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Theoretical background

-

, Let A be a given m¥n real matrix with m> n and of rank

r—

n and b a given vector. Let A and b " be partitioned

—

! ; b
L .- (Al>}ml)<n X ( l)
— — , = ————
A2 }mQXn b2
-
where m, < n and assume that Al has rank m. We wish to determine
! =
— a vector x subject to the linear constraints
|
-
| Alx = bl
¢
| -
such that
L
f ||r2|| = min. ’ r, = b2 - A2x s
-
!
{
L where | ... H indicates the euclidian norm.
I,
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Using Lagrange multipliers it is easily shown that the solution

satisfies the system of equations

0 0 |Ay A b3L

0T A T, | b (1)
T |, T

Al A2 0 X ¢

where X is the vector of Lagrange parameters and c¢ = 0 . For
reasons which later will become evident we develop a method for solving
(1) which works for an arbitrary vector c .

Let P be a permutation matrix which permutes the columns of A

so that

{

Al
AP = i | T

2
where AH& is square and nonsingular. We now determine an orthogonal
matrix Qll so that

7

QllAl' - (Rl]_ I ng) > (2)

where Rll is leml and upper triangular. Next we put

=T T o T
Qo = Br Ay 0 Bup = Ay - QR ()
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and determine an orthogonal transformation Q22 so that

N — (E%E))(m—n) X n (%)

where again R22 is upper triangular. Denote by R the nXn upper

triangular matrix

Ri1 | Bio
R={5T=
o2

Then it is easily verified that

Q Q
APR_'lzz 11 12 (5)
O |9
where
%2=(Immlo)%2 ,(Q
1
and In—m1 is an (n—ml) X (n—Hﬁ) unit matrix. Thus if we define

the-vectors

RO e



L

— r—

by the relations

x=PR Yy , d=pFTe (7)

]

then (1) can be written

0 0 Qf{l
T
o 1 |, o
8
Q1 o |°
0 5‘22 0

Using the orthogonality of Q11 and Q22 we get the following algorithm

for solving (1):

4
ro = ng (EE)

T .
M= Qqp(d) - QpTy)

Here d is defined from (7) which is also used for computing x .
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A very effective method to realize the decompositions (2) and

is via Householder transformations [4]. Let A'=A l)
and let

k+1
A( ), k=1,2,..., n, kfml be defined as follows

A1) _ o (), (x)

(k)

P is a symmetric, orthogonal matrix of the form

p(8) _ 1 Bku(k)u(k)T

where the elements of P(k> are derived so that

(k+l .
1,k - o 1=kt m(k)
ml, k < ml
m(k) =

It follows that

and if we finally define

12 )

O | Ay

(m,+1) R, | R

where A,, is computed from (3 then n+l) ( )

(4)
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It can be shown cf. [5] that P(k) is generated as follows:

(0, (0, + 25

u(k) =0 for i <k, 1i> m(k)

) = sental)e, 1 1))
(k) k .
u1 = agk) for k <1 < m(k)

(k)

The matrix is not computed explicitly.

Rather we note that

A1) _r Bku(k)u(k)T)A(k) = a (k) _u(k)yg

where
T _ o oK) (k)
yk = Bku A .
. (k+1)
In computing the vector Yie and A s one takes advantage of the
zero components of u(k) .
* The permutation of the columns of A to obtain A' = AP is

conveniently done at the same time. At the kth

stage the column is

chosen which will maximize Iaéifl)l . This will ensure that the

matrix R11 is non-singular. Let



m(k)
(k) Z% (a (&))2 ,  J =K,k+l,..., n

1]

(k l)|

Then 81ncel one should choose that column for which

!
+
s( ) is maximized. After Aﬂk l),k#ml , has been computed, gpe can

J
compute s< +1) as follows:

(k+1) ( ) - (a (k+l))2

J J

since the orthogonal transformations leave the column lengths invariant.
Because of the influence of rounding errors the first computed
solution may not be sufficiently accurate in an ill-conditioned case.
Provided the columns of A are not almost linearly dependent to working
accuracy, the solution may be improved by the following iterative

procedure. Put

0o |0 Al 1
B = o (I A2 P z = T, ) h = b2
Af Ag 0 X 0
and let Z(O) = . . The sth iteration involves the three steps:
(1) 88 onCp(s)
(11) 82(8) = p1 els) |
(iii) z(S+l) = z(s) + GZ(S) .
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It is essential that the residuals £ are computed using double

precision accumulation of inner-products. We then solve for GZ(S)
by the method developed above, using the same decompostion in all
iterations. Note that f(s) generally differs from zero also in the
last n components, which explains why we did not assume ¢=0 in (1).

It has been shown in [1] that if the iterations 'converge' then
for sufficiently large s the accuracy in (g » + 52(5)) will be
approximately the same as if double precision had been used throughout
without refinement.

Let the number of operations needed for the decomposition resp.

one iteration step for a single right hand side be Nd resp. Ns .

Then a simple calculation shows that

Ny = [ng(m - -%) - mlmz(n - -gl)[] (1 + O(%)) S.Ds
N, =[1n(m - %) - 2m1m2] 1+ 0(%)) s.p. + 2mn d.p.

where s.p. refers to single precision operations and d.p. to operations

performed with double precision accumulation

Applicability

The algorithm least squares solution may be used to compute
accurate solutions and residuals to linear least squares problems with

or without linear constraints. It may also be used to compute accurate
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solutions to systems of linear equations where A is a square matrix

and to compute accurate inverses of such matrices.

fail when Al

m, or n respectively.

The procedure will

or A modified by rounding errors has rank less than

that there is no perceptible improvement in the iterative refinement.

The matrix A is retained in order to form the residuals. When

m >> n the large storage requirement of this procedure might make it

preferable to use instead a double precision version of the Householder

decomposition without iterative refinement. Note that in the linear

equation case the calculation of residuals may be suppressed by putting

3

eta

singular

fail

Formal parameter list

Input to procedure least squares

number of linear constraints ml <n.
total number of equations
number of unknowns n <m

an mX (n+l) array having the given matrix as first

n columns
number of right hand sides
an mXp array containing the given right hand sides

the largest number for which 1 + eta = 1 on the

computer
exit used when Al or A modified by rounding
errors has rank less than m,  or n respectively

exit used when the iterative refinement fails to

improve the solution

It will also fail if A is so ill-conditioned



Output of procedure least squares

b'd an nXp array consisting of the p golution vectors
res an m2><p array consisting of the p residuals vectors

ALGOL Program

procedure least squares solution(ml) data: (m,n,a,p,b,eta) failure
exits:  (singular, fail) result: (x, res);

value ml,m,n,p,eta;

integer ml,m,n,p; ri eta;

array a,b,x,res; label fail, singular;

comment The array a[l:m,l:n+l] contains in its first n columns the
given matrix of an overdetermined system of m linear equations
in n unknowns (m > n), where the first ml equations
(ml_<_ n) are to be strictly satisfied. For the p right
hand sides given as columns of the array b[l:m,1l:p] the
least squares solution and the residuals are computed and
stored in the columns of the arrays x[1l:n,l:p] and
res[ml+l:m,1:p] respectively. If rank(a) < n or
rank(al) < ml the emergency exit singular is used. T[f the
iterative refinement fails to improve the solution sufficiently
the exit fail is used. 1In either case b and the first n
columns of a are left intact. The (n+l)st column in
a 1s used as temporary storage for the sucessive right hand

sides. Eta is the relative machine precision;

10
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begin integer i,j,!;

array x£[1l:n+l], resf{1l:m], alphail:nl, qr[O:m,1:n];

integer array pivot[l:n];

real procedure innerprod(i,m,n,ai,bi,c);

value m,n,c;
real ai,bi,c; integer i,m,n;
begin real sum;

sum:-0;

for i:=m step 1 until n do sum:=sumtaixbi;

J—— —

innerprcd:=sumtc
end innerprod;

real procedure innerproddp(i,m,n,ai,bi,c);

value m,n,c

real ai,bi,c; integer i,m,n;

comment This procedure accumulates the sum of products aiXbi
and adds it to the initial value c¢ in double precision.
The body cf this procedure cannot be expressed in ALGOL.
begin real sl,s2, (sl,s2):=0;

for i:=m step 1 until n do

(sl,;s2):=(sl,s2)+aixbi, comment dbl.pr.acc.
innerproddp:={{sl,s2)+c) rounded
end innerproddp;
procedure decompose(ml)data:(m,n,eta) data and result:(qr)
result: (alpha,pivot) failure exit:(singular);

value ml,m,n,eta;

integer ml,m;n; real eta; array qr, alpha;

11



integer array pivot; label singular;

comment Decompose uses essentially a sequence of elementary orthogonal

transformations (I - beta u uT) to determine a gr-decomposition

of the matrix given in the array qr[l:m,l:n] . The diagonal

elements of the upper triangular matrix r are stored in the

array alpha[l:n], the offdiagonal elements in the upper
right triangular part of qr. The nonzero components of the
vectors u are stored on and below the leading diagonal of
gr. Pivoting is done by choosing at each step the column
with the largest sum of squares to be reduced next. These
interchanges are recorded in the array pivot[l:n]. 1If at
any stage the sum of squares of the column to be reduced is
exactly equal to zero then the emergency exit singular is

used;

begin integer i,j,jbar,k,mr,s; boolean fsum;

for j:=1 step 1 until n_do pivot[J]:=J;

real beta,sigma,alphak,qrkk,smax,y;array sum{l:n];

mr:= ml; fsum:= true;

for k:=1 step 1 until n do

begin comment k-th hpuseholder transformation;

if k=ml+l then
begin fsum:=true; mr:=m end;

_i_g fsum then

piv: for j:=k step 1 until n do

sum[j]:=innerprod(i,k,mr,qrii,jl, arli,jl, 0);

sigma:=sum[k]; jbar:=k;

12
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for ji=k+l step 1 until n do

if sigma < sum[j} then

r—

begin sigma:=sum[jl; jbar:=j end;
if fsum then smax:=sigma; fsum:=sigma < etaXsmax;

if fsum then goto piv;

—

if jbar # k then

begin comment column interchange;

i:=pivot[k]; pivot[k]:=pivot[jbar]; pivot[jbar]:=i;

—

sum[ jbar]:=sum[k!;

for i:=1 step 1 until m do

r—

begin sigma:=qr{i,kl; qrii,kl:=qrl[i,jbar];

qri,jbarl:=sigma

—

end 1

end column interchange;

r——

sum[k]:=sigma:=innerprod i,k,mr,qr[i,k], gr[i, k1, 0);

r—

if sigma = 0 then goto singular;

grkk;=qr(k,k]; alphak:=alphalk]:=

r——

if qgrkk < 0_then sqrt(sigma)_else -sqrt(sigma);
iL ar(k,k]:=qrkk-alphak:
beta:=qr{0,k]:=alphakXqrik,k];
“— for j:=k+l step 1 until n do
begin y:=innerprod{i,k,mr,qr'i,k], ar{i,jl, 0)/beta;
- for i:=k step 1 until mr do qr[i,jle=qr[i,jl+yxqr[i,k];
L_ sum[jl:=sum{jl - qrlk,jjte
end j;
if k-ml then

for j:=ml+l step 1 until m do

13
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for s:=1 step 1 until n do

begin mr:= _1_§ ml then ml else s-1;
Y:"_innerprod(i,l,mr,qr[i,s],qr[j:i],-qr[j;s]);
qr(j,s]:= if &ml then y else y/alpha[s]

end s

end k-th householder-transformation
5§31 decompose;
procedure accsolve(ml)data:(m,n,a,qr,alpha,pivot,eta) result:(x,res)
failure exit:(fail);

value ml,m,n,eta;

integer ml,myn; real eta; array a,qr,alpha,x,res;

integer array pivot; label fail;

comment Accsolve uses the decomposition of a stored in the array
qr{l:m,1:n] by decompose for the iterative refinement of the
least squares solution. The right hand side b is given in
the (n+l)st column of the array a[l:m,l:n+l]. The
residuals of the augmented system of (m+tn) equations are
computed using the procedure innerproddp which forms accurate
inner-products. As initial approximation is taken x=r=0,
and the two first. iterations are always executed. The
iterations are repeated as long as the norm of the correction
at any stage is less than 1/8 of that at the previous stage
until the norm of the correction is less than epsilon times
the norm of the solution. Exit to label fail is made if the

solution fails to improve sufficiently;

1k
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begin integer 1i,Jj,k,s;

real c,nx,nr,ndxl,ndx2,ndrl,ndr2,eta2;

array f[l:ml, gil:nl;

procedure householder(p,q,r,m);

value psq,r,m; integer p,q,r,m;

for s:=p step g until r dc

begin :=innerprod(i,s,m,qr[i,sl, f£{il, 0)/qrl0,s];

for i:=s step 1 until m do fi{i]:=f[i] + cXqgr[i,s]

end householder;
etal2:=(etat212; x{n+l]:=-1;
comment initial wvalues;

for j:=1 step 1 untiln do x[jl:=g[jl:=0;

for i:=1 step 1 until m do

begin res[i]:=0; flilt=ali,ntl] end
for k:=0,1,k+l while (6ixndx2 < ndxl A ndx2 > eta2xnx) V
(Axndr2 < ndrl A ndr2 > eta2xnr) dc

begin comment k-th iteration step;

ndxl:=ndx2; ndrl:=ndr2; ndx2:=ndr2:=0;
i k40 then
begin comment-new residuals;
for i:=1 step 1 until m do res{ij:=res[i] + f[il;
for s:=1 gtep 1 until n do
begin j:=pivotisl; x[jl:=x{jl + glsl;
gls.:=innerproddp(i,l,m;ali,j], resli], 0);
glsy =-innerprod(i,1l,s-1,qrii,s], giil, -glsl)/

alpha | s

15



end;

for i:=1 step 1 until m do
f[il:=-innerproddp(j,l,nt+l,ali,jl, x[j],

if i > ml then res[i] else 0)

end new residuals;
householder(l,l,ml,ml);

for i:=ml+l step 1 until m do

f[il):=-innerprod(s,1l,ml,qr[i,s], flsl, -f[i]);
householder (m1+1,1,n,m);

for i:=1 step 1 until n do

begin c:=£f[i]; f[i]l:=g[i];
g[il:=if >ml then c-gli] else c
end;

for s:-n step -1 until 1 do

begin gl[sl:=innerprod(i,s+l,n,qr[s,i], glil, —g[s])/
alphal[s]; ndx2:=ndx2+g[s]t2

end;

householder(n,-1,ml+1,m);

for s:=1 step 1 until ml do

fls]:=-inmerprod(i,ml+l,m,qr[i,s], £[i], -£[s]);
householder (ml,-1,1,ml);

for i:=1 step 1 until m do

ndr2:=ndr2+f[i]t2;
if k = 0 then begin nx:=ndx2; nr:=ndr2 end

end k-th iteration step;

if ndr2 > eta2Xnr A ndx2 > eta2xnx then goto fail

16
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end accsolve;

for j:=1 step 1 until n do

—

for i:=1 step 1 until m_do qr[i,jl:=a[i,jl;

decompose(ml,m,n,eta,qr,alpha,pivot,singular);

for f:=1 step 1 until p do

begin comment f-th right hand side;

for i:=1 step 1 until m do a[i,n+l];=b[i,2];

accsolve(ml,m,n,a,qr,alpha,pivot,eta,xl,rest,fail);

for j:=1 step 1 until n do x[3,2):=x2[3];

for i:=ml+l step 1 until m_do res[i,f]:=resf[i]

end f-th right hand side

end least squares;

Organizational and Notational Details

The array a containing the original matrix A is transferred

A ()

to the array qr which serves as storage for The non-zero

components of the vectors u(k) and the derived matrix Q12 are
stored on and below the leading diagonal of gqr . The diagonal

elements of R, the reduced matrix, are stored in the array a,

on row number zero in gr .

k
N
J

and the elements Bk

The column sum of squares, 5, 1s stored in the array sum.

Naturally, the elements of this array are interchanged whenever the

(k+1)

columns of A are interchanged. The array pivot contains the

order in which the columns are selected.

17
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The recursive computation of s.J will fail if A is sufficiently
ill-conditioned. To prevent this s§k) are recomputed every time the
condition

k 7
max Jk)<’n- mm<sﬁ )
k<j<n Y k'<j<n

is satisfied, where k' is the last step at which this was done.
Since the number of iterations needed is dependent on the right hand
side the iterative refinement is executed for one right hand side at
a time. During the refinement the current right hand side is transferred
to the (n+l)st column of A .
Tn accsolve the first set of solutions is taken to be null vectors,
and the two first iteration steps are always executed. The iteration
for the current right hand side is terminated when the conditions

(1) and (ii) below are simultaneously satisfied:

() lex®, > o.esiex =L, or 1ex(Sy, < mixtHy,

(i) e, 2 ounesex(= ) or fex(®), < (Y,

2 "2

If the iteration has been terminated and at the same time

1o, > el ana flor () > ane

then the exit fail is used.

18



Both a single precision and a double precision inner product routine
are used. On a computer where double precision accumulation of inner

products is fast, the double precision routine can be used throughout,

Discussion of Numerical Properties

The procedure has been analyzed in [1] for m = 0 under the
assumption that all inner-products are accumulated in double precision.
(If single precision inner-products are used where possible, the bounds
given below for the rate of convergence and the error will increase by
a factor less than m . )

Let t, and t2 be the number of binary digits in our single and

1

double precision floating point mantissas. Put

where
K(A) = Ax(l, /[ me Ax
] (a) = I Iy / - llax), >
2 2
and assume that o« < 1 . TIf the errors made in computing the residuals

and in adding the corrections can be neglected, then

19
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(s) 1, B 5
| lr-r H2 . Ktz 3 ”T”2
} < wounlfp 1L
— ‘s ) g ,
| Al Jlc-x K 5) )2 S\l gl
?
-
IJ where
1 -1/ .
] ¢ = a2 e
L. and the "initial rate of convergence' p 1s bounded by
—J 5/2 7, l\ _'-tl
p<5807n'(KT-§}2 .
L
The process 'converges' if p < 1 . Then for sufficiently large s
~ the errors will satisfy
o] \
ERSN 1 Il
L 1 "ty
< (l"P )K 2 s
(s) /
allllx=x> 1l K Al =l
-
where-
L
[ -2t
— 3/2 1 b \
’ K= Lk 0% 2 ) Dl + 2 ) +
L -t2
1,022 2 5w fxll, + (0+5) Il )
) 20
L




If t2 Z_Etl then the first term in K usually dominates, and
)(F) + éx(s ! will ultimately have t1 more correct binary digits
(1)

than x'7° . Note however that the process may well converge even if
1] . ,
xL " has relative error greater than 1. To get full benefit of

the refinement we ought to have t 2tl,but there is nothing to

2%
be gained by taking t2 much greater than 2tl°
Since it is possible to have x = 0 or r = 0, it is obvious

that even when p <1, we cannot guarantee that(g  or r(s)

ultimately will have a small relative error. Let

b il

Yo T

and assume that p < 1/4 and that the second term in X can be

neglected. If

v < 1.58 &

then we will ultimately have

(s))

-t]_
I - xS, <22 M, -

2

Similarly if

1,61p < ¥y

21
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then ultimately

-t
(s) 1
Iz -7, < 202 It -
Note that r(s) will converge to the exact residual corresponding to
the correct solution x . When |r]| << ||A]l [|x]| these may be very

different from the residual corresponding to x rounded to single

precision. In many cases the later may be the more relevant.

Test Results

The procedure was tested on the CD 3600 (University of Uppsala)

= = _6 -
which, has tl = 36 and t2 84, with 1 2 5 ~ 1.5 10 11 . The

matrix A consists of the last six columns of the inverse of the 8 X 8

Hilbert matrix. For m, = 0 two right hand sides were treated. The:
first, b1| is chosen so that the system Ax = b, is compatible
i.ec r = 0 « The second, b2, is obtained by adding to bl a vector

orthogonal to the columns of A, the length of which was adjusted so

that”

Thus in both cases the exact soluticn is the same, namely

x = (1/3, /%, 1/5, 1/6, 1/7, 1/8)" -

22



Due to the large residuals in the second case however, this system

is much more ill-conditioned cf. [1]. For m = 2 the same matrix A

and the right hand sides b and b, was used where b was obtained

1 3 3
by changing b2 in its first two components so that the exact solution
x remains the same. Note that ali problems are so ill-conditioned
that tl > 32 is required for convergence,

The results for m, = 0 confirms that the'initial rate of con-
vergence" 1is independent of the right hand side. 1In fact (disregarding
the first step) the errors in the components of x and r decreases
initially with a factor approximately equal to 10—5 « For economy of
presentation, we have given cnly the last six components of r(s); the
behavior of the other components is exactly analogous. For the right
hand side bl’ x(u) is already correct to wcrking accuracy, The
iteration is terminated after the computation of 6x(5) and 6r(5)
when the condition ”6r(5)H2 < n”r(l)ﬂe is satisfied. For the right
B x(l) is in error by a factor almost equal to 105 ;

(5) (5)

The iteration is again terminated after §x and x

hand side b2
is correct
to working accuracy. This accuracy which seems to be more than could

be expected is explained by the fact that the residuals (bgmAxJ are

integers which can be represented exactly in the machine. 1In fact
(s)

T exactly equals r for s > L which makes the problem no more
ili-conditioned when s > 4 than for the rohosabl .
The behavior when m. = 2 is exactly analogous. Note however

1

that the rate of convergence is faster almost by a factor of]Da

compared to the case my = O . For the right hand sides bl and b3

23



five respectively four steps of the iteration are executed. For bl,

. (
(3) is correct to working accuracy and for b ‘Q) is

already x 3

almost correct.

I
C

24
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