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1.  Introduction and Summary.

To minimize a smooth real-valued function f(x) of n real vari-
ables, the optimum s-gradient method has been described by Birman [3],
Faddeev and Faddeeva [5], Khabaza [8], and others. We here consider the
model function f(x) = %XTAX, where A is a positive definite matrix.
Then each iterate X, is equal to its error. The convergence of the
method was proved long ago—-see (2.14)--and the question now under study
is to find the asymptotic manner in which the iterates X, - 6, the null
vector.

For s = 1 it was conjectured by Forsythe and Motzkin [7] and

proved by Akaike [l]--see (4.12)--that the iterates x, converge to 6

k
by asymptotically alternating between two directions--the "cage" of
Stiefel [10]. Thus the convergence of f(xk)'to 0 for s = 1 is

known to be linear, and no faster than linear, for any start x. that

0
;_ is not an eigenvector. Moreover, if coordinates are chosen so that A
‘ is a diagonal matrix, then the two asymptotic directions have only two
- nonzero components. Finally, any direction with only two nonzero com-
ponents 1is invariant under two steps of the optimum l-gradient method.
= In the present paper the author has extended most of the known
- results to arbitrary s > 1 . - The main result (3.8) shows that the
directions of the even iterates Xok have as a limit set a continuum
(- R (which might be a single direction). Moreover, each direction of R
is invariant under two steps of the optimum s-gradient method. Let A
e be a diagonal matrix. It is then shown in (3.10) that in the optimum
_ s-gradient process f(xk) converges to 0 no faster than linearly for

any initial vector X with at least s + 1 nonzero components.
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Theorem (4.7) shows that all vectors of R have between s + 1 and 2s

nonzero coordinates, inclusive, Theorem (4.8) says that any direction

with s + 1 nonzero components is invariant under two steps of the method,

for any s . Examples are shown in Sec. 4 of directions with this invari-
ance and with as many as 2s nonzero components,

Experimental evidence from computer runs for s = 2 suggests
strongly that R is always a single point, just it has been proved to
be for s = 1. The author conjectures without proof that R is a
single point for all s, so that. Xy ® 1in an alternating manner
completely analogous to the case with s =1,

The author is aware that for minimizing quadratic functions f (x)
in practice, the conjugate-gradient method of Hestenes and Stiefel (see
[5]) may usually be expected to be superior to the optimum s-gradient
methods, although Khabaza [8] claims superiority for the 3-gradient
method in some cases. For nonquadratic functions f(x) the relative
merits of the methods are less clear, The purpose of the present inves-
tigation was the intellectual one of trying to understand the asymptotic
behavior of the various gradient methods for quadratic functions, The

author expects that this information may have some useful application

-to the minimization of general smooth functions f(x) .
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2. The Optimum s-gradient Method for Quadratic Functions.

Let f(x) be real for all x in real euclidean n-space En . Let
f(x) assume a minimum value for a unique x, which can be taken as 6,
the origin of En’ without loss of generality in the analysis. The
advantage of using 6 is that the iterate Xy is then also its own

error x, -0 as a minimizing vector. We wish to analyze certain

k
asymptotic properties of a class of optimum gradient methods for finding

the minimum of f(x)

The simplest f to analyze is the quadratic function
T
(2.1) f(x) = zx Ax,

where A is a symmetric, positive definite, nonderogatory matrix of
order n . Moreover, (2.1) represents the local behavior at 6 of

f(x) - £(0) for most sufficiently smooth functions f . The author
conjectures that the theorems proved below for a quadratic function
apply essentially also to any sufficiently smooth function £ which

is locally like (2.1). In this paper only quadratic functions will be
studied. See Daniel [4] for an investigation comparing gradient methods
for quadratic and nonquadratic-functions in Hilbert space.,

In the various gradient methods one starts with an arbitrary
vector X0 and computes a sequence {xk} converging to 8 . We
assume all arithmetic to be exact, and round-off error is not considered
in this paper.

Let 2z, = grad fbﬂg = Ax, denote the gradient of f at x

k k
In the optimum l-gradient method [5], Xphl is taken to be the unique

.
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point on the line Ll = [xk + Axk : - < o< ®}  for which Fla) =

+ OAx i ini . i i
f(xk k) 1S a minimum (The existence and uniqueness of Xk+l

result from the easily proved fact that F(a) is a quadratic function

of a with F'(@) > 0 .) The 1line L, through x_ is called the

line of steepest descent of f(x) at Xy

For x € L, grad f(x) = A(xk + a Axk) = Axk + a A2xk= We there-

fore consider the 2-dimensional plane through X

2
Ax. + oA
k

L2={Xk+al Ax e <o < ®, e <oy < ow),

and call it the 2-plane of steepest descent of £ (x) at X

By extension, for any integer s (1 < s <n) let

S .
1 .
Lo={x, + 2 o A%, :-2<aq <= (all i )}
i=1
be the s-dimensional plane of steepest descent of f(x) at x, - Since

. n
A is not derogatory, Axk, cosy A X, are linearly independent, provided

X is a vector whose minimum polynomial is of degree n . 1In that case

0

Ln is the whole space g .

In the optimum s-gradient method [5] for minimizing the quadratic

function f of (2.1), the point x is defined to be the unique point

k+1
y in LS for which f(y) is a minimum (k = 0, 1, ...). (Again
existence and uniqueness follow from the positive definiteness of A .)
It is the optimum s-gradient methods that we shall analyze in this paper.

We now give two representations of the minimizing {Oti] which are

useful in the analysis. Actual computing algorithms for the optimum



s-gradient method often proceed differently, and find X1 by taking
s steps of the conjugate gradient method, starting from X, See [5].

We concentrate on the gradients Zy = Axk

First representation

Let
B S
xk+l—xk+7lek+ .o +7SAxk .
Then the gradient of f(x) at Xppp 18
s
. = + L .
(2.2) ey T P T A% 7k 2y
Since X1 minimizes f(y) for y € Ls’ the vector 201 must be
orthogonal to LS . For this it is necessary and sufficient that Zial
be orthogonal to Zys Azk, e e As“lzk . Then AT 7, are deter-

mined by the s conditions

S
(Zk’ Zk+l) = (Zk’ zk) n 7l(zk, Azk) + ..+ 7S(zk, A Zk) =0
s-1 s-1 s-1 s=-1 S
(A 2y Zk+l) - (a 2y Zk) + ’)’l(A Zk’ Azk) + . . .+ 7S(A 22 A Zk) =0 -
T
Here (u, v) = uv + VTu denotes the inner product of two column vectors.

. T
since (aPz, A%) = (z, Ap+qz) =z Ap+q2, we may write the above equations

as
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T T T s
Zye 2y 4 7lzkAzk+ +7SZkAzk =0
T T 2 s+l
ZkAZk+ 7lzkAzk+ ..+7Sszl zk—O
(2.3) < e e e
T s-1 T,s T, 2s-1
ZkA Zk+7leAZk+°"37sZkA zk—O
"
As long as z,, Az, . . . . As_lzk are linearly independent, the
equations (2.3) determine the minimizing 712 - - -+ - 7, uniquely.

Second representation

S s-1
Let qs(t) =t + B 4t * ...+ By denote any monic polynomial

of degree s, with B # 0 . Then

s-1
qS(A)zk =A%z, B AT Tz F e BoZy?
and
)4 qs(A)Zk _ L 25, + Bs-l As-l . .
(2.4) _quBO Kk BO 2t st

Comparing (2.4) with (2.2), we see that we can write

(2.5) p_(4)
.5 iyl = PTS o7 2
where p, (t) 1s the particular polynomial
- - ¥
(2.6) p,(t)=ts+x—s—-];tSl ,,,+—lt+—]:-.
’s s s
Now p, (t) is a certain orthogonal polynomial. Without loss of

generality assume A to be the diagonal matrix



A
1
O
2o 7 A= diag(?xl, Ce . xn) = - s
O x
n
where 0 < 7\1J_< KOZ ... < K‘n are its eigenvalues (distinct because A
is not derogatory).
(2.8) Definition. 1In the coordinate system corresponding to (2.7), let

T .
the nonzero vector z be (Cl, ceey Cn) . Let orthogonality of two

polynomials p(t), qg(t) (relative to z ) be defined by

2 2
{(p(t), q(t)) = o p(A)a(h )8 = 0.

i=1
(2.9) Definition. Let Ps(t; z) = £5 + «+«« be the unique monic poly-
nomial of degree s that, relative to z, is orthogonal in t1e sense
of (2.8) to all polynomials of degree < s-1.
Note that Ps(t; z) depends only on the direction of z, and not

its magnitude. I.e., .Ps(t; z) = Ps(t; az), for all real a # 0

(2.10) Theorem. The polynomial p, (t) of (2.5),(2.6) is. the_ortho-

gondlynomial Ps(t;zk) defined in (2.9).
We shall not prove (2.10). For a related proof see, for example,
Pp. 349 of [5]. The basic reason for (2.10) is the isomorphism, well

expounded by Stiefel [11], between orthogonality of the polynomials
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p(t), d(t) in the sense of (2.8) and geometric orthogonality of the

vectors p(A)z, g(A)z in E, . That is,
(p(t), alt)) = (p(A)z, q(a)z)

Hence the conditions (2.3) asserting the orthogonality of the vector

-1
AS z are

2.
Zoy1 = PS(A, Zk) Z, / PS(O, zk) to z,, Az, ATz, ..o, K

equivalently asserting the orthogonality of the polynomial Ps(t; Zk)
. 2 s-1
to the polynomials 1, t,t, ..., t .

In summary 2z is uniquely determined from Zk by the formula

k+1

(2.11) Z _wz
) k+l—P(O'z)k.
s 7 Tk
Moreover,
P (A5 z,)

(2.12) xk+l _ EZYB?_EZY Xk.

Relation (2.12) is the basis for a proof by Birman[3] that in the
optimum s-gradient method f (xk) converges to 0 linearly, or faster.

To be precise, let ¢ = ()\n + }‘l) (kn - A . Let Ts(t) denote the

1)
Chebyshev polynomial on [-1, 1], normalized so that max_; . . < l|Ts(t) | _

1. Let

A+ N, - 2u
n 1
Q (u) = T |—%

n-}\l

Then Q (0) = T_(0) > 1, and [Q (t)| < 1, for o, < t <A . It is
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known that

_ (o +\/02-l)S + (o - \/og—l)s > 1.

Ts(o) 2

Birman's proof goes as follows:

PS(A; Zk)

£(x4y) = T PSZO; zk5 X

A
f QS() x because P (t; z.) is the
QSiOi k| ! s’ 7k

nomial that minimizes f(x

IN

1 T
=7 %, QS(A) A Q (a) X,

[a, (017

1 = 2 (k) .2
- — Ao (0 17 (8]
[Q (O)]2 ggl i~ sV i i
(2.13) °

I

1 (k) 12
— L v e, 9
la,(0)1% 31 7%

IN

Hence

(2.14) /f(xk5 < ———Jh—--/fixoi ,

1 ()]

proving the convergence of f(xk)'to 0 to be linear or faster.

(2.15) Definition. For «@ =10, + 1, + 2, ..., let the moments

of z = (¢ cey Cn)T be defined by

l’

poly-

k+l)
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(2.16) Theorem. Fix s > 1 . Except for a constant factor, the ortho-

gonal polynomial Ps(t; Z) of (2.9) can be expressed by the determinant

Mg By ser Hgg ]
Wy By o By t
(2.17) Ps(t; z) = e e e e .
tS
g |'ls+l u2s-l

The proof is left to the reader.
In the next theorem we give an explicit representation for the ratio
f(xk+l)/(f (xk) in terms of the moments of 2y

(2.18) Theorem. Fix s > 1 . Let x, be any vector in the optimum

s-gradient method, and _let p, be the moments defined by (2.15) for

the gradient vector Zk = Axk . Then

Mol Mo M oorr Mg
Po  MiMp cer Mg

° . o ° ° . °

£(x4) Psop Mg Bein Hos_3
£x,) koo M,

where M ; 4s the .minor determinant of in the above determinant:

10



Wy By LW

Mo l-‘-5 RS

-1
Mg us+l .o L'L2S-l
T T -1 . .
Proof. We have 2f(xk) = x Ax, =z A7z =u, . Tosimplify
. T
the notation, let z = (Ql, e Cn) and 2, _ (Cl', — Cn')
Then
P (>\ 5 2 )
¢ _ _S8 i "k
i T P (03 Z, Ci’ by (2.11)
P (A5 2y) :
S, Y
-1
where we use the representation (2.17) for Ps(t; zk) . Then

T -1 1 1.2
(2.19) 2f(x,,;) =2, A7z, 1775 g [P.(As5 2 )] X"gi
. & " Z)Ps(x,z)§2
2 . > %k A i
M_l i= i

“Now Ps(t; Zk) is orthogonal-in the sense of (2.8) to all polynomials

of degree < s -1 . Hence the only term of Ps()‘i; zk)/?\i that con-
tributes anything nonzero to the sum (2.19) is the term (-1)SM_1/)\:.L

Hence

s n

LY (s 2) 62,

of (x, ) =
k+1 M,

11
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2
- M1 H2 e 8y
] s n
(a1 Z
. . M Qe | st
- -1 i=1
Y Cg Als-].
HoMsir o on Mogo1 24 My
-
Ho 1 He-1 M1
- s S Mg o
G
M—l
.
Ho Happ oo Mogy Mg

.

Dividing 2f(xk+l) by Ef(xk) = p_, and rearranging the columns of the
L_ last determinant proves theorem (2.18).
‘. —~ (2.20) Corollary. In the notation of theorem (2.18), for s = 1,
o

2
Flrg) ey - ug
1, If n =2 and s = 1, then
L
2,2 2
) £l 61650 = 2) 2 2
(2.22) ) - 5 B 5 s-=c =c (xk) .
K (BT ) (M ETRAED)
Proof. The second expression comes from the first by using (2.15)
and (2.21), where Z, = (Cl’ CE) T, with some algebraic manipulation.
(2.23) Corollary. The expression (2.22) for f(xk+l)/f(xk) is unchanged,
T .
if (¢, t,)" is changed to (¢, -t,)"
1’ =2 —_— — 72 1

-

’ 12



The inequality (2.13) yields an upper bound for the expression in
X (2.18) . We may state this result in the form of the following inequality,
L
3 valid for s=1,2, . . ..
e
By He M m
-1 "0 "1 cew8-1
“’lomz IJ-S
Sl p’o “‘lu2 ".p‘s 3 3 ) 1
(2.24) C e b_q X < . 5
— Hg or Hog p | B L
? Moo1 Mg Mee1. *x Hogo S| Xn-kl
1.
This is essentially the inequality of Meinardus [8a], who derived it by
2 |
4" the same argument for a slightly different iteration in which ”X” 1S
= minimized instead of f(x) .
-
' The special case for s = 1,
e
- 2
' (2.25) "1 Yo booow < L i !
0 1 T n 1
1 Xn-Xl
.
. is a well-known inequality of Kantorovich; see (8)on p. 410 of [5].
!
It was stated by Birman [3] that the bound (2.14) is sharp, in the
% - sense that for each s and each given A, A (s < n), one can find
F
a A and Xy SO that (2.14) is an equality for all k . This is done by
finding a set of xi and §i(o) so that the shifted Chebyshev polyno-
mial Q, (t) is (up to a scalar factor) identical with Ps(t;ZO) and
so that |Qs(ki)| = 1 for each eigenvalue Xi . This is known to be
o~ possible because the Chebyshev polynomials, like cosines, are orthogonal

with respect to summation over certain points.

15
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However, Birman did not investigate the actual manner or rate of
convergence of f(xk) to 0 in the optimum s—-gradient method for a
general given A and Xy - He left open the question of whether the
convergence of f (xk) to 0 might actually be faster than linear in
certain nontrivial cases.

For s = 1 Forsythe and Motzkin [7] conjectured that if(gé im
# 0, then (k%£=_gﬂbﬁJD, as k »®, for all i with 1 <i <n
In words, X, 6 asymptotically in the 2-space ﬁl,n spanned by the
eigenvectors belonging to Kl and é. . The conjecture was proved by
Forsythe and Motzkin (unpublished) only for n = 3. Akaike [1] proved
the conjecture for arbitrary n . In an unpublished manuscript Arms [2]
had found a similar proof. We give a proof in (4.12) as a consequence
of our result (3.8) for the s-gradient method.

Suppose the optimum l-gradient process is performed entirely in the

two-dimensional space =« Then, if xOEn and X, is not an

1,n 1,n 0

eigenvector, it is easy to prove that:
(1) Xys X5 ¥y «.. are all collinear vectors, and that

s Xy ... are also collinear in another direction. Furthermore,

Xl, X5 5,

g X and x

2 :
ok ok+l = for all k . Here c 1s given

C

Xopsp = Xok-17

by (2.22). The basic reason why these vectors are collinear is that
the gradients 2yt and Z, must always be perpendicular in any optimum
gradient method.
. 2 .
(ii) Moreover, for each k =0, 1, . . . . f(xkﬂ) =c f(xk) . This
is an immediate consequence of Corollary (2.23). Hence f(xk)\ 0 in

a strictly linear fashion, 1like the k-th term of a convergent geometric

series, even though the vectors x alternate between two fixed directions.

k

14



|
C

It is a consequence of the Forsythe-Motzkin-Arms-Akaike result on

the manner of convergence of x, to 6 in En for s = 1 that the

k

iteration behaves asymptotically, as k — %, as though it were entirely
in the two-space Ty Lt The vectors Xy behave ultimately as though
)

o

they had resulted from an iteration started with some x'g in nl n
2

In particular, we find that f(x, )™ 0 linearly, in the sense that

»

lim f(xkﬂ_) = cg(x')o(') .

k = fixki

* . .
However, the vector x is an extremely complex function of X

0

o

0]

Till now, the asymptotic nature of the optimum s-gradient method
has not been described for s > 1 . This problem, posed on p.314 of

Forsythe [6], is studied in the next section

15



3. Asymptotic Behavior of the s-gradient Method.

We are still assuming A to have distinct positive eigenvalues

kl < hE <. . .< kn . Fix any s with 1 < s . Motivated by (2.11)

and by Akaike's approach [1] for s = 1, we shall consider the trans-

formation
(3.1) w' = PS(A; W) W o.
Here w # 6 and Ps(t; w) = t% + ... is the orthogonal polynomial

defined in (2.9). Let

) l® llz e WP
2) o - _
02 TR T WP

)

where Hu“ denotes the euclidean length of u
- Similarly, if w' #6, let w" = PS(A; w') w', so that
2
: Wil
- pw') = —=.
|l
The following theorem is of basic importance to our analysis of the
asymptotic behavior of the s-gradient method.
|
ik— (8.3) Theorem. Let V be the angle between w and w" . For any w
= such that w" # 6, we have
‘L
wl|@
{ SN 5
| o (w) = 5= = cos —=< 5 — P,
An bl e ll= = el =
;L_
16



and there is equality if and only if w" = cw for some scalar ¢ > 0 .

Proof. By the Cauchy-Schwarz inequality and the definition of V,

(3.4) W )2 = cosPullwll® w2 < WP Iw%,

1

with equality if and only if w = cw", for c # 0

Now

IWIZ - v = (a5 w) w|® - w2 (85 W) P_(A5 w) w

- WT[PS(A; W)]2 w - WTPS(A; w') PS(A; w) w

n
E"1—3
las}

S8 w) (P (a5 w) - P (45w} w

]
sl%
d

S(A; w) D(A) w

- = 0,

by (2.3), because D(t) 1is a polynomial of degree at most s - 1,

- since the leading terms t° cancel. Hence H'”z =Ww", whence
N 3:5) Il = e 2
_ Combining (3.4) with(3.5), we have
- fiedl* = cos®vlhl® el < 1l® M1,
with equality if and only if w" = cw . That c > 0 follows from the
_ fact that wfiﬁ" = HW'H¢A> 0 . This proves theorem (3.3).

L7



(3.6) Definition. Fix s with 1<s<n-1. Fix a euclidean
coordinate system in En so A takes the form (2.7). Let Z be the
unit sphere in En . Define ZF C I to consist of all unit vectors y

with at least s + 1 nonzero components. We define a transformation

T: Z¥ - Z*, as follows: For each y in Z¥, let y' = Ty = W/HWH,
*
where w = PS(A; y) vy . (That w # 6 and y' € £  are proved in

theorem (5.1).)

(5.7) Definition. By a continuurp we mean a closed connected set in En’
with the understanding that a single point is a continuum.
(
(3.8) Theorem, Fix s with 1<s<n-1. Let y, =(T]]‘_O), coey nr(lo))T
*
be any vector in Z gﬂol)t}fé T]:(E (i = 1, .y n) . For k=0, 1, ...,

define y,,, = Ty, _whereT was defined in (3.6) . Then the set of

limit points_of the_sequence {ka ¢tk =20,1, 2, . } of normalized
*
gradients is_a_continuum RC Z . Moreover, for any point r i_n’ R,

2
we have r = T°r = T(Tr) .

Proof, Let wy =y, . For k =0, 1, ..., let w,, = P (A; yk) W

-where PS(t; y) was defined in (2.9). It is easily shown that Yy =

Wk/HwkH’ for all k . Since n > s + 1 components of W, are nonzero,

it follows from theorem (5.1) that at least s + 1 components of Wy

are nonzero for k =1, 2, .... Hence no W, = o .
& k)\T .
Let w, = (a)i>, ooy a)IE )) . By theorem (3.3),

cp(wo) gcp(wl) < .o Scp(wk) < oo s

18
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But for

(A )

As a monotone bounded sequence,

(3.9)

each k the s zeros of Psﬁx Wk) lie in the interval

Hence |P_(t; w)| < (A - )% for A <t <A, and so

1

(a5 w) |
¢(w) = = £
k IZ H”'kllz

[P, (hs ) 12 [w{)2

‘M

P
il
]

(k) y2

™=
e
i

]
I
=

IN

O, - »)®% for all k .

Plw,y) - 90r) =0

But, by theorem (3.3),

(3.10)

where ¢k

2 -
cos h{* 1, and wk - 0, as k ©

TS (A
o (Wk+l) _ q)(wk) - k+2 _ k+1

{¢(wk)} has a limit L . Hence

(as k~—o).

[ T
2
) n:k+232 - c052 wk]’
k+1

is the angle between W, and wp,, - Then, by (3.9) ,

Now consider the set Y of unit vectors {yék :

points;

let

R be the set of all limit points of Y

19

k=o)l’21

Since Wk - 0,

(Since ¢ > 0 in (3.3), 1t 0 0
S}

As an infinite subset of the compact unit sphere Z, {sz} has limit
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as k — %, we have H -+ 0, as k @ ., Then, as Ostrowski

I¥orap = Yox
shows on p. 203 of [9], the set R must be a continuum in the sense of
(3.7).

Let r be any point of R . Then there is a subsequence (y2k1}

converging to r . Since - 0, we have also that

¥ 12 = Yo |
1 i

2 , . .
yéki+2 _T yek: r . But T is a continuous transformation. Hence
L

2 .
T2y2k - TET: and Tr=r . Since Ter = r, we see from theorem (5.1)
i

* *

that r € Z . Hence RC Z . This completes the proof of theorem (3.8).
The author has programmed a number of test cases with s = 2, to

investigate the nature of the set R . 1In every case, R appeared to

be a single point. The author conjectures that R is always a single

point in theorem (3.8). So far, this has been proved only for s = 1,

and we give the proof in (4.12).
The following theorem shows one way in which one might be able to

prove that R consists always of a single point.

(3.11) Theorem, Suppose in_the proof of theorem (3.8) that ¢(wk)

were to converge to L so rapidly that, for some @ < 1.

(3.12) 02 00nyy)-o0n) <elo (w)-o G )], for all k

Then R would consist of a_single point.

Proof. If (3.12) held, then the following infinite series would be

convergent:
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5.13) §[¢wMi)-¢WQ]%<:°

as is seen from (5.12), by the ratio test. It is shown in (3 .10) that

(5.14) [0 (wgy)) - @0n) 1% ~ sin [y, s ke,

Then, from

where wk is the angle between the vectors Wi and Wiho -

(3.13) and (3.14%), we would have

(3.15) ; |¢k| <o,

Now, let Vi = wk/”WkH be the unit vector in the direction of L It

would follow from (3.15) that

[Ypprn = Yoyl < @
k§0 2k+2 T Yok ’
whence

G.16) k§o Vo = Vi

would be an absolutely convergent series of vectors. Since

k-1

Yok = hZ:O Wome = Yon) + Yo

we see that the sequence {y. } would then have one limit point. This
Yok

proves the theorem (3.11).
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However, the author sees no way to prove (3.12) nor the conjecture.
The following theorem proves that, whether R has one point or an

infinite number, f (x.) = 0 no faster than linearly.

»

(3.17) Theorem. Fix s with 1< s < n -1 . Given any A in the

form (2.7). Let X, = (E.](_O), ooy gr(lO))T be any vector in E_ with

m nonzero components. Then in the f‘(ka s-gradient method

converges to 0 in the following ways:

(i) If m < s, then x, = 6, f(xl) = 0, and the iteration termi-

nates in one step.

(ii) If s+ 1<m, then the convergence of f(xk)_to 0 is

asymptotically linear, in the sense that there exist constants s Cp
depending on X with

£( )

oK+ .
(3.18) o<clgwgc2< 1 for all k

Proof. We may ignore any zero components of x as they remain

O’

zero throughout the iteration. We are thus minimizing f(x) in Em .
Proof of (i): If m < s, then the subspace Ls defined in Sec. 2

is E_ . Hence x, = 6 and f(x
m 1 :
Proof of (ii): That

l) = 0, the minimum of f(x) in E_ -

follows from the chain of inequalities (2.13). We have to prove the
inequalities involving cy -
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Given x, with at least s + 1 nonzero components. By theorem

0

(5 .l) all other vectors x, have at least s + 1 nonzero components,

k
so that no X = 6 . By theorem (3.8), the normalized gradient vectors
Yo have as a limit set a continuum R . For each point r in R, we

2
have T r = r . Suppose a position vector x were such that r = Ax/HAx“ €ER .

That is, x would be in the direction of A-lr . Let x" ©pe the result

of two steps of the optimum s—-gradient method applied to x . Since

°r = r, we see that x" would be in the same direction as X . Hence
" 1" 2

(3.19) x" = yx and so f(x") = y°f(x),

for some y with 0< 7y = y(r) <1 .

I.e., for each point r of R there is a positive real number

y(r) such that whenever the gradient of a vector x

of r, then (3.19) holds.

lies in the direction

Let C be the minimum of y(r) for r € R . Since R is compact,

the minimum is assumed and C > 0 . Hence

(3.20) 0<C” <

for all x such that Ax/||Ax| € R

Now the ratio f(x")/f(x) 1is a continuous function of x . ILet

N(R) € £ be such a neighborhood of R that

1,2  f(x"
21 5C “<
(3 .21) <L .
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for all x with Ax/HAxH in N(R) . Consider the sequence {x2k} .

Let z,, = Ax and let y,, = Z2k/|lz2k” . By theorem (3.8), the

2k 2k’

{ygk} have R as a limit set. Hence there is a K such that for

k>K all Yo lie in N(R) . By (3.21) then for k > K we have

)

£
3? < (X een

- fx2k

Letting ¢, = 11502 completes the proof of the theorem.

Actually we could have taken ¢y = 02 -¢ for any € > 0

(3.22) Corollary. With the hypotheses of theorem (3.17), there exist

constants dl’ d2 with
Flo )
O<dliwsd2< 1, for all k .

Proof. The corollary follows from theorem (5.17), the inequalities

(2.13), and the fact that :f‘(xk) NO, as k ~ ®,

(3.23) Theorem . Fix s >_1 . Let X, be any vector such that x,

-1s_parallel_to X in the optimum s-gradient method. In other words,

ZO/HZOH _is_in the set F(A) of (4.5), where z = Ax_ . Then

0 0
fx, . .)
(3.24) m}%i = c° k=0,1,2, . . ),
k

2
where c depends on A and on X

0

Remark. The import of this theorem is that, although the X,
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alternate between two fixed directions, as k = ®, the ratio (3.24)is

constant for all k, and does not alternate.

Proof of (3.23). We first note from Corollary (2.23) that the
theorem is true for s = 1, and that (2.22) gives a formula for c2 in
terms of the two nonzero components Cl, C2 of ZO

For any fixed s > 1, let n be the 2-space spanned by X, and

X Let fﬂ(x) be the restriction of f(x) = 115‘xTAx to the subspace

1.
n . Then the vectors XO’ Xl, Xg’, <o+« can be shown by a geometrical

argument to be the successive iterates of the optimum l-gradient method
for finding the minimum of f, (x) in =n, starting with Xy - Then

(3.24) for s = 1 states that

I 2

fﬂixi =cy

k

for some constant c2 depending on the eigenvalues of fﬁ ,  Since
f]T (x) = f(x) in 1, this proves the theorem for s .

Presumably theorem (3.23) could somehow be proved from theorem
(2.18), just as the case s = 1 follows from (2.22).

Corollary (3.22) could also be proved from theorem (3.23).
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4, Nature of the Asvmptotic Directions.

We should like to characterize as well as we can the possible limiting

vectors r €R of the (normalized) gradient vectors ygk of theorem

(3.8). Since oy = r, for r in R, we have

(%.1) cr = PS(A; Tr) PS(A; r)

= Q'Es (A) r,

where ¢ > 0 is a constant and Q,, (t) is the product of the two poly-

. T
nomials Ps(t; Tr) and Ps(t; r) . Letting r = (pl, . e .. pn) y wWe
have
(4.2) cpy = Qg (M) oy (i=1, ....0.

Recall from p. 44 of [12] that P (t; Tr) = t5+ . . . and P_(t; 7)
=t°+ ... are polynomials of degree s, each with s distinct real
2s ,
+ is a

zeros in the open interval ()\l, )\n) . Hence Qes(t) =t
polynomial of degree 2s with 2s real zeros in the interval (Xl, )\n)’
counting double zeros twice, if any. Now c > 0 in (¥.2), which implies

that for each i
(+.3) Gy (i) =c>0 or p, =0 (1=1, ....n.

Since Q,, (t) vanishes for some t in ()\l, )\n), the equation Q2s(t)
=c >0 can have 2°3 4’ ¢ swuxm ©Or 2s distinct real roots, which we

call p._.J(j =1, . . . . m, and number so that

26
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ul<u2< -oa<um-
(Here we count a multiple root of Q,, (t) = c only once.) Thus
Qgs(uj)=c (=1, . .. .nm

By (4.3) each A, for which Py #£# 0 is one of the W s

(4.4) Definition. Given Xy - Let R be the set of limiting points
of the normalized gradients {y2k :k =0'1' ...} of the optimum

T
s—-gradient method starting from Xy - For any vector r = (pl, e e pn)

in R, let S be the set of )\i for which Py # 0 . Any such set is

called an asymptotic spectrum of the optimum s-gradient method for the

given x Any r 1in R is called an asymptotic gradient vector of

0

the same iteration.

Note that R depends on A and X and we occasionally write

O’
R (xO, A) to make the dependence explicit. Note that S is a property
of r only, and only indirectly of Xy -

-(4.5) Definition. For a given A, we define the invariant set F(A)

of the optimum s-gradient method to be the set of unit vectors r such
that T°r = r .

We have shown in theorem (3.8) that, for any Xy R(xo, A) € F(R)

It is never true that R(xo, A) = F(A) . However, it is true that
F(A) = U R(xo, A)
x. €E
0 n
27



For, if r € F(A), then T°r = r, so that r = R(r, A)

(4.6) Theorem. Given x. = (5(0), e .. gigO))T with §i(o) £0 (i =1,

0 1
.+ N) . Assume s <n . Then both eigenvalues )‘l and )‘n belong

to all asymptotic spectra S of the optimum s-gradient method starting

with x

Proof. Assume that )‘q (q < n) is the largest eigenvalue in the
asymptotic spectrum S corresponding to an asymptotic wvector r of
R(xo, A) . The zeros of each Ps(t; Zk) (k =0, 1, . . . ) lie in the

open interval ()\l, )\n) . Hence PS(?»n; zk)yé 0 for all k . Hence

(2k)

n 74 0 for all k, where the ni(ek) are the components of

n
Yox = 2o/ 7zl

Let 7 be the largest zero of Ps(t; Tr) Ps(t; r) . Since the
zeros of both Ps(t; Tr) and Ps(t; r) lie in the open interval (7\1, ?\q)’
we see that Ps(t; Tr) PS(t; r)2, as tA, for t > 1 . Hence

2 L4 . . .
e = PS(Kq, Tr) PS(?\.q, r) < Ps(hn, Tr) Ps(xn, r) .

-But then, by continuity,

Ps(xq; 22k+l) Ps (xq3 sz) < GPS (Xn" Z2k+l) Ps (kn; ZEk)

for some ¢ < 1 and all k > K . Since all Cﬁf)# 0, and since
(2k.) , .

T]q J pq ;4 O, for a certain subsequence k.J, this means that
|T]£12kj)|\ - ® as j—%® . This is impossible, since all y(gk) lie
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on the unit sphere. Hence g = n, and Kn is in the asymptotic spectrum

S .
The proof that Kl is in S is analogous.
. . (0) . _
(4.7) Theorem._Given X, with §i £#0 (i=1, ..., n); assume that
s >n . Let m be_the number of eigenvalues in any asymptotic spectrum

S of the optimum s-gradient method. Then

Proof. Let r € R be an asymptotic gradient vector corresponding
to a given S . As shown after (4.3), the asymptotic spectrum S is a
subset of the set of t for which Ps(t; Tr) Ps(t;IQ = ¢, and the
number of such t is between 2 and 2s

However, 1if m < s, one step of the optimum gradient method would
carry r 1into 6, and so r could not belong to R . Hence

s+ 1<m<2s .

(4.8) Theorem. Suppose s < n . Le;_xo:=(§£0),. . §§n)T be any
—vector_in En with exactly s + 1 nonzero components §§O) e Thep
Xos Xpr X, are all collinear vectors. That is, the normalized

gradient vector y, = AXO/HA.XO” is in_the invariant set F(A)_of (4.5).

Proof. Let Zo = Axo . It will suffice to prove that Zp = CoEgr

Without loss of generality we may

(0)

i

for some positive constant ¢y -

assume that n = s + 1, since the components for which § = 0 remain

Zero.
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By (2.2)
S
(%.9) zq z 3 71AZ S 7SA Zo»

and 7,5 ¢ om 7s are so chosen that z, is orthogonal to z., Az

As_lz Because s + 1 components of z

o .
or As—lzo are linearly independent. Hence the set {ZO, Azo,

O) O’ o e

0 are nonzero, the s vectors

zo, Az

orthogonal to 2z, .

C As_lzo} forms a basis for the subspace of ES 1

+1
Next, 22 is formed as a linear combination of Z1s Azl, Ly

Asz which is orthogonal to S_lzl . Since Z is

1 AZl’ ce.y A

Zl,

orthogonal to =z

12 it is expressible in terms of the basis Zor e ce
s-1
A ZO :
= (4.10) 2, cz +tchz + . ..+c ASTL,
: 2= 00 170 s-1 0
QL We shall prove that c, =c, = =c =0
E. © prov 1- %" T T
E o Take the inner product of (4.10) with Azl
|
.
t . T T T2 T s-1
,{ (4.11) 24 Az2 _ cozl AzO + clzl A 2 + .. .+ cS 221 A ZO
i T s

e + cs-lz'l A zy -
-~ But z.° Az, = 2. Az. = 0 b z. i th 1 to Az And

u 1 Az, = 25 Az = ecause z, is orthogona o 1 - An

T _ 2 _ T .s-1 Cm ,
L_, zy AzO =2 Z—szo 2] A Zo = 0 because z, 1is orthogonal to

2 s-1 T s . .

F Azgy K2y . . . . A" Tz . And z,7A 'z, # 0, since otherwise by (4.11)
e zq would be 6 . It then follows from (4.11) that cS 1= 0
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Next, taking the inner product of (4.10) with Azzl and using the

same argument and the fact that cs 1= 0, we show that cS o = 0

After taking the inner product of (4.10) with Azl, A2z . As-lz

I v

we will have proved that c R ¢, =¢ =0 . Then, from (%.10),
-

That c. > 0 follows from the proof of (3.3) . This com-

Zo ., %% . 0

pletes the proof of theorem (4.8).
Theorem (4.8) implies that any s + 1 eigenvalues of A can be in

the asymptotic spectrum for some start x Moreover, _any vector r

0 -

with exactly s + 1 nonzero components can be an asymptotic gradient

vector of an iteration. This extends to s > 2 the known fact for the
ordinary optimum l-gradient method in 2 dimensions that any initial
gradient direction is repeated at every other step of the iteration.
See the end of Sec. 2 above, or p. 214 of Ostrowski [9].

That for all s the period of the iteration in theorems (3.8) and
(4.8) is 2, and not higher than 2, was a surprising fact to the author.
However, the experiments of Khabaza [8] for s = 3 suggest the period 2.

For s =1 we have s + 1 = 2s = 2, and then by theorem (4.7) all
the vectors invariant under two steps of the optimum l-gradient method
are of the type covered in theorem (4.8). From this we can now show for
s = 1 that the limiting set R of theorem (3.8) is actually a single
point. The following is a modification of Akaike's proof in [1] of the
Forsythe-Motzkin conjecture [7].

(4.12) Theorem (Akaike). Let s = 1 . _Let y, = (n£0), ey nr(lo))T

. * , 0 .
be any vector in £ with n( )74 0 (i =1, ..., n) . Then the sequence

i
{y.. :+ k=0,1, . ..} of normalized gradients converges to a single point
2k
r whose spectrum is {Kl, Xn} . Moreover, T2r =r .
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Proof. By theorem (3.8) the set of unit vectors {y2k : k=0, 1, ...
has a continuum R as a limit set. By theorem (4.7), for any r € R the
corresponding spectrum S of r has only 2 eigenvalues in it (for s + 1

=2s =2 ). Now by theorem (4.6) the two eigenvalues in S must be 7\1

and Kn . Let r be any point of R; let r = (pl, 0, . . . .0, pn)T,
. 2 2 LN - 2
with p; + p "= 1 . Then Pl(t, r) =t - u, where p = ?\lpl + AP
T
Hence P (A; r) r = ((A - w)pyy 05 «vvy O (>\n - we ) .
By the proof of theorem (3.8),
lim 2 . 2
L= 0w o) = o) =P (a5 r) 2[5, since |[{|°= 1
22 2 2
= (A =Wl + (A - W) e,
or
2 2 2
. = - A .
(+.13) L=( - M) ey 6
Now L is a number determined by the iteration, %'l and >\n are
. . 2 2 .
given eigenvalues, and Py + P, = 1 . Hence the pair 2pl, pi are

determined by (4.13), up to an interchange at most. Hence the set R
can have at most eight vectors in it, if all permutations of signs are
considered. But then, since R 1is a continuum, it must consist of a

single point, which we call r . Then r, as k= ® . This

Yok ~
proves theorem (4.12).
. T T
Actually, if r = (py ..+, 0) " then Tr = (o« v v m0p)
where all components p: = 0 for 1<i<n . Then r = lim Yox and

Tr = lim Youe1? @S k = @ . So, the directions of the gradient vectors

Z, alternately approach the directions of r and Tr, as k — <« ,
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The reason we cannot extend our proof of theorem (4.12) to s > 1
is that the equation analogous to (4.13) involves between s + 1 and
2s unknown components of r, and we do not see how to limit r to a
finite number of vectors. Even for s = 2, theorem (4.8) shows that
all vectors r with 3 nonzero components are invariant under T2
Prescribing the vector r to have unit length and prescribing the value
of L reduce the number of free parameters in r to 1 . But, so far
as the author can see, there remain ! possible limiting vectors r
in R

Moreover, for an even number s > 1, there are asymptotic spectra
containing more than s + 1 eigenvalues, as will now be demonstrated.
We shall consider only spectra with symmetry about a midpoint. We do
not know whether there are asymptotic spectra with more than s + 1
eigenvalues without such a symmetry.

We shall first examine possible asymptotic spectra with an even

number 2g of eigenvalues. Let the eigenvalues in S be a - uq,

a - uq_l, o e @ = Py a+|g,r ... a+t uq_l, a + uq, where 0 < a - uq
and 0 < ul <. . .K< %1. Let us consider unit vectors r with symmetric
components qu . t3 Py P Jﬂ;.,pq, corresponding to the respective

-points of the spectrum.
Because of the symmetry about the point t = a, the orthogonal
: . . . . 2
polynomials PEk(t’ r), P2k+l(t’ r) associated with S and the {pi}

satisfy the conditions

(.24) P (6 1) = g ((t - 2)7),
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where is a monic polynomial of degree k;

&y

(+.15) Py (85 1) = (6 = @) b (8 - 2)7),

where hk is a monic polynomial of degree k

By symmetry, the even and odd polynomials Pk(t; r) are automatically

orthogonal. By (4.14) orthogonality of the t; r) among themselves

P (

can be expressed in the form

2 2y 2 : Q1 B
(+.16) Letdetded-0  Gx-or gkl
Thus the g, (t) are themselves orthogonal polynomials over the set
2 2 . 2 2 a
ul, . Dos p.q with the weight factors pl, o pq . Moreover, gk(t) =

(—l)k gk(a2 - t) are monic orthogonal polynomials over the transformed

set § = {a2 - ui, ceey a - ui} with the same weights Zpl, ey pf1 .

" ~ 2 L_,)
Note that |gk(0) | = |P2k(0; r) | and that |gk(a - p,i) | = |P2k(a N r) |
for i =1, ..., g . Hence ‘ék(t)/'ék(OH has the same constant value

over the set & that |P2k(t; r)/Pek(O; r) | has over the set S

By (4.15) the orthogonality of the P

bR+ 2MONg themselves can be

—expressed as

(%.17) i h, (u?) nk(ui) u.? p; =0 (3, k=0, 1, . ... 3¢k .

2
i1 Y *

Thus the f)k(t) = (-l)khk(a2 - t) are monic orthogonal polynomials over

the set 8 = {32 - p.i, ceey a? - p.?} with the different weights ui pi, .
2 2 2 2 .
by © Note that | hk(o)l = Ihk(a I =l Poye (05 T) | /Ja, and that
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b (a® - WDl =10 W) [=12, (et ]/, .

Thus constancy of |P (t;r)| over S does not imply constancy of

2k+1
[Bk(t)[ over 5 . The even and odd polynomials transform differently.
By means of these orthogonal polynomials ék we can reduce the
problem of the invariance of the r under two steps of the optimum
2s-gradient method over S to the problem of the invariance of an
optimum s-gradient method over § in a space of half the dimension.

To be precise, the above relations imply the following result,

which we do not prove.

(4.18) Theorem. If s is even and s + 1< 2g < 2s, then the vector
r = (pq? . oo pl, Pys e omm Dq)T (with no Py = 0 ) is inpthe invariant

set (4.5) for the optimum s-gradient method for the diagonal matrix of

29 nonzero elements

diag(a - uq, 8 =By, 8t Py, ..., ot uq)

o e

if and only 4f the vector T =(pl,. Coe pq)T (with no o, = 0 ) is

in the invariant set for the optimum (s/2)-gradient method for the

diagonal matrix of g nonzero elements

. 2 2 2 2
diag(a® + Wi eeey @ uq)

Moreover, when iterations exist with these invariance properties, if

2 = ©/lzll and &, = #/I3l, then Jlz] = l2,]l for k= 0 1" 2,
where z, anal %k are the gradient vectors of the respective iterations.
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We do not know a comparable theorem for odd integers s .

As an application of theorem (4.18), we can show that for any s

of the form s =2° (p =0, 1, 2, ...), there exist vectors with 2s

nonzero components that are in the invariant set of some optimum s—-gradi-

ent method. For p = 0 this is theorem (4.12), and is true for any
2
)

2 2
diagonal matrix of two positive elements diag(a2 T, a8ty and

any vector r = (pl, pE)T . Application of the first sentence of (4.18)

2 2 2 2
]2_, b+ Vos b+ vy,
2 2 2 2 2 2 2 _
b2+vl,.) where b + V] =a -py, b o+ v, =a - Py b +\).5 a + by
T
b2 + vﬁ = a +p.2, and corresponding vector C(pe, P1s Pqs p2) . Another

2
leads to s = 2 with any matrix of form diag(b + v

application of (4.18) leads to s = 4 with the matrix

diag(b - v, . . . . b=V, btV S EN

IR

.
and corresponding vector ¢’ (02: P1s P1s Pos Pos Pyy Pys 02) . It

is clear that the process may be continued to s = 2P for any p

Note from theorem (4.7) that 2s is the maximal number of nonzero
components in any vector in the invariant set for an optimum s-gradient
method. Our above example illustrates the maximal case.

We next consider ‘symmetric asymptotic spectra with an odd number
2q + 1 of eigenvalues a - p.q, ceey 8 - Wy, 2, @ + u.l, ceey @ F p.q and

a corresponding symmetric vector

T
(pq) * row pl’ pO) pl’ ceoy pq) v

invariant under T2 . Then again the orthogonal polynomials take the
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forms (4.14) and (%¥.15). The odd polynomials are still defined by the

condition (¥.17), but the condition (4.16) must be replaced by

(+.19) e L&D 86D 6 + g (0 8(0) 62 = 0

(3, k=0,1, . .. .3#%
The analog of theorem (4.18) is now stated, but not proved:

(4.20) Theorem. If s is even and s + 1 < 29 + 1 < 2s, then the

T, . o
vector r = (pq, c o Pys Py Pps v ms pq) (with no p; =0 ) 1is in

the invariant set (4.5) for the optimum s-gradient method for the diag-

onal matrix of 2q + 1 nonzero elements

diag(a -p,q, ceey @ = By @ @ +p.1,, ceey @ + p,q)

4 . . - T .

- if and only if the vector r = (po//E, pl, ' Ol pq) (with no Py = 0)
.‘ is in the invariant set for the optimum (s/2)-gradient method for the
Y

diagonal matrix of g + 1 elements

-

i . 2 2 2 2 2
IF diag(a™, a~ - Wi oo s 8 F I-hq) .

Moreover, when iterations exist with these invariance properties, if

| zo = t/llxgll and z, = /I, then Jlz |l = lI2,]| for x = 0, 1, 2,

L where Zy anal %k are the gradient vectors of the respective iterations.
If s is odd, then the set_of 2g + 1 eigenvalues (a - hgr -0

Do a = Wys a, a + ul, e = a -+ uq} can never be the asymptotic spectrum

of an optimum s-gradient iteration.

I —
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The first two sentences are strict analogs of theorem (4.18), The
third is true because Pék+l(35 r) = 0 for all k

The signs of the p; are of no importance in theorems (4.18) and
i\— (4.20), and any p; could be left alone or replaced by -p, independently

at any place it is mentioned.

r—

=

r—
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5. Singular and Derogatory Quadratic Forms; Zero Components.

Two restrictions placed on A above are really irrelevant--that A

be regular and nonderogatory. If A is singular, then for some p > 1,

we have kl = oo =N =0< A\ < ...<A_ . Then it follows from
P pt+l n
(2.12) that
§§k+l) - g§k), for 1< i< p; k=20, 1, 2, «ep
while all components g(k) - 0, as k *»*®, for p+1<i<n. On
. ~ 2 & 2
the other hand f(x) = #x Ax = ¥ A, &5 = ) A & . Thus £(x) is
i=1 i=pt+l
minimized for all vectors in the subspace N where gl = . . . =§p =0,

and the gradient methods proceed from X4 to the closest point xj
of N, with allxk - X, and all gradients 2y located in the ortho-

gonal complement of N
If A is derogatory, it has multiple eigenvalues but a complete
set of eigenvectors (because A is symmetric). Suppose, for example,

<A =AM =...=N <A < v <A
that 0 ; o+

1 o) 1 0’ and suppose that

(0) (0) ,(0) (O))T .

XO = (gl 3 ey gr ’ §r+l’ ceey €

Now the orthogonal basis of eigenvectors belonging to Xl,. e xr is

not uniquely defined. Our preceding analysis required at various places

(e.g., in the proof of (4.8) that the A, be distinct for each nonzero

component ggé), but zero components §§O) were ignored. If any of
géo), o 505de §§o) are nonzero, make an orthogonal transformation of the

eigenvector basis so that X, takes the form
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0)2 0) 2,3 (Q, (0)4T
xo=((g£) +...+§£ )%, 0, ...y O, E iy mes by )) )
Then drop the new zero components 52, e e gr entirely, and effectively

reduce A to a nonderogatory matrix A of order n -r + 1

Thus, in effect, only the set and number of distinct nonzero eigen-
values of A have a real relevance to the gradient methods for quadratic
functions %XTAX .
should be ignored, and the

(%)

order of A reduced by unity for each zero component §i

Moreover, zero components of any Xk

that occurs

at any stage of the iteration.

If fewer than s + 1 components of any x, are nonzero, then

k

X4y T 6 and the iteration terminates at once. Hence we have always

insisted that at least s + 1 components of xo be nonzero. Even so,
one may ask, might not enough PS(Ki; zh) be "accidentally" zero, so

that for some later x fewer than s + 1 components are nonzero?

k

The answer is negative, as the following theorem shows:

(5.1) Theorem. Assume s + 1 < n . _Assume _El(k);é 0 for i =1,

(k+1) Zy

n. Then at least s + 1 components £

(k)

(k+1) . e
N = Ps(hi, Zk) ;' Uup to a multiplicative

Proof. By (2.12), €.
constant that does not matter, where Ps(t; Zk) is the orthogonal poly-
2
. . k
nomial of degree s over the set {7\1, e ?\n} with weights [Ci )J .

We shall prove that there exist s + 1 eigenvalues out of the ?\i :

7 / /
(5.2) MoSh <o <N,

2 1’
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such that Ps(ﬁi,zk)I}(Ki+l,zk)<< 0 for i =

1, ..., s . A fortiori,

PS(Xi; zk) #0 fori=1,2, . . . .s+1, and the theorem will have

been proved.

If the above sign-alternation property is false, then let g < s

be the largest integer such that we can find {KQ with

(5.3) P_(M52,) PL(A, 52) <0

(Clearly some g > 2 exists, or else PS(Ki;z

fori=1,. . . . g-1l.

)

would always be of

one sign and hence PS could not be orthogonal to P0 =1 . Then

pick Wiy wees uq-l with

Ki < By <A< Mo <o v w < A 1< W

2 q-

so that, if O(t) = (t = W)..0 (£ = k), then P (hs z,)Q(A) > 0

for alli=1,. .. .n. (We omit details of the construction.) Then

1

3 ()
(p (t; z,), a(t)) = =ZlPS(>»i; z,) Q%) [ci > 0,

-so that g and Q are not orthogonal. But,
q-1<s-1, PS must be orthogonal to Q

completes the proof of theorem (5.1).

41
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