkages between programs, and places them in storage ready to be executed.
During translation, flags can be set for each instruction to indicate
which addresses in that instruction are relocatable and which are absolute
(e.g., immediate type addresses); calls on "external" programs and program
entry points are tabulated so these correct addresses may be inserted at
load time.

The IBM 7090 FAP system7 relocates statically as illustrated below:

Name Address
P31 T210277 | mable of entry Points
Name
SIN Exit IList (External programs)
P: CEsS or
. SQRT Transfer Vector
Pl—» Program
TSX 4, call on SIN
P2—» '///
TSX 4, call on C@S
TSX 4, Call on SQRT

Th

This is the input to the relocation loader. The loader reads P
and merges the library programs SIN, COS, and SQRT into storage per-
forming the required address relocations; linkages are made using the

transfer vectors:

Program P and Library Programs after Loading

Transfer Vectors k””””,,,—”" SIN Routine
SIN]

- _,__—————"”_'—* C#S Routine

ot _

SQRT . S#RT Routine

Entry Points

Pl r—'————_———————‘._—’
P2 v——’——_————’—#———’

The use of entry and exit point tables and transfer vectors is the most
common method for performing the loading task,
Loading with a relocation loader is a complex and time consuming
job. If a fast assembler or compiler is available, it is sometimes more
efficient to translate and load all programs required by a job each time
the job is run. This is the approach taken in the B5500 operating system.
Conceptually, a computer with base addressing, such as the IBM 360,

can perform relocations very easily. For example, an IBM 360 address is

75

formed from the contents of a specified base register and a displacement

(ignoring indexing):

address = (b, d), where b - base register
d - displacement

effective address := R[b] + d where R[] - register

Translation could occur with respect to the displacement; in loading, a

relocation constant would be inserted in R[b]. This scheme requires that

certain registers be-unavailable for use by the programmer and that the

displacement cover a large address range.

V-3.2 Dynamic Relocation

When a program is too large for main storage and auxiliary storage
is available, some method for dividing the program into manageable se@;-
ments and administering the swapping of these segments between main and
auxiliary storage is necessary. One static technique that has been used
is the following:

The monitor or translator, at translation time, (or the programmer
when -he codes the problem) divides the program into segments which will
fit into main storage and inserts "segment calls" to bring in new segments;
all segments are relocated statically before execution of the program
begins. This requires that the system (or programmer) know how much stor-
age will be available for program and data at execution time; when several
programs reside in core simultaneously as in a multiprogramming or time-

sharing environment, or when data can be dynamically declared, this -

76

knowledge is not available in general. A more satisfactory method is to

divide the program into fixed or variable size segments, each of which

can be dynamically relocated during execution.

A description and evaluation of
ALGOL system is given by P. Naur in

the allocation during execution is:

Main Storage

this technique as used for the GIER

Reference 8. A typical picture of

Auxiliary Storage

Administration
of Program Storage

=

Program
Segments’

U

Data Area

The data area is dynamically allocated by the program during execution

using a stack mechanism. Programs are divided into small segments so that

there is room for several segments in main storage at any time; segment

to segment transfers are controlled by the Program Storage Administration -

if the required segment is in core,

(a table is kept of all segments in

core) the transfer is made; if not, then the segment is brought into main

storage from auxiliary storage. Segments which are unused for the longest

Tl

times are the candidates for replacement. Naur's conclusions were that
the simple segment administration method used yielded satisfactory results
in terms of run time efficiency and that a:significant performance in-
crease could be achieved by adding a hardware instruction to perform seg-
ment to segment transition (and thus reduce the segment table searching
time) .

This ability to insert segments anywhere in main storage during exe-
cution requires that all addresses be dynamically relocatable; addresses
take the form of a pair (s, i) where s is a segment number and i
represents the addreés within s . (This form of address was originated
in the Ferranti ATLAS computer.) During execution of a segment, the pair
(s, i) is translated to the correct absolute address, usually by hard-
ware (however, the GEIR ALGOL system does this by software). Some of the
hardware methods for implementing dynamic relocation are described next.

Reference 9 gives a good general discussion of these methods.

V-3.2.1 Ferranti ATLAS Method

The upper part of the 20 bit machine language address is interpreted
as the page number (page is synonymous with segment here) and the low order

part as the address within the page or line number:

Address

S i

<4—n—p4—mn bits —Pp n =11
m=9

The addressing structure thus allows a program of up to 2n pages, each

. m , , .
page consisting of 2° words. -However, in general, main storage consists

78

only of 2m+k words, where k < n . Associated with each of the 2k

pages that may be in main storage is a hardware page register. Generation
of the actual address from the relocatable address (s, 1) proceeds as
follows:
1. Search all page registers for s.
2. if value(Register[j]) = s then
address := J X Em + 1
(i.e., page is in core)
3., Otherwise, fetch page from drum;
Steps 1 and 2 are performed by the hardware; a hardware interrupt to the

supervisor occurs if the page is not in core.

Example

k=2, m= 3
(s,1) = (37,6)

Page Registers Main Storage
R[O] 52 0 x 23:
R[1] 2
Rr[2] 27 1x23:
R[3] 90
2 x 23:
—
address = 2 x 2° + 6 3 x 2°:

79

Administration hardware keeps track of page usage; when a new page

is required from the drum and core is full, the page with the least usage
is replaced. The relocation method applies both to data and program.

m+n
The programmer sees a "virtual" memory of 2 words and does not have

any control over the segmenting and dynamic relocation processes.

V-3.2.2 Burroughs B5500:

B5500 ALGOL is compiled so that segments consist of ALGOL blocks,
data, and control information. A program reference table (PRT) contains
block and array "descriptors" which point to the core area containing the

segment. Addresses of the form (s, 1) are translated by:

Physical address := Mb+s] + i
M: memory

b: base of PRT

Segments are not of fixed length but contain a size limit entry that
enables an automatic check, e.g., 1f subscripts exceed their declared
bounds. The advantage of making blocks equivalent to segments is that
segments (or blocks) can then only be entered from the top and left either
from the bottom or by a go to statement (ALGOL requirements).

V-3.2.3 Arden, et al. Scheme5

The scheme developed by Arden, et al., (and implemented on the General
Electric 645 and IBM 360/67 computers) considers a machine address to be
a triplet (s, p, i) rather than a pair (s, i) . Physical address gen-

eration can be illustrated by the following diagrams:

80

Segment Number Page Number Line Number

Address: . S D .1
Segment
STR Tible Memory M
Segment - D---# '
Table Page
Register Table
L £p ° H--p
T:"’Zi —1—P--¥ 4
Page
/17—’,///////////// /.
\ 2
Physical
Address
Physical Address := M[M[M[STR+S] + p] + i]

lP and li indicate page table lengths and page lengths so that auto-
matic error checks occur if p > ZP or 1> li .
In this scheme, which is proposed for time-sharing systems, each
user has his own segment table and the STR register contains the segment
table base for the user currently in control; the page and segment table
entries also have an availability bit to indicate whether the page or
segment is in memory or not. The triplet is used since it is anticipated

that pages and page tables will be shared by many users (see section on

Invariant Programs).

81

To save storage references through page and segment tables, several
associative registers containing (s, p, physical page base) can be used.
Address generation then consist of a parallel hardware search through the
associative registers; 1if a match is found, the line number is added to
the physical page base stored in the register; otherwise, the segment
and page tables must be searched, as before. The associative registers
are controlled by the monitor so that the most frequently used page ad-
dresses are stored there. It appears that this method will be in common

use in the future.

V-3.3 Memory Protection

When user programs run under the control of a monitor, it is impera-
tive that there Dbe hardware and/or software to also control and restrict
the blocks of memory that are available and unavailable to a particular
user. A block, page, or segment of memory may have one of four types of
access allowed:

1. Read and Write

This is the "classical" type of access; the block may be
read from or written into =~ both loads and stores are

allowed. Program data blocks are usually read and write,

2. Read only

A block may be read but not written into - loads but no
stores. When several programs share the same procedure,
the shared procedure is read only.

3. Write only

Only stores are allowed to the block.

82

4, Neither read nor write

Both read and write access are prohibited. This protects
independent programs and data from access by other programs.
The IBM 360 provides read write, read only, and neither read nor
write access. A 4-bit "key" identifieé.each memory block; each program
is also given its own "key". For read-write access, program keys must
match memory block keys: an additional fetch protect bit is used for
read-only protection, on the 56Q/67. Hardware interrupts occur on pro-
tection violations.
Segment and page table entries have length indicators indicating
the segment or page size; these are checked during physical address com-

putation to further check for memory protect violations.

V-3.4 Invariant Programs

In the early days of computer programming, there was much emphasis
on computer instruction codes that modified themselves during the compu-
tation. For example, to compute a sum, the following self-modifying in-
struction sequence in MAP could be used:

Initialize

LOOP CILA *+3

ADD =1
STO *+1
ADD A
STO SUM
-end test-
TRA LOOP
SUM BSS 1
A BSS 1
BSS 100

8

Later, the use of index registers to store and compute addresses made
instruction self-modification unnecessary. Looping and subroutine trans-
fers, the two principal areas where programs might have to change them-

selves, can be accomplished easily with index registers:

1. Looping:
The loop: "for i := 1 step 1 until M do S"
(M>1) can be written in MAP as:
CLA M
ALs 18
STD B
AXT 1, 1
L —
E

A TXI %1, 1,1
B TXL L, 1,%*

2. Subroutine Transfer and Return
TSX SUB,4 SUB SXA L,k

L AXT *%,4
TRA 1,4

The current trend is to eliminate self-modifying programs. In multi-
programming and time-sharing systems, invariant procedures, that is,
procedures that do not modify themselves, are shared by many programs
(page and segment tables of several programs point to the same area for
these procedures). The invariant procedures may be library programs of
several different types - evaluation of mathematical functions, sorting
routines, editing and formating routines, etc. It is these invariant pro-

cedures that must be read-only protected.

84

v-4. Loosely Connected Parallel Processeslo’ 11, 12, 13

To achieve faster speeds and allow computer-to-computer communication,
computer systems designers connect several independent processors to common
memory banks and control circuitry, and run these in parallel. This in-
cludes central processors, I-0 processors, data channels, and special
purpose processors, such as a floating point arithmetic processor. With
this type of arrangement, more than one program and parts of a single
program can be executed in parallel and communicate with each other.

In general, we have many processes operating in parallel and communi-

cating with one another by means of common variables. In such a situation

it is necessary to ensure that no conflicts arise in accessing these vari-

ables. Two examples of these loosely connected processes should clarify

these ideas:

1. I-0 processing

An I-0 area in storage (or buffer area) may be filled or emptied
by the central processor or by I-O processors. The system must be
programmed so that the common variables, the I-O area, are not accessed
by more than one processor at a time. One special method for this case
is the multiple buffer system described in chapter IV.

2. General file Processing

When several central processors have access to a common file, such
as a payroll, accounting, or inventory file, access must be restricted to
one processor at a time in order to maintain accurate files; if not, it
is possible for the same item to be updated simultaneously by more than
one processor and only one of the updates would then be recorded instead

of all of them.

85

V-4.1 Programming Conventions for Parallel Processing

Following Wirth,10 the parallel execution of two or more ALGOL state-
ments will be indicated by replacing the -semicolon separating the statements

N
by the symbol and . For example, to compute E:aibi in two parallel

i=1
parts, the program (minus declarations) is:
sl := 82 :=0;
for i :=1 step 1 until N ¥ 2 do
sl := sl + a[i] X b[i]

and
for j =N+ 2+ 1 step 1 until N do
s :=sl + s2

. g . 10 .
A matrix multiplication program computing A := B X C, where all

elements of A can be computed simultaneously is:

integer array A[l:m, l:n], B[l:m, 1:£], C[1l:f, l:m];

procedure product(i, j);
value i, Jj; integer i, 3j;
begin
integer k; real s;
s := 0;
for k :=1 step 1 until £ do
s + Bli, k] x C[k, j1;

S
Ali, j] :=s

end product;

86

procedure column(i, J);
value i, Jj; integer i, J;
product (i, j) and

if 3 > 1 then column(i, j - 1);
procedure row(i); ”
value 1i; integer i;
column(i, n) and

if i > 1 then row(i - 1);

row (m)

V-4.2 The Control Problem for Loosely Connected Processes

The problem and its environment can now be stated more precisely.
We are given several sequential processors which can communicate with
each other through a common data store. The programs executed by the

processors each contain a "critical section" (CS) in which access to the

common data is made; these programs are considered to be cyclic. The
problem is to program the processors so that, at any moment, only one of
the processors is in its critical section; once a processor, say A4,
enters its critical section, no other processor may do the same until A
has left its CS
The following assumptions are made about the processors:
1. Writing into and reading from the common data store are each
undividable operations; simultaneous reference to the same location
by more than one processor will result in sequential references in
an unknown order.
2. Critical sections may not have priorities associated with them.
3. The relative speeds of the processors are unknown.
There are two possible types of blocking which the solution to the

problem must prevent:

87

1. A program operating well outside its CS cannot then be blocking
another program from entering its CS

2. Several programs (or processors) about to enter their CS's can-
not, by an "after you" - "after-you""“ type of intercommunication,
postpone indefinitely the decision on which one actually enters.

We will now try to develop solutions to the problem and illustrate

some of the pitfalls that exist.

V-4.3 Solving the Problem

The problem will be restricted to 2 processors, each with its own

-

Program " Program
1 2

Processor 1 Processor 2

CS:

L. Example 1

begin integer turn; turn := 2;
Pl: begin Ll: if turn = 2 _then go to I1;
CS1l: turn := 2;

program 1; go to Ll
end and
P2: begin L2: if turn = 1 then go to LZ;
cs2; turn := 1;
program 2; go to L2
end

end

88

Unfortunately, neither Pl nor P2 may enter its CS twice in succession;

the program insists that they enter alternately.

2. Example 2

An attempt is made to avoid the mutual blocking in example 1 by

defining two common variables, Cl and C2

Begin 1 e an Cl, C2; Cl := C2 := true;

Pl: begin Ll: if —C2 then go to Ll;
Cl := false; CSl;
Cl := true; program 1;
goto Ll
end and

P2: begin L2: if - Cl then go to L2;

c2 := false; CS2;
c2 := true; program 2;
go to I2

end

end

When Cl or C2 is false (true), the corresponding process is inside

- (outside) its critical section. The mutual blocking of example 1 is now
not possible but both processes may enter their CS's together; the latter
can occur since both programs may arrive at Ll and L2 together with
Cl = c2 = true.

3. Example 3

The mutual execution of example 2 is avoided by setting Cl and

C2 false at Ll and L2 respectively:

89

begin Boolean Cl, C2; Cl := C2 := true;

Pl: begin Al: Cl := false;
L1: if -~ C2 then go to Ll;
C8l; C1 := true;
program 1; gg}:_o_ Al
end and
P2: etc. . . .

end

The last difficulty has been resolved but mutual blocking is now possible
again. Cl may be set false at Al at the same time that C2 is set
false at A2: in this case, both Pl and P2 will loop indefinitely

at Ll and L2 . The obvious way to rectify this is to set Cl and C2

true after testing whether they are false at L1 and L2

4, Example 4

begin Boolean Cl, C2; Cl := C2 := true;

Pl: begin Ll: C1 := false;
if 1 C2 then begin Cl := true;
go to Ll
end;
CSl; C1 := true;
program 1; go to Il
end and
P2: etc.-——-

end

Unfortunately, this solution may still lead to the same type of blocking
as in the last example; if both processes are exactly in step at Ll
and L2 and their speeds are exactly the same for each succeeding

instruction, the same loop as before will develop around L1 and L2

90

The above attempts illustrate some of the subtleties underlying this

problem. The following solution was first proposed by Th. J. Dekker:

begin integer turn; Boolean "Cl, C2;

Cl := ¢c2 := true; turn := 1;
Pl: begin Al: Cl := false;
Ll: 4if = C2 then

begin if turn = 1 then go_to ILl;

Cl := true;
Bl: if turn = 2 _then go to Bl;
g0 to Al
end

- CSl; turn := 2;
Cl := true; program 1;
go to Al
end and
P2: etc. -—-

end

Cl and C2 ensure that mutual execution does not occur; "turn" ensures
that mutual blocking does not occur.

Dijkstrall has developed a solution to the more general problem where
there are n processes, instead of only 2, operating in parallel. If
it was further stipulated that no individual process be indefinitely
blocked, both the above solution and Dijkstra's solution would fail; for
example, 1if in Dekker's program, the speed of processor 2 is much greater
than that of processor 1, it is possible for processor 1 to loop inde-
finitely at 'Ll while processor 2 executes its cycle continuously. This

problem is considered in Reference 13.

91

V-4.4 The Use of Semaphores

While Dekker's and Dijkstra's programs solve the given problem,
there are, nevertheless, two unappealing features of them:
1. The solution is mystifying and-unclear in the sense that a
simple conceptual requirement, mutual exclusion, leads to cumber-
some additions to programs.
2. During the time when one process is in its critical section,
the other processes are continually accessing and testing common
variables; to do this, the waiting processors must "steal" memory
cycles from the active one. The result is a general slowing down
of the active process by other processes that are not doing any
useful work.
An improved solution can be obtained by adding two new primitive
or basic operations (Dijkstrale). These primitives, designated V and
P, operate on integer non-negative variables, called "semaphores"; it
is the semaphores that perform the communications among processes. The
V and P operations are defined as follows:
1. V(S) (S a semaphore variable). S is increased by 1 . This
is not equivalent to S := S+1 . e.g., If S =5 and 2 proces-—
ses call V(S) simultaneously, both V-operations will be performed
(in some order) with the result that S = 7; however, 1if the ALGOL
S := 5+1 is executed by each process, it is possible for each
process to fetch S when it is 5, increment it by 1, leaving

S5 - i.e., S has only been incremented once instead of twice.

V(S). does the fetch, increment, and store as one operation.

92

2. P(S) (s a semaphore variable). P(S) decrements S by one,
if possible. If s = 0, then it is not possible to decrement S
and remain in the domain of non-negative integers; in this case, the
P-operation waits until it is possible.

Let us apply these primitives to the mutual exclusion problem with

Il processes:

begin integer mutex; mutex := 1;

Pl: bagin . . nend d
P2: o v ¢ v o o o W
Pi: begin Li: P (mutex); C8i; V(mutex);

program i; go to Li

end and

Pn:,

end

mutex = 0 when one of the processes is in its critical section; other-
wise, mutex = 1 . Mutual execution of CS's cannot happen since mutex
can't be decremented below zero by the P-operation. It should be noted
how much simpler and clearer the solution is when the V and P-operations
are employed. Some more general applications of semaphores will be illus-

trated next.

V-4.4.1 2-Processes Communicating via an Unbounded Buffer

- A "producer" process produces information for the buffer and a
"consumer" process consumes information from the buffer; this is analo-

gous to the situation where-a CPU fills an output buffer and a data

93

channel consumes or empties the buffer contents. The following two sema-
phores are used:

n = number of queued portions of output of the producer and input

to consumer,

0 indicates adding to or taking from buffer is occuring

1 indicates buffer access routines are not active.

The critical sections are the buffer access routines, "Add To Buffer"

and "Take From Buffer".

begin integer n, b; n := 0; b := 1;

producer: begin L : produce next portion of data;
P(b); Add To Buffer; V(b);

V(n); go to Lp

end and

consumer: begin IJC: P(n);
P(b); Take From Buffer; V(b);

Process Portion; go to Lc

end

The .two most common methods of organizing a buffer are the cyclic method
(Chapter IV) and the chaining method, where each portion of the buffer
is an element in a linked list or chain. In the latter case, adding or
taking from the buffer simultaneously can disturb the linkages; the
semaphore b ensures the mutual exclusion of the critical sections,

Add To Buffer and Take From Buffer.

In general, it 1is always possible to replace a general semaphore
(taking all non-negative integer values) by one or more binary semaphores
(taking 0 or 1). Below, the last example is programmed using binary
semaphores only; the simple integer variable n and the binary semaphore

d are used instead of the general semaphore n

begin integer b, n, d; b :=1; n :=d:= 0;

producer: begin: LP: produce next portion;
P(b); Add To Buffer; n := ntl;
if n =1 then V(d);
V(b); go to Lp
end and

consumer: begin integer oldn;

L,: P(d);
Lx: P(b); Take From Buffer; n := n-1;
oldn :=n; V(b); Process portion;

if oldn £ 0 then go to LX else go to L
end

end

Another solution, called "The Sleeping Barber", presents the actions

of the producer and consumer more clearly:

begin integer b, n, d; b := 1; n :=d := 0;

producer: _begin LP: produce next portion;
P(b); Add To Buffer; n := ntl;
if n = 0 then V(d);
V(b); gg_to LP

end and

95

consumer: begin L ¢ P(b); n := n-1;
if n= -1 then
begin V(b); P(d); P(b) end;

Take From Buffer;

V(b); Process portion;
go to L,
end

end

When n= -1 outside of CS execution, the buffer is empty and the
consumer, having noted this, is waiting. The "sleeping barber" story

goes as follows:

Barber's
-i Chair __._._’\
l‘ Waiting Room Barbershop

Customers enter the waiting room and the Barber's room through a
sliding door that only admits entrance to ae of the rooms at a time
(mutual exclusion of customer producer and consumer); the entrances are
designed so that only 1 customer may come into or leave the waiting
room at a time. When the barber finishes a haircut, he inspects the
waiting room by opening the door (P(b) at Lc); if the room is not
empty, the next customer is invited in (n ﬁ -1); if the room is empty
(n= -1), the barber goes to sleep (waiting at P(d)) . When a customer

enters and finds a sleeping barber, he awakens him.

96

V-4.4.2 Processes Communicating via a Bounded Buffer

The general semaphore is applied to the last problem in a. more
realistic setting = a bounded buffer. N is the buffer size, in portions

and is a global variable in the program. Two general semaphores are used:

number of empty portions in buffer

=}
Il

=
[

number of queued portions

b is a binary semaphore ensuring mutual exclusion of critical sections.

begin integer m, n, b; m := 0; n :=N; b := 1;

producer: begin LP: produce next portion; P(n);
P(b); Add To Buffer; V(b);
V(m) ; go to Lp
end and
consumer: begin L : P(m);
P(b); Take From Buffer; V(b);
V(n); process portion;
g0 to I,
end

end

V-5. References
1. Noble, A. S., Jr. Design of An Integrated Programming and Operating
System. Part I: System Considerations and the Monitor. IBM

Systems Journal 2, (June 1963),153-161.

2. Master Control Program Characteristics, B5500 Information Proces-

sing System. Bulletin 5000-21003-D, Burroughs Corp. May 1962.

3. Desmonde, W. H., Real-Time Data Processing Systems: Introduc-

tory Concepts Prentice-Hall, Inc., N. J., 1964.

4. Clark, R., Miller, W. F., Computer-Based Data Analysis Systems.

Methods of Computational Physics, 5 (1966). Academic Press.

pp. 47-98.

5. Arden, B. W., Galler, B. A., O'Brian, T. C., and Westervelt, F. H.,
Program and Addressing Structure in a Time-Sharing Environment.

J. ACM 13 (January 1966), 1-16.

6. A New Remote Access Man-Machine System. AFIPS Conference Pro-

ceedings Fall 1965 Part 1 Spartan Books. pp. 185-247.

T. IBM 7090/709'+ Programming Systems, FORTRAN II Assembly Program

(FAP). Form (28-6235-k. IBM Corporation, 1963.

8. Nauer, P., The Performance of a System for Automatic Segmentation
of Programs Within an ALGOL Compiler (GEIR ALGOL). Comm. ACM,

8, 11 (Nov. 1965) 671-676.

9. McGee, W. C., On Dynamic Relocation. IBM Systems Journal, 4,
3 (1965) 184-199.
10. Wirth, N., A Note on "Program Structures for Parallel Processing."

Comm. ACM 9, 5 (May, 1966), 320-321, (letter to the editor).

11. Dijkstra, E. W., Solution of a Problem in Concurrent Program-

ming Control. Comm. ACM 8, (September, 1965), 569.

12. Dijkstra, E. W., Cooperating Sequential Processes (Preliminary
Version). Mathematics Department, Technological University,

Eindhoven, The Netherlands, September, 1965.

98

13. Knuth, D. W., Comm. ACM 9, 5 (May, 1966), 321-322, (letter to the
editor).
14. Dennis, J. B., Segmentation and the Design of Multiprogrammed Com-
puter Systems. J. ACM 12, 4 (Oct. 1965) 589-602.
V-6 Problem
"Prove" that Dekker's solution, to the mutual exclusion problem is
correct.

99

VI. COMPILERS -~ AN INTRODUCTION

The next 3 chapters are devoted to the description of the main
techniques and formal methods that are useful for designing mechanical

languages and their compilers.

VI-1. Tasks of a Compiler

A translator whose input is a language with some "structure' will
be called a compiler; most interpretations of the word "compiler" are
included in this definition. Specific examples will be restricted to
compilers of algebraic languages - ALGOL and FORTRAN being the two most
common ones.

To understand the meaning of 'structure" in the above definition,

solutions to the same problem are coded in MAP, FORTRAN, and ALGOL:

Problem
Given: a,, b, i=1, 100
a. if ai > bi i=1, 100
compute: c; —{b if g4 < b
i i= i
MAP Solution FORTRAN Solution
AXT 1,1 DO 100 1 =1, 100
LOOP CLA A,1l IF (A(1) - B(l)) 10,10,20
CAS B,1 10 ¢(I) = B(1)
TRA UNEQ GO TO 100
TRA EQ 20 (1) = (1)
UNEQ STO C,l 100 CONTINUE

BUMP TXI %+1,1,1
TXL LOOP,1,101

HTR
EQ CLA B,7
TRA UNEQ

100

ALGOL Solution

begin real array A,B,C[1:100]; integer i;

for i :=1 step 1 until 100 do

C[i] := if' A[i] > B[i] then A[i] else B[i]

end

The most significant feature that distinguishes these three solutions
(and the languages) from each other is the degree of structure in the
programs. The logical flow of the MAP solution is indicated through

the extensive use of labels and transfer instructions. The statements
are simple, almostmindependent of each other, and it is easy to decom-
pose them into component parts. In contrast, the ALGOL solution is
highly structured; the structure itself exhibits the logical flow. Each
ALGOL statement must be analyzed into component statements and parts;

for example, in the above solution there is a Boolean expression which

is part of an arithmetic expression which is part of an assignment state-
ment which is part of a block which constitutes the program. The FORTRAN

solution lies somewhere between these two extremes.

The basic tasks of a compiler are:

1.+ Recognition of the Basic Parts of the Source or Input Language.

The source program must be exhaustively scanned to recognize and con-
struct its primitive components; these may include identifiers, numbers,

delimiters, and other basic units.

101

2. Analysis of the Structure of the Language.

The scope and constituent parts of the input statements are deter-
mined. This is a recursive process since statements may consist of
sets of other statements each of which again must be analyzed for scope

and constituents. Output reflecting this structure is produced.

5. Processing of Symbolic Names.

The declaration and use of symbols must be linked; this is very sim-

ilar to the symbol processing performed in an assembler.

4. Transformation of Arithmetic Expressions Into a Sequence of Simple

Operations.

Arithmetic expressions are analyzed to transform them into sequences
of elementary arithmetic operations. Structure in arithmetic expressions
was a feature of most of the early algebraic languages and many techniques

were developed to analyze them.

5. Storage Allocation.

When the output language is a machine language, real or "virtual"

storage must be allocated for programs and data.

Expressions compilation methods are briefly surveyed in the remain-

der of this chapter. The environment is relatively simple, yet it pro-

vides insights and clues to compilation methods in general.

102

VI-2. Heuristic Techniques for Expression Compilation'

VI-2.1 Rutishauser (1952)

The expression is repeatedly scanned, each time extracting the
innermost subexpression; elementary arithmetic operations are generated
for the selected subexpression and it is replaced by a single operand
in the original. The first scan, from left-to-right, assigned level
nn

numbers to each element of the expression - operands and increment

level numbers while operators and ")" decrement them. The innermost
subexpressions are defined by the highest level number; the numbers are

updated as subexpressions are replaced.

-

Example

Level numbers appear under the expression elements.

Scan No. Expression After Scan Generated Operations

1 (Al + (A2+A3)) - (Al x Ay xAB)

012 123 23 21012 12 1210

= - R o=
(A1 : Rl) (A1 xAzxAB) 1 Ay + A3
012 121012 12 1210
—_

R, - (A1 X A, xA3) Ry 1= A + Ry

01 012 12 1210

01 010

010

103

VI-2.2 FORTRAN Compiler (1954 +)

The emphasis in the first FORTRAN compiler was placed on producing

efficient code for the 701 computer. Expression compilation was a b5-pass

task with the following functions:

PASS 1 :

PASS 2 :

PASS 3 :

PASS 4

PASS 5 :

Replace all constants and subscripted variables by simple
variables. e.g., A +Bt3/Y(6) becomes A + BtC/D
Insert all parenthesis in expression so that operator
precedences are explicit. e.g., A *+ BfC/D becomes
(((a))) + (((B) 11(c))/((0)))

Break expression into subexpressions or "segments." e.g.,
the expression (((A+B) -C)A(Dx(E+F)/G) - H+J)) (extra
parentheses are omitted for simplicity) breaks into 6 segments:
1. (A + B)

2. ((A +B) -0C)

3. (E + F)

4. 0 x (E + F)/G)

5. ((Dx (E+F)G-H+J)

6. (((a+B)-C)/((Dx(E+TF)G)-H+ J))

Triplets of the form (segment no., operator, operand) are

compiled from each segment. The segments of pass 3 are trans-

lated into the triplets:

(1, +, A) (1, +, B)
(2, +, 1) (2, -, C)
(3, + E) (3, +, F)
(4, x, D) (4 x, 3) (& /5 G)
(5, *5 4) (5, -» H) (5, +, J)
(6, x, 2) 6, /5 5)

Repeated scans of the triplets are made-deleting redundant

parenthesis, removing triplets corresponding to common subex-

10k

pressions, re-ordering triplets to minimize fetch and stores,

and finally, generating assembly code.

VI-2.3 NELIAC (a dialect of ALGOL 58)2)

A tabular technique was used in which pairs of operators, the
current operator (COP) and the next operator (NOP), are used to generate

code in a single scan from left to right.

Example
NOP
COP) + s d X
P CLA cra | ILbe
+ ADD ADD ADD STO T
LDq
- STO
X MPY ADp T)
XCA MPY
XCA

s AXB+ C D, generates LDQ A

“‘—d-—" A MPY B
XCA
MPY ADD C
XCA STO D
ADD
STO

The method is very fast but expressions are severely restricted so that
only 1 temporary storage cell T is needed--no parenthetical nesting

of expressions is allowed and only 2 levels of operator hierarchy exist.
The pair (COP, NOP) actually acts as a 2-dimensional switch to branch

to an appropriate subroutine.

105

VI-2.4 Samelson and Bauer (1959)3

Two symbols at a time were compared as in the NELIAC method but

Samelson and Bauer introduced the push-down store (stack or cellar) for

saving operators and temporary results:' Symbol pairs were used to access

an element of a two-dimensional "transition matrix" which selected the

appropriate action.
Example: (a x b+ cx d)/(a - d) 1is translated into:
Rl := a; R2 := b; Rl := Rl ¥ R2;
R2 := c; R3 := d; R2 := R2 x R3;
7 Rl := Rl + R2; R2 := a; R3 := d;

R2 := R2 - R3; RL := R1/R2;
where Ri are the stack elements.

VI-2.5 Dijkstra (1960)1L

Dijkstra used an extension of the stack techniques of Samelson and
Bauer in his implementation of the first ALGOL 60 compiler. He demon-
strated that the cellar principle is also appropriate for other construc-
tions of ALGOL beyond expressions. Dijkstra's method and modifications
the next section

of it form the basis for many algebraic compilers;

presents a general description of it.

VI-3. Compilation of Expressions Using a Stackl

An arithmetic expression can be easily converted to a reverse or

postfix Polish string with the aid of a stack. This string can be viewed

106

as the sequence of elementary arithmetic operations represented by the
original expression.
The process is analogous to a "T-shaped" railway shunting system with

the shunting or re-ordering performed in the vertical bar of the "T":

Outgut (Reverse polish string) Input (Expression)
¢ — —

-~ Stack

Operands take the direct route to the output while operators pass through
the stack. Priorities are defined for the operators to reflect their
precedences; for example:

”1 "

priority("t") > priority("X") > priority("+"

Assuming the input string is an arithmetic expression consisting of

operators and operands, conversion to reverse Polish goes as follows:

1. if nextsymbol(input) = operand then pass it through to the output
else

2a. Aif priority(operator at top of stack) > priority(incoming operator)
then pass stack operator to output else

2b. move incoming operator to top of stack.

107

Example 1

Priority Table

Operator] Priority

+ 1

! 3

4 -» (expression termination operator)
«—— ab+ 1 — 4 ip e

#

L Stack initialized to L

The termination symbol L at the end of the expression is not put into
the stack (a special case); its use is to cause total unstacking at the
end of the expression.

Example 2

abc X + L @— — 4 LY X4

=R

108

Parenthesis may be handled by modifying the algorithm. Two kinds

of priorities are defined for operators - a stack priority which holds

when the operator is in the stack and a compare priority which holds with

the operator is the incoming symbol. The priorities are determined so

that a "(" is automatically stacked and remains there until its corres-

ponding ")" arrives; the ")" then causes unstacking to its" (" .
Step 2a. must be changed to:

2a'. if stackpriority(operator at top of stack) > comparepriority

(incoming operator) €hen pass statk operator ts output e
Example 3
Operator Stack Priority Compare Priority
(0 4
+ 1 1
X 2 2
i 3 3
) — 1
L - -0
€ abc + X d + 1L \ A X BFENF AL

OIS

109

")" is never stacked; after unstacking down to " (", both "(" and

")" are deleted. Disecting the operation of the method in this example,

we have:
Incoming Symbol After Processing S

S Stack output
i, i a
X 41X a
(LX(a
b LX(ab
+ LX(+ ab

N c LX(+ abc

|) X abc+
+ L+ abec+X
d L+ abe+Xd
L abe+Xd+4

Relational operators (<, <, >, . ..), Boolean operators (A, V, =),

and the remaining arithmetic operators can be included by adding their
priorities to the table. Subscripted variables can be handled by treat-

ing the subscript brackets, "["

and " [, and the commas separating
the subscripts in a similar manner as parentheses. Finally, conditional
expressions, simple statements, conditional statements, and compound
statements can all be transformed into a meaningful sequence of reverse
Polish operations by establishing priorities for the delimiters and using
the shunting algorithm.

The transformed expression - the reverse Polish representation of

the input string - can directly correspond to a sequence of instructions

for a stack computer (see the stack interpreter in Chapter III).

110

VI-4: Phrase Structure Methods

These methods use the formal definition of the language directly.
Expression compilation - and compilation in general - is based on a
mechanical parse of the input program which exhibits its structure.

These parses may be conveniently represented as trees:

Expression Tree Representation

a b c d
aXxb+cxd 1\X/2 ”\x/5

A

b c
a+bXc g\\ ///g
1 X

¢

5

a b
aXb+c ;>*//g L
NS
+

The numbering of the tree elements is performed by a left-to-right and
top-to-bottom systematic count. If the elements are ordered according
to number, the result is their reverse Polish representation. This is

111

not an accident. Precedences are implicit in the formal definition of the
language and the parse automatically produces the reverse Polish.

Present production compilers are based on the heuristic and stack
methods. The more formal phrase structure schemes are of recent origin
and have been applied to several successful experimental systems. They
appear to offer great promise for changing compiler writing from an art
to a science, The next chapter develops the main ideas of Phrase Structure

Programming Languages and their translators.

VI-5. References

1. Randall;' B., and Russell, L. J., ALGOL 60 Implementation.

Academic Press, London and New York, 1964.

2. Halstead, M. H., Machine-Independent Computer Programming.

Spartan Books, Washington, D.C., 1962.

3. Samelson, K., and Bauer, F. L., Sequential Formula Translation.

Comm. ACM, Vol. 3, pp. 76-83 (Feb. 1960).

L. Dijkstra, E. W., Making a Translator for ALGOL 60. Annual

Review In Automatic Programming, Vol. 3, pp. 347-356 (1963).

VI-6. Problems
1. Produce the reverse Polish representation of the following

arithmetic expressions:

(1) a + b X ct(dve)/f
(2) (((aXb+c)xd+e)Xf+g) 12
(3) a+ 3 X (b-c+d) - i x(j/etex(p+3xi)+c)

112

2. Expand the priority tables to include the Boolean operators
(=, D, 1, V, and A), the relational operators (>, >, <, <, =,
and £), and all the arithmetic operators (+, -, /, ¥, X, 1) .

Note: special cases must be made for the unary operators. Use the

shunting algorithm to translate:

b<=-c=- (dte) =e X f+ gth>iA~-j into reverse Polish.

113

VII. PHRASE STRUCTURE PROGRAMMING LANGUAGES

VII-1. Introduction

Intuitively, a language is a set of sentences or word sequences;
each sentence is formed by concatenating some words in the language vocab-

ulary according to given composition rules. The composition rules are

called the syntax of the language and define its structure. An analysis
of a sentence that produces its structure or syntactical components is a
parse of the sentence. A language is ‘ambiquous if there exist sentences

to which more than one structure can be assigned.

Example 1

GO TO TOWN

pronoun verb prepgiitional
’ phrase

subject predicate

sentence
A possible set of rules or syntax which underlies this parse is:

pronoun - WE
pronoun - YOU
noun — CHILDREN
verb - GO

verb — DRIVE

prepositionalr » TO TOWN
phrase

subject - pronoun

subject — noun

predicate - verb

predicate — verb prepositional-phrase

sentence — subject predicate

114

Example 2

I CAN'T SEE FLYINQ KITES
L) 1 Il |

The sentence is ambiguous since it can have either of the two indicated
structures.

Usually, a set of rules and a string are given and the question
"Is the string a sentence of the language?" must be answered; if the
string can be parsed, the answer is "Yes". It is rarely required to do
the opposite - i.e., generate a sentence from a given set of rules.
(In computing, programmers generate strings of code; compilers analyze
them.) A syntactic analysis can be used to help determine the meaning
or semantics of sentences; for example, given the meaning of the subject
and predicate in Example 1, the meaning of the entire sentence can be
determined. Meaning is obtained by associating a semantic or interpre-
tation rule with each syntactical rule. Semantic rules can also indicate
when "meaningless" sentences have been successfully parsed.

These notions will now be formalized, extended, and applied to

" programming languages and compilers.

VII-2. Representation of Syntax

The most common method for expressing the syntactical rules of a
language is by a straightforward list of productions, each of the form:
X~y
where x and y are strings over the vocabulary of the language. The

vocabulary consists of non-terminal symbols, such as (term) or (factor),

and basic or terminal symbols, such as begin, else, or +

115

Example:

(if clause) = if (Boolean expression) then

(term) - (term) X (factor)

ADC - XC

The representation used in the ALGOL report, the Backus Normal Form
(BNF), is an abbreviation of the above which allows several productions

to be given on one line and uses ::= 1instead of - .

€.8., ~(term) : := (factor)\ (term) X (factor)

Both will be used where convenient.
A graphical specification of syntax can be very useful, especially
when writing a compiler. B5500 ALGOL syntax is expressed in a chart'

using the following graphic symbols:

Symbol Meaning

(::) symbol definition
reference to symbol
() terminal

T: terminal symbol

NT: non-terminal symbol

Example

(term) ::=,Kfactor)| (term) X (factor)

116

is expressed:

Term

reference to the point of definition of the sym-

* gives a "coordinate"

bol in the box.

Another graphical method replaces the coordinate references by dotted

lines pointing to the occurrences of the symbol:

'''''''''''''''''' Term

-

———— AN AN DT Factor

Here the directions of the arrows have been reversed to indicate

reductions rather than productions. A complete specification for ALGOL

using this method is given on the next page.

117

09 1097V 40 LYVHO TTVIILOVLINAS

PO | (5578 000 BOB OBunsoaco jou sousnbes Ao) B
OSG ¢ S < buma ou oumnbes fuo) TILLS TS|
: " 4

4 (¢ Bunaoyuoo v Sumnbas Ao) TOSTALDS S |
L] © D

118

VII-3. Notation and Definitions5

Capital letters and letter sequences enclosed in "{" and ")"
denote symbols; e.g., (term), A, U, (sentence), T . Small letters de-
note strings of symbols. The empty string is designated A . Script
letters are used for sets; e.g., £, V, F .

The set V of symbols is called the vocabulary. V* is the set of

strings generated over V ; formally:

V¥ = {s|s =2 or (s = s’S with s'e&V*, Sev)}

Example: V = {a, B}

V¥ - (a, A, B, AB, AA, AAB,....)}

is a set of syntactic rules of the form:

X = y; x, ye¥*

* A string x directly generates y if and only if there exist strings

u, W (possibly emtpy) such that x = uvw, vy = uzw and v — ze p.

This is denoted x ®* y . e.g., Using Example 1 of section 1,

(verb>(prepositional phrase) ® (verb) TO TOWN
¥
X generates y (x " y) 1if there exists a sequence of strings
X = xy Xy5 X5y.ee; X =y such that x, l"’ x5 1 = 1,...,n . e.g.,

*
(verb) (prepositional phrase) ~ GO TO TOWN
*
(sentence) = WE GO TO TOWN

119

A phrase structure system is a pair (V’ﬁa) . A phrase structure

language (V, VT,ﬁv, S) is defined:

v, v, @, 9) - (slser¥, v cV, s -7,

*
and S ~ s}

VT' the set of basic or terminal symbols, is the subset of V such

that no element of VT occurs as the left part of any production,

Example 1

v =1{a, B, c 8}
Ve = {a, B, ¢}
@ = (s - aBC}

<& = {ABC}

Example 2
v

P

{s, a, B, C, D, E}

]

{s-1aB, B~ CD, C~E}

‘..VT . (A, D, E}

The generation of £ from S is
S * AB * ACD * AED

& = {AED}

120

Example 3
V={S: A, B) C, D, E}
VT=[A,D,E} ”
@ -{s- 2B, B~ CD, B~DC, C~E)

~{ = {AED, ADE)

Example U
YE {s, A, B, C}
VT = {B’ C}
@ ={s "a, A - B, A" CA)

.£ ={B, CB, CCB, CCCB, . ..} or

£ = {:n B|=O, 1, "}

A is defined recursively here, that is, in terms of itself.

The language derivation or generation can be represented as a tree:

Example5 Replacing the rule A - CA by A - CAC in Example 4,
£ becomes:

L

[B, CBC, CCBCC, ..}
{c"Bc"|n=0, 1, . ..)

121

y
VII-4. Chomsky's Classification of Languages

Chomsky has classified languages according to the type of productions
used to generate them:

Class 0: No restrictions.

Class 1: All productions are of the form:

VAV ~ uav
(u, v may be A)

This is sometimes called context-dependent Since A ~ a
only in the context of u, v
Class 2: Productions are restricted to the form:
A—a
Class 2 languages are also called context-free.
Class 3: Productions are severely restricted to either of the forms:
A~ B or A~ BC
with A, CeV - VT
BeV

T

This class of languages is also called finite-state.

There are class 1 languages which are not in class it+l
(for i = 0, 1, 2), so that the class to which a language belongs is
some indication of its power. Most programming languages can be (almost)

formulated as members of Class 2.

VII-S. The Parsing Problem?

A direct reduction of b into a, designated b = 3, is an ap-

plication of the production X - y, where b = uyv and a = Wv for
*

some u, vev* | A reduction of b into a, b —a, 1s a sequence of

direct reductions x, - X4, for i=20,..., n-1, such that x, = b,

xn = a; this is also called a parse.

122

Example 1 A — BC
B - DE
C - G

Parsing or reducing the string DEFG gives:

(a) DEFG =~ BFG — BC —> A
or
(b) DEFG —> DEC = BC =>4

. *
..DEFG =~ A
These reductions may be expressed as trees:

(a) (v)
D E F G B E F G

Y VoY
®@\A9 @51\/@

Circled numbers indicate the order of the reduction; the resulting
trees are identical. The above difference in parsing, due to the order
of application of the reductions, is trivial and can be eliminated by

introducing a canonical ordering to parses. The canonical parse is the

one that proceeds from left to right in a sentence and reduces a left-
most part of a sentence as far as possible before proceeding further to

. . - L - -
the right. Thus, if x xlx2 and xl 8595 x2 Py then the re

duction Xy =~ 81 is performed first. In this example (a) is the can-

onical parse.

125

Example 2 A~-X XXXX
A - AX

Parse

The sequence of X's is defined using a left-recursive definition.

Example 3 A—X

X X X We have run into a dead end by

starting the parse from the left.

XX XX A successful parse is obtained by

.) starting from the right.

Here, the sequence of X's is defined by a right-recursive defini-

tion.
Example 4 A—-X

A'XAX

XX XXX The parse must start at the middle
—
A .

L | of the string at each stage.

A
A

124

Example 5 A~ BYlCZ

B - X|BX
¢ = x|xc
(a) (b)
XXXY X X X Z
() [)
B c
— ——
B c
y I— —
B §]
1
A A

This example illustrates how the input string determines the direction

and position of the reductions.

-

Example 6 A~ WX
B * AY
c - BzZ|WD
D = XE
E =~ YU

(a.)
XYZ WXYU W X

W
A A

=<

U
R
E

f

B
ITJ ——

In (b), the first try leads to a dead end. The second, and suc-
cessful, parse starts with the next reducible substring from the

left, namely YU .

125

The parsing problem is to analyze sentences efficiently; the ideal
system would have a "recognizer" that recognizes productions and deter-

mines the correct reduction to be made at any stage.

VII-6. Irons' Classification of Languages According to Parsing
e 5 |
Difficulty
Irons suggests that languages be classified "according to the com-

plexity of interaction between parses or disjoint subs-kings of a parsed

[
n-

string. Several examples will illustrate the basic idea of his scheme.
Example 1 h A~ XjAX

In the string X X X X X, each X is immediately reduced to A without

any need to examine its surrounding symbols.

Example 2 A~ XB
B~ Y|ZB
X727 E Preceding symbols must be stored until
L__E Y is reached but each reduction can
L——EEJ be made, e.g., ZB —> B, without
L___K__J examining any symbols not in the re-

duction itself.

126

Example 3 A - BY|czZ

B ~ X|BX
c ~ x|xc
XXXY X X X Z
i -
B C
L N
B C
| S— [E—
B C
A A

To reduce X it 1s necessary to look ahead to the end of the string

to see whether the reduction should be to a B or to a C

Example 4 —- A" wx
B = AY
C — BZ|WD
D - XE
E - YU
(a) (b)

Z WXYU

\f>/

E

\

The substring WX cannot be reduced to an A until we have looked
2 symbols to the right of it. This lanquage is then classified as
OSL,2SR . (SL - symbols left; SR - symbols right.)

Generally, Irons classifies a language as n{g],nﬂ;}R, where

s = symbol in input string

B = "bracketed" string, meaning a string that has already been
reduced

L = left

R = right

n, m are numbers.

127

This defines "the extent to which symbols surrounding a string

p)

determine its parse."” Example 1 and 2 are both OSL,0SR (or "uncon-
nected") languages. Example 3 is OSL but it is impossible to fix m

since one must always look to the end of the string, whatever its length

may be.
Example 5 A = WX
B = AY
C = BZ|UD
D~ XE
E = YZ

(a) (b)
{ Yy

Here, YZ cannot be reduced in isolation. One must first look two

symbols to the left - if a UX is found, YZ can be reduced to E;

otherwise it cannot. This language is then 2SL,0SR .

By classifying a language in terms of its parsing difficulty, we
gain a clearer understanding of what is needed for its automatic analysis.

Some general parsing methods are discussed in the next section.

VII-7. Parsing Methods

VII-7.1 A "Top Down" Method6

A "bottom up" parse of the string s of the language £(V, VT&%S)
starts with s and looks for a sequence of reductions so that g N S;

the parses in the examples of the last few sections have been implicitly

128

of this type. A "top down" parse starts with S and looks for a sequence

*
of productions such that S s . The same parsing trees are produced but

they appear with the root at the top in the latter case and at bottom in

the former. The tree of Example 5(a) of the last section is:

bottom up top down
W Y Z
V] f\
N AN
\X Y =z
C
E ::= TIT+E,
Given the syntax T ::= F|FXT, the following ALGOL procedures, in

F ::= M (E)

conjunction with some symbol pointer and storage administration which have

been intentionally omitted, will perform a "top down" analysis:

Boolean procedure E;

E :=_if T then (if issymbol ('+') then E else true) else
false (issymbol (arg) is a Boolean procedure which com-

pares the next symbol in the input string with its argument, arg.)

Boolean procedure T;

T := if F then (if issymbol ('X') then T else true) else

false

Boolean procedure F;

F :=_if issymbol ('A') then true else
if issymbol ('(') then (if E then
(if issymbol (')') then true else false)
else false) else false

If the last production in the syntax were changed to E ::= T|E+T,a

straightforward application of the general method will yield the new pro-

cedure for E
129

Boolean procedure E;

E := _if T then true else if E then

For the string, A + A, the procedure E will call T which calls
F which tests for 'A' and gives the result true; E then is true,
but only the first element of the string is in the analysis; i.e., the

analysis stops before completion!

= L= C= (>

If the input string is not a member of the language, T is false and we

can easily get into an infinite loop on E . (The problem is that Eef(E) -
see next section on precedence grammars). The usual solution to the prob-

lem is to replace the recursive definition of E by an iterative definition:

Yes

Ye
2 No True

No

False

150

A possible extension of BNF that replaces iterative definitions by

recursive ones is

E ::= T{+T} ’

where the quantity in the braces can be repeated any number of times,
including 0
This method has been implemented on several compilers, for example,
the B5000 EXTENDED ALGOL compiler. It has the advantage of being concep-
tually simple. However, it has some severe disadvantages:
(1.) Many false paths can be tried before the correct one is found;
a failure on any path requires backtracking to the last suc-
cessful recognition.
(2.) It is difficult to insert semantic rules, such as code
generators, 1into the system.
(3.) There is no systematic way to determine the success or failure
of the method, except by exhaustion.
In general, we can classify the "top down" method as being a heur-

istic solution to the parsing problem.

VII;7.2 Eickel, Paul, Bauer, and Samelson
This method deals with productions whose right sides are of length

1 or 2; i.e., U ::= R and U ::= ST are the only forms allowed. No

generality is lost with this restriction since the production

U .= %?2 C o Sn can be replaced by the equivalent set (U ::= Sfﬁj

U, ::= S2U2""’ U

1 1= Sn} . A stack is used to store symbols and

n-1

131

reduced. substrings; at any point, only the top two elements in the stack
need be examined. A table of possible symbol triples is built from the
syntax; each element of the table has the form (SlSESB) n N, with the
interpretation:

If SlS2 are the top two elements of the stack and S3 is

the incoming symbol of the input string, then we are in case n

and action N is performed.

case action

n=1 U::= SlSEe 2 Pop stack and replace SlSEbyU .
n=2 U::= SzedD Replace 82 by U in stack.
n = 3 No pfbduction exists. Push down stack, insert S3 in stack,

and read next input symbol.

This is a systematic mechanical method for parsing strings; the
authors claim that the method can handle any unambiguous class 2 language.
Semantic rules could be easily included in the parsing algorithm at the
points where the triples and action are determined. The method should
be able to easily "recover" from syntax errors (an important consideration
" for programming languages). The main disadvantages are the large storage
requirements for the tables and the relatively long time it takes to

scan the table of triples for matches.

VII-7.3 Precedence Methods

Floyd8 has developed a method of syntactic analysis for class 2
languages, which is based on the use of "precedence" relations between
pairs of terminal symbols. Productions are restricted so they cannot be

of the form:

132

U~ xU Uey, where U

1 U2€(V - VT) ;

l’
the resulting language is called an operator language. The beauty of
Floyd's method is that it admits a very simple and efficient parsing

algorithm which produces the unique parse.

Wirth and Weber3

have generalized Floyd's results and shown how
efficient compilers for practical non-trivial programming languages may
be implemented using precedence methods in conjunction with semantic
rules. Wirth and Weber's precedence grammars and their application to
compiler writing is discussed in the remainder of the chapter.

VII-8. Precedence Phrase Structure Systems

VII-8.1 Precedence Relations and the Parsing Algorithm

For all SiSjev, it is either possible or impossible for the string
Sisj to appear in a successful parse. When they do appear, there are

only 3 ways in which they may be reduced:

1. ... S, S....
, L . J

reducible

substring

S. 1s the first or left most symbol of a reducible substring. Using

Floyd's notation, this is indicated by Si < S:J

2. R O P
—_*r

Sisj is part of a reducible substring.

133

Si is the last or rightmost part of a reducible substring

<, = 4 are 3 precedence relations that may exist between ordered pairs

of symbols.
Example 1)
Input String Sl 82 S5 Sh- 35 S6
Given Relations < < = > >
— 1
Since 82 < 83 S3 =8, 8§, > 85, there must exist a symbol Uiev

such that

Reduced String S, S, U S S6
Given Relations < = = >
-3 U &¥ such that U, = S.US.&
T2 2 27175
The reduced string then is SlUESé'
Let p be any input string, where p = PlPE e Pn ; enclose p°
by the terminating symbol 4 so that PO =P = L; for any symbol

nt+l

134

algorithm:

SeV, 1 < S and S > L

symbols that may occur together,

e

ie1
k-1
S, <41

Given one precedence relation between any two

p may be parsed using the following

i+« i+l
j-i
Si Pk

k < k+1

Reduce

135

S is a stack which contains the partially reduced string at any stage.

P 1is copied into S until the relation > is encountered, Then,

we

retreat backward through S until the beginning of the reducible sub-

string is found. We are then guaranteed (if the string is in the lan-

guage) that there is a production whose rightsideissj,..., S

"Reduce SU""' Si” replaces the substring by'the left side of that

production.

An ALGOL-like program for the algorithm is:

i:=0; k:=0;
while P A 't' do

begin
while S, > P, do
MELE TS i k —
begin
hil = .. do j:= j-1;
ghile j-1 3 2o] =i
S. := Leftpart(S.-.-- S-)E
J J *
1=
end
1 =] = 1+l;s _ = Pkl‘
k := k+1
end

Note that the algorithm involves no backtracking.

Example 2
(entire string) ::= L{string)L
(string) ::= (head)'

(head) ::= ¢| (head) M | (head)(string)

136

The precedence relations may be described in a precedence matrix M:

(string){head) A ¢
(string) > > > > >
(head) S < L < 0k
A > > > > >
¢ > > > > >
’ > > > > >
The elements Mlj represent the relation between the symbols S:.L and
Sj ; e.g., (head) = A
A > (head)

(a) Parse using algorithm:

L (head) (head) * 0y
< < = > >
" . ,
1 = &ring) :9
< (head) =
< (string) >

(b) Parse using algorithm:

1 3 A 3 A A ’ ’ 1
[S j S——
(head) (head)
(head) (head)
(head)
(string)
(string)

The parse terminates while the stack contains L(stringYL instead
of L(string)l. This indicates that the string is not a member of the

language.

137

VII-8.2 Finding the Precedence Relations

The precedence relations definitions are first formalized:

1. Si = s.J if and only if there is a rule U = x8,8.y .
13
2 Si < s. if and only if there-'is a rule U ~ xSiUzy and
U k! S
l J.z .
3. 8;>s if and only if there is a rule U - xUk§_y and
u,_ > 5 J
k" 28; ex U xUkUly and Uk - z8,
U, > s
’ 57 -
The strings w, X, Y, Z may be empty in the above definitionms.
Example 3
- A = BC
B = WX
c ~ YZ
From definition 1. : B =C, W=X,Y = 2
From definition 2. : B< Y

From definition 3. :

X>C X>Y

The leftmost symbols of a non-terminal symbol U are defined

L) = {s|3(u > s2)} .

The rightmost symbols of a non-terminal symbol U are

R(U) = {8]|3z(U > 28)} .

138

The precedence relations can now be alternately defined:

= : S,
L. §; =850 3p(p: U - x8, Jy)
peP
2. 8; < Sj o 3p(p: U - xS.ley)
A s] €£(U£)

5. §; » sJ. o 3p(p: U axUijy)ASieﬂ(Uk)

v 3p(p: u —>xUkU£y) A SieR(Uk)

A Sje.t(Ul) .

The use of these definitions directly leads to an efficient mechanical

algorithm for finding the relations. The sets &£ and R may be found

by using their recursive definition:

£(U) = {s|3z(u = sz) Vv
32, U'(U = U'z A Se£(U'))}
R(U) = {s|3z(Uu—~2s)V

3z, U (U = 2zU" A SeR(U’))}

These are easier to work with than the original definitions; however,
some complex administration is needed to ensure that the program does

not fall into an infinite recursion, for example, in the case where

A—~3B, B~A are in 0)

Example 4
5= E
E~E + T|T
T = T % F|F
F~ A (E)

139

U £(U) R(U)
S E, T, F, A\, (E, T, F, A,)
E E, T, F, A, (T, F, A,)
T T, F, A, (Fy, N,)
Fl A (..7\’)
Precedence Matrix
S| E| T | B+ 1*xi A (|)
S
E = =
T I, I 4 = s
F > | > >
+ @—“) < <| <
T x = <| <
A > | » >
(Bl «| < <| <
) | o> >

Note that there are 2 relations for the ordered pair (+, T) and

for the pair ((, E) . i.e.,

=T and + < T

+
I

—~
[t}

= FE and (< E

A syntax is a simple precedence grammar (or simple precedence syntax)

if and only if at most one of the relations =, <%, and ®» holds Dbetween
any ordered pair of symbols. Thus, example 4 is not a precedence grammar;
it can be made into a precedence grammar by modifying the syntax as fol-

lows:

140

S=E E-=E', E' =E' +T|T, T~ T

" = 1" * F|F, F = A|(E)

If none of the relations holds between a.given ordered symbol pair, then
the appearance of this ordered pair during a parse indicates a syntax
error, i.e., the input string is not a member of the language.

For a practical language, the number n of symbols in the vocabu-
lary is very large (ALGOL has n ~ 220, ~ 110 symbols in VT and ~ 110
symbols in V - VT) . A precedence matrix then has n2 elements. To

compact the precedence information, Floyd' introduced "precedence func-

tions". -

VII-8.3 Use of Precedence Functions

We try to find two functions, £ and g, such that for any ordered

symbol pair (S., S):
1 J

f(Si) = g(SJ,) ©s, = sJ.
<
f(Si) < g(Sj) o8, sJ.
f >
(si) > g(Sj) o8, sj

At least 2 functions are required since 2 symbols Si and %f may be
related S.{48; and S.B §, where Ry, Rge{A, £, <, >} and Ry £ R,
(see Example 1). If f and g exist, then only 2n elements are nec-

cessary to store the precedence relations and the relations can be found

much faster.

141

Example 5

E~-E'

E -7l +7|E -1

T~T

/

F=F

Fr - P|F % p

P~ Al(E)

' - Flr x FlT' /¥

VT= CAa, (;); *, X, /’ +, -3
V-VT=[E, E', T, T', F, F', P}

U c(u) R(U)

E |E"TT ' FFr PA (| E TT FF PA)
E' |E'" T T FF' PA (TT'FF'PA)
T T'"FF'PA (T'" FF'PA)
1! ' FF P A (FF'PA)
F F' P A (F'PA)
F' F' P (PA)
P A (A)

142

Precedence Matrix

gl|8 87 6 6 5 4k L4 4k 3 2 2 2 1 1
R (a p* F F / X T'T - + E')E
1
8) > 3 4 3 > >
8 A 1> > > > > >
TPl > 3 3 > > E
2
T* | < <= |
6 F : z > > > > >
]
6 F | V> > > > >
- T T, T T 7T |
5/ < < < = |
5 X < < < = |
|
T - > » >
- |
Lo ' (> > >
bl I |
3- < < < < < < = ,
34+ |l < < < < < 2 [
|
: . [
2E I
I =
1E Lo .
l(<l G <L < < < & <y =

The functions exist when we can permute the rows and columns of the pre-
cedence matrix so that it is divided into 3 areas, only one relation

holding per area. This has been done in the above example. If the ma-

trix division is of the form [:2;%&?] , f and g function values

can be assigned starting from the bottom left corner of the array. An
algorithm for determining f and g, if they exist, 1is published in
the Algorithm section of the Communications of the ACM.9

Unfortunately, f and g do not always exist; however, it is

often possible to make minor changes to the syntax that allow £ and

g to be found.

143

Example 6
T - PB}
P~ {
B~ xx|xT|Tx|TT

This grammar generates list structures,

e.g., {{xx}x]

vl £ | R)
- T | P{ }

P { {

B | x7{P | xT}

Precedence Matrix

{ pPx T } B
Tl > > > >
Jl> » » > >
X | < < :5 -: >
T < <! =D

_——l——— —
Pl< < < < =
‘ .
B | =

The entry designated by * is empty; therefore, the f and g functions
may be found. However, 1if we add T - {} to the production in order
to allow the empty list, the relation {é} holds and * becomes = .
f and g then do not exist even though the syntax is still a prece-
dence syntax. If we change the first rule to T = PB}|P}, the empty

string is allowed but f and g can be found.

144

A comparison of these results with Dijkstra's priority methods dis-

cussed in the last chapter leads to the following important connection:

The f and g functions for precedence grammars are

exactly equivalent to the stack and compare priorities used

for the transformation of expressions into reverse Polish

form.
The contribution here is a formalization and extension of the early
priority ideas so that the following compilation problems can be handled
by general algorithms:

1. determining whether a given syntax is a precedence syntax

2. finding the precedence relations

3. computing the £ and g functions, if they exist

4. parsing strings in a precedence language in an efficient manner.

An open problem is how to transform a syntax so that it is a prece-
dence grammar. As shown after example 4, it is presently necessary to

add some "artificial" productions to a grammar to make it a precedence

grammar.

VII-8.4 Ambiguities
An unambiquous syntax is a phrase structure syntax (the ordered

quadruple Q& = (v, VT’ 63, S)) with the property that for every string

xeL(d) there exists only one canonical parse.

145

Example 7

Z = UC|PV

U = Al3

Vv = BC

P'A

ABC ABC

—_ - —
U PV

— —

Z Z

ABC has 2 canonical parses and is therefore ambiguous. A local ambi-

guity occurs where a substring may have more than one canonical parse:

Example 8
Z — UC|PB
U~ AB
P'A

ABC
—_—

U
W

Z

)
(@}

Vv

i.e., local ambiquities lead to backtracking.

Theorem: The parsing algorithm described in this section yields the
canonical form of the parse for any sentence of a precedence
phrase structure language if there exist no two syntactic rules
with the same right part. Furthermore, this canonical parse

is unique.

Proof:

This theorem is proven, if it can be shown that in any sentence its
directly reducible parts are disjoint. Then the algorithm, proceeding

strictly from left to right, produces the canonical parse, which 1is

146

unique, because no reducible substring can apply to more than one
syntactical rule.

The proof that all directly reducible substrings are disjoint is
achieved indirectly: Suppose that the string Sl e Sn contain two

directly reducible substrings §; . . . Sk (a.) and S. FEERE Sl (b.),

where 1 < i < j<k<!<n . Then because of a. it follows from the

S. and S, ®» S

definition of the precedence relations that Sj—1.= g K K+1’

and because of b. Sj—J_< Sj and Sk = Sir1 Therefore this sentence
cannot belong to a precedence grammar.

Since in particular the left most reducible substring is unique,
the syntactic rule--to be applied is unique. Because the new sentence
again belongs to the precedence language, the next reduction is unique

again. It can be shown by induction, that therefore the entire parse

must be unique.

By associating semantic rules with the syntactical rules of a pre-

cedence phrase structure language, the meaning is also unambiguous.

VII-9. Association of Semantics with Syntax

VII-9.1 Mechanism for Expressing Semantics

An environment € 1is a set of variables whose values define the

meaning of a sentence. 7 is a set of interpretation rules each of which

define an action (or a sequence of actions) involving the variables in

€ . A phrase structure programming language £P(V, VT,CQ, S, 7, &) is
a phrase structure language <£(V, VT,@, S) where 7 is a set of inter-—
pretation rules in one-to-one correspondence with the elements of & and

€ is an environment for the elements of T . The meaning m of sentence

147

xe£P is the effect of the execution of the sequence of interpretation

rules tl, t n

RTEY tn on the environment €, where Pi» Pyreees P

is a parse of x into S and.tﬁ' corresponds to Py for all i
The fact that the precedence grammar parsing algorithm never back-

tracks allows us to attach semantic rules to each syntactical unit or

reduction. It will therefore be assumed that we are dealing with pre-

cedence grammars. Corresponding to the symbol stack S used in the

algorithm, we maintain a value stack V . At the same time the syntac-
tical reduction U — S ;o Si is made, a similar semantic "reduction"
or rule is obeyed for the elements VU cae Vi in the value stack.
Example 1 -
Syntactic Rules Semantic Rules
S AN :=E \' - V.
v, i
J
E~TIE + T Alv, = v, + vV
J J 1
T = F|T X F Alv, v, x v,
J J 1
....>\ - -
F-NE) v, VV_IVJ. Vi
dJ
Vi represents the value associated with the stack symbol Si . The
semantic rule Vj - Vj + V.I corresponding to E ®* E + T can also be
written "value(E) * wvalue(E) + value(T)". The first way makes explicit
reference to the parsing algorithm block "reduce Sj .. .S;’. In the
rule Vj - Vv' V. originally holds the address of the particular vari-

able used. A 1s a representative for all possible variable identifiers.

148

Example 1 gives semantic rules for an interpreter, The next example

shows how semantic rules for a compiler for a stack machine may be asso-

ciated with the same syntax as above.

Example 2

D The numbers indicate

Syntax Semantics
X AN:=E store A
E—-T A
E~E+ T add
T=F A
T'"TXF multiply
F- A load A
= F -~ (E) A
A :=B t C
A 4-3 9|
Moy 70 10 1y
F F F
My 8 J
T T
51 1Yy J
E
12 _ |
1 £]
S

Obeying the semantic

rules, the statement compiles into:

load B

load C
load D

multiply
add

store A

Reduction Step

3

7
10

11
12

13

the order of the re-

ductions.

In these examples, it has been assumed that the specific variable
names and values are available. (vv of the interpreter, A in the

J
compiler.) We now show how this may be accomplished,

VII-9.2 Handling of Declarations

A common way of putting declaration lists (DL) and statement

lists (SL) 1into the syntax is illustrated by the following simple

example:
Example 3
P - begin DL; SL end
~ DL - D|DL, D
SL - s|sL, s

begin D, D, D; S end
-

1
T, [W

The difficulty here is that when the parse reaches the statement S,
the stack contains "begin DL;". What is needed is to retain the
declarations D in the stack so the semantic rules for S may refer
to them for addresses or values of specific variables.
Example b4

P oReBin e n d

PB' - D; PB’|SL

SL - s|sI, s
PB - PB'

(PB' must be included to make the syntax a precedence grammar.)

150

Syntax and semantics for declarations D and variables V are:

Syntax Semantics
D - real I Vj « {a, 1}
VoI Search Stack for I

 (undefined) is the initial wvalue of I

After reducing to D, the value stack contains a value (@) and a name;
when the statements S are reduced, they may refer to the values and
names in the stack. In a compiler, the declarations would produce

"reserve storage" instructions.

VII-9.3 Conditional Statements and Expressions
For a first try, the syntax for a condition statement is defined

in an obvious way:

(conditional statement) ::= if (Boolean expression) then

(statement 1) else
(statement 2)

The reduction to (conditional statement) occurs when the symbol stack

of the parse contains:
if
(Boolean expression)
then
(statement 1)
else
(statement 2) *“ top of stack

151

If code is being generated by the semantic rules, it is then too late
to compile "jumps" around the statements. The semantic rules should
compile:

code for (Booleaﬂ expression)
conditional jump (CJ

code for (statement 1)
unconditional jump (UJ

code for (statement 2)

The ALGOL definition of conditional statement is:

(conditional statement) ::= (if clause)(statement l>
else (statement 2)

(if clause) ::= if (Boolean expression) then

Here, we may attach the semantic rule for (if clause):

Generate CJ Q
Set V((if clause)) = Pointer to Generated code CJ 9 .

This will take care of the first part of the conditional statement.
Unfortunately, the else is not reduced in time for a UJ; (statement 2)
has been reduced and its semantics obeyed before the entire (conditional

statement) with the else is recognized.

To allow the syntax to correspond with the desired semantics and

vice versa, the conditional statement is further divided:

152

::= (if clause){true part)

(conditional statement)
(statement 2)

(1f clause) = if (Boolean expression) then
{true part) = (statement 1) else

The desired meaning can then be attached; for example,

Pointer to Generated code CJ

V({if clause))

V({true part))
V({conditional statement))

Pointer to Generated code UJ €
= Insert Jump addresses
in CJ and UJ commands

Conditional expressions can be treated in a similar manner.

VII-9.4 GO TO and lLabelled Statements

It is difficult to give a clean set of interpretation rules for the

GO TO statement, GO TO (label) for an interpreter since the (label)

might not have a value at that point. However, a compiler can use:

- Semantics (GO TO (label)) = Search Symbol Table for (label)
and emit UJ instruction

"Chaining" (see Chapter II-k on One-Pass Assembly) or indirect addressing

can be used to solve the forward reference problem.

The ALGOL definition of (basic statement) is:

:= (label) : (basic statement)

(basic statement)

153

A problem similar to that in conditional statements exists here;

(basic statement) must be recognized and compiled before the label

definition "(label) :" is detected. The syntax is therefore changed

to:

(basic statement) ::= (label definition){basic statement)

(label definition) ::= (label)

The location counter can then be assigned to the (label) before the

(basic statement) following it is compiled:

-

Semantics ((label definition)) = Enter (label) together with
the location counter into the

Symbol Table.

VII-9.5 Constants

Conversion of catenated symbols representing constants to their

numerical values can be handled by rules of the following type:

Syntax Semantics
(integer) ::= <digit)| A
(integer)(digit Vj < 10 X Vj * V.
(digit) ::= 0| v, o
1] v, "1
J 3
vV, !
9 j 9

154

The important point to note in the preceding examples is that it
is both desirable and feasible to explicitly exhibit the natural rela-
tionship that exists between the structure and the meaning of a program-
ming language. An unambiguous syntax then guarantees that every sentence
(program) in the language has one and only one well-defined meaning.
Precedence grammars offer a powerful framework in which to design, ex-
periment with, and implement programming languages. The reader should
consult reference 3 for an example of a language more general than ALGOL

that has been implemented using these methods.

VII-10. References
1. Taylor, W., Turner, L., Waychoff, R., A syntactical Chart of ALGOL 60.

Comm. Acv 14,9 (Sept. 1961) 393.

2. Anderson, C., An Introduction to ALGOL 60.

3, Wirth, N., Weber H., EULER - A Generalization of ALGOL, and its
Formal Definition: Part I, Part II. Comm. ACM, Vol. 9, pp. 13-25,

89-99, (Jan/Feb. 1966).

4, Chomsky, N,, Schutzenberger, M. P., The Algebraic Theory of Context-

- Free Languates. Computer Programming and Formal Systems, North-

Holland, Amsterdam, 1963.

5. Irons, E. T., Structural Connections in Formal Languages. Comm.

ACM, Vol. 7,pp. 67-71 (Feb. 1964).

6. Leavenworth, B. M., FORTRAN IV as a Syntax Language. Comm. ACM,

Vol.7, pp.72-80 (Feb. 1964).

155

I

Eichel, J., Paul, M., Bauer, F. L., Samelson, K., A Syntax-controlled

Generator of Formal Language Processors. Comm. ACM, Vol. 6, pp. L451-

455 (Aug. 1963).

8.Floyd, R. W., Syntactic Analysis and Operator Precedence. J. ACM,

vol. 10, pp. 316-333 (July, 1963).

9. Wirth, N., Find Precedence Functions. Algorithm 265.

8, 10 (Oct. 1965) 604-605.

Comma ACM,

Additional References

1. Brooker, R. A., Morris, D., A General Translation Program for Phrase

Structure Languages. J. ACM, Vol.9,pp. 1-10 (Jan. 1962).

2. Knuth, D. E., On the Translation of Languages from Left to Right.

Information and Control, (1965).

5. Irons, E. T., The Structure and Use of the Syntax-Directed Compiler.

Annual Review of Automatic Programming. Vol. 3 pp. 207-227 (1963).

4.Floyd, R. W., The Syntax of Programming Languages - A Survey. IEEE

Trans on EC, Vol. EC13, pp.246-353 (August, 1964).

VII-11. ©Problems

CS 236a

Feb. 24, 1966
Problem Set III

N. Wirth
1. Given is the following set Gﬁ_of productions:
S »A
A - B|BCB
B - D|E

156

Which are the sets of terminal and nonterminal symbols?

Which is the language £la&f V{,é?, g)?

2. Add to the set é;i the production
B~ FBG

obtaining 6%2. Which are the symbol se[g

T T T
the language £,(V,, Vg,éaEL S)2

T
‘V ' .
o and.e, and which 1s
Use the notation X° for the n-fold concatenation of the symbol X,

and indicate which values n may assume.

3. Instead of B :'FBG, add the production
B = FAG
to 691, thus obtaining 633. (and V5)'
Is the string
FFEGGCFDG
a sentence of £3(V3’ VT, @5: S)?
Is it also a sentence of £2 ?
Does 33 differ from £2 ?

If so, construct a string which belongs to one language (indicate which)

but not to the other; if not, show that they are equal.

L, Find a grammar which defines a language £ such that a string con-
sisting of any even number of B's with any number of A's between

two consecutive B's, 1is a sentence of the language.

B. Find a grammar defining a language whose sentences have the form

xyiz? (n =1,2,...)

157

Starting out at "BEGIN" you choose a path according to the arrows in
the above notework, each time appending the encountered letter to a
letter string, until you reach the "END" point.

Define the set of all strings you can construct in this way, and

call them a language. Which is this language? Use the same notation

as in problem 2.

T. Construct a set of productions which generate the language of prob-
lem 6. You should not need to introduce more than 6 or 7 nonterminal

symbols.

8, Consider an arithmetic expression to be defined by the following

syntax:

(expression) - (term)l(expression) + (term)l(expression) - (term)
(term) ~ (factor)|(term) X (factor)|(term) / (factor)

(factor) "(primary)l(factor) * (primary)

{primary) = (letter)|({expression))

(Letter) ~ AlB|c|p|E|F|e|u|z|s|k|u|m|x]o]|a|z]s|T|ulv]w|x|¥|2
Which are the values of the priority functions used in the "railway

shunting yard" algorithm for producing a polish postfix notation of

such an expression.

158

Stack Compare
Symbol priority priority

~ X ™~ X

9. Write in B5500 ALGOL and test on the computer a program performing
the following taské;
a. Read from a card an expression as defined in problem 8. (The
correctness of the input need not be checked).
b. Print this expression.
c. Use the "railway shunting yard" algorithm to produce polish
postfix notation of the read expression, and print it on one line.

d. From the result of step c., compile a sequence of "machine instruc-

tions" representing the read expression, and print it (one instruction
per line). The underlying machine is supposed to be a multi-register
computer, where all its 9registers are alike. The form of those

printed machine instructions shall be

(result) *- (operand)(operator><operand>

where
(operator) ::= +|-|x|/|*
(result) ::= (register)
(operand) ::= (letter>|(register>
(register) ::= 1]2|3|4]|5|6]7]|8|9

159

The sequence shall be such that the result is left in register 1.
Does your compiled code represent the minimum number of instructions
necessary to evaluate the expression, and is your code such that the
minimum number of registers is used necessary to evaluate the expres-
sions on this machine? Use the following expression as test cases:

AXB+C

A+BXC-D

AXB+C-D

AX(B+C)/D*E
A+B-CXD/ F¥F

((AXB+C)XD+E) XF+G
a+ (B (C+(D+ (B+F))))

10. Is the syntax of problem 2a (simple) precedence syntax? The one
of problem 3? For both syntaxes, construct the sets of leftmost and

rightmost symbols and the matrix of precedence relations.

11. Replace in the syntax of problem 2 the symbol G by the symbol F
Is the resulting syntax (and language) unambiguous? Explain. Make

the same replacement in the syntax of problem 3,and given the answer

to the same question.

160

Problem Set III: Solution to Problem 9

BEGIN COMMENT €S 236, NeWIRTHe EXAMPLE OF AN EXPRESSION COMPILER}

L1

INTEGER 1sJsKsUsVsXsR} i
INTEGER ARRAY A,B(0831), 5C029)» F»G[O863])3
FORMAT FO (32A1))

LABEL L1,L2}
FEm+m) ¢ 33 FL"=") t 3J FU"x") ¢ 5 3 FL"/") ¢ 53 FI("+"] ¢ 73

GL™+m) ¢ 23 GI"=") €23 GI"x"] t 4 3 GL"/") ¢ 41 GI("*"]) ¢ 6}
FC®(»*) ¢ 13 GI"(") ¢ 81 GIL™)") ¢ 1 3 GL™ "] ¢ 1}

READ (FO0» FOR I1«¢O0STEP 1 UNTIL31 DO ALI)) (L2))

WRITE (FO» FOR I1¢0STEP{UNTIL3t DO AL11)}

COMMENT PART 18B¢ POLISH POSTFIX (A) J

J¢ U ¢€KeXeS[0)e O
WHILE SIK) # "™ " DO
BEGIN X ¢ A[LI)} 1 ¢ 1+13
IF GICX) = 0 THEN
BEGIN BLJ) ¢ X3 J ¢ J+}
END ELSE
BEGIN WHILE FISI{K1}>»G[(X) DO
BEGIN B{Jle S(KI} J ¢ J#l} K ¢ K=
END 3
IF FISCK]I) sGEXJ THEN K ¢ K-1 ELSE
BEGINK ¢ K+1} S(Kle X
END
END
END 3
BLJ) ¢ " "}
WRITE (FO»FOR | «0OSTEP | UNTIL J D00 BCI))}

COMMENT PART2% GENERATE MACHINE INSTRUCTION SEQUENCE)

L2¢

J ¢ K €R e 0}
VHILE 8{Jl1 # " " DO
BEGIN Xe& B(J)} J ¢ J+1}
I FGEX)=s O THEN
BEGIN K ¢ K+1J) S[K)e X
END ELSE
BEGIN U t SIKI} IF U < 10 THEN R ¢ R=1} Ke¢ K=1}
Ve SIK13 IF V € 10 THEN R ¢ R-1; StKle¢ R ¢ R+t}
WHITE (<X32A1s" ¢",3¢X1sA1)>» RsVsXsU)
END
END
WRITE CL(DBLI)) GO T [1)

END

161

A+BxC=0
ABCx+D~
{1 ¢

1 e
{1 ¢

8 x ¢
A +1
D

-

AxB=CxD
ABXCDx=

1 ¢ A
2 C
| 1

1 X X
SR B s]

*
-

AX(B+C)/D*E
ABC+XNE*/
1 « 8B

-
’s
*

MO

+
X
*
/

- e
o-0>

A+B=CxN/EwF
AR+COXEF*/~

((AXB+CIXD+EIxF+5
ARXC+DXE+FXG+

{1 ¢« A x B

{1 « 1 ¢+
¢« 1 x
&
(s

¢
0
E
F
G

— . A s
e n
+ x 4+

-

A+(B+(C+(D+(E+F)I)I))

ARCDEF+++++4
1 ¢ +

+ r 1 2
- PO OMm
+ + 4+

— pen g —
" h s — T
.

162

Problem Set A C‘Si 236Db
N. Wirth April, 1965

Devise grammars G(V,T,P,S) which generate strings according to the
following s§e01flcatlons

(n), (n

a. a' ‘b , where X(n) signifies a string of n x's for arbitrary n.

b. strings consisting of a's and b's, such that there is always an
even number of b's in the string, and there are either 0 or more
than 1 a's between any two b's.

5 (n)(n) (n)

c.

Devise a set of ALGOL procedures which analyse strings generated by
the following grammar:

o=

!

norowen
o
g
Qo
o

(@]

QWW > wm

: cAc
C e d

Assume the presence of a Boolean procedure "issymbol(®x*)", which tests
the next symbol of the input string. Choose the names of the procedures
in correspondence with the nonterminal symbols of the vocabulary.

Consider the grammars given below. Determine whether they are precedence
grammars. If so, indicate the precedence relations between symbols and
find the precedence functions f and g; if not, indicate the symbol pairs
which do not have a unique procedence relationship. Also, list the sets
of leftmost and rightmost symbols L and R.

a S::=
E =
E = FcF
F =X
F ::= GEz
F = Gz
G ::= GE,
G 1= a
b. S ::= A
A =B
A= x,A
B = B,y
B .. =v

163

Froblem Set A, Solutions c. s. 236b

May, 1965
N. Wirth
la. S - A
A - ahb |A
1b. s 3U|av| va| ava
UV | \
VoW | bW
W-oA IA
A-Aa | aa
lc. S—A
A - abBAc | C
bBa — abB .
bBC - Cb
a 3 &
2. Boolean procedure S; S := A;

Boolean procedure A;
A := if B then
(if is symbol (“a’) then A else true) else false;
Boolean procedure B; B
B := if C then
(if is symbol (‘b?) then B else true) else false;
Boolean procedure C;
C if is symbol (‘e?) then
(if A ¢h is symbol (fc?) else false) else is symbol (‘d’);

il

164

Problem Set A, Solutions = C.S. 236b

3a.

3b.

X R

S EF Gx a E F x 2
E F Gx a F x z
F G a X Z
G G y @

S E F G C X a,
S
) = =
F = > >
G = < < < =
c = < <
b4 > > >
z > > >
a > > > > >
, > > > > >

S E F G c b e a,
f 1 2 1 2 3 4
g 1 2 3 2 3 1

G3a is a precedence grammar.

Z

R

S ABxy
A Bxy
By

ABy
ABy

G3b is not a precedence grammar, since

s <Y

and,;y

165

VIII. ALGOL COMPILATION

VIII-1. The Problems of Analvsis and Svnthesis

The tasks of a compiler can be divided into two distinct phases--
the analysis of the source program and the synthesis of an equivalent
object language program. It was argued in the last chapter that these
phases may occur in parallel by obeying semantic rules as the input is
reduced to its syntactic components. Some production compilers for
ALGOL generate object code as the source program structure is analyzed'
but most perform several analysis passes first; the analysis passes
check for errors and transform the input into a more convenient form.
For example,Natr's GEIR ALGOL compiler2 consists of 9 passes—-the first

6 analyze the input and the last 3 synthesize object code:

GEIR ALGOL COMPILER

Pass Task
L. Check and convert input to ALGOL symbols.
2. Associate each identifier with an integer.
3. Analyze and Check delimiter structure.
4. Collect declarations and specifications.

Rearrange procedure calls.
5. Allocate storage for variables.
6. Check operand types. Convert strings to

reverse Polish notation.

- Generate machine instructions for expressions.
8. Final program addressing and drum allocation.
9. Rearrange drum segments.

166

Much of the complexity (and challenge) in ALGOL compilers lies in
the allocation of storage for handling bl<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>