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Abstract

. ola

i It is proved that in euclidean n-space the maximum M(p) and
| minimum m(p) of a fixed positive definite quadratic polynomial Q

L on spheres with fixed center are both convex functions of the radius p
n of the sphere. In the proof, which uses elementary calculus and a

L result of Forsythe and Golub, =n" (p) and M'(p) are shown to exist
[ © and lie in the interval [22520] , Where A; are the eigenvalues of

the quadratic form of Q . Hence m'(p) > 0 and M'(p) > 0 .

L

L

L

L

| .

| |

L

L

L

g

| 1



aah EESSS:

|
Lo Summary

| Let A be a given symmetric, nonsingular matrix of real elements
“ and order n . Let b be a given column vector of n real elements.

| For each real column n-vector x , the nonhomogeneous quadratic polynomial
L

T

| Q(x) = (x=b)” A(x-Db)

| (T denotes transpose) 1s a real number. Let N < As <. . .< A, be
— the (necessarily) real eigenvalues of A . Let m(p) be the minimum of

).

| - Q(x) on the sphere S = {x: Xx = pl, and let M(p) be the maximum
u

of Q(x) on 55 . M. J.D, Powell asked the author whether m(p) 1s a
convex function of p when A is positive definite. An affirmative

| answer 1s given by the theorem:
(1) Theorem. If A is positive definite i.e., if 0 < A) , then both

lL m(p) and  areM¢ppvex functions of p , for all p > 0 .

he Theorem (1) will follow from the following result:

|
(2) Theorem. Let A be any nonsingular matrix. Then for p > 0 ,

. the second derivatives nu" (p) and M'(p) both exist, and
—

t t

(5) m' (p) > 25 and Mp) 2 2p
—

Equality occurs in (3) if and only if Ab = Ab . Moreover,

p=
Tr !

| (&) m'(p) <2n, and M'(p) < 2

and equality occurs in (4) if and only if Ab = AP .

-—

{
|
-

| 1

L



-

¢ | |
L Review of Previous Work

: The proof of Theorem (2) 1s based on techniques developed in Forsythe

“ and Golub [1], which dealt only with the case p=1. The relevant

g results of [1] are now summarized and extended to general p .
|

Lo

Let {ug,eee,u } be an orthonormal real set of eigenvectors of A ,

| with Au, = Aue (1 = 1,...,n) . Let b = y. bu, . For any vector x

. in 56 at which Q(x) 1s stationary with respect to 55 , there 1s a real
— number A with

“ (5) A(x-b) = Ax

f

L (6) ~ Lx _ 0° |

L Letting x = ) x.,u, , we find from (9) that

L X.b,
(7) XT

| i As A
so that (6) becomes

L | 1 Ash; 2
(8) gn) = Y, 21s =

) i=1 (A.-N)

L 1

For each given value of p > 0 , equation (8) determines from 2 to 2n

— real values of A . For each A so determined, equation (5) determines one

| or more vectors x (1f all b. # 0 , then oh 1s unique). For any x ,
 _-—

we have

:

(9) x") = f(A)

- where

2
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(10) fh) = N°), ——=
1=1 (A -N)

| 1
— A

Now Q(x) is stationary with respect to 55 at anyx . For given p ,
i let A = Ap) and Ag = A (p) be the smallest resp. largest values

of N satisfying equation (8). Theorem (4.1) of [1] states that £(AL)

L and (Ag) are the minimum resp. maximum values of Q(x) on 5 :
d Much of [1] was devoted to the singular cases where some b, =0 .
Lo

For the present investigation, where we are interested only in the

9 values of Q(x) , we simply omit from the sums (8) and (10) all terms

with ob. = 0 , and reduce n , if necessary. Having done that, 1t 1s then
| i
= clear from (8) that, for any p ,

i :(11) p <A and A, <A

3g This concludes the necessary summary of [1].
As a digression, the author notes that the main theorems (2.7) and

b

a (4.1) of [1] were proved in [1] by studying f(A) and g(A) for complex

values of A. In late 1965,Professor W. Kahan [unpublished] showed us

how to prove those theorems more simply, using only real values of A .

C

Proof of Theorem (2).

— : With the above apparatus our problem 1s reduced to an exercise 1n the

differential calculus. For each p > 0 we determine a unique Lagrange
—

multiplier XN = A(p) from (8) —— either the minimal A, or maximal Ap .

_ For ease of exposition, suppose Ap) = A; . Then the function

(12) nlp) = Tp)
~—
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L is determined from (10). Since f{\) and g(A) are analytic for

g A < Ay , the function m(p) has derivatives of all order. We shall
determine m"(p) by calculus. To simplify some expressions, we

[ | introduce the abbreviations )

| n Nob(13) a, = 5 —i (> = 2,8 1b).
Piz (Onn)

[ 1
Differentiating (10) and simplifying, we find:

(1k) = = 2a, ;

df

| (15) —5 = 20, + ON, :
1 ax

1 Now equation (8) states that, when A =A(p),
(16) a, =p

[ Differentiating (8) twice with respect to p yields
dA

(17) = = ;

f dp 3 P 3
2 2

d A dA
. (18 —2 z (42 =1 .L (18) 2 >" HF) oy =

L Solving (17) and (18) in turn, we find

L 0(19) —= = £
dp Oy ’

L :
x . 1 PH

(20) A SS
d 2 0 2L P 3 C3

| 4
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| Now, by the chain rule,

| dn _ df | di
— do = dA dp ¢

| and

“m a°r A 2 af doa
dp dx P dp

i We now substitute into (21) the expressions (14), 15), (19), and (20).

| ~~ We find that
2

2. 2 3p O1 4

(22) a (p) = £2 = (2 + 6)Es ronal =— - — .| Ne 3 i; \%
— ~ Pp 3 3

Hence

1 og’ 1= 1" — = b

3 3

Simplifying,

N 1 1 Nb
5 m'(p) = = 2 ——= , or

3 i=l (A; =2)

2.2

- i=1  (A\-2) i=l (A) :

§ Formula (23) is the end of our calculus exercise. In it, A 1s
3

determined from solving (8). Note by (11) that the factors (A 4A) all

= have the same sign for i = 1, 2,..., n , whether A = Ap or A = Ap y

1 Hence 5m (p) 1s a weighted average with positive weights of the A .

_
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L

i It follows that = m'" (p) > AM , with equality only when all Ay in (23)
| are equal to A; , i.e., if bi =0 for A; > A, . This proves (3),
L and (4) is proved analogously, This concludes the proof of Theorem (2).

It would be desirable to have a simple geometrical proof.
g

L What 1f A is singular?
If A is singular, that 1s, 1f some A = 0, the situation is

is somewhat more complicated, just as the case where some PP = 0 1s
. complicated in [1]. Theorem (2) fails to hold for semidefinite matrices,

g because m'(p) may not exist for some p , as the following example shows:

i (24) Example.=' For n = 2 let Q(x) = (%,-1)° 5 =m oon XW (x,,%,)" .
Then

. m(p) = { | | . |oc , 1<p<= , | /

—
so m'(l) does not exist.

— Tf A = 0 , the Lagrange multiplier remains at A = 0 for all

. sufficiently large p .

Theorem (1) can easily be extended to semidefinite matrices by

continuity. We have

[ (25) Theorem. If A 1s positive semidefinite (i.e., if © SM ),
then both m(p) and M(p) are convex functions of p for p>0.

L In proof, we note that m(p) and M(p) are continuous functions of

i the elements of A . If A is semidefinite, it can be approximated by a
definite matrix Ag , for which Me and Mg are convex, with IA-4, | < & .

1 Letting € = 0 , we find that m = lim Mg and M = lim Mo are convex.
6
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