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1. Introduction and Summary.

To minimize a smooth real-valued function f(x) of n real vari-

ables, the optimum s-gradient method has been described by Birman [3],

Faddeev and Faddeeva [5], Khabaza [8], and others. We here consider the

model function f(x) = 3x Ax, where A 1s a positive definite matrix.

Then each iterate X, 1s equal to 1ts error. The convergence of the

method was proved long ago--see (2.14) --and the question now under study

1s to find the asymptotic manner in which the iterates Xp 7 6, the null

vector.

For s = 1 it was conjectured by Forsythe and Motzkin[7] and

proved by Akaike [1]--see (4.12)--that the iterates x, converge to 6

by asymptotically alternating between two directions--the "cage" of

Stiefel [10]. Thus the convergence of £(x,) to 0 for s = 1 is

known to be linear, and no faster than linear, for any start Xq that

a 1s not an eigenvector. Moreover, 1f coordinates are chosen so that A

| 1s a diagonal matrix, then the two asymptotic directions have only two

- nonzero components. Finally, any direction with only two nonzero com-

ponents 1s invariant under two steps of the optimum l-gradient method.

= In the present paper the author has extended most of the known

_ results to arbitrary s > 1 . - The main result (3.8) shows that the

directions of the even 1terates Xok have as a limit set a continuum

. R (which might be a single direction). Moreover, each direction of R

1s 1nvariant under two steps of the optimum s—-gradient method. Let A

~ be a diagonal matrix. It is then shown in (3.10) that in the optimum

. s-gradient process fx) converges to 0 no faster than linearly for
any 1nitial vector 0 with at least s + 1 nonzero components.

1
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. Theorem (4.7) shows that all vectors of R have between s + 1 and 2s

5 nonzero coordinates, inclusive, Theorem (4.8) says that any direction

: with s + 1 nonzero components 1s invariant under two steps of the method,

— for any s . Examples are shown in Sec. 4 of directions with this invari-

ance and with as many as 2s nonzero components,

- Experimental evidence from computer runs for s = 2 suggests

C strongly that R 1s always a single point, just it has been proved to

Po be for s = 1. The author conjectures without proof that R 1s a

= single point for all s, so that Xy 6 1n an alternating manner
completely analogous to the case with s = 1,

” The author 1s aware that for minimizing quadratic functions f(x)
1 in practice, the conjugate-gradient method of Hestenes and Stiefel (see

[5]) may usually be expected to be superior to the optimum s-gradient

— methods, although Khabaza [8] claims superiority for the 3-gradient

| method in some cases. For nonquadratic functions f(x) the relative
merits of the methods are less clear, The purpose of the present inves-

g tigation was the intellectual one of trying to understand the asymptotic

behavior of the various gradient methods for quadratic functions, The

= author expects that this information may have some useful application

| -to the minimization of general smooth functions f(x) .

_
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2. The Optimum s-gradient Method for Quadratic Functions.

|

~— Let f(x) be real for all x in real euclidean n-space E+ Let

f(x) assume a minimum value for a unique x, which can be taken as 6,
—

the origin of Eo without loss of generality in the analysis. The
:

| advantage of using 6 is that the iterate xX, 1s then also its own

: error X, - 0 as a minimizing vector. We wish to analyze certain

“ asymptotic properties of a class of optimum gradient methods for finding

L the minimum of f(x) .
The simplest f to analyze is the quadratic function

Lo
T

(2.1) f(x) = 3x Ax,

L

t where A 1s a symmetric, positive definite, nonderogatory matrix of
—

order n . Moreover, (2.1) represents the local behavior at 6 of

i f(x) - £(0) for most sufficiently smooth functions f . The author

| conjectures that the theorems proved below for a quadratic function

— apply essentially also to any sufficiently smooth function fwhich

1s locally like (2.1). In this paper only quadratic functions will be

studied. See Daniel [4] for an investigation comparing gradient methods

o for quadratic and nonquadratic-functions in Hilbert space.,

In the various gradient methods one starts with an arbitrary

L- vector Xs and computes a sequence ix, ] convergingto 6 . We

assume all arithmetic to be exact, and round-off error is not considered

in this paper. |

Let z, = grad f(x,) = Ax, denote the gradient of f at x,  .
— k k k k

In the optimum l-gradient method [5], x, 1s taken to be the unique
-

3
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; point on the line L, = ix, + Ax, : -® <q <®} for which F(a) =
|

i f(x, Ax, ) 15 a minimum. (The existence and uniqueness of Xr

; result from the easily proved fact that F(a) is a quadratic function

~— of a with F"(a) > 0 .) The line L, through x, is called the

: line of steepest descent of f(x) at Xp
= _ 2
| For x € Ls grad f(x) = Ax, + a Ax) = Ax, ta Ax_. We there-
L fore consider the 2-dimensional plane through Xs

. _ 2 + -w ®
L, = (x, tanh + oATX <a < <0, < ®),

“

and call it the Z2-planeof steepest descent of f(x) at Xo

L By extension, for any integer s (1< s <n) let

!

| . i
— Lo={x, + ) a Ax :-®<o <= (alli ))

i=1

be the s-dimensional planeof steepest descent of f(x) at x, - Since
; n

o A 1s not derogatory, AX, coey A X, are linearly 1ndependent, provided

X 1s a vector whose minimum polynomial 1s of degree n . In that case

- L, 1s the whole space L .
In the optimum s-gradient method [5] for minimizing the quadratic

function f of (2.1), the point X11 1s defined to be the unique point

_ vy in L for which f(y) is a minimum (k = 0, 1, ...). (Again
existence and uniqueness follow from the positive definiteness of A .)

- It 1s the optimum s—-gradient methods that we shall analyze in this paper.

‘ We now give two representations of the minimizing to, } which are
.

useful in the analysis. Actual computing algorithms for the optimum

—
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] s—gradient method often proceed differently, and find X41 by taking
; s steps of the conjugate gradient method, starting from xX, See [5].

We concentrate on the gradients z, = Ax,

2 First representation

Let

| _ s
X41 = Xp + AREY +... + 7 A Xp

h ff ) i

3 Then the gradient o (xX) at Xipq 1S

s
2. = + +... + .| (2.2) Bal T 5 TP 7h 2

Fe

g - Since Se minimizes f(y) for y € Los the vector Zs] must be

- orthogonal to be . For this 1t 1s necessary and sufficient that Zit]

— be orthogonal to 2109 AZ,, «ee ae . Then TEENIE 7, are deter-
¥ mined by the s conditions

(2, Zy 41) = (2, z,) + 7, (2, Az, ) + Le. + 7 (2 A Z) = 0

| | s-1 s-1 s-1 5-1 S

Lo T T

| Here (u, v) = uv + vu denotes the inner product of two column vectors.u T

» Since (aFz, 297) = (2, APT) = Z AP, we may write the above equations
—

| as

re

—

|



1. T T T,s _
3 Ze Ze 4 Ty Bg A Toe Hy AE = 0
8 T T 2 s+1
| Zy BZ, Ff 71 2 Bz Foe Hy 2, A Ze = 0)

i (2.3) . . . . . .
Eo T,s-1 T,s T, 25-1

Zp A Ze TMF AEF ee Ly 2 A 2, =O .

As long as aw AZ, TEE AS are linearly independent, the
EL equations (2.3) determine the minimizing yp - + - + 7 uniquely.

Second representation

E Ss s=1 : :
=o Let q(t) = t + Bot +... + By denote any monic polynomial

5 of degree s, with 8, £ 0 . Then

8 q (A)z = A; + B A571 tT eee + BZ
FS and

| | ) a, (A) zy SLs, Bs1 p51 \ .
— (2.4) Tq (0) Bs I EN Ze tet

Comparing (2.4) with (2.2), we see that we can write

Aa a) p_ (A)| 2.

x ) “rl = 5_(0) “x
 _——

. where op, (t) 1s the particular polynomial

: - - 7

7 7 7

Fo

i Now p, (t) 1s a certain orthogonal polynomial. Without loss of
g generality assume A to be the diagonal matrix

| 6
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i 20 7) A= diag( Cee A) = - ’

- n

i where 0 < A, <A <<... < A are 1ts elgenvalues (distinct because A3 Ne 4 [a

- 1s not derogatory).

: (2.8) Definition. In the coordinate system corresponding to (2.7), let

a. T
| the nonzero vector z be (6,5 cee 6.) . Let orthogonality of two

1 polynomials p(t), q(t) (relative to z ) be defined by

- n 5
— (p(t), q(t)) = 2 p(A dad JET = 0,
] i=1

| S
| (2.9) Definition. Let P(t; z) =t + ... be the unique monic poly-

a nomial of degree s that, relative to z, 1s orthogonal in tie sense
: ~—

| of (2.8) to all polynomials of degree < s-1.
| — Note that P(t; z) depends only on the direction of gz, and not

| its magnitude. I.e., P(t; z) = P(t; az), for all real a # 0 .

Po (2.10) Theorem. The polynomial p, (t) of (2.5), (2.6) is. the_ ortho-

4 gandly nomial P (t;z,) defined in (2.9).

3 We shall not prove (2.10). For a related proof see, for example,
p. 349 of [5]. The basic reason for (2.10) is the isomorphism, well

Has expounded by Stiefel [11], between orthogonality of the polynomials

]
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Is

i p(t), aft) in the sense of (2.8) and geometric orthogonality of the

vectors p(A)z, g(A)z in BE . That is,

~ (p(t), q(t)? = (p(A)z, q(A)z) -

| Hence the conditions (2.3) asserting the orthogonality of the vector

- Zor] © P(A; z,) Z, / P (0; z,) to z,, Az, Az, ..., A” Tz, are

1 equivalently asserting the orthogonality of the polynomial P(t; z,)
2 “1

~ to the polynomials 1, ty, t 5, «.., £” ,

BR In summary 2 1s uniquely determined from 2z, by the formula
w k+1 k

2.11 I Rcd(A 2) .
s Tk

he Moreover,

Es P(A; 2)
| (2.12) x S KL x.
B k+l = p_(0; z,) k

§ Relation (2.12) 1s the basis for a proof by Birman[3] that in the

= optimum s-gradient method f (x, ) converges to 0 linearly, or faster.
= i -1

- To be precise, let 0 = (A, + Ap) (A, - A) . Let T(t) denote the

3 Chebyshev polynomial on [-1, 1], normalized so that max_; £ < Ir (¢) | _
i" 1. Let

| A + A - 2u— = ES

Qq (1) = Iq A= A )
n 1

—

Then Q (0) = T_(0) > 1, and la (4) | < 1, for A < t < A . It 1s

| 3
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] known that

. Na N-(0 +Vo -1) + (0 - Vo -1)
T_ (0) = > > 1.

Birman's proof goes as follows:
—

: P (A; z.)
w f(x, ,.) =7° 8 LS X

k+1 | P_(0; z,) k

. 6,8)
< fla10) * , because P(t; z,) is the poly-

: nomial that minimizes f(x, 1)
~ 1 T

=~ ———— x Q (A) AQ (A)x
2 k k

[a (0)] ° °
L

1 - 2. (k).2
| -—L Yale (,) 1° 18,
o [a(0)I” 1=1

(2.13)
n

| < > 2 rg, )®
~ [q(0)]7 1=1

1
—1 f(x).

~— 2 k
= [T_(o) ]

S

— Hence

— .
(2.14) [f(x ) < ———= V(x) ,

kK’ — k 0

[7 (0) ]
ee

. proving the convergence of f(x,) to 0 to be linear or faster.
CO

(2.15) Definition. For a = 0, +1, +2, ..., let the moments Hey
- T

of z = (€, ee €) be defined by

-

9
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o

i=1 7

-

(2.16) Theorem. Fix s > 1 . Except for a constant factor, _the ortho-
b —

h. gonal polynomial P(t; z) of (2.9) can beexpressedby thedeterminant

—

Ho Mp oer Mga !
|

- Hy Ho oe Hg t

: (2.17) P(t; z) = Cee :
Hs Heel Pog-1 ©

The proof 1s left to the reader.

L In the next theorem we give an explicit representation for the ratio

_ £(x,,,)/(f (x) in terms of the moments of 2,
—

L (2.18) Theorem. Fix s > 1 . Let x, be any vector in the optimum

s-gradient method, and let mu, be the moments defined by (2.15) for

the gradient vector 2 = Ax, . Then

)

SS BoB FP|

— | Ho Mp Ho eee Hyg

~ £(%y47) Mer Mg Hogg Hos.
f - by(x) ho Mo,

where M is the .minQr determinant of Mg in the above determinant:
|—

10
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3 - Ho Hz xx Pail

| He Parr oo Pogo

|
Proof We have 2f(x,) = x Tax = Z Thi, = WU To simplify3 ) k k k k k -1 °

= : _ I t 1 T
She the notation, let z, = (6, Cee. £.) and Zo] = (€; s + EE Cl ©.

= Then
xe.

= roo S17 kK
- Cs ~P (0; Z. ) Cs by (2.11)

| -1

| where we use the representation (2.17) for P(t; z,) . Then

| T,-1 1 2 1 ,2
(2.19) 2f(xyq) = 207A 2 =D 3 [Phys 2) 5 85

M_. i=l i

1 Eph; gy co Eo 2
= v2 si Tk Ns i
Ba -1 7

- Now P(t; z,) is orthogonal-in the sense of (2.8) to all polynomials

of degree < s ~- 1 . Hence the only term of P (Ags z,) Ay that con-

lo tributes anything nonzero to the sum (2.19) is the term (-1)°M_, A, :
| Hence

or(x)= CROFT p(s 2) 2| 141’! TM Teh?fk cM
FL —- -1 i=1

| 11
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= 2
3 ig yee kg SA
. La Hq Ho eo ® Hg 9

= -1 i=l

; Care EP ~FIBLE BE

2 PoP rr Hear Pa

1 — . Hy Po eee Mg Ho

i

: He Perr or Hogan Mga

Dividing of (x,,) by 2f (x, ) = u_; and rearranging the columns of the

LL last determinant proves theorem (2.18).

— (2.20) Corollary. In the notation of theorem (2.18), for s = 1,

3 2.21) Gp) I As BR
£0) M171

If n = 2 and s = 1, then

| 2,2 2

(2.22) Fle) } S650 = A) ICIP
| th) ota tad KE

21 "1°2 1-1 "2°72

Proof. The second expression comes from the first by using (2.15)

and (2.21), where Z, = (S, €,) : with some algebraic manipulation.

(2.23) Corollary. The expression (2.22) for fx) /f(x) is unchanged,
T

if (&,, €,)° is changed to (¢., -€ yt i17 22 mn — 2 1

; 12
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~~ The inequality (2.13) yields an upper bound for the expression in

| (2.18) . We may state this result in the form of the following inequality,

1 valid for s=1, 2, . . ..

hoo Hy HB u |= -1 "0 "1 ceo g=1
g My oo Hyg

2 (2.24) Cee bX | < FIT
lL — he v0 Hog | 2 1
: Hs-1 He Paar. xx Hog-1 S AM

i This is essentially the inequality of Meinardus [8a], who derived it by

LT the same argument for a slightly different iteration in which =<) 15
2 minimized instead of f(x) .

The special case for s = 1,

| Se
- 2

| . Hq Ho < 1 _ My A
Co (2.29) Hop Hp = La V2 A
| Ho Hq EN
; : 1 Ah

” is a well-known inequality of Kantorovich; see (8) on p. 410 of [5].

| It was stated by Birman [3] that the bound (2.14) is sharp, in the

— sense that for each s and each given Aq, on (s < n), one can find

5 A and x, SO that (2.14) is an equality for all k . This is done by

finding a set of ho and (©) so that the shifted Chebyshev polyno-
mial Q, (t) is (up to a scalar factor) identical with P (t520) and

so that lo (A) | = 1 for each eigenvalue A . This 1s known to be

~— possible because the Chebyshev polynomials, like cosines, are orthogonal

with respect to summation over certain points.

15



However, Birman did not investigate the actual manner or rate of
§

_ convergence of £(x,) to 0 in the optimum s—-gradient method for a

general given A and Xo He left open the question of whether the

~ convergence of fT (x,) to 0 might actually be faster than linear in
; certain nontrivial cases.
. (O)¢ (0)

For s = 1 Forsythe and Motzkin [7] conjectured that if SA

- £0, then ( 3s oll, 11, as k -»%®, for all 1 with 1 <1 <n .
In words, x, = 6 asymptotically in the 2-space 4 spanned by the

— elgenvectors belonging to MN and A . The conjecture was proved by
Forsythe and Motzkin (unpublished) only for n = 3. Akaike [1] proved

the conjecture for arbitrary n . In an unpublished manuscript Arms [2]

{ had found a similar proof. We give a proof in (4.12) as a consequence

g of our result (3.8) for the s-gradient method.

— Suppose the optimum l-gradient process 1s performed entirely in the

_ two-dimensional space on . Then, 1f X87 hn and X 1s not an
eigenvector, 1t 1s easy to prove that:

_ (1) Xy» Xos Xs co. are all collinear vectors, and that

X15 Xs 3 Xgs .«+ are also collinear in another direction. Furthermore,
“ ¢ and Xx c *x for all k Here o® 1s given

ore = © Fok k+l = © Tok-1? J

by (2.22). The basic reason why these vectors are collinear 1s that
-

the gradients Zit] and Zoe must always be perpendicular in any optimum

“ gradient method.
2

(ii) Moreover, for each k = 0, 1, . . . . f(x )=c¢ f(x.) . This
k+1 k

— 1s an immediate consequence of Corollary (2.23). Hence f(x) » 0 1n

a strictly linear fashion, like the k-th term of a convergent geometric
—

series, even though the vectors xX, alternate between two fixed directions.

-

14
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-

It 1s a consequence of the Forsythe-Motzkin-Arms-Akaike result on

Lo the manner of convergence of Xe to © in BE for s = 1 that the
iteration behaves asymptotically, as k — ®, as though 1t were entirely

Se in the two-space Tyg The vectors x behave ultimately as thoughb

; they had resulted from an iteration started with some x, in n°! 2
|—-—

In particular, we find that f(x) “ 0 linearly, in the sense that

tim fen) © Pa)
—

¢ However, the vector x, 1s an extremely complex function of Xo
- Till now, the asymptotic nature of the optimum s-gradient method

1 has not been described for s > 1. This problem, posed on p.314 of
Forsythe [6], is studied in the next section

—

—

—

[-

—
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|
£ 3. Asymptotic Behavior of the s-gradient Method.

~ We are still assuming A to have distinct positive eigenvalues

i M < A < . . .< MN . Fix any s with 1 < s . Motivated by (2.11)
2.

and by Akaike's approach [1] for s = 1, we shall consider the trans-

3 formation
A

- (3.1) w' = P(A; Ww) Wo.

N

Here w A © and P(t; w) = t + -... 1s the orthogonal polynomial

defined in (2.9). Let

5 ) lw lle (as 0)
| - (3-2) oF =m=
] I) I]

where ull denotes the euclidean length of u .

_ Similarly, if w' #6, let w" =P (A; w') w', so that

The following theorem 1s of basic importance to our analysis of the

asymptotic behavior of the s—-gradient method.

~ (3.3) Theorem. Let V be the angle between w and w' . For any w
| ] such that w" # 6, we have

-
» IM° oP Jel a2 Pw) =——=— = cos ¥ ——=< ——_ ow’),

: 2 2 — 2 =

~ ol Jarl fl

| 16



i and there is equality if and only if w" = cw for some scalar c > 0 .

_ Proof. By the Cauchy-Schwarz inequality and the definition of V,

~ 202 = costull® Il2 < Il?| (3 -¥) (ww) = cosTUlwl|” lw"[|" < Iwi” [Iw"ll,

with equality if and only if w = cw", for c # 0 .

~ Now

= IMIZ - wT = [Ip (a5 w) wll® - WTP (a5 w') P_(A5 w) w
= Ww [P_(A; w) 1° Ww - WP (A; w') P(A; WwW) W

| =P(a5 w) {P_(8; w) - P_(&; w)}w

| ~— = P(A; w) D(A) w

by (2.3), because D(t) 1s a polynomial of degree at most s =- 1,

since the leading terms t° cancel. Hence HE = Ww", whence

in T {
(3:5) lerll* = (rw) ©.

CL Combining (3.4) with (3.5), we have

| 1 ly 2 2 1] 2 2 ! 2
— [wll = cos™liwl|” lw"lI® < [lwl™ [MG]°,

with equality if and only if w' = cw . That c > 0 follows from the
1l Is

| fact that wh = |[w'|| > 0 . This proves theorem (3.3).

17



| = (3.6) Definition. Fix s with 1 <s<n-1. Fix a euclidean
| coordinate system in E so A takes the form (2.7). Let 2 be the

unit sphere in E_ . Define ZF C€ £ to consist of all unit vectors y

- with at least s + 1 nonzero components. We define a transformation

i T: Z¥ = ZX, as follows: For each y in Z¥, let y' = Ty = w/w,
| where w = P(A; Vv) V (That w AL 6 and y' € ny are proved in

H theorem (5.1).)

; . (3.7) Definition. By a continuum we mean a closed connected set in Es
| with the understanding that a single point 1s a continuum.

3 (3.8) Theorem, Fix s with 1 <s<n-1. Let Yo - 0, 200 nO)
| be any vector in z (Or 14 ng (i = 1, ..., n) . For k =0, 1, «..,
C define y,,, = Tv,, _whereTl was defined in (3.6). Then the set of

| | limit points _of the sequence {Vo ck =0, 1, 2, . ..} of normalized
= gradients 1s_a continuum R< 5 . Moreover, for any point r in R,

| ~ we have rr = Tr = T(Tr) .

| L Proof, Let w, = y,. For k = 0, 1, ..., let wy4 = P (A; Vi) W,
3 ~where P(t; v) was defined in (2.9). It is easily shown that Vy =

~ w/w, |, for all k . Since n >» s + 1 components of W, are nonzero,
it follows from theorem (5.1) that at least s + 1 components of Ww

are nonzero for k =1, 2, .... Hence no Ww, = 6 .

- Let wy, = @F, ooo oF)" . By theorem (3.3),
| Pw) Sow) < oo <o(w) < ovo o

-



.

But for each k the s zeros of P(t; W,) lie in the interval

1 (M5 A) . Hence P(t; w,) | < (N, - "0% for Nn < t< Ns and so
{ 2 2

bo JB IP (a5 wy) |
“ pln) = BL__lsdek MR] 112

[| We, |
; k k

— & 2. (k).2
LP (hs wy)1% Log]

: I=)
Tn

- (k) 2
L [og]

} 1=1

CS— < oO 1) , for all k .

[
As a monotone bounded sequence, (p(w) has a limit L . Hence

i But, by theorem (3.3),
oe

2 2

- Tet TEE fl Ilk+1 k

(3.10) ]-

lo ol 2 4 1
, = lo, I [1 - COS Vy 3
p=

— where V, is the angle between Ww, and wp... - Then, by (3.9) ,

cosy, 1, and Le + 0, as k ® ® , (Since c¢c > 0 in (3.3), f 11 0 0
(

Now consider the set Y of unit vectors {Voy + k =0,1, 2, . . .

- As an infinite subset of the compact unit sphere 2, (vp) has limit
points; let R be the set of all limit points of Y . Since Vo = 0,

-

19
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as k s Wwe have [9500 Yop 0, as k . Then, as Ostrowski

1 shows on p. 203of [9], the set R must be a continuum in the sense of
(3.7).

ee Let r be any point of R . Then there 1s a subsequence (Wy 43
1 converging to r . Since 1725 +2 - Yo, | O, we have also that

2 .

Yor +2 _T Yok, r . But T 1s a continuous transformation. Hence
! ot >t 2 2
L TV, “Tr, and Tr=r. Since Tr =r, we see from theorem (5.1)

i
* *

‘ that r € £ . Hence RC ZX . This completes the proof of theorem (3.8).

L The author has programmed a number of test cases with s = 2, to

3 investigate the nature of the set R . In every case, R appeared to
-

be a single point. The author conjectures that R is always a single

L point in theorem (3.8). So far, this has been proved only for s = 1,

and we give the proof in (4.12).

- The following theorem shows one way in which one might be able to

prove that R consists always of a single point.
—

L (3.11) Theorem, Suppose in the proof of theorem (3.8) that ?(w,)
were toconverge to L so rapidly that, for some @ < 1.

i

.

(3.12) 0 < Pw, 1) - P(w, ) < af (+, ) - (+, » 1, for all k .
|-

r

L Then R would consist of a_single point.

L Proof. If (3.12) held, then the following infinite series would be

convergent:

L
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hd 1
2

ol - ®

: (5.13) L [00n) (wn)1% <
| as 1s seen from (3.12), by the ratio test. It is shown in (3 .10) that
—

3.

~ (3.14) [0 (Wye) - p(w, )] ~ sin lv, |, as k =o,

L where Vy 1s the angle between the vectors wy and Wipro Then, from

| (3.13) and (3.14%), we would have
co

| 1 ©

] (3.15) 2 4, <
:

L Now, let Vie = w, /|lw | be the unit vector 1n the direction of wy It
would follow from (3.15) that

|-
0

Lo von = voll < =,
[ k=0 2k+2 2k

L whence

| ®
— 16 -(5.16) L Vopr = Vox)

k=0

—

would be an absolutely convergent series of vectors. Since

— k-1

| Yor = L Vopeo = Yon) + Yor
. |

we see that the sequence {yy} would then have one limit point. This |
_

proves the theorem (3.11).
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However, the author sees no way to prove (3.12) nor the conjecture.

1 The following theorem proves that, whether R has one point or an
infinite number, f (x) -» 0 no faster than linearly.

¥ (3.17) Theorem. Fix s with 1< s <n -1 . Given any A in the
form (2.7). Let Xo = (8, y ose 3 )” be any vector in E with

L m nonzero components. Then in the £ (x, Joum s-gradient method
converges to 0 in the following ways:

L (1) If m < s, then x) = 6, £(x,) = 0, and the iteration termi-
L nates in one step.

(11) If s + 1<m, then the convergence of f(x, )_to 0 is

| asymptotically linear, in the sense that there exist constants Cys Coy

depending on X59 with

f(x )
| VC 2kt+2’ :

(3.18) 0<ecy<gmy <ep<l for allk .
2k

u Proof. We may ignore any zero components of Xy as they remain

| zero throughout the iteration. We are thus minimizing f(x) in E .
- Proof of (i): If m < s, then the subspace L defined in Sec. 2

f is Be . Hence X, = © and f(x) = 0, the minimum of f(x) in Eo
Proof of (ii): That

.

CTY,
A TT- < Cs <1

{ follows from the chain of inequalities (2.13). We have to prove the |

inequalities 1nvolving Cy

-
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|
L

Given X, with at least s + 1 nonzero components. By theorem

a (5 1) all other vectors Xe have at least s + 1 nonzero components,

| so that no Xp = 6 . By theorem (3.8), the normalized gradient vectors

L Yor have as a limit set a continuum R . For each point r in R, we

. have Tor = r . Suppose a position vector x were such that r = Ax /||Ax|| CR.
That 1s, x would be in the direction of Aly . Let x" De the result

of two steps of the optimum s-—-gradient method applied to x . Since

Pr — r, we see that x" would be in the same direction as x . Hence

1 (3.19) x" = yx and so f(x") = 2°£(x),

i for some vy with 0< vy = y(r) <1.
I.e., for each point r of R there is a positive real number

L v(r) such that whenever the gradient of a vector x lies in the direction

8 of r, then (3.19) holds.
Let C be the minimum of y(r) for r € R . Since R 1s compact,

5 the minimum 1s assumed and C > 0 . Hence

L (3.20) 0 < ° shin,
ro

- for all x such that Ax /||Ax|| €R .
5 Now the ratio f(x")/f(x) is a continuous function of x . Let

N(R) € Z be such a neighborhood of R that
i

L
t
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for all x with Ax/||Ax|| in N(R) . Consider the sequence {x,,) :

L Let z, = Ax,, and let y,. 2/12, . By theorem (3.8), the

{Voy} have R as a limit set. Hence there is a K such that for

L k >K ally, lie in N(R) . By (3.21) then for k > K we have

LL 3c? < FX pp0)
2k

.

. Letting c, = 3c? completes the proof of the theorem.
|

— Actually we could have taken Cy = c® -¢, for any € > 0 .
;
L .

(3.22) Corollary. With the hypotheses of theorem (3.17), there exist

| constants d,, d, with

Flo)
— I CR 1, for allk

L
Proof. The corollary follows from theorem (3.17), the inequalities

4

3g (2.13), and the fact that f(x, ) “0, as k © ®,

— (3.23) Theorem . Fix s > 1 . Let x, be any vector such that X,

—-1s_parallel_to Xq in the optimum s-gradient method. In other words,
LC

2/112, _is in the set F(A) of (4.5), where zy = Ax, . Then

L
f(x, +)

k+1 2
(3.24) = c (k =0,1,2, . .. Js

2

where c depends on A and on Xy
L

Remark. The import of this theorem 1s that, although the X,

}

-

ol



8
alternate between two fixed directions, as k = ®, the ratio (3.24) is

g constant for all k, and does not alternate.

» Proof of (3.23). We first note from Corollary (2.23) that the

theorem is true for s = 1, and that (2.22) gives a formula for c? in

= terms of the two nonzero components ay C, of 2 .
. For any fixed s > 1, let wn be the 2~space spanned by xq and

| xy Let f(x) be the restriction of f(x) = Ex ax to the subspace

. n . Then the vectors Xqs X19 Xpy eee Can be shown by a geometrical
: argument to be the successive iterates of the optimum l-gradient method

= for finding the minimum of f, (Xx) in =n, starting with Xy Then
| (3.24) for s = 1 states that

| nk

for some constant c depending on the eigenvalues of tr , Since

1 £ (x) = £(x) in =, this proves the theorem for s .
Presumably theorem (3.23) could somehow be proved from theorem

N (2.18), just as the case s = 1 follows from (2.22).

Corollary (3.22) could also be proved from theorem (3.23).

.
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: Lk. Nature of the Asvmptotic Directions.

~ We should like to characterize as well as we can the possible limiting

vectors r € R of the (normalized) gradient vectors Yor of theorem
——

(3.8). Since er = r, for r in R, we have

(4.1) cr = P(A; Tr) P(A; r)

a

where <¢ > 0 1s a constant and Q,, (t) 1s the product of the two poly-

i. nomials P(t; Tr) and P(t; r) . Letting r = (py ee. 0) y We

: have

(&.2) cpp = Qo (A) py (i=1, ....n.
.-

. Recall from p. 44 of [12] that P(t; Tr) = t° + . . . and P_(t; r)

| =t°+. .. are polynomials of degree s, each with s distinct real

~ zeros in the open interval (A A) . Hence Q(t) =t +. . . is a

| polynomial of degree 2s with 2s real zeros 1n the interval (Ay ADs
|_—

counting double zeros twice, if any. Now c¢ > 0 in (4.2), which implies

_ that for each 1

— (L.3) Gy, (hi) =¢>0 or p; =0 (1i=12, ....n.

L
Since Q,, (t) vanishes for some t in (A, A) the equation Quy, (1)

- = c > 0 can have 2°34 e suum Or 2s distinct real roots, which we

: call bs 0 =1, . . . . m), and number so that
—
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—

< eee .
| Hq < Ho < Hn

—

B (Here we count a multiple root of Q,, (t) = c¢ only once.) Thus

: Qpg (hy) = © Gel. ...m

28 By (4.3) each Ns for which p, 4 0 1s one of the hs

— (4.4) Definition. Given Xy Let R be the set of limiting points

» of the normalized gradients {¥ ck =0" 1" Coed} of the optimum

| s—gradient method starting from Xo For any vector r= (ps - - oe p)

L in R, let S be the set of As for which p, £ 0 . Any such set is
| called an asymptotic spectrum of the optimum s-gradient method for the

| given Xy - Anyr 1nR 1s called an asymptotic gradient vector of
the same iteration.

a. | |
Note that R depends on A and X59 and we occasionally write

= R (x, A) to make the dependence explicit. Note that S 1s a property

of r only, and only indirectly of Xy

;

3 -(4.5) Definition. For a given A, we define the invariant set F(A)

of the optimum s-gradient method to be the set of unit vectors r such

} We have shown in theorem (3.8) that, for any xq R(x, A) © F(A) .
- It 1s never true that R(x, A) = F(A) . However, 1t 1s true that

|

oT co = UJ R(x,,A) .
Xx. €E 0

: 0 n

-
»

|



| For, if r € F(A), then T°r = r, so that r = R(r, A) .

| 0 0)\T

B (4.6) Theorem. Given Xy = (gt ) Cee. 3 )y with I £0 (i =1,
ha ... n) . Assume s <n . Then both eigenvalues A, and A belong

2 to all asymptotic spectra S of the optimum s-gradient method starting

with x

iS Proof. Assume that A (q < n) 1s the largest eigenvalue in the
| asymptotic spectrum S corresponding to an asymptotic vector r of

R(x, A) |. The zeros of each P(t; z,) (k =0, 1, . . . ) lie in the

open interval Ay» A) . Hence P(A; z,) # 0 for all k . Hence

| Lo q (26) £ 0 for all k, where the n (28) are the components of
- Tor = Zo/ 2p

 — Let 7 be the largest zero of P(t; Tr) P(t; r) . Since the

| | zeros of both P(t; Tr) and P(t; r) lie in the open interval (M5 MDs
-

we see that P(t; Tr) P(t; r)2, as tA”, for t > 1 . Hence

2 |
— . . AN . A » .

§ c Py (hs Tr) Pg (M3 r) < P_( " Tr) P_( 0 r)

-But then, by continuity,

5 As A ) ;- Py ( q’ Zoke1) Fg ( q’ Zope) S OPS (Mn 2h,0) By (M5 250)

Ie | (2k) |“~ for some 0 < 1 and all k > K . Since all M J 0, and since

Mg hy Pq 4 O, for a certain subsequence Koy this means that
In (25) —"® as J — 2° . This 1s impossible, since all 25) lie

|
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| {

K-

EK on the unit sphere. Hence gq = n, and A 1s 1n the asymptotic spectrum

| —

| . The proof that M is in S is analogous.

E (0) _
» (4.7) Theorem. Given Xn with E, #0 (i1=1, ...,n); assume that

| s >n . Let m be_the number of eigenvalues in any asymptotic spectrum

| - S of the optimum s-gradient method. Then

| — s+ 1<m< 2s.

Proof. Let r € R be an asymptotic gradient vector corresponding

| to a given S . As shown after (4.3), the asymptotic spectrum S is a

B subset of the set of t for which P(t; Tr) P(t; r) = ¢, and the
— number of such t 1s between 2 and 2s .

B However, 1f m <s, one step of the optimum gradient method would

carry r 1nto 6, and so r could not belong to R . Hence

Lo S lL <m< 2s

EF _ (£0) (0)4T
~— (4.8) Theorem. Suppose s < n . Letx, = (8; y + - « « 877)" De any

—vector in E_ with exactly s + 1 nonzero components 3% o Them
Be

Xr Xps Xp are all collinear vectors. That 1s, the normalized

gradient vector vy, = Ax /llax |] is in the invariant set F(A) _of (4.5).

~ Proof. Let Zo = AX . It will suffice to prove that Zp = CZ»

: for some positive constant Cy Without loss of generality we may

assume that n = s + 1, since the components for which £\0 = (0 remailn
Zero.

A
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3 (4.9) 2, _ zg 1A; y Az,

and 7,, eo om Y, are so chosen that z, 1s orthogonal to 232 AZ ys J
A _ ~ ~

3 n° ‘2, Because s + 1 components of Z, are nonzero, the s vectors

F Zy? Az, CAS Zo are linearly independent. Hence the set lz) Az,

Cay 2572) forms a basis for the subspace of E41 orthogonal to Z4 .

— Next, 2, 1s formed as a linear combination of Z15 Az, Le ey

RB A Z4 which 1s orthogonal to 215 Az, cosy A 2 Since Z, 1S

. orthogonal to Zp 1t 1s expressible 1n terms of the basis 25 o Sie

ne (4.10) z cz +ochz +. ..+c AST
2 = 00 170 s-1 0°

- We shall prove that c, =c, = = Cc = 0

| 5 Take the inner product of (4.10) with Az, :

T sS-
JR. 4.11 Co.( ) zy Az, _ C21 Az, + C1%y A 2, + + C. 0% A Zq

Co T T :
But Z1 Az, = Zz, Az, = 0 because 2, 18 orthogonal to AZ, . And

T B 2 _ T s-1 aa

E Z1 Az, = 2g A £, =. TE A Z( 0 because 2, 1s orthogonal to: 2 s—-1 Ts
Azg, Az, . . . . A” "zy . And z, Az  # 0, since otherwise by (4.11)

Co Zq would be 6 . It then follows from (4.11) that Coq 0 .
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| Next, taking the inner product of (4.10) with Az, and using the
: same argument and the fact that Coq = 0, we show that Cyn = 0 .
~- After taking the inner product of (4.10) with AZ, Aa, Cee Ah,

we will have proved that © ol =, . . = C, = cy = (0 . Then, from (4.10),

| Z, Cy2, ~~ That cj > 0 follows from the proof of (3.3) . This com-

_ pletes the proof of theorem (4.8).
Theorem (4.8) implies that any s + 1 eigenvalues of A can be in

- the asymptotic spectrum for some start Xy Moreover, any vector r
~ with exactly s + 1 nonzero components can be anasymptotic gradient

\

| vector of an iteration. This extends to s > 2 the known fact for the

4 ordinary optimum l-gradient method 1n 2 dimensions that any initial

‘ gradient direction 1s repeated at every other step of the iteration.

L See the end of Sec. 2 above, or p. 21% of Ostrowski [9].
| That for all s the period of the iteration in theorems (3.8) and

- (4.8) 1s 2, and not higher than 2, was a surprising fact to the author.

u However, the experiments of Khabaza [8] for s = 3 suggest the period 2.

For s = 1 we have s + 1 = 2s = 2, and then by theorem (4.7) all

he the vectors invariant under two steps of the optimum l-gradient method

| are of the type covered in theorem (4.8). From this we can now show for

~ s = 1 that the limiting set R of theorem (3.8) is actually a single

~ point. The following is a modification of Akaike's proof in [1] of the
} Forsythe-Motzkin conjecture [7].

| (4.12) Theorem (Akaike). Let s = 1 . Let Vo = (n!, ceey 2 {OT
~ oF (0)

be any vector in Z with ny £0 (i=1, ..., n) . Then the sequence

L (Vo : k=0, 1, . ..} of normalized gradients converges to a single point
r whose spectrum is RS A . Moreover, Ty =r .

51

a -



L Proof. By theorem (3.8) the set of unit vectors {Vo : k=0, 1, «..}

B has a continuum R as a limit set. By theorem (4.7), for any r € R the

| — corresponding spectrum S of r has only 2 eigenvalues in it (for s + 1

| = 2s = 2). Now by theorem (4.6) the two eigenvalues in S must be MN

| and MN . Let r be any point of R; let r = (py 0, . . . . 0, 0.) t
2 with oF + 2-1 Th P(t;r) =1t - her — ApS + Apope Pq Py . en FAT; = by where pp = A,0q Pn

T

E Hence P, (A; r) r = (A - b) Pgs Oy «oop O, (n - we) .
- By the proof of theorem (3.8),

EB lim 2 | 2
p= M0 etn) = 0) = [7 (as) I, since | #1

5 2 2 2 2
= = A - + A —. (A = we] + (A =m)" po,

| or

| hL.1 = (Nn = A 2 2 2] (4.13) L=(A -M)"0] 0,

Now L 1s a number determined by the iteration, M and MN are
u 2 2 . 2 2
x. given eigenvalues, and 01 + Po, = 1 . Hence the pair Pys P, are

determined by (4.13), up to an interchange at most. Hence the set R
a

can have at most eight vectors in 1t, if all permutations of signs are

| considered. But then, since R is a continuum, it must consist of a
|_

| single point, which we call r . Then Yor “rr, as k= ® . This

- proves theorem (4.12).

: T T

Actually, 1f r = (pqs oe oy 0.) ’ then Tr = (0, cee. -0,) /
i

where all components Pp: = 0 for 1<i< n . Then r = lim Yo and

’ Tr = lim Yore1? 2S k = ® , So, the directions of the gradient vectors
N Ze alternately approach the directions of r and Tr, as k — «,

8
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| The reason we cannot extend our proof of theorem (4.12) to s > 1

me. is that the equation analogous to (4.13) involves between s + 1 and

gz 2s unknown components of r, and we do not see how to limit r to a

a finite number of vectors. Even for s = 2, theorem (4.8) shows that

= all vectors r with J nonzero components are invariant under 7’

Prescribing the vector r to have unit length and prescribing the value

- of L reduce the number of free parameters in r to 1 . But, so far

= as the author can see, there remain possible limiting vectors r

| in R .

8 Moreover, for an even number s > 1, there are asymptotic spectra
- containing more than s + 1 eigenvalues, as will now be demonstrated.

LL We shall consider only spectra with symmetry about a midpoint. We do

5 not know whether there are asymptotic spectra with more than s + 1

| eigenvalues without such a symmetry.

2 We shall first examine possible asymptotic spectra with an even

number 2g of eigenvalues. Let the eigenvalues 1n S be a - bo?

1. eR LT, at py. .o..oa hoop 8 + Hos where 0 < a "Hy

Fr and 0 <b < ce SH Let us consider unit vectors r with symmetric
| — components Py cw aR Ps ow es Pos corresponding to the respective

—points of the spectrum.

Because of the symmetry about the point t = a, the orthogonal

= : . ) : : 2
polynomials Py (t3 r), Popp (t5 r) associated with S and the to]

satisfy the conditions

(4.14) p(t; 1) = g ((t - 2),
| ok k

Eo
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a where 8: 1s a monic polynomial of degree k;

NN

! (4.15) Pon (t5 1) = (t= a) bh ((t-a)°)
= | Pk+1* 7 k ?

[| where h_ is a monic polynomial of degree k .

| By symmetry, the even and odd polynomials P(t; r) are automatically

. orthogonal. By (4.14) orthogonality of the Po, (t5 r) among themselves

B can be expressed in the form
I.

E 2 ey 2 ; _ ar 10 0N (4.16) ho} gs (7) g(uy) o5 = 0 (3, k =0" 1... 0 gd 4
Ft

Be Thus the g, (t) are themselves orthogonal polynomials over the set

2 2 2 2 A

x by . Ts Hq with the weight factors 1s o wo Oy - Moreover, g, (t) =
(-1) g, (a° - t) are monic orthogonal polynomials over the transformed

E 3 2 2 2 2 | | 2 0
= set §S=1{a” -u yg eeey A = } with the same welghts Py coos PO

| N ~ 2) 2

3 Note that |g, (0) | = |p, (03 r) | and that lg, (a - bs) | = |p, (a ul r) |
| for 1 =1, ..., g . Hence |g, (t)/, (0) | has the same constant value

BE over the set S that |B, (3 r)/P,, (0; r)| has over the set § .

| ~~ By (4.15) the orthogonality of the Port among themselves can be

| -expressed as
we

> 5, 2 © | |

- (4.17) 7 h, Wb (w)) wy py = 0 (5, k=0,1, . ...3#K.
i=1

— Thus the h(t) = (-1)"n, (a - t) are monic orthogonal polynomials over
\ the set § = (2° - 0, «eo a’ - u°) with the different weights 7, coe.
ha "’ & . Note that |h (0)] = |n (a°) | =| P (0; r)|/a, and that
i qa gq k Kk — T2k+1M ?
“
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| C2 oo :
- — ~ |p :| Ib (a” - wD =nGD I=12 (atu) /u

—

Thus constancy of | Prey (65 r) | over S does not imply constancy of

[fy (8) over 5 . The even and odd polynomials transform differently.

By means of these orthogonal polynomials 8, we can reduce the

- problem of the invariance of the r under two steps of the optimum

2s-gradient method over S to the problem of the invariance of an

optimum s—-gradient method over §S in a space of half the dimension.

L To be precise, the above relations imply the following result,
) which we do not prove.
}

bh

i (4.18) Theorem. If s is even and s + 1< 2g < 2s, then the vector
r = Ch ' CEE Ps O12 ¢ OOE oy) (with no oH = 0) 1s inthe invariant

. set (4.5) for the optimum s-gradient method for the diagonal matrix of
| 2g nonzero elements
;

- ~. + ons +diag(a ? sore 8 = Hp 87 Mas > 8 by)
)

if and only gf the vector r=(p0., . . . .0 ) 1 (with no p, = 0) is
— — — 1 q —— i

in the invariant set for the optimum (s/2)-gradient method for the

- diagonal matrix of g nonzero elements

- : 2 2 2 2

diag(a™ + bes eves @ + by) :

be

Moreover, when 1lterations exist with these invariance properties, 1f

— Zg = r/| x and Z = r/l zl, then [lz | = Iz, | for k = 0" 1" 2, . . . .

where Zy anal Z, are the gradient vectors of the respective iterations.
—
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= We do not know a comparable theorem for odd integers s .

LL As an application of theorem (4.18), we can show that for any s

= of the form s = oP (p =0, 1, 2, ...), there exist vectors with 2s

| nonzero components that are in the invariant set of some optimum s-gradi-

=» ent method. Forp = 0 this is theorem (4.12), and is true for any

Ha | | _ 2, 2 2. 2
diagonal matrix of two positive elements diag(a + by» a + bo) and

. any vector rr = (p> 0.) ~~ Application of the first sentence of (4.18)
4 2 0 2 2 2 2

leads to s = 2 with any matrix of form diag(b TV b + Vos D T Vz,
9 > 2 2 2 2 > 2
pe = - = — + V._ = +

b, + v),) where b+ Vv, =a -hy, b+ Vy =a = py b 5 = at bp
| pe + ve = a + and corresponding vector c(p 0 0 0 yt . Anotherly = Bos p g D2 1° 1° 2

application of (4.18) leads to s = 4 with the matrix

3 diag(b = vy, . . . Lb =V, b+ Vy, by)

3 and corresponding vector C (3 Ps P15 Pps Pos Py Pys 0.) . It
1s clear that the process may be continued to s = oP for any p .

LL Note from theorem (4.7) that 2s 1s the maximal number of nonzero

y components 1n any vector in the invariant set for an optimum s-gradient

| ~— method. Our above example illustrates the maximal case.

| We next consider ‘symmetric asymptotic spectra with an odd number

‘ 2g + 1 of eigenvalues a "Hy ceey 8 = By, a, 8 + bys snes @ FB and}

a corresponding symmetric vector

7~— (py ® [Ow ok Po? Pq cso) Pq ¥

invariant under T° . Then again the orthogonal polynomials take the

—
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2 forms (4.14) and (4.15). The odd polynomials are still defined by the

4 condition (¥.17), but the condition (4.16) must be replaced by

A 2 2, 2 2
: . : .) p. + g. (0 0 = 0g (4.19) 2 L800) 860) of + 5; (0) £,(0) 0
! (3, k=0,1,. «..3#k) .

; The analog of theorem (4.18) 1s now stated, but not proved:

Co (4.20) Theorem. If s 1s even and s + 1 < 2g + 1 < 2s, then the
vector r = (p y Ps Os Ps vis p). (with mo p, = 0) is in
— q’ "7 "1? To? 1° q 1

| — the invariant set (4.5) for the optimum s—-gradient method for the diag-

| onal matrix of 2g + 1 nonzero elements

ge diag(a - pb ; cee@ = Hyp Ay 8 + Has eee, a + Hy)

— 1f and only 1f the vector r = (py 2, Py 0" DE °,) (with na ps = 0)

2 is in the invariant set for the optimum (s/2)-gradient method for the

| diagonal matrix of g + 1 elements

H
i : 2 2 2 2 2

| diag(a™, a” = Wis o sais 8 + hy) .

Moreover, when iterations exist with these invariance properties, 1f

| _ ~ _ A A _ A _20 r/|l zx and 2. r/l ll, then Jz, | Iz, | for k=0, 1, 2, . . . .

- where Ze anal z, are the gradient vectors of the respective iterations.If s is odd, then the set of 2g + 1 eigenvalues (a - hg? "0

C— a = Wy, 8, 8 + his eo = a + on, can never be the asymptotic spectrum
of an optimum s—-gradient iteration.
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: The first two sentences are strict analogs of theorem (4.18), The

_ third is true because Poy (85 r) = 0 for all k .

The signs of the Pp; are of no importance in theorems (4.18) and

~— (4.20), and any Ps could be left alone or replaced by Ps independently
5 at any place it is mentioned.

=

Ee

|
|

—

-

|
—

“
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; 5. Singular and Derogatory Quadratic Forms; Zero Components.

— Two restrictions placed on A above are really irrelevant--that A

a be regular and nonderogatory. If A is singular, then for some p > 1,

4 we have A =... =A =0<A < ...< A. Then it follows from
= 1 p pt+l n

» (2.12) that

a ek 1) = gl), for 1<1<p; k=20,1, 2, ...

— | (x)
{ while all components §&, » 0, as k »®, for p+1<i<n. On
3 CL e 2&2
2 the other hand f(x) = #x Ax = J A, &- = ) MA. ES . Thus f(x) isye. : i 21. i 71

FE minimized for all vectors in the subspace N where €; =... = ES = 0,
— and the gradient methods proceed from X to the closest point x

of N, with allx, - x, and all gradients 2 located in the ortho-

; gonal complement of N .

If A 1s derogatory, it has multiple eigenvalues but a complete

set of eigenvectors (because A is symmetric). Suppose, for example,

A= A= 0 0 0 =A <A eee <Athat 0 < 1 5 , r+ < n? and suppose that

| — «= (£0) (0) (0) (04 T- 0 1 2 °° cr 2 GPrtl? °° ep )

Now the orthogonal basis of eigenvectors belonging to Ms Coe. ao is

not uniquely defined. Our preceding analysis required at various places

(e.g., in the proof of (4.8) that the A, be distinct for each nonzero
(0) (0)

component £4 s but zero components € were 1gnored. If any of
(0) (0)

£5 yo 6 € are nonzero, make an orthogonal transformation of the

eigenvector basis so that X, takes the form
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LU : )0)2 (0) 2\3 (Q) (0)\T
F = + I + FE) Vl oe os5 xo = ((&] ELT) 0, eee, 0, ET, ea E70)

Then drop the new zero components Ens coe. €.. entirely, and effectively¥

 — reduce A to a nonderogatory matrix A of order n-r + 1 .

2 Thus, 1in effect, only the set and number of distinct nonzero eigen-
| —

values of A have a real relevance to the gradient methods for quadratic

6 functions #x Ax .

Moreover, zero components of any Xp should be ignored, and the

| order of A reduced by unity for each zero component 3 ) that occurs
gE at any stage of the iteration.

: If fewer than s + 1 components of any X, are nonzero, then

| Xpp1 © 0 and the iteration terminates at once. Hence we have always

| insisted that at least s + 1 components of xX be nonzero. Even so,

— one may ask, might not enough P(A Z,) be "accidentally" zero, so

x that for some later X fewer than s + 1 components are nonzero?
|

The answer is negative, as the following theorem shows:

2 (5.1) Theorem. Assume s + 1 < n . Assume E; £0 fori=1, ....

 — n. Then at least s + 1 components : 1) #0.

Proof. By (2.12), : {x 1) — P(N 5 z,) e (6), up to a multiplicative
constant that does not matter, where P(t; Z,.) 1s the orthogonal poly-

2

nomial of degree s over the set IN; 0 EE Ad with weights ! ) :
We shall prove that there exist s + 1 eigenvalues out of the M :

/ / /

(5.2) SESE I SI

ps
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/ / ' ' '

such that P(N; z,) P (M1) z,) <0 fori =1, ..., s . A fortiori,

a P (Ags z,) #0 fori=1,2, . . . .s+1, and the theorem will have

been proved.

— If the above sign-alternation property is false, then let gq < s

be the largest integer such that we can find A) with
—

A ro. - —_ (5.3) P ( $3 z,) P(N, z,) < 0 fori=1, . . . . gl.

- (Clearly some gq > 2 exists, or else P(N zZ,) would always be of

one sign and hence Py could not be orthogonal to Py = 1 . Then

| pick SEERERS. Mo-1 with
-

A’ A’ / A
1 SH < p SHS <A SHS o’

—

| : — _ — AL AN) >so that, if Q(t) (t= Wy). .0 (t boo1) 2 then P(A; z,) Q( J) > 0
So

for all i=1,. . . .n. (We omit details of the construction.) Then

~ - (x)(P(t; 2), at) = LP (rn; 2) al) [e™ > o,
S k i st 1 k 1 1

| i=1 1
—

—-so that £ and Q are not orthogonal. But, since Q is of degree
-

q-1<s-1, Py must be orthogonal to Q . This contradiction

n completes the proof of theorem (5.1).

—
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