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Iterative Refinements of Linear Least Squares Solutions

L by Householder Transformations.*

L Contributed by A. Bjorck and G. Golub.¥*

| Theoretical background

, Let A be a given mXn real matrix with m> n and of rank

n and b a given vector. Let A and b be partitioned

SE
fo

b

8 . (Rs o )= |— , =| —=

A, ) mn D,

—

where m, < n and assume that Ay has rank my . We wish to determine=

— a vector x subject to the linear constraints

|
-

AX = by

 _-

such that

-

-

t
1

L where ; ... | indicates the euclidian norm.

— *This work was supported by the Swedish Natural Science Research Council.
**The work of this author was in part supported by NSF and ONR.
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L Using Lagrange multipliers it 1s easily shown that the solution
| satisfies the system of equations
|_—

- 0 0 Ay A by

; [ea = |_| cs, (1)_ -— —_— —

| T |, T
Aq Ay 0 X C

— -

. where A 1s the vector of Lagrange parameters and c¢c = 0 . For
reasons which later will become evident we develop a method for solving

- (1) which works for an arbitrary vector c .

Let P be a permutation matrix which permutes the columns of A
-

so that

!

— .
H / /

i! _ £11 Ao
AEST TR A

= 2 21 22

-

where Al 1s square and nonsingular. We now determine an orthogonal

_ matrix Aq so that

Qt = (Ry | Ry), (2)

I.

| where Riq 1s m, Xm, and upper triangular. Next we put

_ -T T ad {=
Uo = fr for 0 App = App - Qi Rp (3)

—
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: and determine an orthogonal transformation Us so that

“ ofp = \™0 } (mn) X n (4)

= where again Roo is upper triangular. Denote by R the nXn upper
triangular matrix

—

- Rip | Bio
R=\"0 [TR |

22

| Then 1t 1s easily verified that

Q Q
- 1 12

apr "t= a (5)§ O 1 9

where

doo = (Lp [0) oo (6)
Sl

i“ and “nom, 1s an (n-m, ) X (n-m ) unit matrix. Thus 1f we define

| 1 the-vectors

Co , yi iat Lo Es= re 3 = sere

Vo ) Sa! ds ye my



L by the relations
g
| x = PR” Ly y d= PR Tc (7)

[ then (1) can be written
| | T

b,

[ 0 0) 3 0 A 1
T ~T .

0 I 1% 9 || Te Pa
L | — F| — (5)

1 Ye |° ° "1 1

L 0 Qp 0 0 Ys d,

Using the orthogonality of Q 4 and Qo we get the following algorithm

i for solving (1):

1 = ah

L co (b. - Ly) = 2} ) (nom)
& = Quplby = QV) = 7 } (m-u)0 2

) Yo = 8 -d

L =o 2)2 e gs

L  ,
A= Qa) = Qprp)

Here d is defined from (7) which is also used for computing x .
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A very effective method to realize the decompositions (2) and (4)

; is via Householder transformations [4]. Let a =all)
— ( and letk+1

A » k=1,2,..., Nn, km, be defined as follows
L

+pL) p(k),(k)

(k) |
| | F 1s a symmetric, orthogonal matrix of the form

“ where the elements of 5 (k) are derived so that

" (k+1)
asx — 9» i=ktli., mk),

| <| m, 5 k m,
m(k) =

LC
It follows that

-

(m,)
Ap T= (By (Rp)

- B »

and 1f we finally define
 —_—

i

i

L (my ) [Rn Ra= or

| 0

- EER

where As 1s computed from (3 then Alm 1) = (2)
p



C
| It can be shown cf. [5] that p(k) is generated as follows:
:
!
—

! go, = ( (aE) y2)1/2k PN ikLo =

(k)vy-1{ =3 8, = (0, (0, + la’]))

L u{E) =0 for 1 <k, i> m(k)

(k) _ (k) (k)
1 of + aan(al(e, + 1a)

(k) _ (x)! = ]
Lo u, ay for k < 1 < m(k) .

!
{

- oo (k)
The matrix P 1s not computed explicitly. Rather we note that

i

+ k k

| AB) Cp pul) (KT), (K) oak) ly:
|

-

| where
-

I _ oo kT, (k)L Vie = BU A
{

:

= (k+1)
In computing the vector Vie and A » one takes advantage of the

L zero components of u ()

[ " The permutation of the columns of A to obtain A' = AP 1s
conveniently done at the same time. At the x CP stage the column is

(k+1)
chosen which will maximize Eh . This will ensure that the

-

matrix R.q 1s non-singular. Let
|
C
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| m(k)
k X)\2 :

Sp by EN, kk, ns- 1=

| ’
: +

- Then since|al® L)] = Op, one should choose that column for which
+

8 s\) is maximized. After alk 1) kfm, , has been computed, spe can
(k+1)

compute 5 as follows:

SH) | (Ck), (e41)y2
| J CTS kJS J

L since the orthogonal transformations leave the column lengths invariant.

| Because of the influence of rounding errors the first computed
solution may not be sufficiently accurate in an 1ll-conditioned case.

. Provided the columns of A are not almost linearly dependent to working
accuracy, the solution may be improved by the following iterative

L procedure. Put

0 |0O Ay 5) |

L Tl He SEE EEN EE
| BEANE C= COVA ;

(0) th | Co
and let z = . . The s lteration involves the three steps:

[ (11) 8208) = p71 pls)
+

[ (iii) L051) J (8) |g, (8)
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L It 1s essential that the residuals £(s) are computed using double

L precision accumulation of inner-products. We then solve for 528)
| by the method developed above, using the same decompostion in all

L iterations. Note that £(s) generally differs from zero also in the
| last n components, which explains why we did not assume c¢=0 in (1).

L It has been shown in [1] that if the iterations 'converge' then

L for sufficiently large s the accuracy in & ) + 5205), will be
approximately the same as 1f double precision had been used throughout

| without refinement.
Let the number of operations needed for the decomposition resp.

L one iteration step for a single right hand side be Nj resp. N_ .
L Then a simple calculation shows that

L N, = EC - 3) - mm,(n - 2) | (1 + 0(2)) S+P

L N [ata - 3) - cnn, | (1 + 0@E)) s.p. + 2m d.p.S | n

L
¢ where s.p. refers to single precision operations and d.p. to operations

L performed with double precision accumulation

L

| Applicability

| The algorithm least squares solution may be used to compute
| accurate solutions and residuals to linear least squares problems with

L or without linear constraints. It may also be used to compute accurate
:

L :



- solutions to systems of linear equations where A is a square matrix

and to compute accurate inverses of such matrices. The procedure will
—

fail when Ay or A modified by rounding errors has rank less than

_ m, or n respectively. It will also fail ifA is so ill-conditioned
that there 1s no perceptible improvement in the iterative refinement.

— The matrix A 1s retained in order to form the residuals. When

| m >> n the large storage requirement of this procedure might make it
A

preferable to use instead a double precision version of the Householder

L decomposition without iterative refinement. Note that in the linear

equation case the calculation of residuals may be suppressed by putting

- m, =m=n.
t

A

. Formal parameter list

Input to procedure least squares
—

f 11 | m, < .my number of linear constraints Sn

L m total number of equations

; n number of unknowns n <m

|
= a an mx (n+l) array having the given matrix as first

| n columns

p number of right hand sides

L b an mXp array containing the given right hand sides
eta the largest number for which 1 + eta = 1 on the

1 computer
singular exit used when A or A modified by rounding

L errors has rank less than m, or n respectively
, fail exit used when the iterative refinement fails to

l improve the solution

1 9



3 Output of procedure least squares

; i x an nXxp array consisting of the p gsplution vectors
| res an m, Xp array consisting of the p residuals vectors

j = ALGOL Program

procedure least squares solution(ml) data: (m,n,a,p,b,eta) failure

exits: (singular, fail) result: (x, res);
ne.

| value ml,m,n,p,eta;

; integer ml,m,n,p; real eta;
array a,b,x,res; label fail, singular;

_ comment The array a[l:m,l:n+l] contains in its first n columns the

» given matrix of an overdetermined system of m linear equations

. i in n unknowns (m > n), where the first ml equations

(ml< n) are to be strictly satisfied. For the p right

| hand sides given as columns of the array b[l:m,l:p] the

o least squares solution and the residuals are computed and

stored in the columns of the arrays x[1l:n,l:p] and

= res[ml+l:m,1:p] respectively. If rank(a) < n or

3 rank(al) < ml the emergency exit singular is used. If the
iterative refinement fails to improve the solution sufficiently

|e the exit fail 1s used. In either case b and the first n

columns of a are left intact. The (n+l)st column in

- a 1s used as temporary storage for the sucessive right hand

sides. Eta 1s the relative machine precision;
-

. 10
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E begin integer 1,j,4;

[| array xf[l:n+l]}, resf[l:m}, alphail:nl, qr[O:m,1l:n];
| — —

Bu integer array pivot[l:nl;

ye real procedure innerprod(i,m,n,ai,bi,c);

| value myn,c;

real ai,bi,c; integer i,m,n;

B begin real sum;
he.

B sum:-0;

pe for i;=m step 1 until n do sum:=sumt+aiXbi;

B innerprcd:=sumtc

end innerprod;

real procedure innerproddp(i,m,n,ai,bi,c);
. =a PFOYEUT

value myn;c

- real ai,bi,c; integer i,m,n;

: comment This procedure accumulates the sum of products aiXbi

= and adds 1t to the initial value c¢ 1n double precision.

The body cf this procedure cannot be expressed in ALGOL.
he

begin real sl,s2, (sl,s2):=0;

- for i:=m step 1 until n do

| (s1,82):=(sl,s2)+aiXbi, comment dbl.pr.acc.

— o \

innerproddp:={{sl,s2)+c) rounded

end 1nnerproddp;
a —

procedure decompose{ml)data: (myn,eta) data and result: (qr)

result: (alpha,pivot) failure exit: (singular);

value ml,m,n,eta;

= integer ml,m;n; real eta; array qr, alpha;

| ae
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i integer array pivot; label singular;
i comment Decompose uses essentially a sequence of elementary orthogonal

transformations (I - beta u uw) to determine a qgr-decomposition

| of the matrix given in the array qr{l:m,l:n] . The diagonal
elements of the upper triangular matrix r are stored in the

I array alpha{l:n}, the offdiagonal elements in the upper
i right triangular part of qr. The nonzero components of the

vectors u are stored on and below the leading diagonal of

[ qr. Pivoting 1s done by choosing at each step the column
with the largest sum of squares to be reduced next. These

i interchanges are recorded in the array pivot[l:n}. If at
| any stage the sum of squares of the column to be reduced 1s

exactly equal to zero then the emergency exit singular 1s

used;

begin integer 1i,j,jbar,k,mr,s; boolean fsum;

) real bveta,sigma,alphak,qrkk,smax,y;array sum{l:n];

[ mr:= ml; fsum:= true;
for j:=1 step 1 until ndo pivot{jl:=j;

| for k:=1 step 1 until n do
begin comment k-th hpuseholder transformation;

{ 1f k=ml+l then

[ begin fsum:=true; mr:=m end;
if fsum then

| piv: for j:=k step 1 until n do
| sum[ jl :=innerprod(i,k,mr,qr{i,jl, arli,jl, 0);

L sigma:=suml[k]; jbar:=k;

i 12
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4 if sigma < sum[j} then
begin sigma:=sum[j!; jbar:=j end;

{

L if fsum then smax:=sigmaj; fsum:=sigma < etaXsmax;

1f fsum then goto piv;

i if jbar # k then
§ begin comment column interchange;

i:=pivot[k]; pivot[k]:=pivot[jbar]; pivot[jbar]:=i;

[ sum[ jbar]:=sum[k!;
for i:=1 step 1 until m do

| tl. mogo

L begin sigma:=qr[i,kl; qrii,kl:=qr[i,jbar];

| qari, jbar):=signma
end i

8 end column interchange;
sum[k]:=sigma:=innerprod i,k,mr,qr[i,k]1, arli,kl, 0);

L if sigma = 0 then goto singular;

grkks=qr[k,k]; alphak:=alphalk]:=

. 1f grkk < 0 _then sqrt (sigma) else -sqrt (sigma);

- arlk,kl:=qrkk-alphak:
beta:=qr{0,k]:=alphakXxqrik,k,;

begin y:=innerprod(i,k,mr,qrli,k], qrii,jl, 0)/beta;

- for i:=k step 1 until mr do qr(i,jle=qr[i,jl+yXqr[i,k];

| sum[ji:=sumljl - qrlk,jjte
end J;

if k-ml then

for j:=ml+l step1 untilm do

15
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L for s:=1 step 1 until n do
L begin mr:= if $£ml then ml else s-1;

v.n_innerprod(i,l,mr,qr{i,sl,qr[j,il,-qrlJ,sl);

L ar[j,sl:= if ml then y else y/alpha[s]

L end k-th householder-transformation
i end decompose;

procedure accsolve(ml)data:(m,n,a,qr,alpha,pivot,eta) result: (x,res)

1 failure exit: (fail);
| value ml,m,n,eta;

L integer ml,m,n; real eta; _array a,qr,alpha,x,res;
| integer array pivot; label fail;

comment Accsolve uses the decomposition of a stored in the array

| qri{l:m,1l:n}] by decompose for the iterative refinement of the
least squares solution. The right hand side b is given in

L the (ntl)st column of the array a[l:m,l:n+l]. The

i residuals of the augmented system of (mtn) equations are
computed using the procedure innerproddp which forms accurate

L inner-products. As initial approximation 1s taken x=r=0,
and the two first iterations are always executed. The

L iterations are repeated as long as the norm of the correction

i at any stage is less than 1/8 of that at the previous stage
until the norm of the correction 1s less than epsilon times

L the norm of the solution. Exit to label fail is made if the
solution fails to improve sufficiently;

1

14
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L begin integer 1,Jj,k,s;
L real c,nx,nr,ndxl,ndx2,ndrl,ndrz,eta2;

| array f[l:ml, gil:nl;

L procedure householder{p,q,r,m};
value pyq,r,m; integer p,q,r,m;

L for s:=p step gq untilr dc
I begin :=innerprod(i,s,m,qr[i,sl, f{il, 0)/qrl0,s];

for i:=s step 1 untilm do ffil:=f[i] + cXqr[i,s]

L end householder;
| ctap: (etal 2}12; xin+l|:=-1;

L comment initial values;

[ for j:=1 step 1untilndo x[jl:=gl]l:=0;

I begin res[i}:=0; f[il:=afi,n+l! end
for k:=0,1,k+l while (6ixndx2 < ndxl A ndx2 > eta2xnx) V

L (bbxndr2 < ndrl A ndr2 > eta2Xnr) dc

I begin comment k-th iteration step;
ndxl:=ndx2; ndri:=ndr2; ndx2:=ndr2:=0;

begin comment-new residuals;

L for i:=1 step 1 until mdo res|ij:=res[i] + f[il;

I for s:=1 gtep 1 until n do
begin j:=pivotisl; x[jl:=x{jl + gls];

I gs, =innerproddp(i,l,m;a[i,j], resi], 0);
| gls  =-innerprod(i,1,s-1,qrii,s], gfil, -glsl)/

L alpha | s |

L



for i:=1 step 1 until m do

: f[il:=-innerproddp(j,l,n+l,ali,j], x[jl,

if i > ml then res[i] else0)

| end new residuals;

householder(l,1,ml,ml);

| for i:=ml+l step1 untilm do
i f[i]:=-innerprod(s,1l,ml,qrli,s], fs], -f[i]);

householder (ml+l,1,n,m);

for i:=l step1 untiln do

begin c:=£f[i]; £f[i]:=g[i];

glil:=if ml then c-gli] else c

end;

| for s:-n step -1 until 1 do

begin gls]:=innerprod(i,s+l,n,qr[s,i], glil, —-gls])/

| alphals]; ndx2:=ndx2+g[s]t2
| end;

householder (n,-1,ml+l,m);

| for s:=1 step 1 until ml do
fls]:=-innerprod(i,mi+l,m,qr(i,s], £{il, -fls]);

| householder (ml,-1,1,ml);

| ndr2:=ndr2+f[i]t2;

! if k = 0 then begin nx:=ndx2; nr:=ndr2 end

; end k-th iteration step;

| if ndr2 > eta2Xnr A ndx2 > eta2Xnx then goto fail

| 16
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L
end accsolve;

| for i:=1 step 1 until m_do qrli,jl:=ali,jl;

| decompose (ml,m,n,eta,qr,alpha,pivot, singular);

. for f:=1 step 1 until p do
begin comment £-th right hand side;

| for i:=1 step 1 until m do ali,n+l];=b[i, 1];
accsolve(ml,m,n,a,qr,alpha,pivot,eta,xt,resl,fail);

C for ji=l step 1 until n do x[j,4]:=xt[j];

| for i:=ml+l step 1 until mdo res[i,f]:=rest[i]
end I-th right hand side

[ end least squares;

L

Organizational and Notational Details

-

; The array a containing the original matrix A is transferred

| | (k)
to the array qr which serves as storage for A . The non-zero

_ components of the vectors 2K) and the derived matrix Qo are
stored on and below the leading diagonal of gr . The diagonal

i elements of R, the reduced matrix, are stored in the array «,
; and the elements By on row number zero 1n Jr .

L The column sum of squares, Se 1s stored in the array sum.
i Naturally, the elements of this array are interchanged whenever the

columns of a (KHL) are interchanged. The array pivot contains the

LC order 1n which the columns are selected.

- 17
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The recursive computation of 5 will fail 1fA 1s sufficiently

1ll-conditioned. To prevent this 5) are recomputed every time the
condition

Kk’max s{k) <7 - max s )
k<j<n 9 k'<j<n

- 1s satisfied, where k' is the last step at which this was done.

Since the number of iterations needed 1s dependent on the right hand

= side the iterative refinement 1s executed for one right hand side at

a time. During the refinement the current right hand side 1s transferred

to the (n+l)st column of A .

— Tn accsolve the first set of solutions 1s taken to be null vectors,

and the two first iteration steps are always executed. The iteration

— for the current right hand side 1s terminated when the conditions

(1) and (11) below are simultaneously satisfied:

- ( 1
C (1) lex, > o.1esex (=) or flex), < mix2 2 2 — 2

- (i) Nex{®)), 2 o.1esfer(®1) or fexl®) <q),
2 2 2 2

-

If the iteration has been terminated and at the same time

TED (1) (=), 1.01),

I lox > aml, ana fet) > ange

L then the exit fail 1s used.

a. 18



Both a single precision and a double precision inner product routine

| are used. On a computer where double precision accumulation of inner

products is fast, the double precision routine can be used throughout,

= Discussion of Numerical Properties

L The procedure has been analyzed in [1] for m, = 0 under the
| assumption that all inner-products are accumulated in double precision.

(If single precision inner-products are used where possible, the bounds

i given below for the rate of convergence and the error will increase by
a factor less than m .)

L Let ty and t, be the number of binary digits in our single and
double precision floating point mantissas. Put

-t

L oa = 32.6 2/2 2 Le (a)

where

(A) = max |lAx|, / max [ax], ,
Il =t Fxg CF

2 2

i and assume that o < 1. If the errors made in computing the residuals

| and 1n adding the corrections can be neglected, then

i .
L



g (s) ’ 4 5
| lr-r I, I Ts 3 I=ll
| < 1un/f 1 p ®t
in {s) VI TO |
| Jall= Sl K+ 3) «<2 Jal glx
|

[ where

L Ce (Le) TE (a)

L and the "initial rate of convergence' p 1s bounded by

0 < 38.7 n2/Prits 2) 2 1.

[ The process 'converges® if p< 1 . Then for sufficiently large s
the errors will satisfy

ex (8)), 1 Ill,
| -1 |. < (1-p) K +2 ’

Jal he-x =) % Jal ld,

[ where-
-2t

2 1, ,. |L = 2 222 0B) ly + 2 alle) +

.

] 1,022 2 2c fae} fl, + (v5) Nall el)

L g



If t, > at then the first term 1n XK usually dominates, and

| Xs) + 5S ! will ultimately have ty more correct binary digits
than ney . Note however that the process may well converge even 1f

[ X 1 has relative error greater than 1. To get full benefit of

| the refinement we ought to have ty ot. but there 1s nothing to
be gained by taking ts much greater than ety o

[ Since 1t 1s possible to have x = 0 or r = 0, it 1s obvious
that even when p <1, we cannot guarantee that! # > or (8)

[ ultimately will have a small relative error. Let

[ Y= US) TET

[ and assume that p < 1/4 and that the second term in X can be

| neglected. If

[ y < 1.58 4P

L then we will ultimately have

L "
(s) 1

Ix - xl, <e.e THI

[ Similarly if

[ 1,61p <

| 21



then ultimately |

|
—

-t
t (s) 1 1

L |r -x>l,< 202 [kh

oNote that pS. will converge to the exact residual corresponding to

! the correct solution x . When jjrll << ||a]l ||x]| these may be very

different from the residual corresponding to x rounded to single

{

L precision. In many cases the later may be the more relevant.

| Test Results
The procedure was tested on the CD 3600 (University of Uppsala)

= = - 6 —

— which, has ty = 36 and ty 84, with 1 2 3 ~ 1.5 10 11 - The
| matrix A consists of the last six columns of the inverse of the © X 8
|.

Hilbert matrix. For m, = 0 two right hand sides were treated. The:

| first, b, is chosen so that the system Ax = b, 1s compatible
i i.e * = 0 . The second, bs, 1s obtained by adding to by a vector
bh... orthogonal to the columns of A, the length of which was adjusted so

that

—

SE a 1 6
t= IFES ~ = ° 10°

Thus in both cases the exact soluticn is the same, namely |
fo

| x = (1/3, 1/4, 1/5, 1/6, 1/7, 1/8)" .

i 22



L
Due to the large residuals in the second case however, this system

L is much more ill-conditioned cf. [1]. For m= 2 the same matrix A
and the right hand sides bg and D3 was used where 0 was obtained

5 by changing b, in 1ts first two components so that the exact solution
| X remains the same. Note that ali problems are so 1ll-conditioned

~ that ty >32 1s required for convergence,
L The results for m, = 0 confirms that the initial rate of con-

vergence" 1s independent of the right hand side. In fact (disregarding

L the first step) the errors in the components of x and r decreases

L initially with a factor approximately equal to 1077 » For economy of
presentation, we have given cnly the last six components of (5) the

| behavior of the other components 1s exactly analogous. For the right
| hand side SE x) 1s already correct to wcrking accuracy, The
L iteration 1s terminated after the computation of 6x {2 and sr (0)

[ when the condition lox) < et 1s satisfied. For the right
hand side 2% ney 1s 1n error by a factor almost equal to 10” :

[ The iteration 1s agaln terminated after gr”) and ne) 1s correct
to working accuracy. This accuracy which seems to be more than could

) be expected 1s explained by the fact that the residuals (b,-Ax) are
integers which can be represented exactly in the machine. In fact

L Re exactly equals r for s > L which makes the problem no more
[ ill-conditioned when s > 4 than for the r.h.s.b, .

The behavior when m, = 2 1s exactly analogous. Note however

I that the rate of convergence is faster almost by a factor cof 10°

| compared to the case m, = O . For the right hand sides by and 0

L
25
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five respectively four steps of the iteration are executed. For Ds
(3) | C2

already x 1s correct tc working accuracy and for 0. X is
almost correct.

LC

L

24
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