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Abstract

It is proved that in euclidean n-space the maximum M(p) and
minimum m(p) of a fixed positive definite quadratic polynomial Q
on spheres with fixed center are both convex functions of the radius p
of the sphere. In the proof, which uses elementary calculus and a
result of Forsythe and Golub, =" (p) and M'(p) are shown to exist
and lie in the interval [2}1,2xn] , where A, are the eigenvalues of

the quadratic form of Q . Hence m"(p) > 0 and M'(p) > 0
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Summary
Let A be a given symmetric, nonsingular matrix of real elements

and order n . Let b be a given column vector of n real elements.

For each real column n-vector x , the nonhomogeneous quadratic polynomial
T
a(x) = (x-b)” A(x-Db)

(T denotes transpose) is a real number. Let %l ShS .. S An be
the (necessarily) real eigenvalues of A . Let m(p) be the minimum of
Q(x) on the sphere S = x:x?x = p% , and let M(p) be the maximum
of Q(x) on S . M. J.D. Powell asked the author whether m(p) is a
convex function of p when A is positive definite. An affirmative

answer 1s given by the theorem:

(1) Theorem. If A is positive definite i.e., if 0 < kl), then both

m(p) and areMépnvex functions of p , for all p > 0

Theorem (1) will follow from the following result:

(2) Theorem. Let A be any nonsingular matrix. Then for p > 0 ,

the second derivatives m'(p) and M'(p) both exist, and

(3) m' (p) > 2n; and M'(p) 2 2\
Equality occurs in (3) if and only if Ab = Ab . Moreover,
(4) m'(p) < 2kn and M'(p) < 2xn

and equality occurs in (4) if and only if Ab = an .
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Review of Previous Work

The proof of Theorem (2) is based on techniques developed in Forsythe
. and Golub [1], which dealt only with the case p = 1 . The relevant
: results of [1] are now summarized and extended to general p -
= Let {ul,...,un} be an orthonormal real set of eigenvectors of A ,
L_ with Aui = k.ﬁ:l(i =1,...,n) . Let b = E: biui . For any vector x

in Sp at which Q(x) is stationary with respect to Sp , there is a real

r—

number A with

(5) A(x-b) = Ax

r—

(6) N K x = p

Letting x = 2:}%Pi , we find from (5) that

7 x; =

so that (6) becomes

M - r— r r— e
b
:c

' Aibi 2
(8) g\) = ), ———= = p
. i=1 (AN

s For each given value of p > 0 , equation (8) determines from 2 to 2n
~ real values of A . For each A so determined, equation (5) determines one
i or more vectors ik (if all bi ﬁ 0 , then xx is unique). For any xk s
e

we have

—

(9) o= = £

-

where

—



“ (10) f(h) = A
i=1 ( -7\)

Now Q(x) 1is stationary with respect to Sp at anyx)‘ . For given p ,
i let A, = AL(p) and A_ = AR(p) be the smallest resp. largest values

R

[ of N\ satisfying equation (8). Theorem (4.1) of [1] states that f(AL)
and fTAR) are the minimum resp. maximum values of Q(x) on S
53 Much of [1] was devoted to the singular cases where some b, =0

For the present investigation, where we are interested only in the

values of Q(x) , we simply omit from the sums (8) and (10) all terms

r

with bi = 0 , and reduce n , if necessary. Having done that, it is then

clear from (8) that, for any p ,

(11) A, < and A, < A,

— r— r

This concludes the necessary summary of [1].

As a digression, the author notes that the main theorems (2.7) and

-

(4.1) of [1] were proved in [1] by studying f{A) and g(A) for complex
§ values of A . In late 1965,Professor W. Kahan [unpublished] showed us
—

how to prove those theorems more simply, using only real values of A .

—
Proof of Theorem (2).
— With the above apparatus our problem is reduced to an exercise in the
differential calculus. For each p > 0 we determine a unique Lagrange
-
multiplier N = A(p) from (8) —- either the minimal A, or maximal Ap .
o For ease of exposition, suppose %(p)= AL . Then the function
(12) n(p) = T(p))
—
L
3



is determined from (10). Since f(A\) and g(A) are analytic for

A< A the function m(p) has derivatives of all order. We shall

l b
determine m"(p) by calculus. To simplify some expressions, we
introduce the abbreviations
n ?\?b?

i1

(13) Q= — (p = 2,3, 4).
p igl ()\i-7\)2 ?

Differentiating (10) and simplifying, we find:

df  _ i
(1k4) o - 29
- ,
d°f
(15) = -2, + 6N
d)\2 3 L

Now equation (8) states that, when A =A\(p),
(16) a, = P

Differentiating (8)twice with respect to p yields

dA

(17) ) 0‘3 = p
2 2
: d"A d\
. (18) —dp2 o+ Ep(”A-) @ =1

Solving (17) and (18) in turn, we find

(19) IR
B
2
(20) o N B
dp2 Ot3 aé



i_ Now, by the chain rule,

| dn _ df | dr
o & T I I ’
t_ and

“n d°f An\2 . df dn
B (21) — = 3 &2
' dp dn P dp

lle now substitute into (21) the expressions (14), 15), (19), and (20).

We find that

2
2 2 3p &
1 L
1 (22) m'(p) =SB = (2, + 600,) &5 + 20, | 5= - .
do° 5 o 3\% &
- ~ 3 3
Hence
1 &2 1 ) (
= m"(p) = N + = = (7\@ + O » by 16).
2 o/ 2
% 3
Simplifying,
-
Lo -
| 5 m (p) =
B 1,
| (25)  Ea'(p) =
L_ Formula (23) is the end of our calculus exercise. In it, A is
3
| determined from solving (8). Note by (11) that the factors (Ai—A) all
- have the same sign for i =1, 2,..., n , whether \ = AL or A = AR .
L‘ Hence % m'(p) 1is a weighted average with positive weights of the {%iﬁ .
L
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It follows that % m'(p) > A, , with equality only when all A; in (23)
are equal to }\l , i.e., if bi = 0 for 7\i > ?\l ., This proves (3),
and (4) is proved analogously, This concludes the proof of Theorem (2).

It would be desirable to have a simple geometrical proof.

What if A is singular?

If A is singular, that is, if some 7‘1 = 0, the situation is
somewhat more complicated, just as the case where some %lb = 0 is
complicated in [1]. Theorem (2) fails to hold for semidefinite matrices,

because m" (p) may not exist for some p , as the following example shows:

(24) Example.=' For n = 2 let Q(x) = (x2-1)2 s - aaan X ® (xl,xg)T .

Then

m(p) =

so m'(l) does not exist.

If ?\1 = 0 , the Lagrange multiplier remains at A = 0 for all

sufficiently large p .

Theorem (1) can easily be extended to semidefinite matrices by

continuity. We have

(25) Theorem. If A 1is positive semidefin}tei}.e., if O S)\l )s

then both m(p) and M(p) are_convex functions of p for p >0.

In proof, we note that m(p) and M(p) are continuous funetions of
the elements of A . If A is semidefinite, it can be approximated by a
definite matrix A& , for which Mg and ME', are convex, with HA-A&H < g .

Letting € - 0 , we find that m = lim mg and M = 1im ME', are convex.
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