CS -80

DIRECTED RANDOM GENERATION OF SENTENCES

by
JOYCE FRIEDMAN

This research was supported in part by the United States Air Force
Electronic Systems Division, under Contract F19628-C-0035.

STANFORD UNIVERSITY COMPUTER SCI ENCE- DEPARTMENT
COMPUTATIONAL LINGUISTICS PROJECT
OCTOBER 1967

(nf |

—

-

r—

r—

DIRECTED RANDOM GENERATION OF SENTENCES

by

Joyce Friedman

r—-

rr r r— oo T

Abstract

The problem of producing sentences of a transformational grammar by
using a random generator to create phrase structure trees for imput to
the lexical insertion and transformational phases is discussed. A purely
random generator will produce base trees which will be blocked by the
transformations, and which are frequently too long to be of practical
interest. A--solution is offered in the form of a computer program which
allows the user to constrain and direct the generation by thesimplebut
powerful device of restricted subtrees. The program is a directed
random generator which accepts as input a sub-tree with restrictions and
produces around it a tree which satisfies the restrictions and is ready
for the next phase of the grammar. The underlying linguistic model is

that of Noam Chomsky, as presented in Aspects of the Theory of Syntax.

The program is written in Fortran IV for the IBM 360/67 and is part of
the Stanford Transformational Grammar Testing System, It is currently

being used with several partial grammars of English,

r— r— r—

r-

r— r—

'

I. INTRODUCTION

1. Motivation

In Aspects of the Theory of Syntax 6 1], Noam Chomsky presents a

model of transformational grammar in which linguvistic insights about a
natural language are expressed in a precise formalism. Writing such a
grammar for even a small part of a natural language is intrinsically
difficult because of the complex interrelationships of the phrase
structure rules, the lexicon, and the transformations. In addition,
global decisions, such as ordering, or cycling conventions, or conventions
on the meaning of the notation, may likewise have unexpected effects.
If, in the course of writing a grammar, a global decision is changed,
this may have repercussions in the already completed parts of the grammar.
These formal problems of grammar writing are likely to be regarded
as secondary by the linguist, who is first concerned with what is in the
language and how it is derived, and would prefer to pay less attention
to formal detail. Yet, if the grammar does not produce the derivations
intended, the linguist cannot be said to have succeeded,
This is a situation in which it seems natural to use a computer:
the model is formal; the problem lies in the mass of detail, Most of
the errors can be fixed if only they are brought to the attention of

the linguist.

f!
-

r— r

r—

—

r—

r=

r-

r—

‘-

2. Directed random generation

One valuable way to provide feedback to the linguist is by exercising
a grammar as a generator. If interesting base trees can be produced,
from the phrase structure rules, they can be used to test the grammar as
a whole. However, the use of base trees generated purely at random has
certain major difficulties. If the phrase structure rules are
recursive, the derivation may fail to terminate. An even more serious
problem is that for a transformational grammar thF relation between
embedding and embedded subtrees is a special one, and trees generated
at random will block in the transformation phase.

Even if these difficulties could be somehow bypassed, it would be
desirable to have some control over the generator. At any given time
some types of trees are of more interest than others; we may wish to
test some particular set of transformations, or to study trees with a
particular subtree, and so on. We would like both to constrain the
generation away from the pitfalls of infinite length and of blocking
and to direct it toward areas of interest.

The solution offered here is a directed random generator, which is
as random as you like, but not more so. The user gives the program a
rough description of the trees desired, and the program then fills in
the rest of the tree using phrase structure rules selected at random.

If the input is the sentence symbol only, then the output is a random
tree (without embedding). However, if more detailed directions are
given, they will, if consistent with the grammar, be followed,

The description given to the generator is in the form of a "skeleton"

which is to be a subtree of the result and which may contain directions

governing the generation. These include restrictions of dominance,
nondominance, and equality, and some special variables, Tree size is
controlled by allowing recursion on. the sentence symbol only if specified
in the restricted skeleton.

This use of a restricted skeleton to direct the generation is the
novel and distinguishing feature of the program. The purpose of the
generation routine is to provide tests for the grammar as a whole,
including the lexical and transformational parts. The use of restricted
skeletons makes it possible to generate trees which will undergo a
specific transformation. In testing the program it was found that
several tries are occasionally necessary to find the right skeleton for
a particular transformation. Once found, however, the skeleton can
continue to be used even though other transformations of the grammar

are modified.

3. Historical remarks

Yngve's random generation program. The first program to generate

sentences at random from a grammar was the well-known COMIT program

of Yngve [7], who used random generation to test asmall grammar for

its adequacy to natural language. Since the grammar was a (discontinuous)
phrase structure grammar the problems with respect to blocking did not
arise. There was no need or desire to direct the sentences in any way;

it was precisely their randomness which made them useful as a test of
adequacy. Although the grammar did contain several types of recursion,

the rules were such that excessively long sentences were highly

g
L

r— r— r—

r«—a

r— - r— r

—

r— - re

r—

improbable,l/ and apparently Yngve was lucky.

The semantic generator of Sakai and Nagao. Sakai and Nagao [6]
describe a program which uses a special form of controlled generation
to produce "semantically correct? sentences. The generation is controlled
by allowing it to start with an arbitrary grammatical category and a
word to be dominated by it. The generation then works in both directions,
up to the sentence symbol, and down from the category to the word,
Sakai and Nagao use a transformational model, without complex symbols,

but with a formalism which allows a lexical item to be associated with

a higher non-lexical category. Their type of specification would be

handled by the dominance restriction in our program.

Meyers and Yang, A brief report by Meyers and Yang [3] from Ohio

State University indicates that an attempt was made to use a random
generation program to test a transformational grammar,, They report
that "it is seldom possible to generate two sentences at random such

that one can be embedded into the other".

MITRE generation program. A random generation program written by

the present author was used in testing the grammars whichwere

part of the MITRE syntactic analysis procedure.[8]. This program was a

i/For example, the node adjectives has only probability 1/2n of
expanding into n+l adjectives. This is in sharp contrast with, say,
the adjective phrase rule AP -» {AP AND AP (AND AP)*, (DEG) ADJ (S) (8DV)} [5],
which, if all choices are taken with equal probability, will almost
never terminate,

first attempt at solving the problems which are solved by the present
b~ program. A device was included which made it possible to generate

i trees which underwent the transformation thé&t embedded relative

= clauses. However, the device was ad hoc and did not extend to other
L embedding transformations. There were other minor disadvantages which
. have also been eliminated in the new program,
“
Conaale-controlled grammar testers. The programs mentioned so

L far, and the program to be discussed in this paper, are all non-
{ interactive programs, An alternative approach is to allow the grammar
“ tester to be controlled by the user from a console. Such on-line
§L grammar testers are being written by Louis Gross at the MITRE Corporation

and David Londe at Systems Development Corporation.
-
. 4, Stanford Transformational Grammar Testing System
O
‘ The Stanford Transformational Grammar Testing System, of which
L the generation program is a part, includes facilities for dealing with
all the components of a transformational grammar. The System includes
= programs for phrase structure, for transformations, and for complex
L symbols and lexicons. The phrase structure programs include input
‘ programs which 8&ccept the usual compact linguistic form, and also a
L- parsing program, Feature-handling programs accept features and complex
; symbols, and compare, expand, and modify complex symbols. A lexical
- insertion program is now being written, The transformational programs
L- will include an analysis program (also used in lexical insertion) and

programs to accept transformations and cycling rules, and to transform
— a base tree into a surface tree.

r— r r—

r—

c——

The generation program uses other programs of the .system, in
particular the input and output programs for phrase structure grammars
and for trees. The trees produced-by the generation program can be
fed directly into the lexical insertion program and thence into the
programs which apply transformations to obtain sentences, or they

can be punched on cards for later input.

IT, PROGRAM DESCRIPTION

1. Generation algorithm

The generation routine @ENrequires as basic input an ordered context-
free grammar. For each set of trees to be generated, a “restricted
skeleton” i1s also input, These inputs will be described in detail in
a later section,

A basic skeleton is a tree and has the sentence symbol as root, It
may contain any of the symbols of the grammar, and also special variable
node symbols,. A restricted skeleton is a basic skeleton which may also
contain restrictions in terms of dominance, nondominance and equality,

The skeleton is expanded by a process which begins with a current
string consisting of only a sentence symbol. (The generation process
is illustrated in Figure 1 using the grammar given in Figure 2.) The
program cycles through the rules of the grammar, and for each rule
searches from left to right through the current string for the next
symbol to be expanded by the rule. If none is found it proceeds to the
next rule.

When all rules are done, they are recycled if’ and only if there
are unexpanded sentence symbols in the current string. If there are,
the current string will be revised to contain only the sentence symbols
and the program will begin again with the first rule.

In expanding a symbol the set of possible expansions given by the
grammar 1is first reduced by eliminating expansions incompatible with
the basic skeleton and with the special symbols ¥ , Vv , ans N, ,

X and Y are variables over 0 or more and 1 or more nodes.

L

r

=

=

r—

r— r— r—

r—

r—

NL is a null node. No new sentence symbol will be introduced unless
explicitly specified either as part of the skeleton or in a dominance
restriction,

From the expansions which are consistent with the basic skeleton,
the program eliminates those which cannot meet some restriction on that
node in the skeleton. Then an expansion is chosen at random from those
which are left, the tree is expanded, and the current string is updated,

The dominance and nondominance restrictions are now reconsidered,
If a dominance restriction has now been satisfied, or will now inevitably
be satisfied,. it is dropped; otherwise it is moved to a node selected
at random from those which can later satisfy it. A nondominance
restriction NDOM M is dropped when no further occurrence of M is
possible ; otherwise , copies of the restriction are attached to all new
nodes which might dominate M . An important exception is that the
dominance and nondominance restrictions are never moved down over a
sentence symbol,

Treatment of the dominance andnondominance restrictions is
facilitated by the use of a special subroutine which determines whether
a symbol M must, may, or cannot dominate a symbol N

The equality restrictions are handled by expanding only the first
node encountered with a particular equality restriction EQ 1 .
Expansion of other nodes with EQ i is not carried out, but a marker
is attached, Then, as the final stage in generation, copies of the
first expansion are filled in for the other equal nodes,

An example of a skeleton with an equality restriction and a possible

output tree for that skeleton are given in Figure 3.

r— r- r-— r.,_,ﬁ

r— r— r— r

r—r— o r— r— r r— r

r—

2. Restricted skeletons

We now describe restricted skeletons more completely, beginning

with some underlying notions

Basic skeleton

Definition, A basic skeleton (for a grammar G) is a Ssubtree of

some tree of G . It further satisfies the condition that the daughters
of any node in the basic skeleton are adjacent in some tree of G .
That is, if the daughters of a node A of the skeleton axe (from left
to right) Bl.; B2, vvey Bn (n > 1) , then G must contain a rule
A =C....CB...BD....D (k7> 0)

The basic skeleton will be a subtree of the generated tree.
Although the basic skeleton is not the most general subtree one might

consider, the cases excluded can be included by the use of the special

symbols

Special symbols

Definition X , Y and NL are special symbols. X and Y are

variables over 0 or more and 1 or more nodes; NL is the null symbol.

A
The skeletOnm.. will be expanded as

A

Bi Cl..UCk Bj

is a phrase structure rule. If =~ occurs in place of ¥ , then k > 0 .

where k > 0 and A ﬁ...BiCl...CkBJ...

NL is meaningful only when used as the left-most or right-most daughter

10

j
-

r- r— r— r— r—

r—

r— r

o

of a node. NL Bl R Brl will result in node A having B

as its left-most daughter, whereas without NL additional daughters

1

might be introduced to the left of Bl‘

The special symbols are used as termipnal nodes of the skeleton
and increase the expressive power of the basic skeleton. X and Y
can be used to make the basic skeleton more general; NL is used to
prevent expansions to the left or right of the explicitly-given

expansion. Figure 4 illustrates the use of the special symbols.

Restriction

Definition. A restriction consists of RES , followed by an

operator DOM , NDOM or EQ and its operand, The operators and their

operands are described in the next section. A restriction is attached

as daughters of the node to which it applies.

Example. //;{\\\

A

RES operator operand

Restricted skeleton

Definition. A restricted skeleton is a basic skeleton which may

have as node names not only symbol:; of the grammar, but also restrictions,

and ape cial symbols.

11

F

r—

Restrictions on a skeleton

Three types of restrictions may be used in specifying a skeleton:

dominance, ncndominance, and equality. Dominance isuseful in trying to

get a tree which will undergo a specific transformation. Nondominance
is also used in that way, but is particularly useful in avoiding the
lengthy trees which would otherwise be generated by such rules as

NP —» NP AND NP . Equality is an essential requirement for many

transformations, most particularly for embedding transformations.

Form of-.restrictions

A restriction is input as three consecutive daughters of the
restricted node. The restrictions are RES DOM A , RES NDOM A , and
RES EQ 1 , where A is a symbol of the grammar and i is an integer

(1 <1< 20). A node may have more than one restriction.

Dominance restriction, DOM

If a node A bears the restriction RES DOM B , then in the

resulting tree, node A will dominate at least one node B . The

condition will be satisfied without introducing any intervening sentence

symbol .
The restriction RES DOM B may be extended by allowing B tc be
the root of a restricted skeleton. Thus, among the possibilities are

A and A

DOM/?\ /\
RES DOM A 5 E
E

I

D
RES NDOM F

12

L

r-r— r— r— r— r

r—

—

Nondominance restriction, NDOM

If A is restricted by RES NDOM B , no node B will be dominated

by A (unless a sentence symbol comes between them).

Equality restriction, EQ

The equality restriction is used to cause two or more nodes to
dominate identical subtrees. For &ny i , all nodes with
the restriction RES EQ i will have identical subtrees. The program
actually expands only the first such node encountered and copies the
result for other similarly restricted nodes. As a consequence of this
treatment, oni} this node can have a partial expansion or have

additional restrictions

3. Phrase Structure Grammar

The program requires that the underlying phrase structure grammar
be ordered and context-free, In deciding to use ordered rather than
unordered grammars, we were following our interpretation of the model
in Aspects, Implementation of an alternative model with unordered
rules would of course be possible, but would result in a slower and

less elegant program, particularly in the treatment of the dominance
and nondominance restrictions,

The ordering constraint is:

The rules are ordered linearly. Each nonterminal symbol is expanded
by precisely one rule (which may give more than one alternative
expansion), Except for the sentence symbol, no nonterminal 1is

reintroduced after the rule which expands 1it,

13

r

r r

r—

o r— r rmToT

r— rr r— r— r—

r

In Aspects (p. 137) Chomsky expresses the belief that recursiveness
in the base component is limited to rules which reintroduce the sentence
symbol. The ordering restriction above is in fact less restrictive,

since it allows other recursion in the form A = ... A It does,

* *
however, exclude loops of the formA>.. .B ., , , B=-... A ...,

The decision to use context-free rather than context-sensitive
grammars also follows Aspects. In unrestricted generation the use of
a context-sensitive grammar introduces no serious problems. However,
it would vastly complicate the handling of our restrictions, particularly

the equality restriction.

4, Formats

The generation program uses other programs of the System for all
its input and output requirements, These programs will not be described

here, but we will give the formats.

Formats for trees

The fixed-field input for trees (and for restricted skeletons) 1is
used in the example of Figure 3. It is essentially a mirror reflection
of the tree, followed by a deformation which puts the first daughter of
a node in the same row (card) as the node, and puts all daughters of a
node in the same column (field). The daughters of a node in field L
appear in field I+l , The first (left-most) daughter is in the same

card as its parent, Daughters to the right appear on later cards. Thus

14

L
L
L
L
L
L
L
L

r

r rm— " >

D E F
G . RES
DOM
B
H
represents the tree
A
A
Cf?\
F RES DOM B

A tree begins with a title card (which may be blank) and is ended

by a blank card.

Substitution feature for trees

A potential difficulty in the basic format is that the depth of a
tree may exceed the maximum number ¢f fields allowed. A substitution
feature avoids this by replacement of a dummy node by a subtree. This

is indicated by the use of a substitution card with XXX in the first

field and the dummy node in the second, Thus, the input

15

EXAMPLE
L' A B C
; D E.. F
-

G
L H
J XXX G
L' S B C
i D
~—
(blank)

g
L

represents the tree

C
—
The output format for trees is essentially the same as the input
—
format, An option allows the output to be punched on cards which are
- then acceptable as input. Another output option displays the internal
node numbers for the trees.
The System also has an alternative of free-field tree input [2 J.
L— Input format for phrase structure grammar
The phrase structure grammar is input in a compact parenthesized
-
form. It is described syntactically by the following B.N,F. grammar:
-

16

[

<phrase structure> ::= <rule> . | <phrase structure> <rule> .

<rule> ::= <word> = <RHS>

<RHS> ::= <node list> | <RHS> , <node list>
<node list> : := <node>| <node> <node list>
<node> : := <word> | (<RHS>)

This corresponds to common linguistic use except that curly brackets
have been replaced by parentheses, and items which would be displayed

on different lines within brackets are now separated by commas.

Example : i (\
MV (NP)

cop <{§1;})

VP - * (ADV)

AUX

vp = (AUX(MV(NP),COP((NP,AP))),S)(ADV).

Figure 2 shows a phrase structure grammar as input, followed by

the expanded form produced by the input routine.

5. Computer considerations

GEN is written in FORTRAN IV H and currently runs under OS on
Stanford’s IBM 360/67. Table I shows the subroutine structure in a

run of GEN.

17

|
—

r—

r—

r—

r— r— I

N

r

Table I

GEN and its subroutines

Generation routine

Test for dominance

System programs used by GEN

Phrase Structure grammar input
Phrase structure grammar output
Free-field output

Free-field read

Tree input (used for skeletons)
Tree output

Elementary operations on trees

Running time

The running time for the program is approximately .16 seconds

per generated tree.

Final remarks

The current version of the generation program has been used both
with our own phrase structure grammar, OLAG[4], end with drafts o £
UCLAG, a grammar at U.C.L.A.[5 I. We believe that it could be useful
t0 other transformational linguists, and welcome inquiries.

The Grammar Testing System is being extended by alexical insertion

model which will be an implementation of one of the models suggested in

18

r—

-

r-

r~

r

r—

-

Aspects. The generation program will then accept complex symbols and

restrictions containing complex symbols.

ACKNOWLEDGEMENT

John H. Gilman programmed the addition of restricted skeletons to
a purely random generation routine, Thomas H. Bredt improved the code,
and extended it to allow the dominance restriction to govern a restricted
skeleton. The program used for input of the phrase structure rules was

designed and written by Robert W. Doran.

19

L

— r— r— r

r

r— r— r—

FIGURE 1

Steps in the Generation of a Tree

Skeleton

RES NDOM ADV

Current string: S

Expansion of top S. The restriction is moved to a random choice among
NP, VP and ADV.

NP VP ADV

RES DOM S
RES NDOM ADV

Current string: # NF VP ADV #

Expansion of VP. The restriction is moved to MV.

NP VP ADV

RES NDOM ADV

Current string: # NP AUX MV ADV #

20

-

r—

r

(Figure 1 continued)

Expansion of MV, AUX, and ADV's. Choices are random, but do not
introduce S. The restriction
continues to move down.

S

A MV PREP WP
de i 71){

- RES NDOM ADV

Current string: # NP TNS M V PREP NP PREP NP #

Expansion of rest of main 8. The restriction is dropped when satisfied,

/SN
#~ NP VP ADV #
D" NOM AUX MV PREP NP
I n n
ART POST N TNS M V ADV D NOM
[A \ \
QUANT PREP NP ART N
A
D S

A
ART POST

QUANT RES NDOM ADV

Current string: #. ART QUANT N TNS M V PREP ART QUANT S

PREP ART N #

21

(Figure 1 continued)

—

After main S is completed.
— Current string: S
- Expansion of embedded §. Restriction moved to the VP.
—
A #° PRE NP VP #
-

RES NDOM ADV

L

Current string: # PRE NP VP #

Expansion of VP. Restriction is no longer needed, since AUX, COP, AP
cannot dominate ADV.

S

AN S

r

PRE NP VP
!
-~ AUX COP AP
?

Current string: # PRE NP AUX COP AP #

|
- Embedded subtree completed.
‘ S
i .

P NP VP

NEG D 'NOM AUX COP AP

A

ART N TNS M ADJ

—

Current string: # NEG ART N TNS M COP ADJ #

22

{
'
(-

—

r— r— r—

r——'—“ —a r«v—m-«a-.

r—

FIGURE 2

Phrase-S8tructure Input

"REDUCED VERSION OF UCIAG 15 SEPT 67" A
S =% (S CONJ S(CONJ S), (PRE) N-P VP (ADV)) #
ve = (AUX(MV(NP),cOP((NP,AP))),S)(ADV) .
MV = V(ADV) .
AP = ADJ.
AUX = TNS (M(IMP)) (ASP) .
ADV = (PREP NP, ADVB).
NP = p (NOM,8). >
Nom = ((Nom) S, N).
D = ART (POST).
PRE = NEG.
CGNJ = ((WH) OR, BUT, AND),
ASP = (PERF)(PROG).
POST = QUANT.
IMP = (NOT)(PLEASE) IMPER.
$END
o
1 5 = ‘\
2 #S CONJ s cow s#,
3 #S CONJ %,
L #PRE NP VP ADV#,
5 #PRE NP VP#,
6 #NP VP ADV#,
7 #NP VP,
8 VP =
9 S ADV,
10 S, $
11 AUX MV NP ADV,
12 AUX MV NP,
13 AUX MV ADV
1k AUX mv,
15 AUX COP N-E' ADV,
16 AUX COP NP,
17 AUX COP AP ADV,
18 AUX cop Ap,
19 AUX COP ADV,
20 AUX COP,
21 MV =
22 Y ADV,
2% V.
24 AP = /
25 ADJ.
26 AUX=

27 TNS M IMP ASP,
28 TNS M IMP,
29 TNS M ASP,

30 TNS M,
%1 TNS ASP,
%Z2 TNS.

25

as input

expanded form
produced by
input routine

i
-

r—

r

—

ART POST,
ART.

PRE =

NEG.

CONJ =_

WH OR,

OR,

BUT,

AND,

ASP =

PROG ,

PERF PROG,

PERF,

POST =

QUANT.

IMP =

PLEASE IMPER,
NCT PLEASE IMPER,
NOT IMPER,

IMPER .

(Figure 2 continued)

2k

f
-

- r— r r

— r— r—

r—

r—

r—

Skeleton

NP

FIGURE 3

A Skeleton and An Output Tree

VP

/TN N\

RES EQ

Skeleton as Inrput

1
NP
A
NP RES
EQ
1
VP S NP
VP AUX
Mv
NP
25

/V]P\\ ‘
UXMV%\
RES EQ 1

RES
EQ

¢
1
¢
o

r— r— r=

r'.;;:_

r—

rm —e

Generated Tree

(Figure 3 continued)

(Node numbers reflect the order of generation)

18 16 #
17 PRE 31 NEG
2 NP 22 D 28 ART
23 NOM 26 N
6 VP 78 33 #
8 NP
9 VP
34 ADV
35 #
18 ADV 20 PREP
21 NP 2k D
25 NOM
19 #
NEG ART N # ART
ART N PREP ART N ADVB

4y p 50 ART
51 POST
L5 NOM 48 N
10 AUX 38 TNS
39 M
40 ASP
11 MV 3V
55 NP 56 D
57 NOM
36 ADV 41 PREP
L2 NP
43 ADVB
29 ART
30 POST 32 QUANT
2T N
QUANT N TNS
PREP ART

26

54 QUANT

5% PROG

58 ART
59 N

46 p
47 NOM

52 ART
ko N

M PROG V

QUANT N #

3 FIGURE 4
[
Use of Special Node Symbols

i
-

Rule: S = # (8 CONJ S(CONJ S),(PRE) NP vP) # .
—

Skeleton Possible Expansions
| -

g S

= £ wp | #@#
i
Q S S S
L VAN /\ /]\

X NP # NP VP # # PRE NP

S

- /j{\m, AN

PRE NP VP

r-

27

r—-

(Figure 4 continued)

Rule: VP = (AUX(MV(NP), COP((NP,AP))), S)(ADV).

Skeleton Possible Expansions

TN
MV NL

NP VP # NP VP # #° NP VP
I | /|\ /\
MV AUX MV NP AUX MV

- r r— oo

r—- r— r—

r— r— r— r— r~

r-—

r——

REFERENCES

[1] Noam Chomsky, Aspects of the Theory of Syntax, M.I.T. Press,

Cambridge, 1965.

[2]R. W. Doran, 360 0. S. Fortran IV free field input/output subroutine

ackage, Report AF-1k of the Computational Linguistics Project,

Stanford University Computer Science Department, Oatober 1967.

[(3]L. F. Meyers and J. Yang, Chinese grammars and the computer at the

Ohio_State University, Project on Linguistic Analysis, RF 1685-3,
Report No. 10, May 1965,pp. 28-37.Research Foundation, Ohio

State University, Columbus, Ohio.

[4] Olasope 0. Oyelaran, AF test grammar, Report AF-13 of Computational

Linguistics Project, Stanford University Computer Science Department,

September 1967.

[5] B. H.Partee, P. Schachter, R. Stockwell, et. al., Working Papers,

U.C.L.A.-Air Force English Syntax Conference, September 4-15,1967

(multilithea).

-[6] Toshiyuki Sakai and Makoto Nagao, Sentence generation by semantic

concordance, International Conference on Computational Linguistics,

1965, (multilithed) 22 pp.

[7] Victor H. Yngve, Random generation of English sentences, Proc.1961

Int'l Conf. on Machine Translation of Languages and Applied Language

Analysis, Teddington, H.M.S.0., London, 1962, pp. 66-80.

29

[8) A. M . Zwicky, J. Friedman, B. C. Hell and D. E. Walker,’ The MITRE

syntactic analysis procedure for transformational grammars, Proc.

Fall Joint Computer Conference, 1965, pp. 317-326.

r— ¢ r-

— r— r—

r- r— r— r— r

-

r—

30

