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C Abstract

Several algorithms are presented for solving linear least squares

| problems; the basic tool is orthogonalization techniques. A highlyaccurate algorithm 1s presented for solving least squares problems with

{ linear inequality constraints. a pethod is also given for finding theleast squares solution when there 1s a quadratic constraint on the

solution.
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[, O. Introduction
One of the most common problems in any computation center 1s that of

L finding linear least squares solutions. These problems arise 1n a variety
of areas and in a variety of contexts. For instance, the data may be

[ arriving sequentially from a source and there may be some constraint on
the solution. Linear least squares problems are particularly difficult

[ to solve because they frequently involve large quantities of data, and
they are 1ll-conditioned by their very nature.

L In this paper, we shall present several numerical algorithms for
solving linear least squares problems in a highly accurate manner. In

| addition, we shall give an algorithm for solving linear least squaresproblem with linear inequality constraints.

l. Linear least sauares

L Let A be a given mxn real matrix of rank r and b a given
vector. We wish to determine X such that

L ) 5 2(b, - a..x.)” = min.
i=l t i=1 TY

L or using matrix notation

| lo-Ax]l, = min. (1.1)
If m>n and r<n, then there 1s no unique solution. Under these

L conditions, we require amongst those vectors X which satisfy (1.1) that

[ ll, = min.

[ Forr =n, Xx satisfies the normal equations
afaz = av (1.2)

T _i Unfortunately, the matrix AA is frequently ill-conditioned and
influenced greatly by roundoff errors. The following example illustrates

i this well. Suppose
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i which is clearly of rank 4 . Then .
1+” 1 1 1

[ 2

| T 1 1 1 +e”
| AA = 1 1+¢ l+¢) 1'

and the T 2 2 2 2

| eigenvalues of AA are b+e” , €7 , €° , €° . Assume that theelements of ATA are computed using double-precision arithmetic, and then
rounded to single precision accuracy. Now let 7 be the largest number

A on the computer such that £1(1+n) = 1 where £2(...) indicates thefloating point computation. Then if ¢ < /7q ,

I 1 1 1 1
i 11 1 1

fi ) = |q (AA) 1 1 1 1 ?
1 1 1 1

L a matrix of rank one, and consequently, no matter how accurate the linear |
equation solver it will be impossible to solve the normal equations (1.2).

[ IONGIEY [1967] has given examples in which the solution of the normal
equations leads to almost no digits of accuracy of the least squares problem.

| 2. A matrix decomposition
T 1/2

Now Iyll,, — (y v) / SO that lay, = yl, when Q 1s an orthogonal
[ matrix, viz., QQ = I . Thus

-

where ¢ = Qb and Q 1s an orthogonal matrix. We choose Q so that

| ~~

0

| } (m-n)xn
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| where R 1s an upper triangular matrix ND. Let

| 12. T12 . * . Tin
Too. Top

0 r
[ nn

then

{ [b-Ax]2 = (c.-r,. x -r. x - -r. X )e~ 12 17111 "1272 °° Inn
2

+ - -

| (c, TooXs af oe XM ry X,)
+ ... + (c_-r x)

n nnn

2 2 2

| TClm1 TC Tot Cy

[ Thus [|b-Ax|[S 1s minimized when
%_ + A A C=
1 TTT ee Tn TG

LC. "m*n 7 Sn

| i.e., Rx = €, where
” T

c= (c1sCpsennsc ) ’
| ) and

all2 2 2 2
b-A =

I |b X||5 Cpl F Cyn Fert (2.2)
Then

. RR = [RIO] [RI0] = B°R
T T 2.3

| ~ alfa = 4% (2.3)
and thus RR 1s simply the Cholesky decomposition of AA .

I There are a number of ways to achieve the decomposition of (2.1);
e.g. one could apply a sequence of plane rotations to annihilate the

| elements below the diagonal of A | jp very effective method to realize

3



the decomposition (2.1) 1s via Householder transformations. A matrix P

| 1s said to be a Householder transformation if

| P— I -2uu , wu-=1.] T T T T
Note that 1) P = pr and 2) PPL = I - uu - 2wu + lum uu = I so

that P is a symmetric, orthogonal transformation.
4- Let al) = A and let a (2) , LO) yesey An 1) be defined as follows:

+| alk 1) = pk), (Kk) (k = 1,2,..4,n)
T T

| k

| where p(k) =71 ~- ony (E(B) , ne oo (E) = 1 . The matrix p ) 18
(k+1) (k+1) k+1)

chosen so that tl Kk A io k ce =
| transformations

| (2) (2) | (2)
11 2. ln

L (3) (3)
O no ’ ; . a5

| 0 J [J ® |]
, (k+l , (ktl

| ) | kk ) °° kn ) || A (k+1) _ ON
| : / “k+1,k+1 : | |

| . i 0 : Co
J

(k+1) (k+1)

| © © fel © Zmn
m .

(k+1) (k)\2y1/2 (k)| Note that Eh | = (Ly (a, 17) since P is an orthogonal
transformation. The details of the computation are given in BUSINGER and

| GOLUB [1965] and GOLUB [1965]. The Householder transformations have been used
in a highly effective manner by KALFON et al. [1968] in the implementation

| of the projection gradient method.
Clearly

] Rr _ a (+1)
| 4



and

| 0 = pps) (1)

| although one need not compute Q explicitly. The number of multiplicationsrequired to produce R is roughly mn°-(n’/3) whereas approximately
mn) multiplications are required to form the normal equations (1.2).

| 3. The practical procedure
It 1s known that the Cholesky method for solving systems of equations

| 1s numerically stable even 1f no interchanges of rows and columns are
performed. Since we are 1n effect performing a Cholesky decomposition

| of ATA no interchanges of the columns of A are needed 1n most
situations. However, numerical experiments have indicated that the

| accuracy 1s slightly improved by the interchange strategies outlined
below, and consequently, in order to ensure the utmost accuracy one

| should choose the columns of A by some strategy. In what follows,we shall refer to the matrix ak) even 1f some of the columns have
been interchanged.

| One possibility 1s to choose at the oh stage the columns of
k _ +

| al ) which will maximize alk 1) This 1s equivalent to searching for
| the maximum diagonal element in the Cholesky decomposition of ATA .

Let

m
. k k)\2

J : 1,] ?
j=k

k+ k 2

| Br since a5 1)| = (s! \1/ , one should choose that column for which~ (k _ k+

Sy 1s maximized. After al 1) has been computed, one can compute
k+1

| 5! ) as follows:
(k+1) (kx) , (k+1) 2

S = S. -{a - 1 = + see

since the orthogonal transformations leave the column lengths invariant.

i Naturally, the 3 's must be interchanged if the columns of 2 (Kk) are
interchanged.

| >
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The above strategy 1s useful in determining the rank of a matrix.

i If the rank of A 1s r and the arithmetic 1s performed exactly, then
after r transformations

alr) | ox C(eerxe |

i 0 N: and |

+

| 3% 1) = 0 for j= r+l,...,n
which implies N = 0 . In most situations, however, where rounded

§ arithmetic is used [NM] =¢ . It is not easy to determine bounds on ¢
when the rank of A 1s unknown.

| The strategy described above 1s most appropriate when one has a
sequence of vectors Bysbpseeesby for which one desires a least squares

| estimate. In many problems, there is but one vector b and one wishes
- to express 1t in as few columns of A as possible. Or more precisely,

one wishes to determine the k 1ndices such that

| n k 5
3 (by - ) as X. )7 = min.

| i=1 v=1 Ty Jo
We cannot solve this problem, but we shall show how to choose index k

| when the first k-1 indices are given so that the sum of squares of
residuals 1s maximally reduced. This :is the stage-wise regression problem.

| We define (2) (2)
rq Ca Lo ary PRP a

(3) (3)L Rk+1) fpr Tex | Gop eres Foy

| . © (k+1)
“kk “kk

-

- (1) (1) _ 0k) (k) 2), (x1) _ g(x)Let C =Db and c = P Cc * Now R' 7X = C where

| o(k-1) | | ]
J X 1s the least squares estimate based on (k-1) columns ofA and

TI
~ (k) (x) (x) k

I c = Ch »Co eeeretR)) . Thus by (2.2)
6

|
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~ m
(k+l kK+1)a 2

| Jo (rl) | Rela (o)p2 7 (o(k+1)y2~ ~ 2 . J
J=k+1

m

(k+1).2 (k+1).2

=k

5 (k)\2 (k+1) 2
| = 3 (ef) - (eK)j=k

| since length 1s preserved under an orthogonal transformation. Consequently,
| we wish to choose that column of 2 (K) which will maximize ol)

Let |

L (6) = (5 a0) (Kk) for j = k+1
i=k

L k+1 m k) (k k
Then since|c )] = (Ly atk)! ))/s! )] , one should choose that

. | :

| column of al ) for which (85027) 1s maximized. After ol X 1s
| applied to alk) , one can adjust 6%) as follows:

g (kl) (k) _ (k+1) (k+1) |
J J KJ k

L In many statistical applications, if (1(8)y2 5 (k) is sufficiently small,
J J

| then no further transformations are performed.

| ’ 4. Statistical calculations
In many statistical calculations, it is necessary to compute certain

-auxiliary information associated with A'A . These can readily be obtained

‘from the orthogonal decomposition. Thus

- T,\ _ 2
det (A"A) = (r\; X Too Xo. o x1)"

Since

T ~ - “el
ata =rR , A)! orRT

The inverse of R can be readily obtained since 5 is an upper triangular
matrix. It is possible to calculate (ata)? directly from R . ILet

/



(AA) = x = (xp, eeesx).

Then from the relationship

RX =R" oo |

and by noting that {87}, = 1/r, , 1lt 1s possible to compute X 9Xgree
The number of operations 1s roughly the same as in the first method but

more accurate bounds may be established for this method provided all inner

om products are accumulated to double precision.

In some applications, the original set of observations are augmented

- by an additional set of observations. In this case, 1t 1s not necessary

to begin the calculation from the beginning again 1f the method of

orthogonalization 1s used. Let R,E correspond to the original data
after it has been reduced by orthogonal transformations and let Ans Ds

| correspond to the additional observations. Then the up-dated least squares
solution can be obtained directly from

- I EE

_ "1 S1
This follows immediately from the fact that the product of two orthogonal

3 transformations 1s an orthogonal transformation.
The above observation has another implication. One of the arguments

frequently advanced for using normal equations is that only n(nt+l)/2

- memory locations are required. By partitioning the matrix A by rows,
however, then similarly only n(n+l)/2 locations are needed when the

_ method of orthogonalization 1s used.
In certain statistical applications, it 1s desirable to remove a row

1 of the matrix A after the least squares solution has been obtained. This
can be done in a very simple manner. Consider the matrix

EIRENEA = cieee and d = cose

i LZ ) + 8
L

where & is the row of A which one wishes to remove, B 1s the corresponding

element of b , and i =/-1 . Note that
— :

8



s's = ®'R - o'a = ATA - ola .

L Let
| | COS © 0 . . . . sin ©

0 1

\

21 n+l - 0) 1 0

sin © 0 -cos © |

(0) (2) (1)

| S'"/ =8 , and S = 21 ne1” :
We choose cos © so that (s(2)y = Thus

| n+l, 1
2), 2 2

g (sl L rr maa (ER) 5 =2,3,.. mn
1, 1171 1°] 11 1 ILI w ed

| (2) . 2 2 .
{s Jel, ; = ior yaar V(r ay) J = 2,3,s.4,n .

| Note no complex arithmetic is really necessary. The process is continued
as follows:

I Let
k n+l

i
|

| 1 . |
“x, n+l = | ® de moo S S1n ® k . (4,1)

| sin or : ~ COS ©, n+l
!

- 9



| Then
k+1 (k

L (k+l) 2
and cos ©, is determined so that (S be ot1 = 0 - Thus roughly 3nb J

| multiplications and divisions and n square roots are required to form thenew R .

| Suppose 1t 1s desirable to add an additional variable so that the

L matrix A is augmented by a vector g (say). The first n columns of

| rn) are unchanged. Now one computes
n= pp)

+| From h one can compute p(n 1) and apply 1t to p(n) p(y This
technique is also useful when an auxiliary serial storage (e.g. magnetic

| tape) 1s used.
It 1s also possible to drop one of the variables in a simple fashion

I after R has been computed. For example, suppose we wish to drop
variable 1 , then

L Tr CL. “1p |
R= | |

| 3
; r

| L fh nx (n-1)
‘By using plane rotations, similar to those given by (4.1), it is possible

| to reduce R to the triangular form again.

5. Gram-Schmidt orthogonalization

| In $2, it was shown that it is possible to write

| A =R . (5.1)
The matrix Q is constructed as a' product of Householder transformations.

|

L 10



From (5.1), we see that

| A = O'R = PS
T

i where PP=1I ’ S \ - Each row of S and each column of P 1is
uniquely determined up to a scalar factor of modulus one. In order to avoid

| computing square roots, we modify the algorithms so that S is an upper
triangular matrix with ones on the diagonal. Thus PP _ , a diagonal

| matrix. The calculation of P and S may be calculated in two ways.
a) Classical Gram-Schmidt Algorithm (CGSA)

[ The elements of S are computed one column at a time. Let

[ AT = PProeB 158)50 0,8]
and assume h

| SN
Pi By = 95% >» 1< 1,5 <k-1.

[ At step k , we compute
Ss. = (p> a /d.) 1< i < k-1

[ ik ~i Jk i ? —- 7 —
k-1 5

[ Pe = 2x © L Six Di 4 Gh = lel

[ . b) Modified Gram-Schmidt Algorithm (MGSA)
Here the elements of S are computed one row at a time. We define

| k k k
a ) . (ps Ps; . By pal ), © al ))

\

L and assume

T  _ T _ (k) oo

1 Pi By = 0% Gf 8 = 0 l<4,J<k-1, kSl<n,
At step k we take p = a (K) d t

i ’ 5 2 , and compute
0 + T _(k) (k+1 Kk

~ ki Zk

11
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In both procedures, SA 1 . The two procedures in the absence of
[ roundoff errors, produce the same decomposition. However, they have

completely different numerical properties when pnp >2 , If A is at all

[ "1ll-conditioned", then using the CGSA, the computed columns of P will
soon lose their orthogonality. Consequently, one should never use the

[ CGSA without reorthogonalization, which greatly increases the amount of
computation. Reorthogonalization 1s never needed when using the MGSA.

1

[ A careful roundoff analysis is given by BJORK [1967]. RICE [1966] hasshown experimentally that the MGSA produces excellent results.

The MGSA has the advantages that it 1s relatively easy to program,

B and experimentally (cf. JORDAN [1968]), it seems to be slightly more
accurate than the Householder procedure. However, it requires roughly

| mn /2 operations which 1s slightly more than that necessary in the
Householder procedure. Furthermore, it is not as simple as the Householder

[ procedure to add observations.

L 6. Sensitivity of the solution

[ We consider first the inherent sensitivity of the solution of the
least squares problem. For this purpose it is convenient to introduce the

[ condition number «(A) of a non-square matrix A . This is defined by
<a) = 0,/0_ , oy = max |lax]l, / [|x| , 0 = min [lax], / [x]1” n 1 ~'2 ~''2 n ~12 ~ 2

x£O XEO
L 2 2 T

sO that o., and a are the greatest and the least eigenvalues of AA .

[ From its definition it is clear that «(A) is invariant with respect tounitary transformations. If R is defined as in (2.1) then

[ o,(R) = 0, (8) , 0(R) =o(a) , k(R)= Kd) ,
while

L ®) = [El], and o (R) = 1/ JR, -°1 ) = I n 2

L The commonest method of solving least squares problems 1s via the normal
equations J

L atax = ap. (6.1)
. 12



!
| The matrix ATA 1s square and we have

T 2

This means that if A has a condition number of the order of ~t/2 then
L ;

aa has a condition number of order ot and it will not be possible
| using t-digit arithmetic to solve (6.1). The method of orthogonal
— transformations replaces the least squares problem by the solution of

Ny the equations Rx = § and «(R)= «(A) . It would therefore seem to have
1 substantial advantages since we avoid working with a matrix with condition

2

| number kK (A) .

a We now show that this last remark is an oversimplification. To this |
end, we compare the solution of the original system [A . b] with that of

a

_ a perturbed system. It is convenient to assume that

| 9, = all = oll, = 1;

- this 1s not in any sense a restriction since we can make Al, and ol,
| of order unity merely by scaling by an appropriate power of two. ye ow
L have

<a) = kB) = [EY], = 1/2 .

Consider the perturbed system

|
L (A + El Db + ee) Ell, — ello = 1,

| ] where g¢ is to be arbitrarily small. The solution x of the perturbed
u oo | ~

system satisfies the equation

| r ] :
L (A + €eE) (A + eE)X= (A + €E)"(b + ge) (6.2)

8 If X¥ is the exact solution of the original system and Q is the exact
orthogonal transformation corresponding to A we have

( ~ 1 5 -

QA = woe 9 QA + ¢E) = SSI P) Qe = ese |: 10 e(} ~ or
| od £| J
( and

x I

| r= _b-Ax , KN r = ©
e_

! 2
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| Equation (6.2) therefore becomes

- Trp | T
(A + eE)" (A + ¢E) = (A" + eE') (Ax tp toga)

giving -

R + ¢F R + eF{_ R + ¢F R f
_ * 6 6 0 00 seceeeX 1 ® & 00 00 eae X + ¢ co. + eB yr LJ

2 \ | ~ ”
{ Neglecting ¢ where advantageous,

(R + eF) (R + eF)x = {R T =a a T T o
a = + eF)" RX + €(R + ¢F)" f + ¢E r + 0(e")

= 3 -1l ~- iy -1 “ee =
x= (R+eF)  Rx+e(R+eF)™ + e(R'R) 1 lp + 0(e)

- = % - er wm -1 -1 T=.
=X eR FX + eR f+ eR f+ ¢e(RR) Lgl, i 0(e2)

| giving |
. oa a A ~=1 ~=1 2 2 |

x=-X||~ < €l|R BF +Ix-l, < el EH EI, + el& Hell, + el&22 Nelel, + oe?)
L 1%] : :< ex(@lIxl, + ex(a) + ex®(a)zll, + o(e%) .

| 2

| We observe that the bounds include a term gK (A)ll=ll, . It is easy to
verify by means of a 3 Xx 2 matrix A that this bound is realistic and

that an error of this order of magnitude does indeed result from almost

N any such perturbationE of A. We conclude that although the use of

the orthogonal transformation avoids some of the 111 effects inherent in

. the use of the normal equations the value K fa) 1s still relevant to some
extent.

| . When the equations are compatible Ill, = 0 and the term in “ (A)
d&appears. In the non-singular linear equation case r 1s always null

and hence it is always «k(A) rather than A) 'which-is relevant.
Since the sensitivity of the solution depends on the condition number,

it 1s frequently desirable to replace the original unknowns x by a new

vector of unknowns px where D 1s a-diagonal matrix with-non-zero

diagonal elements. Thus we wish to find § for which

Fo-c3ll = min. |

14



: where C = AD and y = x . Let 5 be the set of all n x n diagonal
. matrices with non-zero diagonal elements. We wish to choose D so that

| Kk (AD) < k(AD) for all Del.
o 0

= Let Deg and {D}.. = lal, . VAN, DER SIUIS [1968] has shown that
0 A

_ k(AD) </n (AD) .

| Therefore in the absence of other information, it would appear that 1t 1is
| best to precondition the matrix A so that all columns of the matrix A

| ~~ have equal length. In practice, one adjusts the exponents of the storedelements of A so that the mantissa of the floating point representation

| 1s not changed,

L T. Iterative refinement for least squares problems
The iterative refinement method may be used for improving the

X solution to linear least squares problems. 1.t

. Gp = b-Ak , a>0
| ~~
1
v so that

| oats = i b-A"A% =e
When & = 1 , the vector p is simply the residual vector r . Thus

al {| A P b
coe - eee } + 1

or |

Cy = g :

One of the standard methods for solving linear equations may now be used

to solve (7.1). However, this is quite wasteful of memory space since the

dimension of the system to be solved is (mtn) . We may simplify this

problem somewhat by noting with the aid of (2.3) that

15



| 1

al A Jo I 0) Jo I Ta A
L = = WU. (7.2)

T 1 ,T 1 =T 1 =
—— 0) - R

AP at |zat 7a

Once an approximate solution to Cy = g has been obtained, 1t 1is

i frequently possible to improve the accuracy of the approximate solution.
Let y be an approximate solution, and let wv = g-Cy . Then 1f y = y+d

| 5 satisfies the equation

[ | Cd =v . (7.3)
Equation (7.3) can be solved approximately from the decomposition (7.2). Of °

i course, it 1s not possible to solve precisely for 8 so that the process
may be repeated

We are now 1n a position to use the _iterative refinement method

- (cf. MOLER [1967], WILKINSON [1967]) for solving linear equations. Thus one |

[ might proceed as follows:
1) Solve for (©) using one of the orthgonalization procedures outlined

[ in § 2 or 5. R must be saved but it is not necessary to retain Q . Then

(s+1)
2) The vector vy 1s determined from the relationship

L (541) _ (8) (5)
[ where

os (8) = g-cy'®) = (8) . (7.4)

L This calculation 1s simplified by solving
[ (8) _ (8)

The vector 8) must be calculated using double precision accuracy and

. then rounding to single precision.

i 16



a
3) Terminate the iteration when 16%) / lr) is less than a

i prescribed number.
| Note that the computed residual vector is an approximation to the

| residual vector when the exact solution X is known. This may differ
from the residual vectorcomputed from the approximate solution to the

i least squares problem.
There are three sources of error in the process: (1) computation

| of the vector ne) , (2) solution of the system of equations for the
1 correction vector p(s) , and (3) addition of the correction vector to

the approximation y ® . It 1s absolutely necessary to compute the

| components of the vector ne) using double precision 1nner products and
oo then to round to single precision accuracy. The convergence of the iterative
g refinement process has been discussed in detail by MOLER [1967]. Generally

speaking, for a large class of matrices for k > k, all components of (8)
i are the correctly rounded single precision approximations to the components

of Y . There are exceptions to this, however, (cf. KAHAN [ 19661).

| Experinetally At has been observed, in most instances, that ifS 180, / 15, s 2® ner

L ML = mex byl

i then k > [t/p] . We shall return to the subject of iterative refinement
when we discuss the solution of linear least squares problem with linear

oo constraints.

L A variant of the above procedure has been analyzed by BJORCK [19671],
[1968], and he has also given an ALGOL procedure. This has proved to be

3 a very effective method for obtaining highly accurate solutions to linear
| - least squares problems.

|

| 8. Least squares problems with constraints
—

Frequently, one wishes to determine X so that [[o-A%]|, is minimized
| subject to the condition that GX = h where G 1s a pXn matrix of rank p .

One can, of course, eliminate p of the columns of A by Gaussian elimination

_ after a pxp non-singular submatrix of G has been determined and then solve

B 17]



L the resulting normal equations. This, unfortunately, would not be a numerically

| stable scheme since no row interchanges between A and G would be permitted.) If one uses Lagrange multipliers, then one must solve the (nt+p)x(n+p)

| system of equations.
Atal ct |x| | af

[ cel o= | (8.1)
G 0 A h

where MN is the vector of Lagrange multipliers. Since %X = (KX A) “A b-(A"A) "aA

| aata)t of A = 62g
where

L 7 = (ata)t af bo

| Note z 1s the least squares solution of the original problem without
constraints and one would frequently wish to compare this vector with the

| final solution X . The vector z , of course, should be computed by theorthogonalization procedures discussed earlier.

Since ala = RR , aaa) tet = WoW where W = 7 Tt . After W 1is
[ computed, it should be reduced to a pxp upper triangular matrix K by

orthogonalization. The matrix equation

L K KA = Hz-g
[ ) should be solved by the obvious method. Finally, one computes

[ % = z-(ATA)"1 OA
T \~1 =e]

where (AA) "GN can be easily computed by using R = .

| It is also possible to use the techniques described in §7. Again,
let r.= b-AX so that from (8.1)

. I : A 0 r b
oe CL (8.2)

| at at % - 0
; ang: soe Fa

| © G | 0 CA [ n

18
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L .

[ Dz=g .
Note D 1s an (mtn+p) x (mn+p) matrix. We may simplify the solution

[ of (8.2), however, by noting that

[ I AO I 0 0 I {A} O
T T Tj ~T |

L o| alo o | st} 0} 0] s

m= 1\T T _
where B = (GR')" = PS and PP =I with S : NY . The decomposition

(8.3) can be used very effectively in conjunction with the method of iterative

| refinement. BJORCK and GOLUB [1967] have given a variant of the above
procedure which requires Q and P .

| 9. Linear least squares solutions with inequality constraints
Again let A,G be given real matrices of orders myn , pxn , with

| m>n, and let b , h be given real vectors of orders m , p . For any
vector x we define

L r = b-Ax

| . and we wish to determine an x such that
I ; !

i Tg = mn.
- subject to

| Gx >h .
Our problem can therefore be stated as follows: find r , x , w such that

L r + AX = Db
| GxXx—-—-w=h

| w>0
T
rr = min.

| ~~
L 19



These problems can be solved by quadratic programming Put We present

| an algorithm in this section which leads to a much smaller system of equations
and highly accurate results.

[ If we define
‘1 T ’

f(r,w,X,¥,2) = 5LT- v= (r+Ax-b) - 2" (Gx-w-h)

L where we require without loss of generality that z > @ , then an equivalent
| problem is to determine r,w,X,¥,Z such that

w,z > ©

| f = min.

L Equating to zero the partial derivatives of f with respect to r.x.¥-2

1 respectively, we get
r -Yy = ©

| aly = ea = ©

| r + Ax - bb =6

| GXxX—-w—-—h=28 .
Further, let the elements of w,z be WZ (i = 1,2,...,P) . Then

[ Of i}
ow. a i °

\

[ Now if W. > 0 in the optimal solution, the constraint w, > 0 1s not
—binding and we have

L of
So = 9

| ii.e.,

[ LA > 0 => z, = 0 .
Since 2 > 0 , this further means that

i 20
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| (For otherwise, Zs > 0 => Ww. > 0 => Zs = (0 which 1s a contradiction.)
Accordingly, our problem has become one of finding a solution of the

| system -

| r + Ax =D (9.1)
Ar + Gz = © (9.2)

L Gx -w=h (9.3)
| such that

T

| z > e , w>6 , ZW=0 .
We now determine an orthogonal matrix Q and an upper-triangular

| matrix R such that

i TU
where R 1s nxn and non-singular 1f rank(A) = n . Then

L ala = Rf = ®”'R .

| Letting B = (GR 7)" and eliminating r from (9.1) and (9.2) it is easily
verified that

X = X + R "Bz ’ (9.1)

| where
% = (RR)! IN

| 1s the unconstrained least squares solution (i1.e., the solution of (9.1) and
(9.2) with z = 6). % is found by the methods of §7.

| We now determine if X satisfies the original inequalities: if we
define q = GX-h and find that gq > 6 then the constraints are satisfied

| and X solves the problem.
"Otherwise, we substitute (9.4) in (9.3) and obtain

I 21



G(x + R182) - WwW =h

| | or
T

| BBz+g=w
where we further require’ (9.5)

i Z > a , Ww > a] p 72"w = 0

| Thus we find that z,w solve the linear complementarity problem (LCP)
defined by (9.5). This is a fundamental mathematical programming problem

| and several algorithms have been developed for finding solutions (e.g. see .
LEMKE [ 1968], COTTLE [ 1968], COTTIE and DANTZIG [1968]}). The matrix M = BR

| is positive semi-definite, and this 1s one of the cases when, for example,the principal pivoting method in COTTLE [1968] guarantees termination with

a solution, or with an indication that none exists.

L Once z has been found it would be a simple matter to substitute |
into (9.1), (9.2) and find r,Xx from

{ r+Ax=Db ' | |
TT (9.6)

| pty = eo

| In practice, however, 1f we are concerned with the accuracy of our estimateof x we use the solution of the ICP (9.5) only to determine which elements

of w are exactly zero. These are the w. which are non-basic in the

L ’ solution of (9.5). (There 1s certainly at least one such w, , for
otherwise we would have z = ©, Ww > , which is the case checked for

| ‘earlier in determining whether or not X solved the problem.)
We now delete from (9.3) those constraints for which Wy is basic,

| obtaining an £xn system of equations
Gx = h |

-

where 1<Z <p.

| If z is the vector z with the corresponding elements deleted, the
g remaining step 1s to solve the system

|
LC
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L
r + Ax = Db

_ alr + GE = 0 (9.7)
| Gx = h “

| where we are now working with original data and can therefore expect a
- more accurate solution than could be obtained from (9.6). We can now apply

the methods of §8 to this system of equations.

| The standard methods for solving the linear complementarity problem
aiploy the elements of w as the initial set of basic variables, with all

i elements of =z initially non-basic. In general, it 1s probable that only
a small proportion of the inequalities 1n the original problem will be

| constraining the system, which means that only a small proportion of the Wo
will be non-zero. Hence it might be expected in general that only a small

number of iterations (relative to p ) should be required to bring some of

L the Z. into the basis and reach a feasible solution.
: In our particular form of the problem, since the matrix M = BB
| has 1ts largest elements on the diagonal, accuracy can be conserved, to

within the limits of the error in forming M , by interchanging rows

§ whenever a column of M 1s brought into the basis 1n such a way that the
diagonal elements of M become diagonal elements of the basis matrix.

| This 1s easily done 1f the LU decomposition of the basis 1s calculated
each iteration as in the treatment of the simplex method by BARTELS [1968]

and BARTELS and GOLUB [ 1969].

L Note that B = (er~ Ht can be determined column by column via

| repeated back-substitution on the system
: RB = at .

| The algorithm presented here can be used for any quadratic programming
problem when a positive definite quadratic form 1s given. Suppose we wish

i to determine an x such that
x Cx + ax = min.

subject to GX > h }
| .

i ?



| Since C 1s positive definite, we may write

- Cc = R'R

3 where R(N) is the Cholesky factor of C . Such a decomposition can
easily be computed. If we now define 'b = - % Rd (and calculate b

| from Rb = - # d ) we find that

| lb - Rx||5 = bb - 2b'Rx + X R Rx
- bb + dx + x'Cx

and consequently if we determine an x Such that

Co Ib - Rxl, = min.

| subject to Gx > h

i then x will satisfy (9.8) as required.

| 10. Singular systems
If the rank of A is less than n and 1f column interchanges are

3 performed to maximize the diagonal elements of R , then
| R S

| | ; 5 (r+1) _ Ryxr (n-r)xr
0 0

3 when rank(A) = r . A sequence of Householder transformations may now be
+

‘applied on the right of ar 1) so that the elements of S(n-r)xr become
| annihilated. Thus dropping nsefrs and superscripts, we have
i T | 0QZ = T =
. 0 0

| where T 1s an rxr upper triangular matrix. Now
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T T

Io - axl, = lo - @ 1 27x,

L = || c -Tyll,,
i where ¢ = Qb and y = 70x . Since T 1s of rank r , there is no unique

solution so "that we impose the condition that 1%, = min. But Iyll,, — Ill,

| since T 1s orthogonal and lyll, = min. when

1 Yoel “Vp = = = - =¥, = 0Thus

| illoXx =Z Qb

| 0 ©)
This solution has been given by FADEEV, et, al. [1968] and HANSON and

| LAWSON [ 1968]. The problem still remains how to numerically determine
the rank which will be discussed in $12.

| 11. Singular value decomposition
Let A be a real, mxn matrix (for notational convenience we assume

[ that m >n ). It is well known (cf. IANCZOS [1951]) that |
T

A = UV (11.1)

L where

m n

and

L 1
3. = * @ .

‘a

0 }(m-n)xn
[ The matrix U consists of the orthonormalized eigenvectors of AAT , and

m

the matrix V consists of the orthonormalized eigenvectors of A*A . The

| =



diagonal elements of ¥ are the non-negative square roots of the eigenvalues

| of ata they are called singular values or _principal values of A . We
-

assume

= = = = — Co

| Thus if rank (A) r , 01 i" Ce. 0, 0 . The decomposition
(11.1) is called the_singular value decomposition (SVD).

| Let
0

A = | (11.2)

L k

| It can be shown that the non-zero eigenvalues of #A always occur in #
pairs, viz.

L A(R) = + os (A) (J = 1,2,e00,T) . (11.3) |
-

L 12, Applications of the SVD

2 The singular value decomposition plays an important role in a number
of least squares problems, and we will illustrate this with some examples.

L ) Throughout this discussion, we use the Euclidean or Frobenius norm of a
matrix, viz.

2,1/2
L [|All = (Z]ay | ) .

L A) Let UW, be the set of all nxn orthogonal matrices. For an arbitrary
nxn real matrix A , determine Qell, such that

- |A-Q|| < ||A-X|| for any Xeu.

L It has been shown by FAN and HOFFMAN [1955] that if
T

| A — uzv 3 then Q = UW
. 20



B) An important generalization of problem A occurs in factor analysis.

| For arbitrary nxn real matrices A and B , determine Qeu, such that

| |A-Bq|| < ||A-Bx|| for any XeU .
It has been shown by GREEN [1952] and by SCHONEMANN [1966] that if

L B'A= usv'  , thenQ = Ww

Cc) Let nk) be the set of all mxn matrices of rank k . Assume
[

i aem'®) | petermine B®)(x < r) such thatPen, 1 . Determine Men, 1 < r) suc a

IA-B|| < |a-x]| for a11 xemt™)| < Mer, n
It has been shown by ECKART and YOUNG [1936] that if

L : :
A = UV, then B = u,v (12.1)

L where

L " 02

x

Note that

| 1a-B|| = ||lz-2. || = (© . + + EA (12.3)kit —| k+1 = = om T

D) An nxm matrix X is said to be the pseudo-inverse of an mxn

[ matrix A 1f X satisfies the following four properties:

| 27



i) AXA =A ,

g ii) XAX =X,iii) (ax)' = AX,
iv) (xa) =xa .

. + +
We denote the pseudo-inverse by A . We wish to determine A numerically.

+

It can be shown (cf. PENROSE [ 1955]) that A can always be determined and
—

is unique. It 1s easy to verify that

+ A+ = VAUT (12.4)

| where N
L

1

: O
— - 1

A = |

0 CL
- .

0]— | _I nxn

| In recent years there have been a number of algorithms proposed for
computing the pseudo-inverse of a matrix. These algorithms usually depend

3 . upon a knowledge of the rank of the matrix or upon some suitable chosen
parameter. For example in the latter case, if one uses (12.4) to compute

| the pseudo-inverse, then after one has computed the singular value
|

. decomposition numerically it 1s necessary to determine which of the singular

| values are zero by testing against some tolerance.
L Alternatively, suppose we know that the given matrix A can be

represented as

L A = B+3B

. where ©8B is a matrix of perturbations and

| 8B] <n.

. 28
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3 Now, We wish to construct a matrix B such that

Lo n
|a-B|| <n

| and Ce
-

rank (B) = minimum .

— This can be accomplished with the aid of the solution to problem (C). Lote

| B = uQ, v

| where Qk is defined as in (12.2). Then using (12.3),
B=8B

P

if in

2 2 2,1/2a + ag + ¢e oe

an.d

2 2 2.1/20 +0 +... +0( p | p+l mn, > on,

| Since rank ($) = p by construction, |
BY = vatut

iY

a+ +
Thus, we take B35 our approximation to A .

- E) Let A be a given matrix, and b be a known vector. Determine X

so that amongst all x for which ||b-Ax|| = min , ||%|| |
~ ~ ~'2 _p= min. It 1s easy

to verify that

x =A+b .

135. Calculation of the SVD

It was shown by GOLUB and KAHAN[1965] that it is possible to construct

a sequence of orthogonal matriées

29



_ | n n-1
p(k) EEN IACOR

_ | k=l k=1
. via Householder transformation so that

_ and J 1s an mxn bi-diagonal matrix of the form
F .

L op By

g @ Bp oO |
| LJ .[

{ () . Bq
0

L | :eeeeee rrr meee

I | 0 feo :— .

The singular values of J are the same as those of A . Thus 1f the

I singular value decomposition of

I J = XV
then

L A = PXSYQ
so that

| U = PX , V=aqr .

I GOLUB[1968] has given an algorithm for computing the SVD of J ; the
algorithm is based on the highly'effective QR algorithm of FRANCIS [1961,1962]

I for computing the eigenvalues.
It 1s not necessary to compute the complete SVD when a vector b 1s

[ given. Since X = VEU , it 1s only necessary to compute V,Z and Ub Hnote, this has a strong "flavor of principal component analysis. AD ALGOL"

I procedure for the SVD has beeen given by GOLUB and REINSCH[1969].
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1k. Quadratic constraints
£

L We wish to determine X so that

i NT .

L [o-A%|, = min.
when

L ill, = a

[ Such problems occur 1n a number of situations, e.g. in the numerical solution
of integral equations of the first kind (cf. PHILLIPS [1962]), and 1n the

solution of non-linear least squares problems (cf. MARQUARDT [1963]).

) Using Lagrange multipliers, we are led to the equation
T ”

[ (A"AA*T)% = Ab

[ where the real constant \A¥ 1s determined as the smallest root of
2 .T,,T 2 ,T

Q“-b A(AA-AI)2 Ab = 0 . (14.1)

Using the decompositionA = UgV™ and ¢ = Ub , equation (14.1) becomes

r 2 T_,.2 -
0-c 2 (£5 AI) ge = 0

A combination of bisection and Newton iteration may be used to determine )\¥ .
2| It 1s easily shown that A%¥ < oi, (cf. FORSYTHE and GOLUB[1965]).

It is also possible to determine A* as a solution to an eigenvalue

- problem using a technique given by FORSYTHE and GOLUB [1965]. Consider the

identity

X XY | 1
det = det (X) det (W-ZX ~y)

Zz W

which 1s valid for any partitioned matrix with X and W square and

det(X) # 0 . Thus (14.1) is equivalent to the determinantal equation

T

Ke A-rI)° alydet | ~ = 0 .
2

va. a
- ~
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Now there exists a vector p and a number gq such that

| TD T
— (A"A-AI) p+ Abg = 6 brAp + 0°q = 0 .

L A simple elimination shows that A¥ -must satisfy the determinantal equation

-2

l det [ (ATA-21)? - aTppta = 0 (14.2)
It is possible to transform (14.2) into a 2nx2n ordinary eigenvalue

| problem.
Once )\¥ is determined, the solution %X can be computed from the

L SVD of A . Thus,

I x = V(z-aeTh)le
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