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HANDBOOK SERIES LINFAR ALGEBRA

SING'JIAR VATUE DECOMPOSITION

AND

LEAST SQUARES SOLUTIONS

Contributed by

G. H. Golub and 2. Reinsch'

l. Theoretical Background

l.1 Introduction.

Let A ha real mxn matrix with m>n. It 1s well known

(cr. [L)) tiat

e UIA er Erne Vx (1)

where UU m= I Wa I, and ZL = diag(c ,...,0 ) .
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The matrix U consists of n orthonormmlized eigenvectors associated

with the 2 largest eigenvalues of ART y and the matrix V consists

of the orthornorma.ized eigenvectors of ATA . The diagonal elements of

T are the non-negative square roots of the eigenvalues of ATA ; they

are called singular values. We shall assume that

0,20,2...20 >0.

Thus if rank (A) m= r , Op] = Opyp = ¢oe = 0 = 0. The decomposition

(1) is called the singular value decompcsition (SVD).

If the matrix U is not needed, it would appear that one could apply

the usual diagonalization algorithms to the symmetric matrix ala which

has to be formed explicitly. However, as in the case of linear least squares

problems, the computat ion of ATA involves unnecessary numerical inaccuracy.

For example, let

1 1

A= B 0 ?

0 =

T 144° 1
then AA = 5 80 that

1 1+8

2.1/2

a(a) = (262)Y2 |, oa) = Jo] .

If a° <€, 1 the machine precision, the comuuted AA has the form

E | , and the best one may cbtain from diagonalization is1 1

2



To compute the singular value deconposition of a given matrix A,

Forsythe and Henrici [2], Hestenes [8 ], and Kogbetliantz [9] proupused

methods based on plane rotations. Kublanovskaya [10] suggested a

QR-type method. The program described below first uses Householder

transformations to reduce A to bidiagonal form, und then the QR

algorithm to find the eigenvalues of the bidiagonal matrix. The two

phases properly combined produce the singular value decomposition of A .

l.2 Reduction to bidiagonal fom.

It was shown in [6 ] how to construct two finite sequences of

Householder transformations

(k) (x), (K)"
P w= I - 2x X (k = 1,2,...,n)

and

() (i), (x)

®)* (x) _ (x) (x)
(where x x = y y = 1 ) such that
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pM pal),qln=2)

9 es Q . . . 0

) ; O
EE TL

O | |. e
n

QU,

(0) Jo
an upper bidiagonal matrix. If we let A (2) = A and define

a +t) - pk), (k) (k = 1,2,400,n)

alk) (eel) ok) (k = 1,2,...,n-2)

then 5(K) is deteruined such that

a (Ke) = 0 (i = k+1,...,m)

and 1 such that

k~+1

ot ) CY (J = k+2,...,n) .
The singular values of 3(0) are the same as those of A . Thus,

if the singular value decomposition of

30). caf

then
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A = pei

1.53 Singular value decomposition of the bidiagonal matrix.

By a variant of the QR algorithm, the matrix 5(0) is iteratively

diagonalized so that

50) 31) “% eee =» LT

where

T

g(141) | 75)(1) |

and g(t) ’ p() are orthogontl. The matrices (1) are chosen go that
(1) _ (07 (1)

the sequence M w J J converges to a diagonal matrix while the

mtrices g{1) are chosen so that all 51) are of the dbidiagonal form.
In [7 ], another technique for deriving is’) and x); is given

but this is equivalent to the method described below.

for notational convenlence, we drop the suffix and use the notation

Me lJ , As

The transition J «J 4s achieved by application of Givens rotations to

J alternately from the right and the left, Thus

Jastst  ...8 JT T (2)
nnel “°° "2 2% *°** °n

Can ne? Comm on)
8? T
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where

(k=1) (xk)

1 0

a @
1

"osQ,  -8ind (k=1)

Ea sind.  cos@ (x)
k k :

1

() il 0
oO 1

and Ty +s defined analofously to 5S, with Py instead of ° .

Ict the first argle, = , be arbitrary while alli the other angles

are chosen 80 that J has ¢{ « same form as J . Thus,

T, annihilates nothing, generates an entry (J), ,

s' annihilates (Jpg , generates an entry (9)15 , (3)

I, annihilates (3}5 , generates an entry (Js, ,

and finally

st annihilates {J} , and generates nothing,
n n,n=1

ee t'imire on next page.)
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—— 4
=a 42)
1ATVla.

HEE eda

Firpure 1

Tis process is frequently described as "chusine. Sine. J = SUIT,

M = =Ts ~ TI Mp

and M 4s a tri-diaronal mateix just as M is. We cnow that the first

angle, o, , Which is still undetermined, can be chosen so that the transition

M-~¥ is a QR transformation with a given shift s ,

The usual QR ulgorithm with shifts is Jescribed as follows:

(M-sI} = T R
§ 8 Co

- (hh)
RT + s51I=M
s a 5

where: TU =] and R is an upper triangulsr matrix, [hus M_ ] TIM, .
1t has been chown by Francis [5] that it is not necessary tc compute (4)

explicitly but it is possible to perform the shift impiicitly. let T

be for the moment an arbitrary matrix suci. that

(i.e., the elements of the first column of T are equul to the first

column of T ) and

Mre1
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Then we have the following theorem (Francis):

1) ¥=TM, |

11) M is a tri-diagonsl marix,

114) the sub~diagonal elements of M are non-zero,

it follows that M = DM_D vhere D is a diagonal matrix whose diagonal

elements are +1,

Thus choosing T, in (3) such tha* its first column is propoxtionsl

to that of M-8I , the game ls true for the first column of the product

T = Tplgeeely whinh therefore is identical to that of T, o Hence, if
the sub-diagonal nf M does not ccntain any non-zero ent>»y the conditions |

of the Francis theorem are fulfilled and T 1s therefore identical to T,

(up to a scaling of column +1 ). Thus the transition (2) is equivalent

to the QR transformation of ag with a given ghift ss .

The shift parameter sg is determined by an eigenvaliie of the lower

2x2 minor of M . Wilkinson [13] has shown thst for thia choice of & ,

the method converges glcbally and almost always cubically.

l.4 Test for convergence. .

It |e|<® , a prescribed tolerance, then |g | is accepted as
a singular velue, and the order of the matrix is dropped by one, If,

however, |e| <® for k 4 n, the matrix breaka into two, and the

singular values of each block may be wmputed independently.

If G = O , then at least one singular value must be equal to zero.

In the absence of roundoff error, the matrix will break if a shift of zerc

is performed, Now, suppose at some stage
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lo| <5

At this stage an extras sequence of Givens rotations is applied from the |

left to J involving rows (k, k+l) , (kX, x#2) ,..., (k, n) so that

e., Uh x1 is annihilated, but (Thy, kee ’ (Teer, x are generated,

9), co 1s annihilated, out CJ Np , Then, x are generated,

and finally

(ln is annihilated, and (3p, x is generated.

The matrix obtained thusly has the form

(k)

O

Bit Ht Cie

0) LJ | J en
5, 4

Note by orthogonality
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Thus choosing 5 = 10 e (¢, , the machine precision) ensures that all
5, are less in magnitude than ¢ |IJ© . Elements of J not greater
than this are neglected. Hence J breaks up into two parts which may be

treated independently.
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2. Applicability

There are a large number of applicatione of the a ngular value

decomposition; an extensive list is given in [7]. Some of these are

as follows:

2.1 Pseudcinverse (procedure SVD).

Let A be a real mxn matrix, An nxm matrix X is said to

be the pseudoinverse of A if X satisfies the following four

properties:

1) AXA = A

11) XAX = X

111) (ax)T = AX

The unique solution is dencted by A’ . It is easy to verify that if

Aw UE , then AY = veut where ll = diag(a;) and

. 1/0, for a, >0
a, =

¢ for a, = 0 .

Thus the pseudoinverse may easily be computed from the output provided by

the procedure SVD.

2,2 Solution of homogeneous equations (procedure SVD or procedure Minfit)

let A be a matrix of rank r , and suppose we wigh to solve

vhere © denotes the null vector.

11



Let

Ue (ug supyeceyul and V = [VyoVoreeesv ]

Then since Au, =o, v, (L = 1,2,00.,n) ,

Au, = © for i =31l,.04yn

and X; =u, .

Here the procedure SVD or the procedure Minfit with p = 0 may be :

used for determining the solution. If the rank of A {is known, then a

modification of the algorithm of Businger and Golub [1 ] may be used,

2.3 Solutions of minimal length (procedure Minfit).

let b be a given vector. Suppose we wish to determine a vector x

80 that

lo - Axl, = min . (5)

If the rank of A is less thar n then there is no unique solution.

Thus we require amongst all x which satisfy (5) that

A

and this solution is unique, It is essy to verify that

+

TN NT A .

The procedure Minfit with p > 0 will yield the components for the solution

tc this problem.
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2.4 A generalization of the least squares problem (procedure SVD)

Let A be a real mxn matrix of rank n and let bd be a gi.an

vector, We wish to construct a vector x such that

and

T T
Ab Ab + K trace (AA“AA) = min. (6)

Here K > 0 is a given weight and the standard problem is obtained

for K =o , It can be shown that the solution is given by

x = (ATA - uI)"t ATo

where the non-negative constant yu is determined as the smallest root of

bib - uk = bIA(ATA - uI)t ATh (1)

The minimum of (6) is given by uK . Using the decomposition A m= UZV®

and Cc = o , equation (7) becomes

T 2 -1
bb - uK = f(z? - uD) lg (8)

A combination of bisection and Newton iteration may be used to determine

i in the interval 0gu<el .
Jt is also possible to determine yu as a solu‘ion to a singular value

problem using a technique used by Forsythe and Golub [* ]. Consider the

identity

X oY i}
det = det (X) det (W-2X Ly)

2 Ww
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which is valid for any partitioned matrix with X and W square and

det(X) £ 0. Thus (7) is equivalent to the determinantal equation

Afaez ATe

BIA blbeuk

A short manipulation shows that /u is the smallest singular value of

1

G= (A, x b) .

Once pu is determined, the solution x can be computed from

the SVD of A&A . Thus

x = V(T - Rol c .

1h



¥. Formal Parameter List

3.1 Input to procedure SVD,

m numberof rows of A, m>n.

n number of columns of A .

withu true if U is desired, false otherwise.

withv true if V is desired, false otherwise.

eps a constant used in the test for convergence (see Section 5,

(111)); should not be smaller than the machine precision € >

f.e., the smallest number for which +e, > 1 in computer

arithmetic. |

tol a machine dependent constant whica should be set equal to

B/e, where f is the smallest positive number representable

in the computer, see [11).

af1:m,1:n) represents the matrix A to be decomposed.

Output of procedure SVD.

ql(1:n) a vector holding the singular values «of A , they are non-

negative but not necessarily ordered in decreasing sequence.

u[1:m,1:n) represents the matrix U with orthonormalized columns,

(if withu is true, otherwise u is used as a working

storage).

v[1:n,1:n] represents the orthogonal matrix V (if withv is true,

otherwise v is not used).
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3.2 Input to procedure Minfit,

m number of rows of A .

n number of columns of A .

p number of columns of B, p> 0.

eps same ag for procedure SVD,

tol same as for procedure SVD.

ab{1:max(m,n),1:n+p] abfi,j] represents 83 1<1i<m, 1<J<n,b 4

ab(i,n+j] represents b, gj i<i<m, 1<J<pP.>

Output to procedure Minfit,

ab(1:max(m,n),1:n+p] ab{i,i] represents Vigo t1<i<n, 1<J<n,’

ab{i,n+j] represents Ci, 50 1 <i <mx(mn), 1<J <P,’

q{1:n) same as for procedure SVD.

16



. Algol Programs.

procedure SVD (m,n,vithu,withv,eps,tol) data: (a) result: (q,u,v);

value m,n,vithu,withv, eps, tol;

integer m,n;

Boolean withu,withv;

real eps,tol;

array 8,q,u,V;

comment

Computation of the singular values and complete orthogonal decomposition

of a real rectaniular matrix A

A = U ding(q)V¥, UU = VV = I,

where the arrays a[1:m,1:n), u[1:m,1:n}, v[1:n,1:n], q(1:n) represent

A, U, V, § respectively, The actual parameters corresponding to 8, u, v

may all te identical unless withu = withv = true. In this case, the actual

parameters corresponding to u and v must differ. m > n is ussumed;

begin

integer 1,J,k,1,11;

real c,f,g,h,8,X,¥,2;

array  e(1:n];

for 1:=1 step * until m do

for j:=1 step 1 uatil n do u[4,J]:=a[i,J];

comment Householder's reduction to bidiagonal form;
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g:mxX:mQ;

for i:=t step 1 until n do

begin

e[i):=g; 8:=0; Limit;

for j:=i step ' until m do s:=s + u[j,1]12;

if 8 < tol then g:=0 else

begin

f:eufi,i]; gee if £ <0 then sqrt (s) else -sqrt(s);

Nimf¥g-g; u(i,i]:=r-g;

for j:ul step 1 itil n do

Begin

8:=0;

for k:=i step 1 until m do ::=8 + ulk,i]*u[k,j];

f:=8/h;

for k:=i step 1 until m do ulk,j}:=u(k,j] + t*ulk,1]

end J

q(1):=g; 8:=0;

for J:=1 step 1 until n do s:=5 + uli, jlte;

if 8 < tol then g:=0 else

begin

f:mufi,i41]; g:= if £ < O then sqrt(s) else -sqgrt(s);

h:mf¥gag; uli,i+!]):=f-g;

for j:=1 step ! until n do e{J):=ufi,j}/h;

for j:=1 step ! untilm do

18



begin

§:20;

for ki=l step 1 until n do s:m=a + u[3,k]}%u[i,k];

for k:=l step 1 until n do ulJ,k]:=ulj,k] + s*e(k]

end J

and s;

y:=aba(q[1])+abs(eli]); if y > x then x:=y

end 1;

comment accumulation of right-hand transformations;

AL ¥ithy then for i:=n step -1 until| do

begin |
if g f O then

Begin

h:wuli,i+1]%g;

for j:=1 step | until n do v[J,1):=ul4,J]/h;

for jim) step * wntil n do

begin

B:=0;

for k:=] step 1 until n do s:=s + u{i,k}*v(k,J];

for k:=1 step 1 until n do v[k,Jj]:=v(k,j) + s¥v(k,1]

ed Jj

end g;

for J:=l step 1 until n do vid,3):mw[],1])m0;

v[i,4]:m1; gime[i]; limi

end 1;

19



comment accumulation of left-hand transformations;

begin

limitt; gimq(i];

for j:=1 step 1 until n do uli, Jj):=0;

if g # O then

begin

hiwu(1,i]%g; oo

| for j:=1 step 1 until n do

begin

8:m0}

for k:=1 step * untilm do s:=s + uik,il*ufk,jl;

f:=8/h;

for k:=i step 1 until m do ulk,j):=u(k,3j] + ru[k,i]

end J;

for J:=i step 1 until m do u[j,i):=ulj,i)/g

end g |

else for j:=1 step 1 untilm do u(j,i):=0;

u{i,i):=uli,i] + 1

comment diagonalization of the bidiagonal form;

eps :=eps¥x;

for ki=n step -1 until 1 do

begin

testf splitting:

for liek step -1 wntil 1 do

20



begin

if abs(e(1]) s eps then poto test f convergence;

if abs(ql1-1]) s eps then goto cancellation
end 1;

comment cancellation of e[1] if 1>1;

cancellation:

cimOj s:=l; ll:=l-l;

for 1:el step 1 until k do

begin

f:mgte[1]; e[i]:m=c*e[1i]:

if abs(fr) s eps then goto test f convergen:s;

g:=q[1i]; hi=q[i]:=8qrt(fer + ghg); c:=g/h; 8:=-f/h;

Af ¥ithy then for Jim! step1 witilm do

begin

yi=u[J,11]; z:=u(j,1]);

ufJ,11]:= yc + z#*s; ulj,1]:=-y*s + z¥%c

end J

end i;

test £ convergence:

z:=q{kj; if1 = k then goto convergence;

comment shift from bottom 2%2 minor;

x:=ql]; y:=q{k-1}; @:=e[k-1]; hime[X];

f:=((y-z)*(y+z) + (g-n)*(eth)) / (2*h¥y); g:=sqrt (ff + 1);

r:=((x-z)*(x¢z" + h*(y/ (if £ < O then f-g else f+g) - h)) / x;

21



comment next QR transformation;

C:=8:x=1;

begin

g:=e[1]; y:=q{i}; h:=s%g; g:=c¥*g;

e(i-1]:=z:=3qrT (£%f + h¥h); ci=f/z; si=h/z;

fi=x*c + g*c; g:=-x*s + g¥c; h:=y¥s; y:=y¥%*c;

Af withy Men for j:=! step! untiln do

begin

x:=v[j,i=1}; z:=v[J,1];

vij,i=-1]:=x*c + z*s8; v[j,1):==x*8 + z*c

end j;

q[i-1]):=z:=sqrt(f*f + h*h); c:=f/z; s:=h/z;

fiech*g + 8%y; X:=-8%g + C¥y;

if with then for J:=1 step! untilm do

begin
yi=ulJ,i-11}; z:=ulj,1];

ulj,i=iJi=y*c + 2%s; ulJj,i]:=-s%s + z¥c

end J

e[1]:=0; e[k]):=f; q[k):=x; goto test f splitting;

convergence:

if z < C tnen

begin comment qk] is made non-negative;

glk) :=-z;

if withv then for j:=1 step 1 until n do v{Jj,k]:m=v[],k]

end z

end k

end SYR;
22



procedure Minfit (m,n, p,eps,tol) trans: (ab) result: {(q);

value m,n,p,eps,tol;

integer m,n,p;

real eps, tol;

array ab,q;

comment

Computation of the matrices diag(q), V, and C such that for given real

a*n matrix A and m*p matrix B

us AV = diag(q) and USB = C with orthogonal matrices Yo and v.

The singular values and the matrices V and C may be used to determine X

minimizing (1) | |ax-B| | and (2) |x] |g with the solution |

X = V * Pgeudo-inverse of diag(q) * C.

The procedure can also be used to determine the complete solution of an

underdetermined linear system, i.e., rank (A) =o <n,

The array q[1:n] represents the matrix diag(g), A and B together are to

be given as the first m rows of the array abf1:maix{n,n), 1 tp). Vis

returned in the first n rows and columns of ab while c is returned in the

last p columns of ab (if p> 0);

begin

integer 1i,J,k,1,11,n%,np;

real c,fy8,h,8,X,¥,2;

array  ef1:n];

comment Householder's reduction to bidiagonal form;

25



g:=X:=(Q; Np:=n+p;

for 1:=1 step 1 until n do

begin

e[i):mg; 8:20; l:mi+l;

Tor j:=i step 1 unti) m do s:=s + ablj,i]12;

Lf  < tol then g:=0 else

begin

f:=ab{i,i); g:= if f <O then sqrt(s) else -8qrt(s);

n:=f*g-8; ab{i,i}:=f-g;

for j:=1 step 1 until np do

begin

8:=0} |

for k:=i step 1 until m do s:ms + ab(k,i])%*ablk,jl;

f:=s/h;

for k:=i step 1 until m do ab[k,j):=ab[k,j] + f*ab[k,i]

endJ

end 5;

q[i):=g; s:=0;

if i =m then for j:=l step 1 until n do s:=s + ab(4,3)12;

if s < tol then g:=0 else

begin

f:=abli,i+1]; g:= if f < O then sqrt(s) else -sgrt(s);

h:mf*g-g; ab[i,i+1]:=f-g;

for j:=1 step 1 until n do e[j):=adb[i,jl/h;

for j:=1 step 1 until m do

24



begin

8:=0;

for k:=1 step 1 until n do s:=s + ab[j,k]%ab[{,k];

for k:=1 step 1 until n do ab( j,k) :mab[j,k] + E¥*e[k]

end J

end s;

y:=abs(q[i]) + abs(e[1]); if y > x then x:=y

end i;

comment accumulation of right-hand transformations;

for i:en step -1 until 1 do

begin

if g f O then

begin

h:=ab[i,1i+1]%g;

for j:=l step 1 until n do ab(j,1):=ab[1,j]/h;

for j:= step 1 until n do

begin

8:=0;

for k:=1 step 1 until n do s:=s + ab[i,k]*ablk,J];

for k:=1 step 1 until n do ab(k,j]:=ab[k,j] + s¥*ab[k,1i]

end Jj

end g;

for j:ml step 1 until n do ab[i,j):eab[j,1]:=0;

ab(1,1):=1; g:me[i]; limi

end i;

25



eps:=eps¥*x; nl:=n+1;

for i:= n1 step1 untilm do

for j:=ni1 step 1 until np do ab{i,j] :=0}

comrent diagonalization of the bidiagonal form;

for k:=n step -1 until i do

begin

testf splitting:

for 1:=k step -1 until ! do |
begin

if abs(e[1]) iS eps then goto test f convergence; |
if abs(q[1-1]) s eps then goto cancellation

end1;

comment cancellation of e(1] if 1>1;

cancellation:

ced} 8:=13 11 r=le1s

for 1:=] step 1 until k do

begin

f:ms*e[1]; e[i):=c*e{i];

Af abs(f) S eps then goto test £ convergence:

g:=q(i); q[i]:=h:=sqrt(r#f + g*g); ci=g/h; s:e-f/h;

for j:en! step1 untilnp do

begin

y:=ab(1!,3); z:=abli,J);

ab[11,J]):=c*y + s*z; ab[i,]]:=-8%y + c¥*z

end J

end i;

26



test £ convergence:

z:=q(k]; if 1 = k then goto convergence;

comment shift from bottom 2#2 minor,

x:=q(l); y:=q[k-1]; g:=e(k-1]; h:=e{k];

f:o((y-2z)%(y+z) + (g-h)*(g+h)) / (2%h#y); g:=sqrt(f*r + 1);

f:m((x-2)%(x+z) + h*(y/(if f < O then t-g else f+g) - h))} / x;

comment next QR transformation)

Cimg:m|;

for i:=1+i step| untilk do

begin

g:=el1]); y:=q[i]); h:=s*g; g:=c¥g;

e[i-1):mz:maqrt (£*f + h*h); cimf/z; s:=h/z;

f:mx*c + gs; giw-x¥s + ghc; hiayks; y:=y®:;

for j:=1 step 1 until n do

begin

x:wab{j,i-1); z:=ablj,1i]);

ab[j,i~1]:=x*c + z#*8; ab{j,1):=-x®s + z¥c

end J;

qQ(i-1):=z:=8qrt (£*f + h*n); c:=f/z: s:wh/z;

. fimcig + g¥y; Xim-ghg + chy;

oo "for ji=n! step 1 until np do
begin

y:= ab[i-1,3]); z:=ab[1i,3]);

abli-1,j]:mchy + sz; ab(i,;) :m-ghy + c¥z

end 3

end 1;

e[1]:=0; e(k]:af; q[k]:mx; goto test f splitting;
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sonvergence:

if z <0 then

begin comment q[k] is made non-negative;

q(k]:=-z;

for j:=1 step 1 until n do ablJj,k):=-ab[J,k]

a 201 2
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5. Organizational and Notational Details

(1) The matrix U consists ot the first n columns of an orthogonal

matrix Ce « The following modification of the procedure SVD would

produce U. instead of U : After

comment accumulation of left-hand transformations;

insert a statement

if withu then for i:=n+1 step 1 until m do

begin

for j:=n+! step 1 until m dec uli, j):=0;

end 1;

Moreover, replace n by m in the fourth and eighth line after

that, i.e., write twice for j:=l1 step 1 until] m do.

(i4) m = n is assumed for procedure SVD, This 18 no restriction;

if m<n, store AT , 1.e., use an array at [1:n,1:m] where

at(i,J] represents a, and call SVD(n,m,withv,withu,eps,tol,at,q,v,u)} J ~~

producing the mm matrix U and the nfm matrix V . There is no

restriction on the values of m and n for the procedure Minfit.
_ Ld a aa a and

(111i) In the iterative part of the procedures an element of 5 (1) is

considered to be negligible and is consequently replaced by zero

if it is not larger in magnitude than ex where e€ is Lhe given

tolerance and
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X = max (la {+ eg 1) N
1<in

The largest singular value o, 8 bounded bv x//2 < ay < x2.

(iv) A program organization was chosen which allows to save storage

locations. To this end the actual parameters corresponding to a

and u may be identical. In this event the original information

stored in a is overwritten by information on the reduction,

Tnis, in turn, is overwritten by u if the lctiler is desired.

Likewise, the actual parameters corresponding to a and v may

Agree, Then vis stored in the upper part of 2 if it is

desired, otherwise a is not changed. Finally, all three

parameters a , u, and Vv may be identical unless withu =

This special feature, however, increases the number of multiplications

needed to torm U roughly by a factor n/n .
/

(v) Shifts are evaluated in a way as to reduce the danger of overflow

or underflow of exponents.

(vi) The singular values as delivered in the array gq are not necessarily

ordered. Any sorting of them should be accompanied by the corresponding

sorting of the columns of U and V , and of the rows of C .

(vii) The formal paremeter list may be completed by the addition of a limit

for the number of iterations to be performed, and by the addition of

a failure exit to be taken if no convergence is reached after the

specified number of iterations (f.e., 30 per singular value).
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6. Numerical Properties |

The stability of the Householder transformations has been demonstrated

by Wilkinson [12]. In additinn, he has shown that in the absence of

roundoff the QRalgorithmhas global convergence and asymptotically is

almost always cubically convergent.

The numerical experiments indicate that the average number of complete

QR iterations on the bidiagonal matrix is usually less than two per

singular value. Extra considerationmust be given to the implicit shift

technique which fails for a split matrix. The difficulties arise when

there are smll q's or e's « Using the techniques of Section 1.4,

there can not be numerical instability since stauvle orthogonal transformations

are used but under special circumstances there nay be a slow down in the

rate of convergence,
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Te Test Results

Tests were carried out on the UNIVAC 1108 Computer of the Andrew R.

Jennings Computing Center of Case Wertern Reserve University. Floating

point mumbers are represented by a normalized 27 bit mantissa and a

7 bit exponent to the radix 2, whence eps = 1.5,45-8 » tol = 431.
In the following, computed values are marked by a tilde and m(A) denotes

max|a, 4 .
First example:

22 10 2 3 7 -.1 1 O

14 7 10 © 8 2 -1 1

-1 13 1-11 3 1 10 11 |

«3-2 13 2 4 Lb 0 &
A= Bm

9 8 1 2 4 0 -6 «6

9 1 7 5 -1 3 6 3

2 6 6 5 1 l 11 12

bk 5 0 2 2 0 5 «5

The homogeneous system Ax = @ has two linearly independent solutions.

Six QR transformations were necessary to drop all off-diagonal elements

below the internal tolerance 6.4, ,-8 . Table 1 gives the singular

values in the sequence as computed by procedures SVD and Minfit. The

accuracy of the achieved decomposition is characterized by

mA- BE) = 238, 8, APU -1) «8.1.8, mV- I) =3.3,.-8.
10 10 10
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Table 1

Tk “xx

19.595916 191

19. 999999 143
-3

1.97457 -19.7 * 10

55.327038 518

The camputed solutions of the homogeneous system are given by the first

and fourth column of the matrix V (Table 2),

Table 2

0.4190 9545 0 -1.5 0 (Def.

0.4405 0912 0.4185 4E06 1.7 0.6

0.6760 5915 0.2kh1 53C5 1.0 0.53

0.4129 7730 -0,8022 1713 1.3 -0.8

Procedure Minfit was used to compute the solutions of the minimization
I aa

nroblem of Section 2.3 corresponding tc the three right-hand sides as given

by the columns of the matrix B . Table » lists the exa~t solutions and

the results obtained when the first and fourth value in Table 1 are

replaced by zero,
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Table 3

1 *2 is * Xa 5

-1/12 0 -1/12 -0,C833 333% 0.17,,-8 -0.0833 %333

0 J 0 -0.58, =" -1.09, 4-8 -1.11,,-8

1/4 C 1/4 2.2500 0002 1.55,,-8 0.2500 C003

-1/12 Q -1/ 1 -0,0%.% %330 0.74, 4-8 -0.0833 3332

1/12 0 1/12 0.0F33% 233) 0.33,5-8 0.0833 3334

Residual

0 8/5 G5

A second example is the 20¥.]1 matrix with entries |

C if 1 >

1<i<20

a, . = 21-1 if i =]
» 1<j<2

-1 if 1<

which has orthogonal rows and singular values o.,, = N, k{k+l) ,
K = Ojeeey20 « Theoretically, the Householder reduction should produce

a matric s{o) with diagonal -20,0,...,0 and super=-diagonal

R 20505 eeay0s0 . Under the influence of rounding errors a totally
different matrix results. However, within working accuracy its singular

values agree with those of the original matrix. Convergence is reached

after 32 QR transformations and the 9, y K=1,...,20 are correct within

several units in the last digit, 5. = 1.61, -11 .=

A third example is obtained if ithe diagonal of the foregoing example

is changed to
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2,4 = 4 ,» 1<1i<20,

This matrix has a cluster of singular values, %10 to %4g lying between

l.5 and 1.6, pg = /2, 95; = 0 » Clusters, in general, have a

tendency to reduce the number of required iterations; in this example,

26 iterations were necessary for convergence. [5 = 1.49, ,-8 is
found in eighteenth position and the corresponding column of VY differs

from the unique solution of the homogeneous system by less than Sel o=8

in any component.

A second test was made by Dr, Peter Businger on the CLC 6€00.

/

Acknowledgement: The authors wish to thank Dr. Peter Businger of Bell

| Telephone laboratories for his stimulating comments.
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