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Abstract:

A digital computer whose memory words are composed of r-state devices

L 1s considered. The choice of the base, B, for the internal floating-

point numbers on such a computer 1s discussed. Larger value s of 3

L necessitate the use of more r-state devices for the mantissa, in order
to preserve some "minimum accuracy," leaving fewer r-state devices for

—

| the exponent of §. As B increases, the exponent range may increase
L for a short period, but it must ultimately decrease to zero. Of course,

this behavior depends on what definition of accuracy 1s used. This behav-

ior 1s analyzed for a recently proposed definition® of accuracy which

L specifies when it 1s to be said that the set of g-digit pase Bp floating-
point numbers 1s accurate to p-digits base t . The only case of prac-

L tical importance today 1s t = 10 and r = 2; 3nd in this case we find

| that B = 2 is always best. However the analysis is done to cover

- all cases.
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| Rotation
Symbol Meanin

A 2YMO0 meaning
digit digit of a base r number

L (0.a a,+..a ) the base r number
172 n’r

Oca. ..3 (where o < a, <r)

[ n —- 1| b : ce( bs. bo). the base r integer by b

| (where o < b, <r)
ged (i,j) greatest common divisor of the

integers 1 and j

L [X] greatest integer < X



{ 1. Introduction

[ I. B. Goldberg recently showed that 27 bits are not enough for
8-digit,, accuracy (under a suitable definition of accuracy), but that

L 28 bits are. ! He proved that if pd-1 > 10F > 04-2 then g bits are

1 enough for p-digit,, accuracy. He also gave several examples (p=1,2,8)
| in which g-1 bits are not enough for p-digit, accuracy.

L Shortly after this D. W. Matula independently discovered and proved

{ his Base Conversion Theorem. Let r and t be 1incommensurable integers
} > 2 (r and t are commensurable if and only if rt = £9 for some

L positive integers 1 and J) . The Base Conversion Theorem essentially

[ states that g-digits suffice for p-digit, accuracy if and only if

[ rd-1 > P - 1.
In this paper the Base Conversion Theorem 1s extended to commen-

[ surable bases. These results are used in a discussion of the choice of
| the internal representation of floating-point numbers for an r-ary corn-

i | puter; 1.e., a digital computer whose memory cells are composed of r-state
devices. This representation 1s specified when

[ 1) a base for the floating-point numbers is chosen and

[ 2) the number of r-state devices to be used for the mantissa(and hence the exponent) 1s chosen.

1 For example the IBM 7090, the Burroughs B5500 and the IBM 360 series
computers are 2-ary computers. The bases for the internal representation

{ of floating-point numbers in these three computers are 2, 8, and 16,
respectively. In the IBM 7090, 27 bits are used for the mantissa and

[ 8 bits for the exponent. The mantissa is stored in binary notation,

| 1
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| an extra bit being provided for the sign. The value of the 8 bit
- exponent is used as an excess 128 exponentof 2; i.e., 2 raised to

| the power [(the value of the 8 —--bit exponent)-128] is the exponent-
part of the floating-point number. In the B5500, 39bits are used

L for the mantissa and 7 bits for the exponent. The mantissa 1s stored

{ in octal notation, each group of three bits representing one octal
digit. The 7 bit exponent 1s used as a signed magnitude exponent of

L 8 . The following is a basic property of this representation: if 1
1s added to the exponent of such a number then 1ts mantissa must be

L shifted right three bits: (0-a,a ora) g8 = (0.08 8, a, )gx8™
L In the IBM 360 series, 56 bits are used for the mantissa and 7 bits

| for the exponent (of a long word). The mantissa 1s stored in hexa-

L decimal notation? each group of four bits representing one hex digit.
The value of the 7 bit exponent 1s used as an excess 64 exponent of

L 16, and again (0.b bye..b,) ), x16" = (orb, bye by 4) XIE :
[ We restrict our discussion to the case in which the choice of

representation for an r-ary computer 1s subject to the following con-

L straints only:

[ (i) if base s is chosen, with sg > pt , then the mantissa
must be made of an integral multiple of k r-state devices,

| 1.e., fractions of digits are not permitted;
(11) the mantissa must be accurate to at least p-digits,, for

{ given p and t (accuracy 1s defined in Sec. 2);

| (111) the base chosen must give the largest exponent range possible
subject to (1) and (11).



| Observe that larger bases offer larger exponent ranges, but require
more bits to be used for the mantissa. Thus there 1s a definite trade-

| off involved in using larger bases, and it is not obvious which base(-s)
will satisfy (i)-(iii). We prove that (1) ift is a power of r then

L t is the only base which allows all of (i)-(iii) to be satisfied; (2)

t if t and r are incommensurable then r is the only base which allows
all of (i)-(iii) to be satisfied; (3)if t and r are commensurable

| andr > 8, then there are cases in which r is the only such base and
cases 1n which r? 1s the only such base.

L Constraints (i)-(iii) above are discussed further in the conclusion.

L We will find that these constraints can be weakened somewhat without
disturbing our results. Applications are also discussed there.

2. p-digit, Accuracy

2 Ce

Following D. W. Matula let us define the set of qg-digit numbers,

S(a-D_), for r > 2 and gq > 1 , by

L 201) S(g-D ) = |x| = . a.r™1 for integers mn, a,, with
t o<a, <r} .

— 1

| We will discuss the rounding and truncation conversion mappings from

i S(a-D_) into 3(p-D,) . Since the results presented in this paper
are the same for both methods of conversion, we let ¢:8(g-D,_) —

i 3(p-D,) stand for either mapping. We say that S(a-D_) 1s accurate
to p-digits, if and only if c:S(p-D,) = $(g-D_) is (1-1) and

: 3
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| C:S(g-Dr) - 8(p-D,) in onto. This means that distinctness of "input"

numbers from S(p-D, ) 1s preserved by rounding (or truncation) con-
C

version into 5(a-D_); and that all "output" numbers in 3(p-D,) are

| attainable in the "output" conversion from § (q-D_.) onto S(p-D,) :
| *

L This definition of accuracy 1s essentially equivalent to the
following due to I. B. Goldberg’: for all x, if x € S(p-D,) converts

L into y € 5(q-D_) which converts into z € S(p-D.) then S(a-D_.)
L 1s accurate to p-digits, if and only if z = x . Roughly speaking,

| this means that you must get out what you put in. We now state
i Theorem I (The Base Conversion Theorem -- D. W. Matula’)

L Let r and t be incommensurable integers both 3 2 . Then
C:8( ) i ~1) i if r3hs 4P: p-D,) ~ $(q-D,) is (1-1) if and only if rr > t¥ - 1 and is onto

L if and only if PL > rol

[ Observe that S(q-D,) 1s accurate to p-digits, precisely when
rd > tP_1 » since this 1nequality alone implies both the required

- (1-1) ness and the required onto-ness.

{ 2
kL Corollary I (D. W. Matula )

L Let r and t be 1ncommensurable integers both > 2 .
Then C:5(p-D,) — 5(q-D_.) cannot be both (1-1) and onto.

*They are essentially, but not completely, equivalent.

4



— Thus 1f the conversion mapping 1s to preserve distinctness, 1t cannot

make use of all the numbers available in the range set, and vice versa.
-

This corollary also applies to the commensurable case, as 1s shown in |

L the appendix* |

| Example 2.1:
\-

By our definition of accuracy, the sets 5(14-D, ¢) and 5(51-D,)

L are both accurate to 15>-digits, ye Observe that all numbers in 3(51-D,)
L can be represented exactly in 5 (1h-D g ) , but not vice versa. Yet
{ 8(51-D,) is just as accurate, base 10, as 8 (1D, ¢) . Of course

S(14-D,¢) is more accurate, base 2 or base 16, than is 5(51-D,) ,

L since 5(51-D,, ) is only accurate to le-digits :
.

L
We are mainly interested 1n the case r = 2 and t = 10 since

1 modern computers are binary and since base 10 1s used both in daily
life and in higher level computer languages such as FORTRAN and ALGOL.

“ Applications to other values of +t and (eventually) to other values

of r are also of interest It may be, for example, that one really

-~ wants to attain 1h-digit, accuracy 1n a binary computer. Our results

i show that, in this case, the unique best representation (subject to
| So | | *

(1)-(1ii) in Sec. 1) is just Lh-digits, ‘

In the next section we give an example to clarify and direct our

discussion. The reader is referred to D. Matula's paper” for a clear,

detailed discussion of this definition of accuracy and 1ts ramifications.

*This 1s not as obvious as it may at first appear, It seems
possible that base 32 or base 64, for example, could yield a wider

exponent range than base 16 while preserving 1lh-digit, accuracy.
—

5



| 5. An Example
Suppose we are given 63 bits in which to store the mantissa and

L exponent of a floating-point number and we wish to achieve 15-digit,,
[ accuracy. Which of the bases 2, 4,8and 16 will give us the widest

exponent range (while preserving 15-digit, accuracy)?

The inequalities

L 20> 107-1» 29
1[ _ TEEN 1077 - 1> 2"

(3.1)

{ 8'7 > 1070. 1» 8°

I 167° > 107 - 1 > 16%
along with D. W. Matula's Base Conversion Theorem, show that we need

| [51, 26, 18, 14] - digits, ) 8 16], of mantissa, respectively, for

[ 15-digit,, accuracy. Thus we need [51, 52, 54, 56, ]-bits for the
mantissa, leaving [12, 11, 9, 7]-bits for the exponent. If the

L signed magnitude method of storing the exponent 1s used, the exponent-
10 8 6

2% (27 - (27 - + .

| part ranges are [2* ( ) L ( 1) 8 (27-1), 16 (2 1); Let

3 L(t 1)
| B, = 2 » the range for base 2. The equations

10
4 -

| y (277-1) ofl +

2(2%-1) _ 27/8 3/8[ (3.2) 8 = 2 B,

+(20.1) 33/8 _1/8
16 = of B,

| 6
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3 show that base 2 has the largest exponent range; for example,
10 10
2-1 -27 +

L 4 = OB, < B, and 4 © L = 2B >B . The difference between
+616

| base 2 and base 16 is a factor of 8in the exponent; a range of 10
IS

versus 10 76 .

L The excess—-quantity method of storing exponents will be of principal

| | ~ interest here, although our results are the same for both methods. If
n r-state devices are used to form the exponent, then [.57r"] 1s consi-

L dered a zero exponent; those above are positive, those below are negative.

1 This avoids wasting one of the possible exponent values on -0 and
eliminates the necessity of an exponent sign bit. With this method the

L LI
exponent-part ranges for the example above are [2.211 4.010 87% 167° ]

L 8
to [oot 1,4 2104, 8° 1 16° “1 and again base 2 is best.

L If 16-digit, accuracy 1s desired then the same sort of analysis

| shows that base 2 is again better than 4, 8, 16, yielding an exponent-
£38 L)

part range of 10 as opposed to 10 for base 16.

I Lk. The General Case
We now consider the general case 1n which N r-state devices are

| used in forming the exponent and mantissa of floating-point numbers.

| A mantissa sign bit 1s to be provided separately. Given positive integers
t and p, we wish to find the base, s, which gives the widest ex-

| ponent range while preserving p-digit, accuracy (see Sec. 1, constraints

1 /



| (1) —-(iii)). We will call s a best (p-D,, N, r)-base. If s remains
a best (p-D, N, r)-base for all appropriate N (1.e., all N which

L allow p-digit, accuracy to be realized in fewer than N-digits ) we
| will call s a best (p-Dys *, r)-base, etc. We will call t the

{ target base. We will find that there 1s always a unique best
(p-D,, *, r)-base.

Theorem II. The best (p-D N, r)-bases are always of the form rd

[ forJ > 1. .

| In other words, the best bases are those which make use of all the

I possible states of the r-state devices.
Proof: If a base s not of the form r’ is used, then k-diglts_

L (i.e. k r-state devices) are used for each digit of the mantissa,
k k-1 Co .

where rv > s>r . If n-digits_ are left for the exponent then

[ the exponent-part range 1s 5s » using the excess—quantity
+(r"o1) Co

[ method. (It is s 1f an exponent sign bit 1s provided and the
signed magnitude method 1s used.) If base r* were used instead of

[ base s then no more digits would be needed and the exponent-part
n n

k[. - + -

| range would be r [= 5(x7-1)] (r ke (r™-1) for signed magnitude exponents),
a strictly larger range.

| Q-E.D.
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[ The following lemma gives a sufficient condition for [the exponent-
k

part range of a representation using the smaller base r ] to be

L greater than [the exponent-part range of a representation using the

| larger base rt (i > k)] . The lemma states that 1f positive integers

1 Lk m. and ny satisfy n, Sn + k-l and k < i then the
8. 8.0008

2 n

exponent-part (x5) L K has a wider range of values than the

L [JN JR ¢
12 n

exponent-part (r') 1, where yr 0 ank and byreeby are
[ 1

arbitrary “n, -digit and n,-digit integers, respectively.

Lemma I. If i < n, + 1 < n, + k for given integers i > k > 1 then

(4.1) i(r *-1) < k (r K 1)

[ n, n,
(k.2) i[.5(r 7-1)1 < k [.5(r *-1)]

L Mo Me
(4.3) i[-.5(r "-1)] > k [-.5(r "-1)]

L Proof: The hypothesis n. < n, + k—1 can be rewritten as
| n, n : k

(bk) ee
— i kK

[ | r-X

The function f(x) = xr is a strictly decreasing function for

[ x > 2 . Further £(2) < f(1) , where equality can occur only when
r = 2, and so equation (4.4) along with -i < -k imply (4.1). The

L factor pm (Ek) gy in (4.4) essentially bounds the ratio of [the range

9



L of the exponent for base rr] to [the range of the exponent for base
| r] . As i1-k increases, this upper bound decreases slightly less

L than exponentially. Inequalities (4.2) and (4.3) follow easily from

| (4.1).
Q.E.D.

L This lemma will be used 1n the proof of Theorems III and V. We now

L state the Best Base Theorem for incommensurable bases. It 1s given in
full generality in Sec. 6.

L Theorem III. If t and r are incommensurable then base r alone is
L the best (*-D, ¥, r)-base.

L Proof:

{ Let integers N, p > 1 and t > 2 (t and r incommensurable)
be given. Let integers qs satisfy

L i,3h i,%7e
[ (4.5) (r™) >t -1> (eh)? for 1 =1, 2, ...

| If rt 1s used as base then, according to D. Matula's Base Conversion

{ Theorem, q,-digits ; are needed for p-digit, accuracy. Precisely
r

[ ig, -digits_ are needed to hold q,-digits : and so n, = N-iq, r-state
| r

[ devices are left for the exponent of rt. The exponent-part range 1s
fy n

. +, &[ 3 5(r 7-1)] , so the range of the exponent of r is i[+.5(r i-1)] .

10



| By equation (4.5) and the fact that q -1 1s the smallest integer
X p

| value of x satisfying r > t%-1, we have
L.6 i - -

[ ( ) i(a, 1) > a, 1
L, = - 1 - — - 1 = —1(4.7) n, = N ig, <N (g,-1) i n+ 1-d

We need consider only i for which n, > 0 so that

L (48) i<n +i<n +1
§ Applying Lemma I with k = 1, we find that r is the best (p-Dys N, r)-
| base. But p and N were arbitrary, so base r 1s the best

(*-D, , ¥, r)-base (provided t and r are incommensurable).

>. The Base Conversion Theorem for Commensurable Bases.

§ We next discuss the case when r and t are commensurable, As
| | mentioned earlier, we will find that if t = rd then rd is the best

1 (*-D *, r)-base and so r is not always a best (p-Dy. N, r)-base.
If r = 2 then t = 1’ 1s the only case left to be considered. But

{ in general we must discuss the case tP = - in order to complete our
\ results. First we must extend the Base Conversion Theorem to the case

where t and r are commensurable.

11
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| Example 5.1: Consider the conversion from 5(2-D.¢) into S(k-Dg) .
16 and 8 are commensurable since 163 = 84 . The mapping

| C:5(2-D,) »8(k-Dg) is (1-1) since

L (0-a,85)¢ x 16°77 = (0-0 by. 2g), x p12n-8
L (5:1) = (0r00b Bg), x 8¥72

[ = (0-c105¢5C) 0g X g'n-2

[ (0-ay35)16 x 16°71 = (0:2,b. + bg), X p Lon-4

| (5.2) = (0.0b byw Dg), x gn-1
[ = (0.c epc4)g x gtn-1

(0-2 85) 6 x 165% (0.2 0. + Dg), x olen
L

(5.5) = (0ncycpe,)g X gn
L

Since any number in 5(2-D_¢) can be written in the form

[
(0a 8,) 6 x 16°%°F for k=0, 1 or 2, the above shows that any

[ element Of S(2-D ¢) is exactly expressible in S(4-Dg) i.e. that

| 5(2-Dy¢) Cc S(k-Dg) . Further, (5.1) shows that g = 4 is the smallest
value of gq for which S(2-Dy¢) C S{q-Dg) . The proof (given in the

| appendix) of the following theorem 1s nothing more than a generalization
| of the methods of this example.

i
12



| Theorem IV. Suppose tP = r' for some relatively prime positive
integers p and T . Let

i (594) T=cp +d with o<d<op
| (5.5) TPp=Xxpty with o<d<p

| The conversion mapping C:8(p-D, ) ~ 8(q-D_) 1s (1-1) 1f and only if
| (5.6) qa>x+ 6(d) + 6(y-1)

| where

| 0 if n<oO
(5:7) 1 if n<O

Corollary III in the appendix shows that C:5(a-D..) - 8(p-D,) is onto

L precisely when C:8(p-D,) = 8(q-D_) is (1-1). Thus 5(q-D,) 1s accurate

[ to p-digits_ precisely when (5.6) is satisfied.

L 6. The Best Base Theorem,

| Theorem V. Base r' is the best (*-D ? ¥, r)-base, for T = 1, 2,....
r

| Base = 1s the best (p-Dy 5 *, r)-base 1f and only if the following

| three conditions all hold:
(1) tP = re for some relatively prime integers p and T

L (2) p is odd,p>3 and T> 2

| 3) TpPp=xp +2 for some integer X.

13

L



In these cases base re affords twice the exponent range as does r .

Otherwise (when at least one of (1)-(3) does not hold) r is the best

(p-D, ; *, r)-base. If either (1) or (2) does not hold then r is the

y best (*-D, , ¥, r)-base.

{ Example 6.1: An example in which r’ is a better (p-Dy N, r)-base
than r should clarify matters. Such is the case when r =8,t=16

L and p = 2 . In this example we wish to decide which of 8 and 64

| 1s the better base for the internal representation of floating-point
numbers in an 8-ary computer with N-digits, per memory word. The

L constraints on this decision are (1) achieving the widest exponent range
while (2) preserving 2-digit,, accuracy (see Sec. 1). If base 8

were used then k-digitsg would be used for the mantissa, since gq = 4

L is the smallest value of gq for which 5(q-Dg) 1s accurate to a-digits
L (see Example 5.1). This leaves n, =N-4 digitsg for the exponent,

L affording an exponent-part range of gl .5(8 -1)] (or 8 ( -1) for |

[ signed magnitude exponents). If base 64 were used, then, by Theorem IV,
e-digitsg), or equivalently, k-digitsg would be needed for the mantissa,

L agaln leaving n,-diglitsg for the exponent. This allows an exponent-

L ny n,| £.5(8 ~-1 + -part range of an >( )] (or 64 (8 1) for signed magnitude
2

| exponents) . Hence base 8 is better than base 8 here. In general,2

base r 1s better than r precisely when n, = n,

14



The method of proof for this theorem is essentially the same as

- that used for Theorem III. It 1s a more involved proof because some

| a of the inequalities to be proved are more delicate.

Proof of Theorem V: See appendix.
L EE —

‘
(. Conclusion.

t The Best Base Theorem shows that, in many cases, the choice of the
base under constraints (1)-(111) of Sec. 1 is independent of the variable

L p in constraint (il). For example, this is the case when binary com-

r puters are under consideration (r=2) or when the target base is ten

L (t=10). In these cases constraints (ii) and (iii) can be replaced by
(11)' if representations A and B have the same accuracy

— base t , for a given t , then A must be chosen

: over B 1f A gives a larger exponent range than B

i without disturbing our results. And the Best Base Theorem states that

| the representation chosen will use (1) baser, ift 1s not a power
— of r , or (2) base t if t is a power of r . In these cases one

u need not know in advance how many digits, of accuracy are desired from

: floating-point representation in order to choose a base. One must know
. only that accuracy 1s to be measured with respect to base t .

8 When r=2 there are cases in which base 4 may be preferable to,
but not better-than (in our formal sense) base 2 . This occurs when

. the exponent range for base 4 is only slightly less than that for base
| 2; in the notation of Theorem III, this occurs when n, = n, - 1 and
C

24, = a; + 1, and n, is not small (say n, >9). This was true in

15



the examples of Sec. 5. In these cases the exponent range for base it

1 n n

is 42m to 271, and that for base 2 is 2 : to Re Lo
- :

The transformation of representation from base 2 to base r in these

- cases 1s affected by transferring one bit from the exponent to the man-

tissa. And so the base 4 representation is just as accurate, base 2,

. as the base 2 representation, and more accurate, base 4, than the

- base 2 representation. This gain in accuracy more than makes up for

- *
the negligible loss 1n exponent range.

Of course the choice of any base, rd (J 2 1), for an r-ary com-

i puter can be justified via (i) and (ii)' by simply asserting that
accuracy 1s to be measured with respect to base rd In general the

L author does not agree with such reasoning, because today's computer

user 1s 1nterested in base 10 accuracy. Of course base 10 1s not

— sacrosanct, but the existence of a standard base 1s most valuable. It

facilitates comparision of new results with old results and standardizes

- the form in which results are to be documented.

_ In practice, constraints other than (i) and (11)' can arise.
Internal data paths may make particular length exponents and mantissas

— or a particular base advantageous. For example, suppose that (due to

some other considerations) an eight bit data path is selected for a

= proposed binary computer. Then it would be advantageous to have the

_ exponent and mantissa each occupy a multiple of 8bits (the mantissa

© *The author isgratefullto I. B. Goldberg for bringing this
= phenomenonto his attention. (It should be added that this does not

occur if the normalization bit of the base 2 representation 1s made
implicit, ™)

B 16



sign bit being included with either the exponent or the mantissa). Also

- fast shift instructions which shift the contents of a register four bits

: at a time (right or left) may be available on such a computer. If base
—

16 is used for the internal floating-point numbers,then normalization

~— (and unnormalization done when the exponents of two numbers to be added

are made equal) can be done quickly by these shift instructions. Also,

such normalizations would be needed less often. S Such constraints would

- change our results considerably.

N One could argue that constraint (1) has prejudiced us against larger
| bases. Certainly this 1s true. However, we would (mildly) argue against

| the use of fractions of digits { purely for aesthetics. Nevertheless,r

our analysis could be redone without this constraint by generalizing

—

Mutala's results as follows Let r = sP , LL = w' and define

-—

(7.1) 82 -p_) Xl = FE as xo] co <5].1) S(= -D = (X: IXl = .&, a.s “Xr where o < ¢, Sf pT J=L J - J
—

We will say that s (2 -D_) 1s accurate to = -digits, if and only if
-

q(P 9 _ _ a(d Popo
C:8(3 Dy) = SC D.) is (1-1) and C:8(2 D.) = 8(Z D, ) is onto.

|-

We conjecture that the corresponding theorem in the 1incommensurable case

~ is the following: (2 -D_) is accurate to k -digits, if and only if

~— 54°F > w’-1 . When p divides gq and T divides p, this reduces

to the previous results.

—

L7
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| We conclude with the following observation on the generality of our
results: the Best Base Theorem and its proof, as given here, are valid

| for any definition of accuracy of-the form "$(q-D_) is accurate to
. -1

| p-digits, if and only if r% > f(p,t)," where f is an arbitrary
function.

L
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| 8. Appendix

| Proofs of Theorems IV and V-are given here.

| Proof of Theorem IV: Equality between [the prime factorization of +]P
and [the prime factorization of r]7 implies the existence of an integer

L s > 2 satisfying
T _ PF

(8.1) t =sand r = s

[ We are discussing conversions from S(p-D .) to S(g-D 0 . We willS S

[ consider the p-digit, numbers
n

2 = . coe

i (8.2) z_ (0 oo @ ) x t with oy £0
Th

[ — CH-N-F¢ : B10) XS
The proof 1s divided into two cases.

L Case I. p =1
[ In this case d =y = 0 and r = s so z. expressed 1n base

[ r 1s
— ™

[ (8.3) 2 = (0-88-81), xr
Thus the conversion mapping C:8(p-D, ) ~ 8(q-D_.) is (1-1) if and only

[ if g>T1p=x=x * 6(d) + 8 (y-1).

1 Observe that in this case, as in Example 5.1, C is (1-1) 1f and
only 1f every element in S(p-D, ) 1s expressible exactly in S(q-D_) 3

19



| i.e. if and only if S(p-D,) C 5(a-D_) . This means that C is
(1-1) if and only 1f it 1s the identity map.

Case II p> 1

L Let uo sv sa) and b, be 1ntegers satisfying

2 8.4 = - < <t ( ) TR =up-v with 0 Vv, Sop
8.5 + = + < <

t ( ) y tv =ap b with 0 b p

[ In this case
“nP"Vn

£ — 0. +08

{ (8.6) “n ( SL Brptys x 0S

[ v n
! \ u

. Il

{ = (0.0...0 By Brgy) s X Tr

| where at least one of BysBose iB ug 1s non-zero. When z 1s
' a : = . [) *

f converted to base 1r the first digit will be 71 (8, o-v_/s oo
If x = a, = 0 then we are done. Otherwise there are xpty - (p-v,) =

L (xta -1)p+b_ digits left to be converted. Each of the next (x+a -1)
[ groups of p-digits convert 1nto Vs T (BB an Bysg)s » Where

J = (1-1)p-v , for i = 2, 3,...,x ta . If b = 0 then

04 = 0 . Otherwise vy = (B ces ) x sP~Pn .

i xta +1 xta +1 Xpty-b +1 xpty ‘s

20



| Thus Z expressed 1n base r 1s

| 8. —_ . * ae 1 *l (8-7) “n (0-74 xa ps xr |

L At most [x + a + 8(b )]-digits are needed to express z = .When,

t say @,=t - 1 for i = 1,...,p in equation (8.2), precisely
+ + ~digi = =[x a 6(b,)] digits are needed for z If y=0 or y-=1

L then the exact conversions from 8(p-D,) to base r requiring the
[ most digits occur when la = 0 and b #0] or [a, = 1 and

I b = 0] (see (8.4) and (8.5)), since Vv, can be made to take on any
of the values 0, l..., p-1 by varying n . (If vo= Vo then

[ T(m-n) = (u -u Jp and so m-n = k p for some k # 0 . Thus

[ . ntl?" Vag are p distinct integers living between 0 and p-l .)

[ It follows that the mapping C:8(p-D,) - 8(a-D_) is (1-1) if and only if
g>x+1=x+ 6(d) + 8(y-1), when y=0 or y=1 .

| : If y > 2 then conversions requiring the most digits occur when
a =1 and b # 0 . Again C:8(p-D,) — S(q-D_.) is (1-1) 1f and only

L | if g> x +2 =x + 6(d) + 8(y-1) .
[ Q.E.D.

[ Corollary II:. If r and t are commensurable then C:3(p-D,) -> 5(a-D,)
1s (1-1) if and only if C 1s the identity mapping. Further,

| C:8(p-D,) ~ $(q-D_) 1s the identity mapping if and only 1f

| s(a-D.) > s(p-D,) .
21



[ Corollary ITI. Let t and r be as in Theorem III and let
(8.8) p=c' tT +a with o<d' <r

L (8.9) pqg=x'"n1+y' 3 with o<y' <n

1 The conversion mapping C:8(p-D,) ~ 8(g-D,) is onto if and only if

t (8.10) p>x+ 6(da') + 8(y'-1) .
Proof:

L =: If C:5(p-D,) wr S(a-D_) is onto then s(q-D,) - S(p-D,)
L (this is evident from the discussion of the conversion of the z, in

[ the proof of Theorem IV). This implies C:8(q-D..) — 8(p-D) is (1-1) .

f &: If C:8(q-D_,) - 8(p-D,) is (1-1) then S(a-D_) - S(p-D,.)
and so C:5(p-D,) - 5(q-D,.) maps the subset 5(q-D,) of S(p-D.) onto

[ itself.

Corollary IV. For any t and r both > 2 the conversion

C:8(p-D, ) ~ 8(a-D,) is both onto and (1-1) if and only if t = rand

[ Proof:
The case when +t and r are incommensurable 1s covered by

L Corollary I. Suppose tP = v7 for some relatively prime positive integers

L 22



[ Case I p=717=1
Here t = r and so p = gq yields S(p-D,) = 5(q-D_) :

[ C:8(p-D,) - 8(p-D, ) is both (1-1) and onto,

L Case II p#1 or T# 1 or both

i The conversion 1s both onto and (1-1) 1f and only if
(8.11) p> x'+8(a) + 6(y'-1)

L 8.12) a3 x + 6(a) + 6(y-1) |
[ which can be rewritten as

| S27 5 (8(a") + 8(y 1)- &)

8.14 952, 1 1)- 4),L (8.14) P25 (6 + 8(y-1)- 2)

| These imply
1 1

(8:15) 0 >=(8(a') + 8(y'-1)- Lo) + = (8(a) + 8(5-1)- L)

But the right side of (8.15) is positive since

J i) d # 0 or d' # 0 or both;
L ii) if d = 0 then p= 1 and y = 0 and so 6(d) + 8(y-1)- * 0;

[ iii) if d' =0 then rt =1 and y' = 0 and so 8(d') + 8(y'-1)- I =o;
iv) if d # 0 then 6(d) + §(y-1)- : > 0;

L v) if 4'# 0 then 8(a') + 8(y'-1)- I> 0 .

23



| Proof of Theorem V:
Theorem III takes care of the case when t and r are incommensurable.

[ Here we consider the conversions. C:S(p-D,) ~ 8(q,-D :) for r and tr

SE a | = 2 let

| satisfying t© =r , For 1 1, 25604, e
3 _ oo _ Lp | -

| (8.16) g;, = ged(T,i) N 3 ; Ts :
. — < d, <p.

| (8.17) Ty = Cp, + d, with 0 < d, ps

[ (8.18) P= xp TY; with Sy <p

[ Since t'P = (r*)? , Theorem IV and its corollaries imply that the
smallest value of q. for which 5(q;-D ;) is accurate to p-digits, is

t * r

1 (8.19) q; = x; * 8(d;) + 8 (y;-1) :
Let us define

L (8.20) n, = N - 1 ds for i = 1,25... .

| We need consider only those 1 for which n, > 0 and we assume that

N is larger than uy 1 q; SO that there is some 1 for which
-

n, > 0 . Equation (8.19) written in the form of (8.22) will prove

“ useful:

SE -

(8.21) a; = —5— + 8(3) + 8(y;-1)
|
—

|
“-

24
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I | A: 1 TDP8.22) C==E 41 (8d) + 8(y.-1) - =p > —= |
( ) i 33 P 1 1 oi | - P

CaseI p =1

[, In this case we prove that r’ is the best (*-D 7? *, r)-base.

= 0 if and only if 1 =c¢ 0, -—— which occurs 1f and

L only 1f k divides 1 . Also d, = 0 implies Vi © 0 . Thus
| (8.23) ~. ka, = Tp when k divides 7 .

| . _ 3 T| In particular, n_ = N-1q_= N-1p min n, > 0 by (8.22). Thus r
2 :

l 1s the best (PDs N, r)-base among r,r yee, . If 1 > 7
1 T

thenp, = — > — = 1, and so 7,= d, # 0 and

[ i g a i a 3i i

t (8.24) iq. > 1p + i(1- ES =1q_ + i - g,i— Oy 7 i

8. -] + i < - + < - +[ (8.25) iq, + 1 <-1q, +g <-1q *1

L . (8.26) i<n +i<n +7 for i with i >7 and n > 0 .
T

| Applying Lemma I with k = 1 shows that the exponent-part range for r

[ is strictly greater than that for r' when i> 1 . This completes
the proof that r= is the best (*¥-D To’ *, r)-base.

[ r
This also completes the proof for r = 2 (and for any other r

[ which 1s not an integral power of an integer).
25



| Case II p> 1
In this case a, # 0 for i =1, 2,... since

d. = 0 implies z. Cc, = Cp; TT; = 3 which implies 7 ic.p. »
1 i

L the last equation being impossible because ged(T,p) = 1 . Also,
t r =sP>20> 4, Equation (8.22) becomes

8.2 = 2 oy RE .

(8.27) bg = 3 i Ct by 1) ofi
| For brevity, let us define

i
| (8.28) h, = 1 + 6(y.-1)- — for i =1, 2, . . . .

i i Ps

[ For a fixed 1, h, takes 1ts minimum when yi = 1 and its maximum

[ when Vy = 2 and so

| ps-1 ps1(8.29) 2 — |>h, > |— for 1=1, 2,.*a .
ok —_ 1 —- 0.
i i

L Equations (8.27) to (8.29) imply

[ (8.30) n, +1 h, = n tJ he for all i,

[ p.-1(8.31) n. + i — < nt 2 al’ for 1 = 2 3, oe .
i Py P

. P.=~1

But p. = => 5 and so —_ > el na
[ ig = p: | = pi
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| (8.32) n, <n - (i-2) (p-1)/p
1 n

: i ] 0

| (8.3%) ir tT < rT s (i 2) (p 1) where r = 5 .

1 The function f(x) = x _-(x-2) (p-1) is strictly decreasing for Xx > 2 .
Further f(4) < 1 and so

(8.34) ir "<r for i >4 .

L As shown in the proof of Lemma I, (8.34) implies that the exponent-part
ced . b....b
1 ny. : 1y 1 Mi) for| range for -r is strictly greater than that for (r’) )

[ i> 4 , where ape 8y, and Pye by are aribitrary n, and n,-digit

L integers, respectively. Thus the best (p-D; ; N, r)-bases are among
2 3 : IZ ~2 < 1 d 3 cannotr,r ,T . Further if p > 2 then f{(3) <3s an r

L be a best base.

L Subcase Ila base rv versus base r for p = 2

[ | We compare y and Vs given by
| (8.35) 1p = 2X+y 0<y<1

T p, < < 6
(8.36) —p=—"+y Oy :

[ 82 #y 3 5 8g

| From these we find that
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| Since gz = ged(1,3) is odd, equation (8.37) implies that

| (8.38) [y=0 & Vz is even] and SO [h =1 hy > 1]

( (8.39) [y=1 & Vs 1s odd] and so [ h=% hy > zl.

1 The corresponding bounds for ns from (8.30) are
(8.40) n, <n -2 for (8.38)

i (8.41) n, <n -1 for (8.39)
L and these equations imply

n n n

L (8.42) sr 2 <r ti crt for (8.38)
r

(8.43) Sr 2 < pt < rt for (8.39)

and so base r 1s never a best (p-D, » Ny, r)-base.

2
Subcase IIb. base r versus base r for odd =

L We must compare y and Yo in

L (8.44) Tp =Xp +y 0<y<p
| (8.45) ToP = TP = 2X50 + Y2 Osy, <2

| The last equation is valid since 7 is odd and so g, = ged(r,2) = 1 .

I From these equations we find that
(8.46) p(X-2X,) = Yo -y = kp where k = 0, £1
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| and so p divides Vo = Y Thus
(—

(8.47) [y=0 & y,=0,p] and so [h;=1 ® h,=1,3/2]
—

1 1 +1. = = =] = =] = = no. B=
(8.48) [y=1 = Yo 1l,ptl] and so [hy 1 5 © h 1 55° el

|—-—

i (8.49) +1] <2- 2 a nye. 287iA 49) [yl eo y2 #0,1l,p,p*tl] and so [h,< "5 22 55
Ry-

| (8.50) [y<1 = y5=0515p,p+1] and sd hl oe h>3/4]
-

1 where the last equation summarizes the first two. Corresponding bounds
on n, from (8.30) are

\

- 3
(8.51) n, <n, - 3 for (8.49)

—

1

| (8.52) n, <n; -3 for (8.50)
—

and these equations imply

-
n n n n
2 1 2 12 1

—

n n n
2 1 2 1

| (8.54) 2r <r <r for (8.50).
- 1/2

— So when p 1s even,base r 1s strictly better than base r° .

- Subcase IIc base re versus base r for odd p > 3 and even 7

| We now characterize the situations in which r 1s the best

(p-D,.; N, r)-base. As in the other subcases, we compare y and Vo in

29



| (8.55) ™ = Xp + ¥ O0<y<p
-_

-

(8.56) TP = 5= = Xap + V2 OSvy <p .

The last equation 1s valid since 7 1s even and so Br = 2 . From

C these we derive

B (8.57) o(X-2X,)=2y, - ¥ = kp for k = 0, #1 .

| Thus
-

(8.58) [y=0 & y,=0] and sO [h =1 ® h,=1]
1 ~.

8, — = ptl —_ 1 - pt = - prl(8.59) [y=1 & ¥, s—] and so [b)=1- = & hy=2- 5==]
— .

2 1
8.60 = = hh =2- = =]a =

) [y=2 e y_=1] and so [by =e- = ® hy=1- 7]
-

(8.61) [y>2 « y,#0,1 557] and so [h<2 he hl]
—

The corresponding relations between ny and 1, are
—

(8.62) n, =n, -1 for (8.58)

(8,63) n, =n, - 2 for (8.59)

—

(8.04) n, =n, for (8.60)

- (8.65) n, <n _3 for (8.601) ,
2=" "7

a As shown in the previous subcases, all these conditions except (8.64) imply

that base r is the best (p-D,. N, r)-bas:; (8.64) implies that yr? is
(-

the best (p-D, ; N, r)-base.

Q.E.D.
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