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Recent developments of programming languages have led to the emer-
gence of languages whose growth showed cancerous symptoms: the prolif-
eration of new elements defied every control exercised by the designers,
and the nature of the new cells often proved to be incompatible with the
existing body. In order that a language be free from such symptoms, it
is necessary that it be built upon basic concepts which are sound and
mutually independent. The rules governing the language must be simple,

generally applicable and consistent.

In order that simplicity and consistency can be achieved, the funda-
mental concepts of a language must be well-chosen and defined with utmost

clarity.

In practice, it turns out that there exists an optimum in the number
of basic concepts, below which not only implementability of these concepts
on actual computers, but also their appeal to human intuition becomes
questionable because of their high degree of generalization. The follow-
ing informal notes do not abound with ready-made solutions, but it is
hoped they shed some light on several related subjects and inherent diffi-
culties. They are intended to summarize and interrelate various ideas
which are partly present in existing languages, partly debated within

the IFIP Working Group 2.1, and partly new.

While emphasis is put on clarification of conceptual issues, consid-
eration of notation cannot be ignored, However, no formal or concise
definitions of notation (syntax) will be given or used; the concepts will
instead be illustrated by examples, using notation based on Algol as far

as possible.



I, On Data Structures

The elementary concepts of computing processes are:

© There exist certain quantities, to be called "values", and elementary
classes or types (possibly oniy one) of values among whose elements
given elementary relationships hold. These relationships or mappings
are represented in a computer by its operations which generate a new
value (called result) which has the specified relationship to the

given value(s) (called operands).

© There exist cells (usually called "variables") which are able to con-
tain a value, and which have a name. That name serves to refer to the

contained value.
© There exists an operator for the assignment of a new value to a cell.

The vocabulary used for describing processes must contain at least one
denotation for each element in the universe of values, and at least one
for each relationship among values in each class. While the universe of
(elementary) values is usually given in a programming language, the set

of cells involved in a process is particular to that process and must be
defined in its description. Therefore, also names to designate those
cells must be individually introduced (declared). A necessary rule is
that either cell names must be distinguishable from denotations of values
(and relationships), or otherwise a chosen cell name identical with a

value denotation may no longer be used (directly) to denote that wvalue,

It is important that groups of elementary values can be combined and

considered as a composite or structured value. It is customary to denote

such a value by listing its components, separated by a separator (e.g.
comma) and delimited by brackets (e.g. parentheses). The name of the cell
holding a structured value is then used to denote the entirety of the

component values.

This conceptually appealing and simple solution has been realized
in the language EULER [W and W]. Its practicability, however, turns out

to be rather doubtful for the following reasons:
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1. Since a cell may hold any value, and therefore also a composite
one, 1its physical size in terms of computer memorycells is not fixed.
Implementation of this scheme requires the use of indirect referencing
and dynamic storage allocation to an extent which makes the use of such

a language unattractive for many applications.

2. The very dynamicism and lack of redundancy of the language makes
it difficult for the programmer to verify the correctness of a written

program.

3. Assuming that individual elements of a composite value can be
referenced by the name of the holding cell followed by an index, it
immediately follows that the same notation should be used in assignment
statements to alter elements of the structure. Since assignments can
only be made to cells (and not to values), the cell holding a composite
value must be considered as a structured cell. It follows that the cre-
ation of cells is a highly implicit action, since assigrnnent of an n-ary
value implies the creation of n cells. The conclusion to be drawn is
that a programming language should not contain the notion of a structured
value, but rather the one of a structured cell. Positional relation-
ships between values then exist only by virtue of the structure of their

containing cells.

1. Type Definitions

These difficulties and drawbacks can be overcome by attributing to
each cell a fixed structure, when the cell is introduced. For practical
purposes this turns out to be hardly a restriction at all, since in most
applications a program involves only a few different types of structures,
while many used cells are of one and the same structure. One may con-
sider the given elementary classes or types of values to be of elementary
(degenerate) structure. A cell may then be declared to be of a given
elementary type, and hence it can hold only values of that type. This
is achieved by the type declarations in Algol 60. Further, more complex
structures can be considered as compositions of elementary structures;

and in order that a name can be attributed to that structure, also to be
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called a "type", a new construct called a "type definition" has to be

introduced. It may assume a form as illustrated by the following example:
type Person (Integer age; Boolean male; Real weight)

"Person" is the name of the new structure, which is composed of three
elements (called "fields") which are of elementary structure; Integer,
Boolean, and Real respectively. The type definition is moreover used to
attribute names to the individual fields, and corresponds to the record
class declaration in [W and H]. It can be assumed that the elementary
types—are introduced by fixed type definitions in the environment of the
program. In fact, the elementary types are usually themselves composed
of bits, and their substructure is dependent on particular implementations

and machines,

It is sufficient to let the type definition consist of a linear list
of constituents, if the constituents themselves can be of any type.

Examples:

type Medicalrecord (Integer bloodtype, heart condition;

Boolean diabetic)

type Patient (Integer age; Boolean male; Medicalrecord health)

Often it is desirable to give numeric names to fields of structures, which

in turn can be computed. An example is
type A (Real 1,2,3,k4)

for which we immediately introduce the abbreviation
type A (Real [1:4])

without further explanation. Such a structure is called a (one-dimen-

sional) array, and the field names are called indices; all elements are
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of the same type. Multi-dimensional arrays, whose elements are designated

by more than one index, could be defined as follows:
type B (Real ]-,2)3ll,2,3)h') .

Above abbreviation leads to the short form

type B (Real [1:31][1:4]) .

The distinction of this structure and the one defined by
typel:3])

lies in the. fact that the 12 elements of B are of type Real, while

C consists of 3elements of type A, which in turn consists of 4 ele-
ments of type Real. If B is considered to be a matrix, then its rows
and columns are not explicitly designated and appear on the same footing,

while C 1is considered to be a linear structure of rows.

The foregoing notation has the effect of making explicit the simi-
larity of the concepts of arrays and records [W and H]. It automatically
introduces array structured fields:

type Account (Integer number; Real balance; A deposit)

2. Cell Declarations

The introduction of cells (variables, records) is required to con-
tain an indication of the type of the cell along with the name to be asso-
ciated with the new cell.

Examples:*

new (Integer) i

new (A) a, al

*in order to facilitate reading of subsequent examples, names of cells
begin with lower case letters, names of types with capital letters.
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new (B) b, bl, b2

new (C) ¢

new (Person) jack, Jjill
new (Patient) smith

.new (Account) ac

The symbol new is chosen to indicate that a new cell of a given type

is introduced. Instead of new, cell or var might have been chosen to

emphasize the creation of a cell or variable. 1In terms of an implementa-

tion, this declaration causes storage to be allocated,
In Algol 60

- new (Integer) i1

is abbreviated to

integer 1

and this convention holds for all elementary types. If the language
rules are such that in the place of the type identifier the type defini-
tion itself can occur, then the example
new (A) a
can also assume the form
new (Real [1:4]) a
or abbreviated

real [1:4] a

from which the analogy to Algol 60's array declaration
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real array a[ 1l:k4]
becomes evident.

3. Cell Designations

Various notations are now presented to denote cells and components

of structured cells:

] B Y o}

[2] a.2 2 of a 2(a)

[2,3] b.2,3 2,3 of b 2,3 (b)
jack[age] jack.age age of jack age (jack)
mith[health] smith.health health of smith|health( smith)
[2] c.2 2 of c 2(c)

[2[3]] c.2.3 3 of 2 of ¢ 3(2(c))
mith[health! smith.health. diabetic of diabetic(health(
diabetic diabetic health of smith|smith))
c[principall ac.principal principal of ac principal(ac)
c[deposit[3]] ac.deposit.3 3 of deposit % (deposit(ac))

of ac

At this point it seems appropriate to examine the results of the previous
unification of concepts, and to compare the resulting notation with con-
structs present in existing languages. Notation @ coincides with Algal
60 in the form of "subscripted variables". B appears in HJI and COBOL,
(only applied to fixed, i.e. non-computable names). y coincides with
the notation of field designators in [vwW] and & with that of [W and HJ,
in both cases used only in connection with non-computable field names,

At places where computablenames occur, expressions should be permissible,
which quickly leads to syntactic abominations in all cases except Q .

For the use of cells with alphabetic (non-computable) field names, nota-
tion ® seems more natural because of its analogy to the conventional
notation for functions and predicates, as which field names can be under-

stood. One concludes from the foregoing that a unification of homogeneous



LAnniE S an ol el S s A

r

L4

4"‘-‘ r—-ﬁ r——n '—nﬁ r‘

r— — o— &

structures with computable field names (indices) and inhomogeneous struc-
tures with noncomputable ones (identifiers) is not desirable, mainly for
reasons of notational tradition. It is even much less desirable from
the standpoint of implementation, since computed indexing over an array
of fields with different size ié?necessarily a difficult and inefficient

process.

A relatively appealing solution to this dilemma consists of (a.)
restricting computability to numeric field names (indices), (b.) enclosing
them in distinguishable brackets, and (c.) to use conventional postfix
notation (@) for indices and prefix notation (6) for field designa-
tions with alphabetic names.

Examples:

al2]

b[2,3]

age (jack)
health (smith)
c[2]

c[2(3]]

deposit (ac) [3]

4, Cells Without Explicit Names

So far, the assumption was made that in a program every cell to be
involved was explicitly denoted by a name attributed to the cell by its
declaration. In certain problems of data processing, however, the number
of involved cells is not known a priori, nor is it necessary that all
cells be available from beginning to end of the process, A facility

becomes desirable to create cells at any time (i.e., dynamically).

Once a cell is created, there must be a way to refer to it. Since
its name is not introduced into the program explicitly (e.g., as an
identifier), it becomes necessary to consider names as objects which can
be used to refer to cells. The cell creation then not only allocates a

cell, but also yields the name of the allocated cell. That name is to be

8



called a reference, and is to be treated as an elementary value of type

Reference . The dynamic cell creation can be denoted by
r := Person

which results in the assignment of the reference to the new cell to r

The form
r := Person [21, false, 101 51

can be used if the new fields are to be assigned initial values at the
same time. The declaration of r is denoted by "ref r" which stands

as an abbreviation of

new (Reference) r

It turns out to be a significant advantage to implementation, if it is
required that the type of object to which a reference value assigned to
a given reference cell may refer, be unique. This type can be specified

as follows along with the declaration of the reference cell,

ref [Person] r

ref [Integer] k

The reasons for binding reference cells to a specific class were given

in [W and H].

It should be noted that the type specified with a reference cell
declaration does not denote a substructure of the reference cell itself,
which is elementary, i.e. without substructure. It instead denotes the

structure of the referenced quantity.

References can now be used to express functional relationships
between the objects represented by cells. If a reference valued field

f of a cell x holds a value refering to a cell y, then y is said
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to have relationship f to x . The following is an example of a piece

of a program using the facility of dynamic cell creation:

type Person(Reference [Person] son; Integer age; . ..).

ref [Person] p, g;

L: p := Person; son(p) := q;
qQ ‘= p; go, to L

The piece of program describes the creation of an infinite number of cells
of type Person. At L, the value of g refers to the "youngest" member
of the chain of descendents. Pictorially, the set of created cells may

be described as follows:

Each pointer represents a value of the class "Reference" which is held in

a field of that type, called "son".

The above example also suggests a convention for denoting the
value of given fields of dynamically created records, which is in con-
formity with the notations presented above. If in place of the name of
a cell, one of whose subfields is to be designated, the name of a refer-
ence cell occurs, then it is implicitly assumed that the field of the
indirectly referenced cell is denoted.

Example:

age (jack) jack = name of a person
age (p)

P = name of a reference to a person
son (P)

This conventions seems perfectly natural and raises no problems, since

10



reference cells are not themselves structured and a field designation
therefore undisputably must refer to a field of the referenced cell.
However, a dilemma arises when the entire cell, and not one of its fields,

is to be designated:

e [ —

Does p now denote the reference value referring to @, or « itself?
Two possible solutions are offered here:
a. p~ denotes the reference to @, the notation person (P) is

used to denote « .

P :=4q

then denotes the copying of a reference, while

Person(p) := Person(p)

denotes the copying of the values of a cell of type Person.

b. the exact meaning of p is determined by context, (e.g. corre-

spondence of types) such that in

g :=p

p denotes the reference value to @, while in

Jack :=p

p denotes the Person cell o itself.

The latter solution, which is adopted in (w1, obviously leads to further

11
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problems when p has values referring to cells which are themselves of

the class Reference.

It is only possible to denote either the reference value held by p, or
the person cell which constitutes the end of the reference chain, but no
intermediate reference values. Apart from the conceptual intricacies
which would make a program using such constructs rather difficult to
understand;, certain well-founded doubts about their practical usefulness
suggest that the dynamic creation of cells of type Reference (and elemen-
tary types in general) should not be included in a programming language.

Another aspect of this topic is presented in the next section.

5. Blockstructure

Blockstructure was introduced into Algol 60 to delimit the scope of
names (identifiers). Since names are attached to quantities by their
declaration and are not themselves manipulatable values, a cell itself
becomes unaccessible as soon as the scope of its name is left. The
storage space allocated for a cell can therefore be released at the same

time.

Dynamically created objects do not have a name which appears in the
program, but can only be reached via internally created references whose
"lifetime"™ is not bound to any scope limitations (in the same sense as con-
stants do not have a limited scope). Release of storage space reserved
for a dynamically created cell can therefore not be initiated on exit of
control from a given block, but only by unspecified events at a time when
no references to that cell can be made either directly or indirectly from
cells which have a given explicit name (in [vW] called "appellation").

However, because of the convention that reference cell declarations must

12
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be accompanied by a specification of the type of referenced cells, such
a declaration cannot be made outside the scope of the pertinent type
definition. Consequently, the existence of accessible reference values
is restricted to the scope of that type definition, and all cells of that
given type become unaccessible upbn exit from its scope, at which time a

storage release can be initiated,

So far, references (i.e. reference values) could only enter into a
process through the dynamic creation of cells. 1In particular, references
pointing to explicitly named quantities have so far not been considered,
However, they are an integral part of the language EULER, as well as the

Algol successor proposedin[vW] and they call for further investigation.

In EULER, a reference value referring to a quantity named x is
denoted as @ . In [vW] the reference to a quantity x is denoted
simply by x; context decides whether the value of quantity x 1is meant,
or the reference to that quantity, much in the same way as context deter-
mines the meaning of "age(Jack)" and "age(p)" in the example above. This
is possible, because unlike in EULER fixed types are associated with all
named quantities. At this point, however, a contradiction is introduced,
if all assumptions given in this paragraph are retained: while reference
values are not subject to limited scopes, the explicit name which occurs
in the program text (the appellation) does have a fixed scope. This fact
leads to calamitous situations unless the meaning of the Algol block struc-

ture is revised, as the following example shows:

begin ref [Integer] k; integer j;

begin integer i; i := 1;
o k=1

end;
Y J =k

end

At o, according to the fact that k is of type ref, the reference
pointing to the cell i is assigned to k . At B, the scope of i

ends, and according to Algol tradition, the storage space occupied by

13
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i is released. At 7y, the value of the cell referenced by k (still
i ?) is assigned to j . It becomes necessary to revise the definition
of Algol 60 to the effect that the rules of scope apply to names (appel-
lations) only, but not to the named quantities themselves. This seems
to defeat the very aim of blockstructure, In fact, the postulate is
equivalent to requiring that all storage be allocated in the same way as

for dynamically allocated cells described above.

The only plausible solution seems to be to disallow the declaration

of reference cells bound to explicitly named quantities.

Before the consequences of such a restriction are discussed, a few
considerations of implementation are appropriate. As noted above, there
exist cells of elementary type9 and those of composite structure. Most
computers are capable to copy and assign any elementary value equally
efficiently as a reference value (address). It is therefore advisable
always to deal with the considered value itself, and not with a refer-
ence to it. After all, the ultimate access to a value will always be
more elaborate, if it has to be made via an indirect reference. It is
felt that a language should do its best to discourage the use of indirect

addresses in such cases.

Composite structures, on the other hand, are not as easily manipu-
lated as references. Moreover, since the size of composite structures
can usually be computed (arrays in Algol 60), their allocation must be
made dynamically, and their access must then necessarily be indirect.
It follows that composite structures implicitly use a reference cell as
described above, whether it is requested by the programmer or not. An
Algol 60 array declaration is indeed more precisely described by the

explicit steps

type @ (Real l:n);
ref [a] a;
a =«

than merely by

14
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real array a[lin],

and the occurrence of a 1n a program should be understood as the deno-
tation of the reference value pointing to the dynamically allocated array
cells. It follows that compoéite cells should not be explicitly
named, or if this is allowed in the language, it should be understood to

be an abbreviation in the above sense. In cases where the type definition

is given in the same block as the reference declaration (or in the abbrevi-

ated version even together), the effect on storage allocation is the same
as that of Algol 60 array declarations: storage can be released on exit

from the block.

These considerations of usage and implementation of elementary and
composite cells also apply to their treatment as procedure parameters,
in spite of the fact that proponents of references to named quantities

use the parameter mechanism as their motivation.

The quintessence of the foregoing three paragraphs then is that
e Cells of elementary type are always declared and thus have explicit

names (appellations);

© Cells of composition are always created dynamically, and their struc-

ture is known through explicit type definition;

© Reference cells are of elementary type and their values are always
bound to refer to quantities of a given type. As a consequence,

references can refer to composite cells only.

The postulated restriction does in fact not limit the power of a
language, since it is always possible to define a structure (type) con-

sisting of a single field only.

6. The "Elimination" of References

In a language where it is understood that composite records are
always referenced indirectly, the role of the symbol ref reduces to that

of a reminder of this convention. Effectively, it could be omitted, 1i.e.

15
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the notation
ref [T] a,b
could be replaced by the shorter"
T a,b

where T is an identifier introduced by a type definition. This has
been done in the AED language [R]. It must then be clearly understood
that

denotes the copying of a reference, and not of the referenced structures
themselves. A somewhat confusing consequence is illustrated by the piece
of program below whose last statement does not only alter the age of p,

but also that of g .

new (Person)p, q;

p := Person; age(p) := 10;
q = P;

age (p) := age(p) +1

Whether that abbreviation is used may be a matter of taste, but the

point of view that the coexistence of both

new (T) r

and

may contribute more to the conceptual complexity of a language than to

its usefulness, is justified.

16
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7. Input ~ Output

Input - output operations are assignments of wvalues (usually compos-
ite structures) held on one storage medium to cells allocated on another
medium. If input - output handling is to be an integral part of a lan-
guage, then the rules governing input - output activities must be con-
sistent with the rules governing other activities. The simplest way of
choosing consistent rules is taking the same rules. This implies that
data to be input or output must be declared on the "external" media as
they are on the "internal" one. As a matter of fact, the specification
of the storage medium together with the declaration of cells may be con-
sidered as an implementation dependent comment.

Example:

ref [T] a,b [disk]
ref [T] ¢,d [tape, ]
ref [T] x,y [core

Assignments such as

can then be understood as denoting input and output operations respectively.

Note that in this case it does not suffice to copy the reference only,
since the references are supposed to point to cells in the specified

storage medium.

The reduction of input - output operations to mere assignments invites
for heavy misues of the I-O capabilities of presently known secondary stor=-

age media, unless certain natural restrictions on the kind of structures

are introduced, which take the inherent nature of such devices into account.

In order to express a proposal on some such restrictions, a structure clas-

sification is introduced:

® A structure whose number of fields is fixed by the type definition is

called a static structure.

17
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e A structure whose fields are all of the same type is called an

array structure. (Its field names are usually computed indices.)

© A structure without fields which hold (references to) other structures

is called a basic structure.

If assignments are made which necessitate a transfer of information
between different storage media, and if these transfers are to be achiev-
able with a minimum of administrative overhead, then they ought to be
restricted to arrays of static basic structures. Such a restriction does
indeed not affect all applications which make use of what are usually
called record files, i.e. linear sequences of records of data which
contain no cross-references among each other. The restriction can be
somewhat relaxed by merely requiring that possible reference fields

contain the value null upon assignments.

The notation of a file is here introduced in the sense of what is

more specifically called a serial file or a tape, and it is defined as a
linear array of static structures (as above). The file differs, however,
from the more general array in the restrictive manner in which access

can be made to its elements: With a serial file is associated an implicit
index which designates the one currently accessible element. Each assign-
ment to or from the file automatically increments this index by unity,
Moreover, certain standard operations on files are introduced which make

it possible to change that index.

This notion of a file seems to be necessary and sufficient to include
in a satisfactory manner the handling of storage devices with an inherently

serial access mode, such as tapes, line printers, card readers and punches.

8. Operations on Defined Types

Algol 60 specifies only operations on what are here called values of
elementary type. These are the operations present in the hardware of
computers. Operations on values of structured type are usually expressed
in terms of sequences of operations on components. A facility for con-

veniently abbreviating such sequences is the procedure in Algol 60.2

18
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modification of this concept which makes the usual infix notation appli-
cable is obtained by extending the meaning of elementary operations to

structured ones by declaring that the operations apply elementwise to the
constituents of the structure. This modification is called "overloading"
(cf. also [H]) and applies to array structures. In the previous chapters,

this principle has already been applied to the assignment operation.

9. Summary

© There exists a given set of elementary data types without substructure.

This set includes the type reference.

© A type definition introduces a structured data type and associates an

identifier with it. The structure of this type is specified as either
a sequence of fields, each designated by a field identifier and each
being of a fixed type, or of a single or multidimensional array of

elements of homogeneous type which are designated by computable indices.

© Variables, here called cells, have a fixed type, i.e. can store only

values of that given type.

© Cells of elementary type are introduced by declarations. The scope of
their name (appellation) and the lifetime of the cells themselves, 1is

determined by blockstructure.

® Cells of structured type are introduced "dynamically". They have no
appellation; instead, they are accessed indirectly via a reference

which is the value of a cell of type reference.

e Declarations of cells of type reference always specify the type of

the cells to which the reference may refer.

e If a reference r points to a cell C of type T, the notations r
and T(r) are used to designate the reference itself and the referenced
cell C respectively. The meaning of cell designators is context

independent.

e In declarations of reference cells, it is possible to specify the

storage medium to be used for storing the referenced cells.

19
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II. On Program Structures

1. Statements and Expressions

The fundamental notion in program structures is that ofan(assignment)
statement. It indicates a "closed action", by which is meant that after
its execution the effect of the performed actions are entirely represented
by the values of the cells participating in the process. Executing a
program with paper and pencil, one can dispose of any intermediate results
(scratch paper) after each statement. This is a conceptually most
appealing situation which is appreciated in particular when one is con-
fronted with the task of verifying a program. In Algol, the execution of
an (assignment) statement consists of the evaluation of an expression,
followed by the assignment of the obtained result to one or several cells.
(Note that all statements in Algol, except the go to "non-statement", can
essentially be reduced to the assignment statement or sequences thereof.)
The expression is the part which is evaluated with the possible aid of
scratch paper, and the fact that the scratch paper can be discarded after
each statement is contained in the syntax, where (expression) <can be a
constituent of (statement), but not vice versa. This scheme is
destroyed in Algol by the fact that it is possible to use a function pro-
cedure (whose body consists of statements) as a constituent of an expres-
sion. What is not visible in the syntax is achieved by application of
the "copy rule": (statement) becomes a constituent of (expression)

The consequences of this situation have been hotly debated on many occa-
sions and are collected under the subject "side-effects". They are as
undesirable as much as perspicuity of programs is desirable; it turns out;,
however, that in certain mild and disguised forms they can be quite use-
ful. And if a facility is useful in some instances, it becomes most

difficult to dispose of it just for the sake of sound principles.

Nevertheless, the question arises whether side-effects should be
embraced as an integral part of a language, or whether they should be

exterminated entirely.
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The former solution is realized by eliminating the distinction
between statements and expressions, and by recognizing the assignment

expression

as the identity operation on e with the side-effect of assigning the
value of e to v . This philosophy has been adopted in EULER [Wand W],

and in [vW]. Constructs such as

a :=b+ (c :=d Xe) -f

are now as legal as Algol 60's

real procedure g ; g :=c :=d X e;

a i=b+g-1~f.

As a consequence, every (formerly called) statement has now a value, and
the execution of a sequence of n statements results in the piling up of

n values (on scratch paper). To remedy this, the statement separator

" L}

y'y which in Algol 60 has merely syntactical functions, becomes an active
operator charged with the duty to discard the value of the last computed
value. Consequently, blocks have a value, and so do proper procedures:

E.qg.
begin a := 1; b := atl; c := b+l end

must be attributed the value 3. It becomes necessary to introduce the
notion of partial functions, since no value can be attributed to the

dummy statement.

The latter solution, namely the elimination of side-effects, is
realized by redefining the body of type procedures to be an expression
instead of a statement (which includes at least one peculiar kind of

assignment to the procedure identifier in Algol 60). This solution is
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as radical as the former, and its consequences are also far-reaching.
Because of the conceptual importance of the pure statement and its role

in facilitating program verification, it should not be ignored.

2. Program Verification and Efficiency

When developing a program, one automatically constructs a verification
of its correctness. The fact that (all too often) lapses occur in the
design is due to the lack of a systematic (I do not say "formal") verifi-
cation method. Only recently have attempts been made at establishing
more rigid guidelines for such a method [N], and the fact that they are
not widely used is partly due to the lack of languages whose designers
have recognized this problem sufficiently clearly. Verification methods
are simplified, if a language has an appropriate structure, and if certain

constructs are amenable to fixed verification rules.

Here verification means the deduction of the truth of certain asser-
tions about a program strictly on the basis of the program text, i.e.
without its evaluation. A verification must therefore depend on informa-
tion which is just as well available to the compiler, and which indeed
may be used by the compiler to perform certain (partial) verifications
automatically. Conditions which can be verified in this way do not have
to be checked at execution time, which contributes to the efficient
execution of a program. In this light, the interests of efficiency and

program perspicuity emerge as identical.

A first example of a language facility aimed at these two goals is
the association of a fixed type to all variables in Algol 60. The relax~-
ation of this rule for formal parameters contributes heavily to ineffi-
ciencies of executed programs. A similar step is the binding of reference
variables to a specific record class in [W and H], which contributes to
both clarity and efficiency of programs in a way that without it the
entire record handling feature would appear as unattractive. Another
example, also in [W and H], is the for-statement which is defined differ-
ently from that in Algol 609 to the effect that the control value depends

on the for clause alone, and cannot be altered through "side-effects"
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from the iterated statements. This example illustrates clearly how
certain language structures with appropriate definitions can facilitate

verification methods.

Iwo other instances of similar facilities with the same aim are to
be outlined below. They both refer to the for statement as defined in

[W and H], as opposed to that of Algol 60.

3. Subscript Ranges

If one considers it essential that at least during execution of a
program undefined situations be detected --and anyone concerned with the
question of reliability of computed results should--then it becomes
necessary to test whether computed indices lie within the declared sub-
script ran&e. This testing, which in general can only be performed at
run time, is costly and makes the use of arrays unattractive compared
with the use of records in [W and H], where access to fields does not
require any checking, since it can be verified from the program text
alone. It is thus highly desirable to introduce a notation for certain
common situations where the subscript checking can be performed by the
compiler. The for statement appears as most appropriate: for an index
being a control value, run time checking can be omitted if the compiler
can deduce that the range of the control value does not exceed the range
of the subscript.

Example:

real array a[l:n];
for i := 1 _step 1 _until n do s := A[i] + s

For such a verification in this example the compiler (and the human veri-
fier) must have the ability to compare symbolic quantities (here n ) and
to establish the fact that no assignment to n occurred between declara-
tion and for statement. This task could be drastically simplified by a
facility which makes it possible to associate a name (identifier) with a

range.
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Example:

range R = l:n
real array a[R];
for i :=Rstep 1 do s := A[i] + s

More generally, the facility to specify a given range with the declaration
of a variable could be introduced and each assignment to this variable

would include a range check:

integer (R) 1

4. Ambiguous References

Each -facility designed toward compile-time verifyability introduces
some sort of restriction. It is essential to assert that the restriction
is not a handicap but rather an aid to the programmer. The nature of the
rule that every reference be bound to a certain type ("record class" in
[W and H]) is in that sense ambiguous. It is often desirable that refer-
ence fields of structures be able to point to structures of several types.
This problem is discussed in [H], and the very plausible concept of record
sub-classes is presented, which here might be called "categories" (of a

certain "type"). A type definition may now assume the form:

type Person (integer age; ref (Person) father, mother;
category Man (integer draftcardnumber;
ref (Person) youngest child, spouse),
Woman (Boolean pregnant; ref (Person) spouse),

Child)

Fields common to all categories are listed first;then the categories
are introduced, each followed by a (possibly empty) list of "private"
fields.

A reference assigned to a cell declared as

ref (Person) r

2k



can now point at either a cell of category Man, Woman, or Child (which

are all said to belong to the type Person). Whether a field designator

such as

L
L
L

pregnant (r)

is valid can only be determined at run time. Of course, a programmer
uses this field designator only where he (maybe mistakenly) assumes that

r always points to a Woman. Usually, he uses a test to predetermine

this fact explicitly, such as
if r is Woman then ... pregnant (r)

A language should express this common situation in a way that
an implicit check connected with the field designator can be avoided.
A construction where this is possible must necessarily resemble the one
used for avoiding subscript range checking and use the concept of a quan-

tity to which no assignment can occur within a certain scope. The follow-

- r r— r— T r—

ing notation is adopted from [H] in a slightly modified form:

for t :=r when Man do S1
when Woman do S2
when Child do S3

r— r

Here r 1s a reference expression, 81, S2, S3 are statements, and

t is a local quantity implicitly declared like i in the previous example.

r—

Implementations on multi-register computers can take advantage of

{ this construction by holding the quantity t, which is most likely often
L to be used in S1, S2, 83, 1in a register.

{

. 5. Procedures as Data Elements

{ In Algol, procedures are static in nature and distinct from data.

L Procedures cannot 'be manipulated; they can only be executed. The phenomena.
i

-
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of "remote activation" by procedure statement, and of "passing on"
of a procedure as a name parameter, are explained through textual sub-

stitution (copy rule).

With EULER the notation of-a manipulatable procedure was implemented
so that procedures can be referenced indirectly through references which
in turn can be assigned to variables. This solution unifies in a most
appealing way the two concepts of procedure and name parameter of Algol 60.
The denotation of a literal procedure consists of the procedure text
enclosed in quote marks and is therefore called a quotation. 1In a lan-
guage like Algol, an elementary value type procedure has to be defined to

express this situation as follows:

_ A procedure p;
B: p = 'x 1= x+1’;
c P

The meaning of this piece of text is the following: at A, a
variable (cell) p is introduced, at B, a quotation is assigned to
p, and at C the occurrence of p denotes the execution of that quota-
tion. A notation which is more consistent with the one of the previous

chapter is the following:

A: ref [Procedure] p , q;

B p := Procedure (x := x+1);
c: €x P;

D: q =P

This notation makes possible the assignment of procedure references
to variables of the appropriate type without implying the execution of

the denoted procedure.

As in the case of references in the previous chapter, the concept of
an assignable program text in coexistence with blockstructure unfortunately

causes irreconcilable difficulties. This is here even more apparent,
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because a program text may obviously contain names (identifiers) with
limited scopes, and hence be assigned to quantities outside that scope.

Example:

begin proceduré p; integer i,k;
i = 100;

begin integer i,j;

p = ‘k = i+j’;

i j :=10; p

end;

end

While the first occurrence of p appears as entirely legitimate,

the second is highly problematic.

6. LOOPS

A loop is an extremely frequently occurring program structure, and
it should be representable by a simple, yet flexible notation. Program-
mers which are used to conceive their algorithms in terms of flowcharts,
and then transliterate flowcharts into sequential language, are apt to
frequently employ the go to statement. It is contended here that loop
structures should be expressible through program structures rather than
the cumbersome use of labels which not only tend to overly increase the
amount of needed identifiers, but also constitute a strong temptation to

construct puzzling mazes of program paths.

In [W and H] the following simple construct for a simple loop is

suggested:
while (Boolean expression) do (statement)

corresponding to the flowchart
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This construct is considered to be superior to Algol 60's for statement
with while element, because of its simplicity and obviousness. However,
it is somewhat rigid in that it requires that the test for loop termina-
tion is made before the statement is ever executed. Burroughs Extended
Algol (B5500) has remedied this situation by offering a similar construct,

which implies that the test is made after the first execution of the

statement!--,
do (statement) until (Boolean expression)
S
It appears that this is only a partial remedy., In fact, one usually ends

up writing program pieces of the following 'kind
S51; while BE do begin S2; S3 end
go to L; do begin S2; L:S3 end until BE
where S1 and S3 are identical sequences of statements. The topologi-

cal similarity of these constructs suggests that a ternary construction

is needed¥*, consisting of two statements and a test for loop termination,

*The idea was raised by Don Kunth in connection with PL 360. It is also
present in the JUMP OUT statement of B5500 Stream Procedures.
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separated by adequately chosen delimiters. The following is suggested

here.

bepeaty 1 n
S1;

when BE exit;
sS2

end

The former while and until statements can be represented as repeat

statements with either S2 or Sl being a dummy statement,
An alternative selection of delimiters results in:

turn on begin

S1;
when BE drop out
s2
end
29
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