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FLOATING-POINT KNUMSBER REPRESENTATIONS:

BASE CHOICE VERSUS EXPONENT RANGE

by

Paul Richman

Abstract:

A digital computer whose memory words are composed of r-state devices
is considered. The choice of the base, B, for the internal floating-
point numbers on such a computer is discussed. Larger value s of 2
necessitate the use of more r-state devices for the mantissa, in order
to preserve some "minimum accuracy," leaving fewer r-state devices for
the exponent of 8. As B increases, the exponent range may increase
for a short period, but it must ultimately decrease to zero. Of course,

this behavior depends on what definition of accuracy is used. This behav-

ior is analyzed for a recently proposed definition2 of accuracy which
specifies when it is to be said that the set of g-digit pase B floating-
point numbers is accurate to p-digits base t . The only case of prac-
tical importance today is t = 10 and r = 2; and in this case we find
that B = 2 is always best. However the analysis is done to cover

all cases.
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Symbol

dlgltr

(o.a,a ...an)r

172

(b1b2 . .bn)r

gea(i,g)

[X]

ii

Rotation

Meaning

digit of a base r number

the base r number

O.a.. ..a <a. <
1  (where o < a, r)

b

the base r integer bl'” n

(where o < b, < 1)

greatest common divisor of the
integers i1 and j

greatest integer < X
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1.  Introduction

I. B. Goldberg recently showed that 27 bits are not enough for

8—digitlo accuracy (under a suitable definition of accuracy), but that

28 bits are. L He proved that if 291 5 1P > 292 then g bits are

enough for p-digit accuracy. He also gave several examples (p=1,2,8)

10

in which g-1 bits are not enough for p-digit.. accuracy.

10

Shortly after this D. W. Matula independently discovered and proved

. . 2 . .
his Base Conversion Theorem. Let r and t be incommensurable integers

22 (r and t are commensurable if and only if rt = tJ for some

positive integers i and j) . The Base Conversion Theorem essentially

states that q-digitsr suffice for p-d.igi’c,G accuracy if and only if
-l Py
In this paper the Base Conversion Theorem is extended to commen-

surable bases. These results are used in a discussion of the choice of

the internal representation of floating-point numbers for an r-ary corn-

puter; i.e., a digital computer whose memory cells are composed of r-state
devices. This representation is specified when
1) a base for the floating-point numbers is chosen and

2) the number of r-state devices to be used for the mantissa
(and hence the exponent) is chosen.

For example the IBM 7090, the Burroughs B5500 and the IBM 360 series
computers are 2-ary computers. The bases for the internal representation
of floating-point numbers in these three computers are 2, 8, and 16,
respectively. In the IBM 7090, 27 bits are used for the mantissa and
8bits for the exponent. The mantissa is stored in binary notation,

1
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an extra bit being provided for the sign. The value of the 8 Dbit
exponent is used as an _excess 128 exponent of 2; i.e., 2 raised to
the power [(the value of the 8 --bit exponent)-128] is the_exponent-
part of the floating-point number. In the B5500, 39bits are used
for the mantissa and 7 bits for the exponent. The mantissa is stored
in octal notation, each group of three bits representing one octal

digit. The 7 bit exponent is used as a signed magnitude exponent of

8 . The following is a basic property of this representation: if 1
is added to the exponent of such a number then its mantissa must be

+
x8nl.

shifted right three bits: (o.a.a

1 2,..al% BBH = (oc.o0a.a,...a

172 12°8
In the IBM 360 series, 56 bits are used for the mantissa and 7 bits
for the exponent (of a long word). The mantissa is stored in hexa-
decimal notation? each group of four bits representing one hex digit.
The value of the 7 Dbit exponent is used as an excess 64 exponent of
X167t

. n o_
16, and again (O°blb2°“°b14)l6Xl6 = (O'Ob1b2’°'b13)16

We restrict our discussion to the case in which the choice of
representation for an r-ary computer is subject to the following con-
straints only:
(i) if base s 1is chosen, with rk > s> pc L , then the mantissa
must be made of an integral multiple of k r-state devices,
i.e., fractions of digitsS are not permitted;

(ii) the mantissa must be accurate to at least p-digitst, for
given p and t (accuracy is defined in Sec. 2);

(1iii) the base chosen must give the largest exponent range possible

subject to (i) and (ii).



Observe that larger bases offer larger exponent ranges, but require
more bits to be used for the mantissa. Thus there is a definite trade-
off involved in using larger bases, and it is not obvious which base(-s)
will satisfy (i)-(iii). We prove that (1) if t is a power of r then
t is the only base which allows all of (i)-(iii) to be satisfied; (2)
if t and r are incommensurable then r is the only base which allows
all of (i)-(iii) to be satisfied; (3)if t and r are commensurable
and r >8, then there are cases in which r is the only such base and
cases in which r2 is the only such base.

Constraints (i)-(iii) above are discussed further in the conclusion.
We will find that these constraints can be weakened somewhat without
disturbing our results. Applications are also discussed there.

2. ©p-digit, Accuracy

t

, 2 . . .
Following D. W. Matula 1let us define the set of q-dlgltr numbers,

S(q—Dr), for r > 2 and g > 1 , by

n-1

q
(201) 8(a-D_) = (x: |x| = (I 8T for integers m, a,, with

O<a,<r} .
- i
We will discuss the rounding and truncation conversion mappings from
S(q-Dr) into S(p-Dt) . Since the results presented in this paper
are the same for both methods of conversion, we let C:S(q—Dr)-ﬂ

S(p-Dt) stand for either mapping. We say that S(q—Dr) is accurate

to p-digits, if and only if C:S(p-Dt) ->S(q-Dr) is (1-1) and

t

3
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C:S(g-Dr) ——>S(p-Dt) in onto. This means that distinctness of "input"
numbers from S(p-Dt) is preserved by rounding (or truncation) con-

version into S(q-Dr), and that all "output" numbers in S(p-Dt) are
attainable in the "output" conversion from § (q-Dr) onto S(p-Dt) .

*
This definition of accuracy is essentially equivalent to the

following due to I. B. Goldberg': for all x, if x € S(p-Dt) converts
into y € S(q-Dr) which converts into =z € S(p-Dt) then S(q-Dr)

is accurate to p-digits if and only if z = x . Roughly speaking,

t

this means that you must get out what you put in. We now state

Theorem I (The Base Conversion Theorem -- D. W. Matulaz)

Let r and t be incommensurable integers both 3 2 . Then
v . . q-1 P .
C:S(p-Dt) ——>S(q—Dr) is (1-1) if and only if r > t° - 1 and is onto

if and only if tp—l >rl o1

Observe that S(q-Dr) is accurate to p-digits,G precisely when

1 . o . _ _ _
rd > tP1 » since this inequality alone implies both the required

(1-1)-ness and the required onto-ness.

2
Corollary I (D. W. Matula“)

Let r and t be incommensurable integers both > 2

Then C:S(p-Dt) - S(q-Dr) cannot be both (1-1) and onto.

*They are essentially, but not completely, equivalent.
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Thus if the conversion mapping is to preserve distinctness, it cannot
make use of all the numbers available in the range set, and vice versa.
This corollary also applies to the commensurable case, as is shown in

the appendix*

Example 2.1:
By our definition of accuracy, the sets S(lh-Dl6) and S(Sl-DE)

Observe that all numbers in S(51—D2)

are both accurate to 15-digitslo,

can be represented exactly in § Uﬁ-Dl6) , but not vice versa. Yet

S(51-D2) is just as accurate, base 10, as S(lh-Dl6) . Of course

-

S(lh-Dl6) is more accurate, base 2 or base 16, than is S(Sl-D2),

since S(51-D2 ) is only accurate to 12-digits

We are mainly interested in the case r = 2 and t = 10 since
modern computers are binary and since base 10 is used both in daily
life and in higher level computer languages such as FORTRAN and ALGOL.
Applications to other values of t and (eventually) to other values
of r are also of interest It may be, for example, that one really

wants to attain 14-digitl6 accuracy in a binary computer. OQur results

show that, in this case, the unique best representation (subject to

(1)-(iii) in Sec. 1) is just 1lh-digits

o

16

In the next section we give an example to clarify and direct our
discussion. The reader is referred to D. Matula's paper2 for a clear,

detailed discussion of this definition of accuracy and its ramifications.

*This is not as obvious as it may at first appear, It seems
possible that base 32 or base 64, for example, could yield a wider
exponent range than base 16 while preserving ﬂhdigr%ﬁ accuracy.



5. An Example

Suppose we are given 63 bits in which to store the mantissa and

exponent of a floating-point number and we wish to achieve 15-digit10

accuracy. Which of the bases 2, 4,8and 16 will give us the widest

exponent range (while preserving lS-digith accuracy) ?

The inequalities

> 107 - 1> 2%

> 10 —l>lt24

817 > 100 - 1> 8%

1657 > 1007 - 1> 16%8

along with D. W. Matula's Base Conversion Theorem, show that we need

[51, 26, 18, 14] - digits[2 L 8,16), of mantissa, respectively, for
b4 )

15-digit accuracy. Thus we need [51, 52, 54, 56, ]-bits for the

10
mantissa, leaving [12, 11, 9, 7]-bits for the exponent. If the

signed magnitude method of storing the exponent is used, the exponent-

part ranges are [e& (2%) R hi(zlo_l), 8“28-1)' l6£(26“l)] Let
B, = 2“211'1), the range for base 2. The equations

4*(210'1) = ofL B,
5.2 @) _ 1/ /8

16*(26-1) _ 33/8 Bi/B

6
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show that base 2 has the largest exponent range; for example,

10
uE -1 -2 +]T‘=

=.5B, < B, and i 2B >B . The difference between

base 2 and base 16 is a factor of 8in the exponent; a range of 1OJ=616

£
versus 10 76

The excess—quantity method of storing exponents will be of principal

interest here, although our results are the same for both methods. If

n r-state devices are used to form the exponent, then [.Srn] is consi-
dered a zero exponent; those above are positive, those below are negative.
This avoids wasting one of the possible exponent values on -0 and

eliminates the necessity of an exponent sign bit. With this method the

6
exponent-part ranges for the example above are [2.p11, 4_510 S , 16-2 ]

8
to [2211-1,4 210 4, 8° -l, 162 —l] and again base 2 is best.

If 16-digit accuracy is desired then the same sort of analysis

10
shows that base 2 is again better than 4, 8, 16, yielding an exponent-

L +
part range of 10 38 as opposed to 10 * for base 16

L. The General Case

We now consider the general case in which N r-state devices are
used in forming the exponent and mantissa of floating-point numbers.
A mantissa sign bit is to be provided separately. Given positive integers
t and p, we wish to find the base, s, which gives the widest ex-

ponent range while preserving p-digitt accuracy (see Sec. 1, constraints



(1)-(iii)). We will call s a best (p-D,, N, r)-base. If s remains

a best (p-Dt, N, r)-base for all appropriate N (i.e., all N which
L allow p—diqitt accuracy to be realized in fewer than N—digitsr) we
will call s a best (P_Dt’ ¥, r)-base, etc. We will call t the
target base. We will find that there is always a unique best
1 —darget Pase
- (p—Dt, *, r)-base.
L .
Theorem II. The Dbest (P-Dt, N, r)-bases are always of the form r‘]
[ for j > 1. .
In other words, the best bases are those which make use of all the
possible states of the r-state devices.
L .
Proof: If a base s not of the form r9 is usedthen k-digitsr
- (i-e. k r-state devices) are used for each digitS of the mantissa,
| where rk > s > rk_l . If n—digitsr are left for the exponent then
. [k.5(r™-1) ] . .
the exponent-part range 1is s » using the excess-quantity
- n
. +(r7-1) . o .
i method. (It is s if an exponent sign bit is provided and the
] . . . k .
signed magnitude method is used.) If base r  were used instead of
base s then no more digitsr would be needed and the exponent-part
L
k[E.5(r"- ki (PR
range would be r [£.5(r7-1)) (r k(r-1) for signed magnitude exponents),
a strictly larger range.
— Q.E.D.
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The following lemma gives a sufficient condition for [the exponent-

part range of a representation using the smaller base rk] to be

greater than [the exponent-part 'fange of a representation using the

larger base rl(i > k)] . The lemma states that if positive integers

i, Kk, n:,L and n, satisfy n, < n, + k-1 and k < i then the

a.a,...4a
) n
exponent-part (rk) L X has a wider range of values than the

b.boe.ob
- Dbk, n
exponent-part (r') 1, where al.u . ank and bl"'bn are
i

arbitrary n -digitr and ni—digitr integers, respectively.

k

Lemma I. TIf 1< n, + 1< . + k for given integers i > k > 1 then
n. n
(h.1) i(r T-1) < k (r ®oq)
my Pk
(4.2) il.5(r T-1)] < k [.5(r ®-1)]
n. n
(b.3) i[-.5(r *-1)1> k [-.5(r ®-1)]

Proof: The hypothesis ng <n_+ k-i can be rewritten as

k
. . k
(b.4) irl<krk—l—.- e

. X
The function f(x) = x r is a strictly decreasing function for
x> 2 . Further £(2) < £(1) , where equality can occur only when

r =2, and so equation (4.4) along with -i < -k imply (4.1). The

factor r-(l'k)i/k in (4.4) essentially bounds the ratio of [the range




r

of the exponent for base rl] to [the range of the exponent for base

rk] As i-k increases, this upper bound decreases slightly less
than exponentially. Inequalities (4.2) and (4.3) follow easily from
(4.1).
Q-E.D.

This lemma will be used in the proof of Theorems III and V. We now
state the Best Base Theorem for incommensurable bases. It 1is given in

full generality in Sec. 6.

Theorem III. If t and r are incommensurable then base r alone is

the best (*-Dt, *, r)-base.

Proof:

Let integers N, p > 1 and t > 2 (t and r incommensurable)

be given. Let integers o satisfy

Is

1457 p i,9572 .
(4.5) (r™) >t -1> () for i =1,2, ...

If r> is used as base then, according to D. Matula's Base Conversion

Theorem, qi—digits ; are needed for p—digitt accuracy. Precisely
r

ig,-digits are needed to hold g,-digits , and so n, = N-iq. r-state
i r i i i i

r

devices are left for the exponent of r’. The exponent-part range is
By n

i[&. - . . N

rl[ 5(r 7-1)] , so the range of the exponent of r is i[+.5(r i-1)]

10
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By equation (4.5) and the fact that ql—l is the smallest integer
. . X D
value of x satisfying r > t°-1, we have
4.6 i(qg.- -
(4.6) i(q-1) > q,-1
k., =N - i <N - 1) - 4 = _;
(%.7) n, =N-1igq <N (ql 1) - i n, + 1-1
We need consider only i for which ni > 0 so that

(4.8) i<n +i<n +1
i -1

Applying Lemma I with k = 1, we find that r is the best (p-Dt, N, r)-

base. But p and N were arbitrary, so base r is the best

(¥-D,, *, r)-base (provided t and r are incommensurable).

t)

Q.E.D.

5. The Base Conversion Theorem for Commensurable Bases.

We next discuss the case when r and t are commensurable, As

mentioned earlier, we will find that if t = r'j then rj is the best

(*-Dt, ¥, r)-base and so r is not always a best (p-Dt, N, r)-base.

J

If r =2 then t =1 is the only case left to be considered. Byt

in general we must discuss the case tP = 7 in order to complete our
results. First we must extend the Base Conversion Theorem to the case

where t and r are commensurable.

11



Example 5.1: Consider the conversion from S(2-Dl6) into S(M-Ds) .

.
16 and 8 are commensurable since 163 = 84 . The mapping
- C:S(2-Dl6) —as(h—D8) is (1-1) since
n-2 _ 12n-8
o] (o.ala2 16 X 16 = (O'ble"'b8)2 x 2
. kn-2
t_ (5.1) = (o.oob]}oz...b8)2 x 8
[ n-2
= \
., (o. c1CpCsC) g X 8
' 3n-1 _ 12n-4
) (o ray85) ¢ X 16 = (O'blbz"'b8)2 X 2
(5.2) = (0.0byby.+bg), x 877
872
bn-1
* = (orejepes)g x 8
- 3 on
n _ 1
(oa1216x16 —(Obb 8)X2
= hn
(5.3) = (O'ClC2C5)8 x 8
]
Since any number in S(2-Dl6) can be written in the form
] ]
H (0.a.a x 16%°%  for k=0, 1 or 2, the above shows that any
172716
L element Of S(2-Dl6) is exactly expressible in S(M—Da), i.e. that
S(2-Dl6) c s(h-DB) . Further, (5.1) shows that g = 4 is the smallest
L

value of g for which S(2-Dl6) C S(q—D8) . The proof (given in the

appendix) of the following theorem is nothing more than a generalization

of the methods of this example.

12
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Theorem IV. Suppose tP = r' for some relatively prime positive

integers p and T . Let
(594) T=cp+d with o< da<p
(5.5) Tp=xpty with o<d<yp

The conversion mapping C:S(p—Dt) —>S(q-Dr) is (1-1) if and only if

(5.6) q>x+ 6(d) + 8(y-1)
where

0 if n<O
(5.7) #n) = 1 if n<O0

Corollary III in the appendix shows that C=S(Q'Dr) ""S(P-Dt) is onto
precisely when C:S(p-Dt) -aS(q-Dr) is (1-1). Thus S(q-Dr) is accurate

to p-digits, precisely when (5.6) is satisfied.

6. The Best Base Theorem,

Theorem V. Base r' is the best (*-D r? ¥, r)-base, for T = 1, 2,....
r

Base r2 is the best (p—Dt, *, r)-base if and only if the following
three conditions all hold:

(1) tP = rT for some relatively prime integers p and T
(2) p is odd,p>3 and 7> 2

8) TP=xp+t2 for some integer X.

13
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In these cases base r2 affords twice the exponent range as does r
Otherwise (when at least one of (1)-(3) does not hold) r is the best

(p—Dt, *, r)-base. If either (1) or (2) does not hold then r is the

best (*-Dt, *, r)-base.

Example 6.1: An example in which r2 is a better (p-Dt, N, r)-base

than r should clarify matters. Such is the case when r =8,t=16
and p = 2 . In this example we wish to decide which of 8and 64
is the better base for the internal representation of floating-point

numbers in an 8-ary computer with N-digits, per memory word. The

constraints on this decision are (1) achieving the widest exponent range

while (2) preserving E-digitl6 accuracy (see Sec. 1l). If base 8
were used then k—digits8 would be used for the mantissa, since g =&
is the smallest value of g for which S(q-D8) is accurate to 2-digits;g

(see Example 5.1). This leaves n =N-4 digitsg for the exponent,

1

D1 (o g8 1)

"l
affording an exponent-part range of 8[*"5(8 for
signed magnitude exponents). If base 64 were used, then, by Theorem IV,

2--digits6lF or equivalently, k—diqits8 would be needed for the mantissa,

again leaving n —digitsB for the exponent. This allows an exponent-

1

n n
1 1
£, - + -
part range of 64[ 5(8 ~-1)] (or 64 (8 7-1) for signed magnitude

2
exponents). Hence base 8 is better than base 8 here. In general,

2
base r is better than r precisely when n, = n1

14
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The method of proof for this theorem is essentially the same as
that used for Theorem III. It is a more involved proof because some

of the inequalities to be proved are more delicate.

Proof of Theorem V: See appendix.

7. Conclusion.

The Best Base Theorem shows that, in many cases, the choice of the
base under constraints (i)-(iii) of Sec. 1 is independent of the variable
p in constraint (ii). For example, this is the case when binary com-
puters are under consideration (r=2) or when the target base is ten
(t=10). 1In these cases constraints (ii) and (iii) can be replaced by

(ii1) " if representations A and B have the same accuracy

base t , for a given t , then A must be chosen

over B if A gives a larger exponent range than B
without disturbing our results. And the Best Base Theorem states that
the representation chosen will use (1) baser , if t is not a power

of r, or (2) base t if t is a power of r . In these cases one

need not know in advance how many digitst of accuracy are desired from

floating-point representation in order to choose a base. One must know
only that accuracy is to be measured with respect to base t

When r=2 there are cases in which base 4 may be preferable to,
but not better-than (in our formal sense) base 2 . This occurs when
the exponent range for base 4 is only slightly less than that for base

2; in the notation of Theorem III, this occurs when n, =n - 1 and

2q2 =q + 1, and n is not small (say n, >5). This was true in

1 1

15
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the examples of Sec. 3. In these cases the exponent range for base I

1 1

n n
is [4—2Iﬁ to henl—l and that for base 2 is [4_2 * to 42 T2
The transformation of representation from base 2 to base r in these
cases 1s affected by transferring one bit from the exponent to the man-
tissa. And so the base 4 representation is just as accurate, base 2,
as the base 2 representation, and more accurate, base 4, than the
base 2 representation. This gain in accuracy more than makes up for

*
the negligible loss in exponent range.

Of course the choice of any base, rj (3 2 1), for an r-ary com-
puter can be justified via (i) and (ii)' by simply asserting that
accuracy 1s to be measured with respect to base rJ . In general the
author does not agree with such reasoning, because today's computer
user is interested in base 10 accuracy. Of course base 10 is not
sacrosanct, but the existence of a standard base is most valuable. It
facilitates comparision of new results with old results and standardizes
the form in which results are to be documented.

In practice, constraints other than (i) and (ii)' can arise.
Internal data paths may make particular length exponents and mantissas
or a particular base advantageous. For example, suppose that (due to
some other considerations) an eight bit data path is selected for a

proposed binary computer. Then it would be advantageous to have the

exponent and mantissa each occupy a multiple of 8bits (the mantissa

*The author is gratefull to I. B. Goldberg for bringing this
phenomenon to his attention. (It should be added that this does not
occur if %he normalization bit of the base 2 representation is made
implicit,"

16
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sign bit being included with either the exponent or the mantissa). Also
fast shift instructions which shift the contents of a register four bits
at a time (right or left) may be available on such a computer. If base
16 is used for the internal floating-point numbers,then normalization
(and unnormalization done when the exponents of two numbers to be added
are made equal) can be done quickly by these shift instructions. Also,

3

such normalizations would be needed less often. Such constraints would
change our results considerably.
One could argue that constraint (i) has prejudiced us against larger

bases. Certainly this is true. However, we would (mildly) argue against

the use of fractions of digits i purely for aesthetics. Nevertheless,
T

our analysis could be redone without this constraint by generalizing

Mutala's results as follows Let r = sp , t = wT and define

q | 3z
(7-1) s(; D) = (x: IXI = .g

a.s79 x " where o< o, <s } .
J J - Jd

1

We will say that SCg -D_) is accurate to % -digits

> Pr £ if and only if

(B _ aq _ : _ a9 D :
c.s(,r )—as(p Dr) is (1-1) and c.s(p Dr)—>S(T D,) is onto.

t t)

We conjecture that the corresponding theorem in the incommensurable case

L -digits

. % if and only if

is the following: S(% -Dr) is accurate to

a-p

Py

S W When p divides g and T divides p, this reduces

to the previous results.

17
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We conclude with the following observation on the generality of our
results: the Best Base Theorem and its proof, as given here, are valid

for any definition of accuracy of-the form "S(q-Dr) is accurate to
. . . -1
p-digits, if and only if r? > f(p,t)," where f is an arbitrary

function.

18



8. Appendix

Proofs of Theorems IV and V-are given here.

Proof of Theorem IV: Equality between [the prime factorization of t]p

and [the prime factorization of r]'r implies the existence of an integer

s > 2 satisfying

L
L (8.1) t Jsand r = sP
L
L

We are discussing conversions from S(p-D T) to S(g-D p) . We will
s s
consider the p-digit,G numbers
n
.2 = . coe i
, (8.2) z (o o a, ap)t x t with o # 0
L
™
) = (0-BB,- 'B'rp)s X s
JJ
The proof is divided into two cases.
- Case I.p =1
| In this case d =y = 0 and r = 5 so z, expressed in base
JJ
r is
B
_ ™m
Y (8.5) Zn - (0.81620‘ 'BTp)r X r
L
Thus the conversion mapping C:S(p-Dt) —>S(q-Dr) is (1-1) if and only
9 if g>T1p=x=x+ 6(d) + 8(y-1).
Observe that in this case, as in Example 5.1, C is (1-1) if and
- only if every element in S(p—Dt) is expressible exactly in S(q-Dr) 3
19
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ounl N

i.e. if and only if S(p-D

:)

< s(q-D.)

This means that C is

(1-1) if and only if it is the identity map.

Case IT p>1

Let u
n

(8.4)

(8.5)

In this case

(8.6)

v ,a
>'n’%n

Tn=up-v
n® n

where at least one of Bl,B2

converted to base

If x =

- .
(x a, l)p+bn digits_

groups of p-—digitsS

a
n

and bn be integers satisfying

with 0 < v <p

+ = i < <
ytv, =ap + bn with O bn o
we-vy
z = (O'BlBE'"'Bxp+y)s X s
v
n
! \ u
- n
= (0.0...0 sl...axp+y)s X r
""’Bcp+d 1s non-zero. When z, 1
. . . . = . . *
r the first digit will be 7, (Bl Bp-Vn)

0 then we are done.

= (l'l)p-Vn ’

7x+a +1
n

=0

for i = 2

Otherwise ¥

Otherwise there are xpty - (p-v,)

A T

x+a +1
n

left to be converted.
convert into 75

»x t a
n

= (8

20

= (B+lBJ+2

If b

xp+y-bn+l"

n

-B

B1)s

= 0 then

)

xpty ‘s

X S

where

p-b

S

S

n

Each of the next @dﬂn-l)
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r r r—

Thus Zn expressed in base r is

- n
(8.7) z = (0.71...7X+a +l)r Xr .

At most [x + a ¥ é(bn)]-digitsr are needed to express z_  .When,

say ozl =t -1 for i = 1,...,p in equation (8.2), precisely

+ + -digi = =
[x 8 é(bn)] digits  are needed for z .If y=0 or y=1
then the exact conversions from S(p-Dt) to base r requiring the

most digitsr occur when [an = 0 and bn 74 0] or [a, = 1 and

b = 0] (see (8.4) and (8.5)), since Vv, can be made to take on any
of the values 0, l..., p-1 by varying n . (If v, = Vv, then
t(m-n) = (um-un)p and so m-n = k p for some k # 0 . Thus

o5V are p distinct integers living between 0 and p-1 .)

v ..
n+l’ n+p

It follows that the mapping C:s(p-Dt) —>s(q_Dr) is (1-1) if and caly if
g>x+1=x+ 6(d) + 8(y-1), when y=0 or y=1
If y > 2 then conversions requiring the most digitsr occur when

a =1 and b_ £ 0 . Again C:S(p-Dt) - S(q-Dr) is (1-1) if and only

if g>x+2=x+ 6(d) +6§(y-1) .

Q-E.D.

Corollary II:. If r and t are commensurable then C:S(p-Dt) - S(q-Dr)

is (1-1) if and only if C is the identity mapping. pyrther,

C:S(p-Dt) —>S(q-Dr) is the identity mapping if and only if

s(q-D,) 2 S(p-D,) .

21
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Corollary III. Let t and r be as in Theorem III and let

(8.8) p=c' T+ad with o<d' <7

(8.9) pag=x"n1t+y' - with o<y' <~

The conversion mapping CiS(P-Dt)'*S(Q-Dr) is onto if and only if
(8.10) p>x+ 6(d') + 8(y'-1)

Proof:

= If C:S(p-Dt) - S(q-Dr) is onto then S(q—Dr) c S(P-Dt)

(this is ewident from the discussion of the conversion of the z, in

the proof of Theorem IV). This implies CiS(Q*Dr) —’S(P-Dt) is (1-1) .
€: If C:8(a-D.) —»8(p-D,) is (1-1) then 8(a-D,) < 8(p-D,)

and so C:S(p-Dt)-e S(q-Dr) maps the subset S(q-Dr) of S(P°Dt) onto

itself.

Q-E-D.

Corollary IV. For any t and r both > 2 the conversion

C:S(p-Dt) as(q-nr) is both onto and (1-1) if and only if t = rand

b =q

Proof:

The case when t and r are incommensurable is covered by

T

Corollary I. Suppose tP = 1 for some relatively prime positive integers

p=rT -

22
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Case T p=T1=1

Here t = r and so p = q yields S(p-—Dt) = S(q-Dr) .

C:S(p-Dt) —>S(p-Dt) is both (1-1) and onto,

Case II p#1 or 1 # 1 or both

The conversion is both onto and (1-1) if and only if
(8.11) p>x'+8(a") + 6(y'-1)
(8.12) q2>x +8(d) + 8(y-1)

which can be rewritten as

(8.13) pyg.1 : \ y'
p?,T““p(é(d)+6(y—1)———,r)
asp 1 21). ¥

(8.14) sz + 2 (6(d) + §(y-1) : ).

These imply
(8.15) 0 Z'pl‘ (6(da') + 6(y'-1)- 3:-'—) +% (6(a) + 6(y-1)- .g) ,
But the right side of (8.15) is positive since

i) d # 0 or d' # 0 or both;

ii) if d = 0 then p=1 and y = 0 and so 6(d) + 8(y-1)- —Xp= 0;
i11) if d' =0 then 7=1 and y' = 0 and so 8(a') + &(y'-1)- L =0;
iv) if d # 0 then 6(d) + 6(y-1)- %’ > 0;

v) if a'# 0 then 8(a') + 8(y'-1)- 3;"> 0

Q-E.D.

23
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Proof of Theorem V:

Theorem III takes care of the case when t and r are incommensurable.

Here we consider the conversions. CtS(P-Dt) —>S(q.l-D i) for r and t

r
: - P _ LT I

satisfying t" =r . For 1 =1, 2,..., let

i _1le -5
(8.16) g, = ged(T,1)  , p; g, T, E:
(8.17) T, = cjp, +d with o <d, <p

= i <

(8.18) TP = X0 YV with o<y, <p;
Since t™P = (rl)T , Theorem IV and its corollaries imply that the

smallest value of a4 for which S(qi-D i) is accurate to p--digits;t is
r

(8"19) qi = Xi + s(di) + 5(Yi'l) °

Let us define

(8.20) n, =N-1igq, for 1 = 1,2,...

1
We need consider only those i for which n, > 0 and we assume that

N is larger than i.m>inl i q; so that there is some i for which

n, >0 . Equation (8.19) written in the form of (8.22) will prove
useful:
™ - yigl
(821) qi = l—p + 5(di> + 6(yi-l)
2



vl
(8.22) LEDSEN /é(d)+6( 1) yil>_—Tp
— . i , =—=+1i ¢ L) =l) = —¢
* ql Y 1 yl pl"J[ - P
vl
Case I o =1
L In this case we prove that r’ is the best (*-D o ¥, r)-base.
T k
Here d‘k = 0 if and only if é-; =T = Oufy E; which occurs if and
only if k divides Tt . Also d‘k = 0 implies v, = 0 . Thus
(8.23) -~ qu =Tp when k divides =

. _ _ - T
In particular, n_ = N-7q = N-7p = min n, > 0 by (8.22). Thus r

2 .
is the best (P_Dt’ N, r)-base among r,r ,...,I'T . If 1>
thenp=—i—>T—=T. and so T, = d, # 0 and
i gi S5 i 2 i

. . 1 .
+ - =) = + - g.
(8.24) igq, > p i(1 p:i) Tq t1i-g;
8. -1 i - + < - +
| (8.25) ig, + i <-1q +g <-Tq *7
. (8.26) i<n +i<n +7 for i with i > and n; > 0
=
T
Applying Lemma I with k =1 shows that the exponent-part range for r
-
r is strictly greater than that for r’ when i > T . This completes
= T
the proof that r is the best (*-D o % r)-base.
r
- This also completes the proof for r = 2 (and for any other r
which is not an integral power of an integer).
L
25




Case IT p > 1

In this case di% 0 for i =1, 2,... since

= T,

d, = 0 implies =Rc, = c, =1
. 1 1 gi

i which implies 7T = icip_ )

the last equation being impossible because gcd(’r,p) = 1 . Also,

r=sP>2P> 4, Equation (8.22) becomes

(8.27) iq.=g-13+i 4 by -1)_F1£\

For brevity, let us define

V.
l : p—
(8.28) h, =1+ é(yi-l) - E; for i =1, 2,

For a fixed i, hi takes its minimum when v, = 1 and its maximum

when vy = 2 and so

(8.29) 2

Equations (8.27) to (8.29) imply

(8.30) n, 1 hI = nj + ] h-J for all i, j
p.-1
(8:31) ny + i |=—|<mr2 |[&Z2) for 1=2,3, ..,
i

But pi=-1—92pandso >p'l‘and
gi i - p

26
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(8.32) n. <n, - (i-2) (p-1)/p

(8.33) irto< rl(i S-(i-2)n(p-1)) where r = §

The function f(x) = x S-(x-2) (-1) is strictly decreasing for X > 2

Further f(4) < 1 and so

(8.34) irt<r for i >4.

As shown in the proof of Lemma I, (8.34) implies that the exponent-part

b....b
e . byeeb
range for -r 1 "1 is strictly greater than that for (r') 1, for

i> L4, where al...anl and bl...brli are aribitrary n, and ni—dlgltr

integers, respectively. Thus the best (P-Dt; N, r)-bases are among

, -2 3
I‘,r2,r3 . Further if p > 2 then f{3) <3s <1 and r cannot

be a best base.

Subcase IJa base 1‘5 versus base r for p = 2

We compare y and V3 given by

(8.35) p = 2X+y 0

IA

%]
FAN
H

6)(5 6

.
+ 0
3

(8.36) 57 g

From these we find that

IA
\;4
N

I

(8.37) 2(X-3X3) = &s¥5-¥

27



Since g = ged(7,3) is odd, equation (8.37) implies that
(8.38) [y=0 & Vs is even] and so [h1=l o h5 > 1]
(8.39) [y=1 & Vs is odd] and so [hl=% ) h5 > %]

The corresponding bounds for n, from (8.30) are

3

(8.40) ng <n -2 for (8.38)
(8.41) ng < ng -1 for (8.39)
and these equations imply

n n n
(8.42) 3r2<rtcrt for (8.38)

r

n n n

(8.43) 3y 2 < rl% < rl for (8.39)

3 .

and so base r is never a best (p-Dt s N, r)-base.

2
Subcase IIb. base r versus base r for odd T

We must compare y and Yo in

(8.44) T =Xpt+y 0<y<p
(8.45) TP = T = o 4 Y2 0<y, <2
The last equation is valid since 1 is odd and so g, = ged(r,2) = 1 .

From these equations we find that

(8.46) p(X-2X2) =¥, -y = kp where k = 0, ¥l

28,
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| and so p divides Vo - Y - Thus
—
(8.47) [y=0 @ y,=0,p] and so [h;=1 & h,=1,3/2]
—
- - . 1 =1 1 oo pfL
(8.48) [y=1 = y=L,p*l] and so [n=1- & ® hy=l- 55,2~ =]
—
(8.49) - 2 o p>p. 22l
g -49) [»1 & Y2 #0,1,p,p*1] and so [h <2- 5 ® 2= %
(-
‘ (8.50) [y<1 y2=0,l;p:p+l] and sol h<l e hg5/h]
—
L where the last equation summarizes the first two. Corresponding bounds
on n, from (8.30) are
l
- 5
(8.51) n, < n; - 5 for (8.49)
-
1
(8.52) n,<n -3 for (8.50)
g
and these equations imply
-
n n n n
(8.53) 2r2_<_rlr%5=rl%<rl for (8.49)
-
n n n
2 1 2 1
. (8.54) 2r " < r <r for (8.50).
- rl72
— So when p is even,base r 1is strictly better than base r2
w Subcase IIlc base r2 versus base r for odd p >3 and even 7
We now characterize the situations in which v is the best
— (p—Dt, N, r)-base. As in the other subcases, we compare y and Yo in

29
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(8.55) ™ =Xp ty 0<y<p
(8.56) TP = 28 = X0 + Y2 OSy, <o

The last equation is valid since 7 is even and so 8y = 2 . From

these we derive

(8.57) p(X-2X,)=2y, - v = kp for k = 0, 41
Thus

(8.58) [y=0 & y,=0] and so [h,=1 & h=1]

(8.59) ky=l ® y= ﬁ%l] and so [hy=1- % ® h,=2- g%i]
(8.60)  [y=2 = y,=1] and so [h1=2--§ © ny=l- %]
(8.61)  [y»2 e y#0,1 23] and so [n<e- -2- @ n>1]

The corresponding relations between n, and 1, are

(8.62) n, =ny -1 for (8.58)
(8.63) n, =n; -2 for (8.59)
(8.64) n, =n, for (8.60)
(8.65) n, <n - % for (8.61)

As shown in the previous subcases, all these conditions except (8.64) imply
that base r 1is the best Q%Dt,N,Iﬁ-baS¢; (8.64) implies that 2 is
the best (p-Dt, N, r)-base.

Q.E.D.
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