
CS 65

ON CERTA IN BAS IC CONCEPTS OF

PROGRAMMING LANGUAGES

BY

NIKLAUS WIRTH

TECHNICAL REPORT NO. CS 65

MAY |, 1967

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

|

-

(

L

On Certain Basic Concepts of Programming Languages

-
By

L ~ Niklaus Wirth

L May 1, 1967
{

|
-

—

L

| Computer Science Department
Stanford University

i Stanford, California
f

—

On Certain Basic Concepts of Programming Languages

i Contents Page
L I. On Data SELruCtUres . . . «+ vv 4 vv vv vv eee ee 2

| 1. Type Definitions . « « « vv « vv ov vv ov « . 3

L 2. Cell Declarations « « « « v 4 « vv 4 ov vu 0. 5
3. Cell Designations . . « « « + « «vv «oo... /

i 4. Cells Without Explicit Names . « « « « « « « « « 8

{ 5. Blockstructure Ce eee eee eee ee eee 12
6. The "Elimination" of References . . « «. « « « « . . 15

| 7. _ Input -output «+ oo Looe. L7
, 8. Operations on Defined Types =. « « « « « « « « « « . 18

L 9. SUMMALY + « + vo vo eee ee ee ee ee ee 19

L
II. On Program Structures « « « « © «= © « « « © © © © © «= » = 20

l _ Statements and Expressions . . « « « + « +. . . 20
2. Program Verification and Efficiency 22

L 3. Subscript Ranges « « « « « « « = © © © © « © « © w 25
| 4. Ambiguous References . . + « « «ve 4 4 4 eo. 2h

5. Procedures as Data Elements . . « « « « «+ « « « . . 25

6. LOOPS + «+ «oo + oe eee eee ee eee eee 27

L References . . . vv vv vv ve ee ee ee ee ee ee 30

L

I

I

[

[

L
Recent developments of programming languages have led to the emer-

{ gence of languages whose growth showed cancerous symptoms: the prolif-
eration of new elements defied every control exercised by the designers,

| and the nature of the new cells often proved to be incompatible with the
- existing body. In order that a language be free from such symptoms, it

L 1s necessary that it be built upon basic concepts which are sound and
mutually independent. The rules governing the language must be simple,

[} generally applicable and consistent.
In order that simplicity and consistency can be achieved, the funda-

| mental concepts of a language must be well-chosen and defined with utmost
clarity.

L In practice, it turns out that there exists an optimum in the number
of basic concepts, below which not only implementability of these concepts

L on actual computers, but also their appeal to human intuition becomes
questionable because of their high degree of generalization. The follow-

L ing informal notes do not abound with ready-made solutions, but it 1s
hoped they shed some light on several related subjects and inherent diffi-

{ culties. They are intended to summarize and interrelate various ideas
which are partly present 1n existing languages, partly debated within

[the IFIP Working Group 2.1, and partly new.
While emphasis 1s put on clarification of conceptual issues, consid-

l eration of notation cannot be ignored, However, no formal or concise
definitions of notation (syntax) will be given or used; the concepts will

[instead be 1llustrated by examples, using notation based on Algol as far
as possible.

L

L
1

L

I. On Data Structures

L The elementary concepts of computing processes are:

{ © There exist certain quantities, to be called "values", and elementaryclasses or types (possibly only one) of values among whose elements

given elementary relationships hold. These relationships or mappings

L are represented in a computer by 1ts operations which generate a new
| value (called result) which has the specified relationship to the

L given value(s) (called operands).
| © There exist cells (usually called "variables") which are able to con-

{ tain a value, and which have a name. That name serves to refer to the
contained value.

L © There exists an operator for the assignment of a new value to a cell.
| The vocabulary used for describing processes must contain at least one

L denotation for each element in the universe of values, and at least one
| for each relationship among values in each class. While the universe of

L (elementary) values 1s usually given 1n a programming language, the set
of cells involved in a process 1s particular to that process and must be

L defined in 1ts description. Therefore, also names to designate those
” cells must be individually introduced (declared). A necessary rule 1s

{ that either cell names must be distinguishable from denotations of values
(and relationships), or otherwise a chosen cell name identical with a

[value denotation may no longer be used (directly) to denote that value,
It 1s important that groups of elementary values can be combined and

| considered as a composite or structured value. It 1s customary to denote
such a value by listing its components, separated by a separator (e.g.

| comma) and delimited by brackets (e.g. parentheses). The name of the cell
holding a structured value 1s then used to denote the entirety of the

i component values.
This conceptually appealing and simple solution has been realized

| in the language EULER[W and W]. Its practicability, however, turns out
to be rather doubtful for the following reasons:

2

{

L 1. Since a cell may hold any value, and therefore also a composite
| one, 1ts physical size 1n terms of computer memorycells 1s not fixed.

L Implementation of this scheme requires the use of indirect referencing
y and dynamic storage allocation to an extent which makes the use of such
LL a language unattractive for many applications.

L 2. The very dynamicism and lack of redundancy of the language makes
a it difficult for the programmer to verify the correctness of a written

1 program.
|

3. Assuming that individual elements of a composite value can be

| referenced by the name of the holding cell followed by an index, it
immediately follows that the same notation should be used in assignment

L statements to alter elements of the structure. Since assignments can
only be made to cells (and not to values), the cell holding a composite

value must be considered as a structured cell. It follows that the cre-

L ation of cells is a highly implicit action, since assigrnnent of an n-ary
value implies the creation of n cells. The conclusion to be drawn 1s

L that a programming language should not contain the notion of a structured
value, but rather the one of a structured cell. Positional relation-

L ships between values then exist only by virtue of the structure of their
containing cells.

4

L 1. Type Definitions
L These difficulties and drawbacks can be overcome by attributing to

each cell a fixed structure, when the cell is introduced. For practical

L purposes this turns out to be hardly a restriction at all, since 1n most
applications a program involves only a few different types of structures,

L while many used cells are of one and the same structure. One may con-
! sider the given elementary classes or types of values to be of elementary

i (degenerate) structure. A cell may then be declared to be of a given

L elementary type, and hence it can hold only values of that type. This
| is achieved by the type declarations in Algol 60. Further, more complex

L structures can be considered as compositions of elementary structures;
and 1n order that a name can be attributed to that structure, also to be

L
3

L

called a "type", a new construct called a "type definition" has to be

L introduced. It may assume a form as illustrated by the following example:

{ type Person (Integer age; Boolean male; Real weight)
"Person" 1s the name of the new structure, which is composed of three

| elements (called "fields") which are of elementary structure; Integer,
Boolean, and Real respectively. The type definition is moreover used to

ig attribute names to the individual fields, and corresponds to the record
class declaration in [W and H]. It can be assumed that the elementary

| N types—are introduced by fixed type definitions in the environment of the
program. In fact, the elementary types are usually themselves composed

L of bits, and their substructure 1s dependent on particular implementationsand machines,

L It 1s sufficient to let the type definition consist of a linear list
of constituents, if the constituents themselves can be of any type.

L Examples:

L type Medicalrecord (Integer bloodtype, heart condition;
Boolean diabetic)

L type Patient (Integer age; Boolean male; Medicalrecord health)

| Often it 1s desirable to give numeric names to fields of structures, which
| in turn can be computed. An example is

L type A (Real 1,2,3,k4)

L for which we immediately introduce the abbreviation

L type A (Real [1:4])

without further explanation. Such a structure is called a (one-dimen-

sional) array, and the field names are called indices; all elements are

4

L of the same type. Multi-dimensional arrays, whose elements are designated
L by more than one index, could be defined as follows:

[type B (Real 1,2,3|1,2,3,4) .
Above abbreviation leads to the short form

typeB (Real [1:3]1|[1:4]) .

| The distinction of this structure and the one defined by

L typel:3])

L lies 1n the. fact that the 12 elements of B are of type Real, while
C consists of 3 elements of type A, which in turn consists of 4 ele-

L ments of type Real. If B is considered to be a matrix, then its rows
and columns are not explicitly designated and appear on the same footing,

[while C 1s considered to be a linear structure of rows.
The foregoing notation has the effect of making explicit the simi-

L larity of the concepts of arrays and records [W and H]. It automatically

{ introduces array structured fields:
type Account (Integer number; Real balance; A deposit)

2. Cell Declarations

L The introduction of cells (variables, records) 1s required to con-
| tain an indication of the type of the cell along with the name to be asso-

L ciated with the new cell.
Examples:*

new (Integer) 1

L new (A) a, al
*1n order to facilitate reading of subsequent examples, names of cells

{ begin with lower case letters, names of types with capital letters.

L 5

i new (B) b, bl, bz

| new (C) c
> new (Person) jack, Jill

ce new (Patient) smith

L ‘new (Account) ac

| The symbol new 1s chosen to indicate that a new cell of a given type
1s introduced. Instead of new, cell or var might have been chosen to

[emphasize the creation of a cell or variable. In terms of an implementa-
tion, this declaration causes storage to be allocated,

L In Algol 60
L ~ new (Integer) 1

tL 1s abbreviated to

| integer 1

[and this convention holds for all elementary types. If the language
rules are such that in the place of the type identifier the type defini-

L tion itself can occur, then the example

[new (A) a

1 can also assume the form
new (Real [1l:4]) a

or abbreviated

L real [1:4] a

L from which the analogy to Algol 60's array declaration

L 6

|

L
real array afl l:k]

he becomes evident.

L 5. Cell Designations

| Various notations are now presented to denote cells and components
of structured cells:

L 0} B 04 Q
. a [2] a.2 2 of a 2(a)

L [2,3] b.2,3 2,3 of b 2,3 (Db)
| Jack [age] jack.age age of Jack age (jack)

L mith[health] smith.health health ofsmith health (smith)
[2] c.2 2 ofc 2(c)

{ [2[3]] c.2.3 3 of 20f ¢ |3(2(c))
smith[healthl smith.health. diabetic of diabetic (health(
diabetic diabetic health ofsmith|smith))

L c[principal] ac.principal principal of ac principal (ac)
c[deposit[3]] ac.deposit.3 > ofdeposit 3 (deposit(ac))

L of ac

1 At this point it seems appropriate to examine the results of the previous
unification of concepts, and to compare the resulting notation with con-

[structs present 1n existing languages. Notation& coincides with Algal
60 in the form of "subscripted variables". PB appears in PL/I and COBOL,

(only applied to fixed, 1.e. non-computable names). y coincides with

L the notation of field designators in [vW] and 0 with that of [W and H],
: in both cases used only in connection with non-computable field names,

| At places where computablenames occur, expressions should be permissible,
which quickly leads to syntactic abominations in all cases except « .

{ For the use of cells with alphabetic (non-computable) field names, nota-
| tion ® seems more natural because of its analogy to the conventional

L notation for functions and predicates, as which field names can be under-
| stood. One concludes from the foregoing that a unification of homogeneous

L
|

L

L
structures with computable field names (indices) and inhomogeneous struc-

L tures with noncomputable ones (identifiers) 1s not desirable, mainly for
: reasons of notational tradition. It is even much less desirable from

the standpoint of implementation, since computed indexing over an array

L of fields with different size is-necessarily a difficult and inefficient
process.

L
A relatively appealing solution to this dilemma consists of (a.)

L restricting computability to numeric field names (indices), (b.) enclosing
them in distinguishable brackets, and (c.) to use conventional postfix

i notation (¢) for indices and prefix notation (6) for field designa-

L tions with alphabetic names.
Examples:

L
| a[2]

L b[2,3]
age (jack)

L health (smith)
c[2]

c[2[3]]

L deposit (ac) [3]

i 4. Cells Without Explicit Names

| So far, the assumption was made that in a program every cell to be
involved was explicitly denoted by a name attributed to the cell by its

4 declaration. In certain problems of data processing, however, the number

L of involved cells 1s not known a priori, nor is it necessary that all
: cells be available from beginning to end of the process, A facility

{ becomes desirable to create cells at any time (i.e., dynamically).

| Once a cell 1s created, there must be a way to refer to 1t. Since
its name 1s not introduced into the program explicitly (e.g., as an

identifier), it becomes necessary to consider names as objects which can

| be used to refer to cells. The cell creation then not only allocates a
cell, but also yields the name of the allocated cell. That name is to be

L :
L

L called a reference, and 1s to be treated as an elementary value of type
{ Reference . The dynamic cell creation can be denoted by

| r := Person
which results in the assignment of the reference to the new cell to r .

| The form

{ r := Person [21, false, 101 5]

| can be used if the new fields are to be assigned initial values at the
same time. The declaration of r is denoted by "refr" which stands

| as an abbreviation of

| new (Reference) r .
It turns out to be a significant advantage to implementation, 1f it 1s

| required that the type of object to which a reference value assigned to
| a given reference cell may refer, be unique. This type can be specified

| as follows along with the declaration of the reference cell,

1 ref [Person] rref [Integer] k

L The reasons for binding reference cells to a specific class were given
in [W and HJ].

L It should be noted that the type specified with a reference cell
{ declaration does not denote a substructure of the reference cell itself,! which 1s elementary, 1.e. without substructure. It instead denotes the

[structure of the referenced quantity.
= References can now be used to express functional relationships

1 between the objects represented by cells. If a reference valued field
f of a cell x holds a value refering to a cell y, then y 1s said

to have relationship f to x . The following is an example of a piece

| of a program using the facility of dynamic cell creation:

\ type Person (Reference [Person] son; Integer age; . ..).
| ref [Person] p, g;

L: p := Person; son(p) := q;

L q = p; go, to L

{ The piece of program describes the creation of an infinite number of cells
of type Person. At IL, the value of gq refers to the "youngest" member

1s of the chain ofdescendents. Pictorially, the set of created cells may
be described as follows:

. B B
1 i

[Each pointer represents a value of the class "Reference" which is held in
a field of that type, called "son".

lL The above example also suggests a convention for denoting the
value of given fields of dynamically created records, which 1s in con-

| formity with the notations presented above. If in place of the name of
a cell, one of whose subfields 1s to be designated, the name of a refer-

L ence cell occurs, then it 1s implicitly assumed that the field of the
indirectly referenced cell 1s denoted.

L Example:

L age (jack) jack = name of a personage (Pp)
P = name of a reference to a person

L son (Pp)
This conventions seems perfectly natural and raises no problems, since

(.
10

reference cells are not themselves structured and a field designation

| therefore undisputably must refer to a field of the referenced cell.However, a dilemma arises when the entire cell, and not one of its fields,

(1s to be designated:

| o
P [

L Does p now denote the reference value referring to @, or « itself?
Two possible solutions are offered here:

L a. p~ denotes the reference to «, the notation person (P) is

L used to denote «o .

| P += Q
then denotes the copying of a reference, while

L Person(p) := Person(p)
L denotes the copying of the values of a cell of type Person.

l b. the exact meaning of p 1s determined by context, (e.g. corre-
spondence of types) such that in

{ p denotes the reference value to @, while in

| Jack :=p

L p denotes the Person cell « itself.The latter solution, which is adopted in [VW], obviously leads to further

L 11

!

L
problems when p has values referring to cells which are themselves of

l the class Reference.

(B
{

Bh It 1s only possible to denote either the reference value held by p, or

L ” the person cell which constitutes the end of the reference chain, but no
intermediate reference values. Apart from the conceptual intricacies

which would make a program using such constructs rather difficult to

L understand;, certain well-founded doubts about their practical usefulness
suggest that the dynamic creation of cells of type Reference (and elemen-

i tary types 1n general) should not be included in a programming language.
| Another aspect of this topic 1s presented in the next section.

L
5. Blockstructure

L Blockstructure was introduced into Algol60 to delimit the scope of
names (identifiers). Since names are attached to quantities by their

i declaration and are not themselves manipulatable values, a cell itself
becomes unaccessible as soon as the scope of its name is left. The

l storage space allocated for a cell can therefore be released at the same
| time.

L Dynamically created objects do not have a name which appears in the
program, but can only be reached via internally created references whose

{ "lifetime" 1s not bound to any scope limitations (in the same sense as con-
stants do not have a limited scope). Release of storage space reserved

L for a dynamically created cell can therefore not be initiated on exit of
| control from a given block, but only by unspecified events at a time when

L no references to that cell can be made either directly or indirectly from
j cells which have a given explicit name (in [VW] called "appellation").

[However, because of the convention that reference cell declarations must
12

[

|
be accompanied by a specification of the type of referenced cells, such

a declaration cannot be made outside the scope of the pertinent type

L definition. Consequently, the existence of accessible reference values
1s restricted to the scope of that type definition, and all cells of that

L given type become unaccessible upon exit from 1ts scope, at which time a
| storage release can be initiated,

L So far, references (i.e. reference values) could only enter into a
process through the dynamic creation of cells. In particular, references

{ pointing to explicitly named quantities have so far not been considered,
} However, they are an integral part of the language EULER, as well as the

{ Algol successor proposedin[vW] and they call for further investigation.

{ In EULER, a reference value referring to a quantity named x 1s
" denoted as @x . In [VW] the reference to a quantity x is denoted

simply by x; context decides whether the value of quantity x 1s meant,

L or the reference to that quantity, much in the same way as context deter-
mines the meaning of"age(Jack)" and "age (p)" in the example above. This

{ 1s possible, because unlike in EULER fixed types are associated with all
named quantities. At this point, however, a contradiction 1s introduced,

[1f all assumptions given 1n this paragraph are retained: while reference
values are not subject to limited scopes, the explicit name which occurs

{ in the program text (the appellation) does have a fixed scope. This fact
leads to calamitous situations unless the meaning of the Algol block struc-

L . ture 1s revised, as the following example shows:
begin ref [Integer] k; integer 3J;

L begin integer 1; 1 := 1;
| oe k i= 1

Y J =k

| end

t At «o, according to the fact that k is of type ref, the reference
| pointing to the cell i is assigned to k . AtB, the scope of i

{ ends, and according to Algol tradition, the storage space occupied by
15

L

{

L 1 1s released. At 7, the value of the cell referenced by k (still
| 1?) 1s assigned to J . It becomes necessary to revise the definition

L of Algol 60 to the effect that the rules of scope apply to names (appel-
lations) only, but not to the named quantities themselves. This seems

L to defeat the very aim of blockstructure, In fact, the postulate is
equivalent to requiring that all storage be allocated in the same way as

L for dynamically allocated cells described above.
| The only plausible solution seems to be to disallow the declaration

{ of reference cells bound to explicitly named quantities.

| Before the consequences of such a restriction are discussed, a few
considerations of implementation are appropriate. As noted above, there

{ exist cells of elementary type9 and those of composite structure. Most
” computers are capable to copy and assign any elementary value equally

efficiently as a reference value (address). It 1s therefore advisable

L always to deal with the considered value itself, and not with a refer-
ence to it. After all, the ultimate access to a value will always be

L more elaborate, if it has to be made via an indirect reference. It 1is
felt that a language should do its best to discourage the use of indirect

{ addresses 1n such cases.
| Composite structures, on the other hand, are not as easily manipu-

L lated as references. Moreover, since the size of composite structures
can usually be computed (arrays in Algol 60), their allocation must be

L made dynamically, and their access must then necessarily be indirect.
| It follows that composite structures implicitly use a reference cell as

L described above, whether 1t 1s requested by the programmer or not. An
Algol 60 array declaration is indeed more precisely described by the

{ explicit steps
| type o (Real lin};

L ref [ao] a;
a =o

L
than merely by

L

| |

real array a[l:n],

L and the occurrence of a 1n a program should be understood as the deno-

[tation of the reference value pointing to the dynamically allocated arrayh, cells. It follows that composite cells should not be explicitly
| named, or 1f this 1s allowed in the language, 1t should be understood to

L be an abbreviation in the above sense. In cases where the type definition
1s given in the same block as the reference declaration (or in the abbrevi-

L ated version even together), the effect on storage allocation 1s the same
as that of Algol 60 array declarations: storage can be released on exit

L from the block.
| These considerations of usage and implementation of elementary and

L composite cells also apply to their treatment as procedure parameters,
in spite of the fact that proponents of references to named quantities

| use the parameter mechanism as their motivation.
The quintessence of the foregoing three paragraphs then 1s that

L e¢ Cells of elementary type are always declared and thus have explicit .
names (appellations);

L © Cells of composition are always created dynamically, and their struc-

{ ture 1s known through explicit type definition;
© Reference cells are of elementary type and their values are always

bound to refer to quantities of a given type. As a consequence,

L references can refer to composite cells only.

L The postulated restriction does in fact not limit the power of a
language, since 1t 1s always possible to define a structure (type) con-

L sisting of a single field only.

[6. The "Elimination" of References
In a language where 1t 1s understood that composite records are

t always referenced indirectly, the role of the symbol ref reduces to that
of a reminder of this convention. Effectively, it could be omitted, 1.e.

L
15

~ the notation

L ref [T] a,b

L could be replaced by the shorter"

L T a,b

t where T 1s an 1dentifier introduced by a type definition. This has
been done in the AED language [R]. It must then be clearly understood

L that

{ a += D
denotes the copying of a reference, and not of the referenced structures

| themselves. A somewhat confusing consequence 1s 1llustrated by the piece
of program below whose last statement does not only alter the age of p,

L but also that of gq.

L new (Person)p, g;
p := Person; age(p) := 10;

l qQ = Psage (p) := age(p) + 1

L Whether that abbreviation 1s used may be a matter of taste, but the

point of view that the coexistence of both

new (T) r

L and
ref [T] r

" may contribute more to the conceptual complexity of a language than to
its usefulness, 1s justified.

-

{

L 16

“

| fT. Input =~ Output

| Input =- output operations are assignments of values (usually compos-
| ite structures) held on one storage medium to cells allocated on another

L medium. If input - output handling is to be an integral part of a lan-
guage, then the rules governing input - output activities must be con-

| sistent with the rules governing other activities. The simplest way of
choosing consistent rules 1s taking the same rules. This implies that

{ data to be input or output must be declared on the "external" media as :
they are on the "internal" one. As a matter of fact, the specification

of the storage medium together with the declaration of cells may be con-

L sidered as an implementation dependent comment.

i Example:
ref [T] a,b [disk]

| ref [T] c,d [tape,]
ref [T] x,y [core]

| Assignments such as

i X «= a C i= Y |
.

| can then be understood as denoting input and output operations respectively.
Note that in this case 1t does not suffice to copy the reference only,

[since the references are supposed to point to cells in the specified
storage medium.

L The reduction of input - output operations to mere assignments invites
| for heavy misues of the I-00 capabilities of presently known secondary stor-

| age media, unless certain natural restrictions on the kind of structures
are introduced, which take the inherent nature of such devices into account.

L In order to express a proposal on some such restrictions, a structure clas-
sification 1s introduced: |

L © A structure whose number of fields 1s fixed by the type definition 1s
called a static structure.

17

L
e¢ A structure whose fields are all of the same type 1s called an

| array structure. (Its field names are usually computed indices.)
© A structure without fields which hold (references to) other structures

L is called a basic structure.
If assignments are made which necessitate a transfer of information

L between different storage media, and 1f these transfers are to be achiev-
able with a minimum of administrative overhead, then they ought to be

t restricted to arrays of static basic structures. Such a restriction does
indeed not affect all applications which make use of what are usually

{ ~ called record files, i.e. linear sequences of records of data which
contain no cross-references among each other. The restriction can be

somewhat relaxed by merely requiring that possible reference fields

i contain the value null upon assignments.

{ The notation of a file 1s here introduced in the sense of what 1is
more specifically called a serial file or a tape, and it 1s defined as a

L linear array of static structures (as above). The file differs, however,
from the more general array in the restrictive manner in which access

can be made to its elements: With a serial file 1s associated an implicit

L index which designates the one currently accessible element. Each assign-
ment to or from the file automatically increments this index by unity,

{ Moreover, certain standard operations on files are introduced which make
1t possible to change that index.

This notion of a file seems to be necessary and sufficient to include

in a satisfactory manner the handling of storage devices with an inherently

L serial access mode, such as tapes, line printers, card readers and punches.

8. Operations on Defined Types

Algol 60 specifies only operations on what are here called values of

elementary type. These are the operations present in the hardware of

computers. Operations on values of structured type are usually expressed

{ in terms of sequences of operations on components. A facility for con-
veniently abbreviating such sequences is the procedure in Algol 60.A

L ’

L

L modification of this concept which makes the usual infix notation appli-
| cable 1s obtained by extending the meaning of elementary operations tostructured ones by declaring that the operations apply elementwise to the

constituents of the structure. This modification 1s called "overloading"

L (cf. also [H]) and applies to array structures. In the previous chapters,
this principle has already been applied to the assignment operation.

9. Summary

© There exists a given set of elementary data types without substructure.

This set includes the type reference.

L © A type definition introduces a structured data type and associates an
identifier with 1t. The structure of this type is specified as either

| a sequence of fields, each designated by a field identifier and each
being of a fixed type, or of a single or multidimensional array of

elements of homogeneous type which are designated by computable indices.

© Variables, here called cells, have a fixed type, i.e. can store only

L values of that given type.
: © Cells of elementary type are introduced by declarations. The scope of

| their name (appellation) and the lifetime of the cells themselves, 1s
determined by blockstructure.

L © Cells of structured type are introduced "dynamically". They have no
appellation; instead, they are accessed indirectly via a reference

| which 1s the value of a cell of type reference.
e Declarations of cells of type reference always specify the type of

L the cells to which the reference may refer.
eo If a reference rr points to a cell C of type T, the notations r

L and T(r) are used to designate the reference itself and the referenced
| cell C respectively. The meaning of cell designators 1s context

L independent.
e¢ In declarations of reference cells, it is possible to specify the

L storage medium to be used for storing the referenced cells.

{

- 19

L II. On Program Structures
| 1. Statements and Expressions

L The fundamental notion in program structures 1s that ofan (assignment)
statement. It indicates a "closed action", by which is meant that after

{ 1ts execution the effect of the performed actions are entirely represented
L by the values of the cells participating in the process. Executing a

| program with paper and pencil, one can dispose of any intermediate results

{ (scratch paper) after each statement. This 1s a conceptually most
appealing situation which 1s appreciated in particular when one 1s con-

{ fronted with the task of verifying a program. In Algol, the execution of
an (assignment) statement consists of the evaluation of an expression,

L followed bythe assignment of the obtained result to one or several cells.
(Note that all statements in Algol, except the go to "non-statement", can

| essentially be reduced to the assignment statement or sequences thereof.)
The expression 1s the part which is evaluated with the possible aid of

scratch paper, and the fact that the scratch paper can be discarded after

L each statement is contained in the syntax, where (expression) can be a
constituent of (statement), but not vice versa. This scheme 1s

L destroyed 1n Algol by the fact that it 1s possible to use a function pro-
cedure (whose body consists of statements) as a constituent of an expres-

| sion. What 1s not visible in the syntax 1s achieved by application of
the "copy rule": (statement) becomes a constituent of (expression) .

L ’ The consequences of this situation have been hotly debated on many occa-
sions and are collected under the subject "side-effects". They are as

L undesirable as much as perspicuity of programs 1s desirable; it turns out;,
: however, that in certain mild and disguised forms they can be quite use-

ful. And if a facility 1s useful in some instances, 1t becomes most

L difficult to dispose of it just for the sake of sound principles.

| Nevertheless, the question arises whether side-effects should be
embraced as an integral part of a language, or whether they should be

{ exterminated entirely.

L .

L

The former solution 1s realized by eliminating the distinction

| between statements and expressions, and by recognizing the assignmentho expression

{ Vv «=e

{ as the identity operation on e with the side-effect of assigning the
value of e to v . This philosophy has been adopted in EULER [Wand W],

t and in [vW]. Constructs such as

{ a :=b+ (c :=d Xe) -f

I are now as legal as Algol 60's
real procedure g ; g i= Cc = d X e;

[As a consequence, every (formerly called) statement has now a value, and
the execution of a sequence of n statements results in the piling up of

L n values (on scratch paper). To remedy this, the statement separator
"3", which in Algol 60 has merely syntactical functions, becomes an active

| operator charged with the duty to discard the value of the last computedvalue. Consequently, blocks have a value, and so do proper procedures:

[begin a := 1; b := atl; c := b+tl end
must be attributed the value 3. It becomes necessary to introduce the

| notion of partial functions, since no value can be attributed to the
dummy statement.

| The latter solution, namely the elimination of side-effects, 1s
realized by redefining the body of type procedures to be an expression

| instead of a statement (which includes at least one peculiar kind of
assignment to the procedure identifier in Algol 60). This solution is

L 21

|
as radical as the former, and 1ts consequences are also far-reaching.

l Because of the conceptual importance of the pure statement and 1ts rolein facilitating program verification, 1t should not be ignored.

L 2. Program Verification and Efficiency

[When developing a program, one automatically constructs a verification
of its correctness. The fact that (all too often) lapses occur in the

{ design 1s due to the lack of a systematic (I do not say "formal") verifi-cation method. Only recently have attempts been made at establishing

, 3 more rigid guidelines for such a method [N], and the fact that they are

{ not widely used 1s partly due to the lack of languages whose designers
have recognized this problem sufficiently clearly. Verification methods

[are simplified, 1f a language has an appropriate structure, and 1f certain
constructs are amenable to fixed verification rules.

L Here verification means the deduction of the truth of certain asser-
tions about a program strictly on the basis of the program text, i.e.

L without its evaluation. A verification must therefore depend on informa-
tion which 1s just as well available to the compiler, and which indeed

{ may be used by the compiler to perform certain (partial) verifications
automatically. Conditions which can be verified in this way do not have

[to be checked at execution time, which contributes to the efficient
execution of a program. In this light, the interests of efficiency and

L program perspiculty emerge as identical.
A first example of a language facility aimed at these two goals 1s

L the association of a fixed type to all variables in Algol 60. The relax~
ation of this rule for formal parameters contributes heavily to ineffi-

{ ciencies of executed programs. A similar step 1s the binding of reference
variables to a specific record class in [W and H], which contributes to

both clarity and efficiency of programs in a way that without 1t the

L entire record handling feature would appear as unattractive. Another
example, also in [W and H], 1s the for-statement which 1s defined differ-

L ently from that in Algol 609 to the effect that the control value depends
on the for clause alone, and cannot be altered through "side-effects"

L 22

L

i from the iterated statements. This example illustrates clearly how
certain language structures with appropriate definitions can facilitate

L verification methods.

L JIwo other instances of similar facilities with the same aim are to
be outlined below. They both refer to the for statement as defined in

| [W and HJ], as opposed to that of Algol 60.

(5. Subscript Ranges
If one considers 1t essential that at least during execution of a

| } program undefined situations be detected --and anyone concerned with the
question of reliability of computed results should--then 1t becomes

| necessary to test whether computed indices lie within the declared sub-script range. This testing, which in general can only be performed at
run time, 1s costly and makes the use of arrays unattractive compared

L with the use of records in [W and HJ], where access to fields does not
require any checking, since 1t can be verified from the program text

L alone. It 1s thus highly desirable to introduce a notation for certain
common situations where the subscript checking can be performed by the

L compiler. The for statement appears as most appropriate: for an index
being a control value, run time checking can be omitted 1f the compiler

L can deduce that the range of the control value does not exceed the range
of the subscript.

| Example:
real array a[l:n];

| for1 := 1 step 1until n do s := A[i] +s

L For such a verification in this example the compiler (and the human veri-
fier) must have the ability to compare symbolic quantities (here n) and

L to establish the fact that no assignment to n occurred between declara-
tion and for statement. This task could be drastically simplified by a

facility which makes it possible to associate a name (identifier) with a

L range.

L .

L

|

i Example:
I range R = l:n

real array a[R];

| for i :=Rstep1 dos := Ali] + s

L More generally, the facility to specify a given range with the declaration
of a variable could be introduced and each assignment to this variable

[would include a range check:
integer (R) 1

L L. Ambiguous References
| Each -facility designed toward compile-time verifyability introduces

some sort of restriction. It 1s essential to assert that the restriction

| 1s not a handicap but rather an aid to the programmer. The nature of the
rule that every reference be bound to a certain type ("record class" in

L [W and H]) 1s in that sense ambiguous. It 1s often desirable that refer-
ence fields of structures be able to point to structures of several types.

This problem is discussed in [H], and the very plausible concept of record

L sub-classes 1s presented, which here might be called "categories" (of a
certain "type"). A type definition may now assume the form:

L
type Person (integer age; ref (Person) father, mother;

L category Man (integer draftcardnumber;
ref (Person) youngest child, spouse),

L Woman (Boolean pregnant; ref (Person) spouse),
Child)

|

9 Fields common to all categories are listed first;then the categories

are introduced, each followed by a (possibly empty) list of "private"

" fields.

(A reference assignedto a cell declared as
|-

(’ ref (Person) r
L

2

C

can now point at either a cell of category Man, Woman, or Child (which

L are all said to belong to the type Person). Whether a field designator
such as

L pregnant (r)

L 1s valid can only be determined at run time. Of course, a programmer
uses this field designator only where he (maybe mistakenly) assumes that

L r always points to a Woman. Usually, he uses a test to predetermine
this fact explicitly, such as

if r 1s Woman then ... pregnant (r) . . .

L A language should express this common situation in a way that
an 1mplicit check connected with the field designator can be avoided.

| A construction where this 1s possible must necessarily resemble the one
used for avoiding subscript range checking and use the concept ofa quan-

L tity to which no assignment can occur within a certain scope. The follow-
ing notation is adopted from [H] in a slightly modified form:

for t :=r when Man do Sl

L when Woman do S2
when Child do S3

- Here r 1s a reference expression, 81, $2, S3 are statements, and

i t 1s a local quantity implicitly declared like 1 1n the previous example.
Implementations on multi-register computers can take advantage of

[this construction by holding the quantity t, which is most likely often

“ to be used in 51, S2, S3, 1n a register.

“ 5. Procedures as Data Elements

{ In Algol, procedures are static in nature and distinct from data.

Procedures cannot 'be manipulated; they can only be executed. The phenomena.

— 25

{

-

|

L
of "remote activation" by procedure statement, and of "passing on"

L of a procedure as a name parameter, are explained through textual sub-
stitution (copy rule).

L With EULER the notation of-a manipulatable procedure was implemented
so that procedures can be referenced indirectly through references which

L in turn can be assigned to variables. This solution unifies in a most
appealing way the two concepts of procedure and name parameter of Algol 60.

The denotation of a literal procedure consists of the procedure text

(enclosed in quote marks and 1s therefore called a quotation. In a lan-
guage like Algol, an elementary value type procedure has to be defined to

L express this situation as follows:

[_ A: procedure pj;
B: p = ‘x = x+1°?;

L Cc : 2

| The meaning of this piece of text is the following: at A, a
variable (cell) p 1s introduced, at B, a quotation 1s assigned to

P, and at C the occurrence of p denotes the execution of that quota-

L tion. A notation which 1s more consistent with the one of the previous
chapter 1s the following:

L
A: ref [Procedure] p , qj;

L B: p := Procedure (x := x+1) ;
Cc ex DP;

L D: q =p
This notation makes possible the assignment of procedure references

L to variables of the appropriate type without implying the execution of
the denoted procedure.

i
As 1n the case of references in the previous chapter, the concept of

t an assignable program text 1n coexistence with blockstructure unfortunately
causes 1rreconcillable difficulties. This 1s here even more apparent,

L y
L

J because a program text may obviously contain names (identifiers) with
| limited scopes, and hence be assigned to quantities outside that scope.Example:

L begin procedure p; integer 1,k;
1 := 100;

| begin integer i,j;
Pp i= ‘k i= 143°;

[i i= 3 := 10; p
end;

| ” Pend

L While the first occurrence of p appears as entirely legitimate,
the second 1s highly problematic.

6. LOOPS

| A loop 1s an extremely frequently occurring program structure, and
1t should be representable by a simple, yet flexible notation. Program-

| mers which are used to conceive their algorithms in terms of flowcharts,
and then transliterate flowcharts into sequential language, are apt to

| frequently employ the go to statement. It 1s contended here that loop
structures should be expressible through program structures rather than

| the cumbersome use of labels which not only tend to overly increase theamount of needed identifiers, but also constitute a strong temptation to

| construct puzzling mazes of program paths.
In [W and HJ] the following simple construct for a simple loop is

| suggested:
while (Boolean expression) do (statement)

L corresponding to the flowchart

=
This construct 1s considered to be superior to Algol 60's for statement

[with while element, because of its simplicity and obviousness. However,
it 1s somewhat rigid in that it requires that the test for loop termina-

| tion 1s made before the statement 1s ever executed. Burroughs ExtendedAlgol (B5500) has remedied this situation by offering a similar construct,

which implies that the test 1s made after the first execution of the

[statement !--,

[do (statement) until (Boolean expression)

It appears that this is only a partial remedy., In fact, one usually ends

[up writing program pieces of the following 'kind
51; while BE do begin S2Z2; S3 end

| go to Lj; do begin S2Z2; L:S3 end until BE
where S1 and S3 are identical sequences of statements. The topologi-

| cal similarity of these constructs suggests that a ternary construction
1s needed*;, consisting of two statements and a test for loop termination,

*The 1dea was raised by Don Kunth in connection with PL 360. It 1s also

[present in the JUMP OUT statement of B5500 Stream Procedures.
28

separated by adequately chosen delimiters. The following is suggested

{ here.
| bepeatg 1 n

when BE exit;

L S2
end

L The former while and until statements can be represented as repeat

(statements with either S2 or Sl being a dummy statement,
An alternative selection of delimiters results in:

L turn on begin
| S1;

L when BE drop out
S2

| end

29

References

L [H] C. A,. R. Hoare, "Record Handling," 1 A PAY at Nato
[Summer School on Programming, 1966.

[NV] P. Naur, Proof of Algorithms by General Snapshots by b

[(1966)» ». 310 - 316.

[[R] D. T. Ross, "AED Language," Electronic Systems Lab., MIT.
[vW] A. van Wijngaarden, Proposal for a Successor to Algol, Working

Document "Warsaw 2", IFIP WG 2.1.

| [W and H] N. Wirth and C. A. R. Hoare, "A Contribution to the Develop-

[- ment of ALGOL," Comm. ACM 9/6 (June 1966).

i [W and W] N. Wirth and H. Weber, "EULER, A Generalization of ALGOL,"Comm. ACM 9/1-2 (Jan./Feb. 1966).

30

|
he

