
0
CS -80

DIRECTED RANDOM GENERATION OF SENTENCES

| ,

| JOYCE FRIEDMAN

This research was supported in part by the United States Air Force

| Electronic Systems Division, under Contract F19628-C-0035.

| STANFORD UNIVERSITY COMPUTER SCI ENCE- DEPARTMENT
COMPUTATIONAL LINGUISTICS PROJECT

[OCTOBER 1967

4)

er)
I.)

&
2
+3

=
Oo

< 2

3 2
: 0g &
- ec

om,

5 Oo
B =

| =
on
ea]
=
3
=
=
P
=

mn .
|

L

L Abstract
|

The problem of producing sentences of a transformational grammar by

4 using a random generator to create phrase structure trees for input to

- the lexical 1nsertion and transformational phases 1s discussed. A purely

L random generator will produce base trees which will be blocked by the
, transformations, and which are frequently too long to be of practical

L interest. A--solution 1s offered in the form of a computer program which

L allows the user to constrain and direct the generation by thesimplebut
powerful device of restricted subtrees. The program is a directed

1 random generator which accepts as input a sub-tree with restrictions and
: produces around it a tree which satisfies the restrictions and is ready
L for the next phase of the grammar. The underlying linguistic model is

that of Noam Chomsky, as presented in Aspects of the Theory of Syntax.

= The program is written in Fortran IV for the IBM 360/67 and 1s part of

8) the Stanford Transformational Grammar Testing System, It is currently
being used with several partial grammars of English,

L

L

i

L

-

—

. I. INTRODUCTION

.

: 1. Motivation

| In Aspects of the Theory of Syntax 6 1], Noam Chomsky presents a

L model of transformational grammar in which linguistic insights about a

i natural language are expressed in a precise formalism. Writing such a
- grammar for even a small part of a natural language 1s intrinsically

difficult because of the complex interrelationships of the phrase

= structure rules, the lexicon, and the transformations. In addition,
L global decisions, such as ordering, or cycling conventions, or conventions

| on the meaning of the notation, may likewise have unexpected effects.

L If, in the course of writing a grammar, a global decision 1s changed,
| this may have repercussions 1n the already completed parts of the grammar.
—

These formal problems of grammar writing are likely to be regarded

L as secondary by the linguist, who 1s first concerned with what 1s in the
language and how it 1s derived, and would prefer to pay less attention

— to formal detail. Yet, 1f the grammar does not produce the derivations

| intended, the linguist cannot be said to have succeeded,

~ This 1s a situation in which it seems natural to use a computer:

- the model 1s formal; the problem lies in the mass of detail, Most of

the errors can be fixed 1f only they are brought to the attention of

— the linguist.

.

2

i

_
2. Directed random generation

L
One valuable way to provide feedback to the linguist 1s by exercising

~ a grammar as a generator. If interesting base trees can be produced,

L from the phrase structure rules, they can be used to test the grammar as
a whole. However, the use of base trees generated purely at random has

is certain major difficulties. If the phrase structure rules are
recursive, the derivation may fail to terminate. An even more Serious

L problem 1s that for a transformational grammar the relation between
(embedding and embedded subtrees is a special one, and trees generated
~ at random will block in the transformation phase.

L Even 1f these difficulties could be somehow bypassed, it would be
| desirable to have some control over the generator. At any given time

L some types of trees are of more interest than others; we may wish to

(test some particular set of transformations, or to study trees with a

— particular subtree, and so on. We would like both to constrain the

generation away from the pitfalls of infinite length and of blocking
—

| and to direct it toward areas of interest.

g The solution offered here 1s a directed random generator, which 1is

as random as you like, but not more so. The user gives the program a

— rough description of the trees desired, and the program then fills in

the rest of the tree using phrase structure rules selected at random.
—

If the input 1s the sentence symbol only, then the output 1s a random

L tree (without embedding). However,if more detailed directions are
given, they will, 1f consistent with the grammar, be followed,

- The description given to the generator is in the form of a "skeleton"

which 1s to be a subtree of the result and which may contain directions

b

: governing the generation. These include restrictions of dominance,

- nondominance, and equality, and some special variables, Tree size is

: controlled by allowing recursion on. the sentence symbol only if specified

. in the restricted skeleton.

_ This use of a restricted skeleton to direct the generation 1s the
’ novel and distinguishing feature of the program. The purpose of the

- generation routine 1s to provide tests for the grammar as a whole,

: including the lexical and transformational parts. The use of restricted

= skeletons makes 1t possible to generate trees which will undergo a

_ specific transformation. In testing the program it was found that
several tries are occasionally necessary to find the right skeleton for

i a particular transformation. Once found, however, the skeleton can

continue to be used even though other transformations of the grammar

—

are modified.

3. Historical remarks

.

| Yngve's random generation program. The first program to generate

- sentences at random from a grammar was the well-known COMIT program

: of Yngve [7], who used random generation to test a small grammar for

~ its adequacy to natural language. Since the grammar was a (discontinuous)

phrase structure grammar the problems with respect to blocking did not
{-

arise. There was no need or desire to direct the sentences 1n any way;

. it was precisely their randomness which made them useful as a test of
| adequacy. Although the grammar did contain several types of recursion,

—- the rules were such that excessively long sentences were highly

_
in

|
—

; 1mprobable, and apparently Yngve was lucky.

—

, The semantic generator of Sakai and Nagao. Sakai and Nagao [6]

~~ describe a program which uses a special form of controlled generation

L to produce "semantically correct? sentences. The generation is controlled
by allowing 1t to start with an arbitrary grammatical category and a

w word to be dominated by it. The generation then works in both directions,

up to the sentence symbol, and down from the category to the word,

“ Sakai and Nagao use a transformational model, without complex symbols,

L but with a formalism which allows a lexical item to be associated with
a higher non-lexical category. Their type of specification would be

|
L handled by the dominance restriction in our program.

| Meyers and Yang, A brief report by Meyers and Yang [3] from Ohio
. State University indicates that an attempt was made to use a random

. generation program to test a transformational grammar,, They report

{ that "it 1s seldom possible to generate two sentences at random such
-

that one can be embedded into the other".

L
MITRE generation program. A random generation program written by

{ the present author was used in testing the grammars whichwere
In

part of the MITRE syntactic analysis procedure.8]. This program was a

Co nYor example, the node adjectives has only probability 1/2 of
] expanding into n+l adjectives. This is in sharp contrast with, say,

the adjective phrase rule AP -» {AP AND AP (AND AP)*, (DEG) ADJ (S) (ADV)} [51],
which, 1f all choices are taken with equal probability, will almost

| never terminate,

L
p

-

-

first attempt at solving the problems which are solved by the present

—- program. A device was included which made 1t possible to generate
trees which underwent the transformation that embedded relative

. clauses. However, the device was ad hoc and did not extend to other

_ embedding transformations. There were other minor disadvantages which
. have also been eliminated in the new program,

Conaale-controlled grammar testers. The programs mentioned so

L far, and the program to be discussed in this paper, are all non-
interactive programs, An alternative approach is to allow the grammar

h tester to be controlled by the user from a console. Such on-line

L grammar testers are being written by Louis Gross at the MITRE Corporation
and David Londe at Systems Development Corporation.

b. Stanford Trangformetional Grammar Testing System

-

| The Stanford Transformational Grammar Testing System, of which

— the generation program 1s a part, includes facilities for dealing with

| all the components of a transformational grammar. The System includes

= programs for phrase structure, for transformations, and for complex

1 . symbols and lexicons. The phrase structure programs include input
programs which accept the usual compact linguistic form, and also a

~ parsing program, Feature-handling programs accept features and complex

; symbols, and compare, expand, and modify complex symbols. A lexical

~ insertion program 1S NOW being written, The transformational programs

! will include an analysis program (also used in lexical insertion) and
—

| programs to accept transformations and cycling rules, and to transform

_ a base tree into a surface tree.
6

|
—

| The generation program uses other programs of the system, in
-

particular the input and output programs for phrase structure grammars

and for trees. The trees produced-by the generation program can be

fed directly into the lexical insertion program and thence into the

— programs which apply transformations to obtain sentences, or they

4 can be punched on cards for later input.
-

—

{

-

1

-

_

—

-—

—

IT, PROGRAM DESCRIPTION

—

1. Generation algorithm

_

The generation routine QENrequires as basic input an ordered context-

—~— free grammar. For each set of trees to be generated, a “restricted

skeleton” 1s also input, These inputs will be described in detail in

- a later section,

A basic skeleton 1s a tree and has the sentence symbol as root, It
—

may contain any of the symbols of the grammar, and also special variable

- node symbols,. A restricted skeleton is a basic skeleton which may also

contain restrictions in terms of dominance, nondominance and equality,

-. The skeleton 1s expanded by a process which begins with a current

string consisting of only a sentence symbol. (The generation process
~—

is illustrated in Figure 1 using the grammar given in Figure 2.) The

— program cycles through the rules of the grammar, and for each rule

searches from left to right through the current string for the next

ht symbol to be expanded by the rule. If none 1s found it proceeds to the

next rule.

-

When all rules are done, they are recycled 1f’ and only 1f there

are unexpanded sentence symbols in the current string. If there are,

the current string will be revised to contain only the sentence symbols

and the program will begin again with the first rule.

| In expanding a symbol the set of possible expansions given by the

- grammar 1s first reduced by eliminating expansions incompatible with

_ the basic skeleton and with the special symbols7 , V , ana No,

X and Y are variables over 0 or more and 1 or more nodes.

—

8

|
NL is a null node. No new sentence symbol will be introduced unless

explicitly specified either as part of the skeleton or in a dominance

L restriction,
From the expansions which are consistent with the basic skeleton,

L the program eliminates those which cannot meet some restriction on that

i node in the skeleton. Then an expansion 1s chosen at random from those
~ which are left, the tree 1s expanded, and the current string 1s updated,

| The dominance and nondominance restrictions are now reconsidered,
If a dominance restriction has now been satisfied, or will now inevitably

{

L be satisfied,. it is dropped; otherwise 1t 1s moved to a node selected

| at random from those which can later satisfy 1t. A nondominance
restriction NDOM M 1s dropped when no further occurrence of M 1s

possible ; otherwise , copies of the restriction are attached to all new

nodes which might dominate M . An important exception 1s that the

LC dominance and nondominance restrictions are never moved down over a

sentence symbol,

— Treatment of the dominance andnondominance restrictions 1s

| facilitated by the use of a special subroutine which determines whether
.

| a symbolM must, may, or cannot dominate a symbol N .

_ The equality restrictions are handled by expanding only the first
node encountered with a particular equality restriction EQ 1 .

— Expansion of other nodes with EQ 1 1s not carried out, but a marker

1s attached, Then, as the final stage in generation, copies of the

= first expansion are filled in for the other equal nodes,

g An example of a skeleton with an equality restriction and a possible

| output tree for that skeleton are given in Figure 3.

9

-

2. Restricted skeletons

| We now describe restricted skeletons more completely, beginning

- with some underlying notions

I. Basic skeleton

1 Definition, A basic skeleton (for a grammar G) is a subtree of
some tree of G . It further satisfies the condition that the daughters

- of any node 1n the basic skeleton are adjacent in some tree of G .

f That is, if the daughters of a node A of the skeleton axe (from left

to right) Bs Bs» coo B_ (n > 1) , then G must contain a rule

L A=C...CB,...BD,...D (kr>0) .
| The basic skeleton will be a subtree of the generated tree.

L Although the basic skeleton is not the most general subtree one might

t consider, the cases excluded can be included by the use of the special
symbols

|

L Special symbols
;

i Definition X , ¥Y and NL are special symbols. X and Y are

variables over 0 or more and 1 or more nodes; NL is the null symbol.

| A

L The IN will be expanded as
A

AN sg fo os-3 "oe TEE I) ov 2 ©. ‘od B. Cee Cy B, >... Where > and A 1% Kk"
is a phrase structure rule. If = occurs in place of X¥ , then k > 0 .

L NL is meaningful only when used as the left-most or right-most daughter

—

10

A

of a node. WL B Coe. B_ will result in node A having B,

- as its left-most daughter, whereas without NL additional daughters

might be introduced to the left of B, .
-~

The special symbols are used as terminal nodes of the skeleton

1 and increase the expressive power of the basic skeleton. X and Y
can be used to make the basic skeleton more general; NL is used to

— prevent expansions to the left or right of the explicitly-given

! expansion. Figure 4 illustrates the use of the special symbols.

1 Restriction
Definition. A restriction consists of RES , followed by anLerinition. feo ICL 100

\

- operator DOM , NDOM or EQ and its operand, The operators and their

operands are described in the next section. A restriction 1s attached

-

as daughters of the node to which it applies.

;

- F 1 3xample. | |

a. ~ RES operator operand

~ Restricted skeleton

- Definition. A restricted skeleton is a basic skeleton which may

have as node names not only symbol:; of the grammar, but also restrictions,

~ and ape cial symbols.

C

11

3 Restrictions on a skeleton

n

N Three types of restrictions may be used 1n specifying a skeleton:
- dominance, nondominance, and equality. Dominance is useful in trying to

| get a tree which will undergo a specific transformation. Nondominance

- is also used in that way, but is particularly useful in avoiding the

i lengthy trees which would otherwise be generated by such rules as
NP —» NP AND NP . Equality 1s an essential requirement for many

- transformations, most particularly for embedding transformations.

- Form of-.restrictions

A restriction is input as three consecutive daughters of the

- restricted node. The restrictions are RES DOM A , RES NDOM A , and

| RES EQi , where A 1s a symbol of the grammar and 1 is an integer
—

(1 <1< 20). A node may have more than one restriction.

Dominance restriction, DOM

L If a node A bears the restriction RES DOM B , then in the

resulting tree, node A will dominate at least one node B . The

— condition will be satisfied without introducing any intervening sentence

symbol.

~ The restriction RES DOM B may be extended by allowing B tc be

the root of a restricted skeleton. Thus, among the possibilities are

A and A

— IE" an os
RES RAN IN

= D £ :

| is” mi
12

Nondominance restriction, NDOM

— If A 1s restricted by RES NDOM B , no node B will be dominated

1 by A (unless a sentence symbol comes between them).

Equality restriction, EQ
_

The equality restriction 1s used to cause two or more nodes to

L dominate identical subtrees. For any i , all nodes with
the restriction RES EQ 1 will have identical subtrees. The program

“ actually expands only the first such node encountered and copies the

! result for other similarly restricted nodes. As a consequence of this

~ treatment, only this node can have a partial erpansion or have

| additional restrictions

L bR Phrase Structure Grammar

L The program requires that the underlying phrase structure grammar

be ordered and context-free, In deciding to use ordered rather than

L unordered grammars, we were following our interpretation of the model
: in Aspects, Implementation of an alternative model with unordered

—

rules would of course be possible, but would result in a slower and

| less elegant program, particularly in the treatment of the dominance

| and nondomilnance restrictions,
- The ordering constraint is:

- The rules are ordered linearly. Each nonterminal symbol is expanded

by precisely one rule (which may give more than one alternative

- expansion), Except for the sentence symbol, no nonterminal 1is

_ reintroduced after the rule which expands it,

15

L
| In Aspects (pe 137) Chomsky expresses the belief that recursiveness

L in the base component 1s limited to rules which reintroduce the sentence
symbol. The ordering restriction above 1s in fact less restrictive,

L since 1t allows other recursion in the form A = ... A It does,
however, exclude loops of the form A 5, . .B., , , Bo... A... .

- The decision to use context-free rather than context~sensitive

L grammars also follows Aspects. In unrestricted generation the use of
, a context-sensitive grammar introduces no serious problems. However,

L it would vastly complicate the handling of our restrictions, particularly

L the equality restriction.

| 4, Formats

- The generation program uses other programs of the System for all
its input and output requirements, These programs will not be described

| here, but we will give the formats.

3 Formats for trees
: The fixed-field input for trees (and for restricted skeletons) 1s

L used 1n the example of Figure 3. It is essentially a mirror reflection

: of the tree, followed by a deformation which puts the first daughter of

- a node in the same row (card) as the node, and puts all daughters of a

8 node 1n the same column (field). The daughters of a node in field L
appearin field IL+l1 , The first (left-most) daughter is in the same

L card as 1ts parent, Daughters to the right appear on later cards. Thus | -
| | | | | |

lL oo | oo

N 1k

| A B C
D E F

L G . . RESDOM

B

L :

L represents the tree

L A

L F RES DOM B

L A tree begins with a title card (which may be blank) and is ended

[by a blank card.
Substitution feature for trees

L A potential difficulty in the basic format is that the depth of a

L . tree may exceed the maximum number of fields allowed. Asubstitution
feature avoids this by replacement of a dummy node by a subtree. This

| 1s indicated by the use of a substitution card with XXX 1n the first

i field and the dummy node in the second, Thus, the input

] 15

EXAMPLE

— A B C

D FE. . F

- |

G

L H

q XXX GG
i

- 5 BC

| D
—

(blank)

represents the tree

- !

| hy
— [/\

C E A
— / D

C

L

The output format for trees 1s essentially the same as the input
—

format, An option allowsthe output to be punched on cards which are

- then acceptable as input. Another output option displays the internal

node numbers for the trees.

The System also has an alternative of free-field tree input [2].

- Input format for phrase structure grammar

The phrase structure grammar 1s input in a compact parenthesized

—

form. It is described syntactically by the following B.N.F. grammar:

16

_

i <phrase structure> ::i= <rule> . | <phrase structure> <rule> .
| <rule> ::= <word> = <RHS>

Ig <RHS> ::= <node list> | <RHS> , <node list>
<node 1list> : i= <node> | <node> <node list>

L <node> : := <word> | (<RHS>)

L This corresponds to common linguistic use except that curly brackets
t have been replaced by parentheses, and items which would be displayed

| on different lines within brackets are now separated by commas.

. MV (NP) |
AUX |

NP

. COP g Tp
VP — * (ADV)

8 S

= ve = (AUX(MV(NP),COP((NP,AP))),S)(ADV).

= Figure 2 shows a phrase structure grammar as input, followed by

. the expanded form produced by the input routine.

! 5 Computer considerations

L GEN 1s written in FORTRAN IV H and currently runs under OS on
Stanford's IBM 360/67. Table I shows the subroutine structure in a

_ run of GEN.

| 17

—

i Table I
GEN and its subroutines

Generation routine

8 Test for dominance

i System programs used by GEN
- Phrase Structure grammar input.

1 Phrase structure grammar output
Free-field output

_ Free-field read

. Tree input (used for skeletons)
Tree output

8 Elementary operations on trees

N
Running time

- The running time for the program is approximately .16 seconds

|) per generated tree.
fo

g 6. Final remarks

i The current version of the generation program has been used both
with our own phrase structure grammar, OLAG[%], end with drafts o £

“ UCLAG, a grammar at U.C.L.A.[5 I. We believe that it could be useful
to other transformational linguists, and welcome inquiries.

- The Grammar Testing System is being extended by alexical insertion

. model which will be an implementation of one of the models suggested in
18

—

Aspects. The generation program will then accept complex symbols and

restrictions containing complex symbols.

-

he ACKNOWLEDGEMENT

“ John H, Gilman programmed the addition of restricted skeletons to

a purely random generation routine, Thomas H. Bredt improved the code,
|

— and extended 1t to allow the dominance restriction to govern a restricted

| skeleton. The program used for input of the phrase structure rules was
 -—

designed and written by Robert W. Doran.

|—-—

—

|
|
—

—

— :

-

|—_—

19

| FIGURE 1
- .

Steps in the Generation of a Tree

!

L okeleton

S DOM AS
RES NDOM ADV

L Current string: ©

Expansion of top 8S. The restriction is moved to a random choice among

| IF, VP and ADV.

L # Np VP ADV #

L RES DOM S

| RES NDOM ADV

| Current string: # NP VP ADV #

L Expansion of VP. The restriction is moved to MV,

| ©

L TLS
AUX MV

L RES NDOM ADV

L Current string: # NP AUX MV ADV #
20

{

3 (Figure 1 continued)
Expansion of MV, AUX, and ADV's. Choices are random, but do not

- introduce S. The restriction
continues to move down.

NS)

. PAN NN
NP V ADV

| A MV PREP NP

™WS M V ADV

PREP NP

(> AN
ae ~ RES NDOM ADV

L Current string: # NP TNS M V PREP NP PREP NP #

Expansion of rest of main S. The restriction is dropped when satisfied,

S

3 PAN
#~ NP VP ADV #

D° NOM AUX MV PREP NF

yd T n n N\
— ART POST N TNS M V ADV D NOM

A \ \
~— QUANT PREP NP ART N

A

. D S

A
ART POST

} \
QUANT RES NDOM ADV

|V—

Current string: #. ART QUANT N TNS M V PREP ART QUANT S

PREP ART N #

21

(Figure 1 continued)

—

After main S 1s completed.

— Current string: S

— Expansion of embedded 8S. Restriction moved to the VP.

i #° PRE NP VP #

RES NDOM ADV

—

Current string: # PRE NP VP #
|
-

Expansion of VP. Restriction is no longer needed, since AUX, COP, AP

L cannot dominate ADV.
S

PRE NP VP

~ AUX COP AP

§

— Current string: # PRE NP AUX COP AP #

- Embedded subtree completed.

S

#4 PRE NP VP 4

1 NEG D "NOM AUX COP APAY
ART N TNS M ADJ

—

Current string: # NEG ART N TNS M COP ADJ #

22

f
|

FIGURE 2

{

L Phrase-Structure Input

"REDUCED VERSION OF UCLAG 15 SEPT 67"
. S = # (S CONJ S(CONJ S), (PRE) N-P VP (ADV)) # .

ve = (AUX(MV(NP),coP((NP,AP))),S)(ADV) .

_ MV = V (ADV) .AP = ADJ.

AUX = TNS (M(IMP)) (ASP) .

i ADV = (PREP NP, ADVB).

8 NP = p (NOM,S). 2s input
NoM = ((Nom) S, N).

D = ART (POST).

| PRE = NEG.
— CGNJ = ((WH) OR, BUT, AND),

ASP = (PERF)(PROG).
POST = QUANT.

L IMP = (NOT)(PLEASE) IMPER.
$END

.

| 1 8 =
2 #S CONJ s cow s#,
3 #S CONJ S#,

L 4 #PRE NP VP ADV#,5 #PRE NP VP#, |
6 #NP VP ADV#,

: 7 4NP VP#.
— 8 VP =

9 S ADV,

‘ 10 S, expanded form
11 AUX MV NP ADV, produced by

~ 12 AUX MV NP, input routine
13 AUX MV ADV

i 1h AUX Mv,
- 15 AUX COP N-E' ADV,

16 AUX COP NP,

! 17 AUX COP AP ADV,

a 18 AUX COP AP,
© 19 AUX COP ADV,

: 20 AUX COP,
| 21 MV =

— 22 7 ADV,
23 Vv.
24 AP =

— 05 ADJ.
26 AUX=

27 TNS M IMP ASP,

28 TNS M IMP,
|—

29 TNS M ASP,

30 TNS M,

31 TNS ASP,

— 32 TNS,

| 23

]

|

(Figure 2 continued)

-

3% ADV =

3 P-REP NP,
— 35 ADVB.

36 NP =

37 DB,
38 D NOM.
39 NOM =

. bo §,
in 41 ~~ NOM 8,
— 42 N.

43 D =
L4 ART POST,

I. 45 ART,
L6 PRE =

hy NEG.

48 CONJ =_
~~ 49 WH OR,
: 20 OR,

51 BUT,

“ 50 AND,
53 ASP =

54 PROG
i 55 PERF PROG,

56 PERF,

57 POST =

58 QUANT.
= 59 IMP =

60 PLEASE IMPER,

| 61 NCT PLEASE IMPER,
- 62 NOT IMPER,

63 IMPER .

—

|

~~

—

ol

|
P

! FIGURE 3

1
A Skeleton and An Output Tree

L Skeleton

: Pan
i NP VP |

| RES EQ 1 A
ON N

] AUX MVAN |RES EQ 1

okeleton as Input

!

-

, S NP RES
| EQ
— 1

VP S NP

| VP AUX

L Mv
NP RES

EQ

L 1

L
(
i
-

~~ |

| 25

-

—

3 (Figure 3 continued)
Generated Tree (Node numbers reflect the order of generation)

. Em :
18 16 #

17 PRE 31 NEG
— 2 NP 22 D 28 ART

23 NOM 26 N
a 6 VP 7 S 3% #
3 8 NP lly D 50 ART

51 POST 54 QUANT

, L5 NOM L8 N
9 VP 10 AUX 38 TNS

— 39 M
40 ASP 55 PROG

11 MV 57 V

55 NP 56 D 58 ART
57 NOM 59 N

: 36 ADV ~~ 41 PREP
Lo L2 NP Lé D 52 ART

47 NOM LO N
34 ADV 4% ADVB
35 #

~~ 18 ADV 20 PREP

21 NP 24 D 29 ART

: 30 POST 32 QUANT
— 25 NOM 27 N

19 #

| | # NEG ART N # ART QUANT N TNS M PROG V
|—-—

ART N PREP ART N ADVB # PREP ART QUANT N #

—

(-

?_—

26

5
‘

Lo

FIGURE 4

.

Use of Special Node Symbols

—

Rule: S = # (8 CONJ S (Cong 8),(PRE) NP VP) # .

-

Skeleton Possible Expansions

Lo
5 S

~ ¥ wp | AAS
i

: S S | S

ZN 7A# X NP # NP VP # # PRE NP #

[-

S S

- ARN PANN
4 Y NP # PRE NP VP #

—

—

— -

ho

!

—

“

-

27

|—

-

(Figure 4 continued)
f

L

{ Rule: VP = (AUX(MV(NP), COP((NP,AP))), S)(ADV).

Skeleton Possible Expansions
-

#4 NP VP $3 NP VP #

MV NL AUX MV

{

L

~ # NP VP # NP VP # # NP VP #

MV AUX MV NP AUX MV

—

AX AN
AUX MV NP ZDV AUX MV ADV

|—

[-

28

|

L

C REFERENCES
| [1] Noam Chomsky, Aspects of the Theory of Syntax, M.I.T. Press,

L Cambridge, 1965.

L [2] R. W. Doran, 360 0. S. Fortran IV free field input/output subroutine

i package, Report AF-1k4 of the Computational Linguistics Project,
Stanford University Computer Science Department, Oatober 1967.

g [3]L.F. Meyers and J. Yang, Chinese grammars and the computer at the
L Ohio State University, Project on Linguistic Analysis, RF 1685-3,

| Report No. 10, May 1965,pp. 28-37.Research Foundation, Ohio
L State University, Columbus, Ohio.

L [4] Olasope O. Oyelaran, AF test grammar, Report AF-13 of Computational
: Linguistics Project, Stanford University Computer Science Department,

L September 1967.
f

L [5] B. H, Partee, P., Schachter, R. Stockwell, et. al., Working Papers,

| | U.C.L.A.-Air Force English Syntax Conference, September 4-15,1967

L (multilithed).

- [6] Toshiyuki Sakai and Makoto Nagao, Sentence generation by semantic

L concordance, International Conference on Computational Linguistics,
1965, (multilithed) 22 pp.

L [7] Victor H. Yngve, Random generation of English sentences, Proc.1961
{ Int'l Conf, on Machine Translation of Languages and Applied Language

- Analysis, Teddington, H.M.S.0., London, 1962, pp. 66-80.
f

1 29

‘ [8] A. M . Zwicky, J. Friedman, B. C. Hall and D. E. Walker,’ The MITRE

“ syntactic analysis procedure for transformational grammars, Proc.

L Fall Joint Computer Conference, 1965, pp. 317-326.

L

pg.

L

f

L

1
{

—

—

i

9

30

