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Abstract

| In this paper, we derive and generalize the methods of Buneman

for solving elliptic partial difference equations in a rectangular

a region. We show why the Buneman methods lead to numerically accurate

solutions whereas the CORF algorithm may be numerically unstable.

Several numerical examples are given and discussed.

-



Introduction

- In the first part of this report, we described several direct

methods for solving linear equations arising from elliptic partial

} difference equations. In this part, we develop the Buneman algorithms

u which are closely related to the Cyclic Odd/Even Reduction and

Factorization (CORF) algorithm which was derived in the first part.

TT We then show why the CORF algorithm 1s numerically unstable whereas

the Buneman algorithms yield numerically accurate results. Finally,

we describe some numerical examples and compare the time and accuracy

of several methods for solving them.
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10. Accuracy of the CORF algorithm

- As will be shown in Section 11, the CORF algorithm and the Buneman

algorithms are mathematically identical. The difference between the

methods lies in the way the right hand side 1s calculated at each

— stage of the reduction. To the authors' knowledge, this 1s the only

direct method for solving linear equations in which the right hand side

” of the equations plays an important rdle in the numerical solution of

the equations. In this section, we show the difficulties encountered

in using the CORF algorithm. In Section 13, we will prove the stability

— of the Buneman algorithms.

: Recall from Section 5 that it is possible to compute atlytn
= by the following algorithm:

B r r

1 = 2g” J ay
-— (10.1)

2 r

Ng = -Ang 4 -T Ng _o for s = 2,5,...,2

so that

r) (r |

p= AEE
_ m2 ”

Because of roundoff error, one actually computes the sequence

ol _ oT ~ — ar) 4g- Jo= "<5 > MW = “Yj 20

(10.2)

oo T= Mgr =F x2 + B51 (s = 25000527)

CC —
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| where O is the perturbation induced by the roundoff error. Again

— as 1n Section 2, we write

T T
_ A=QAQ 5 T=Q00QQ (10.3)

where Q 1s the set of orthonormalized eigenvectors of A and T ,

and A and Q are the diagonal matrices of elgenvalues of A and T ,

.. respectively. Thus substituting (10.3) into (10.2), we have

| t= oF I (10. la)=0 hd g 21 2° 20 - 0 )

E =-NE .-Q°E +1 (10.1)
~S ~8-1 8-2 ~S-1

where

= - T(r) LT ~ AT
y= Q J; ? = Q Ns v0 Is 7 < 5 :

Because A and (Q are diagonal, we may write an equation for each

~ component of EE.; viz.

- t,o FANE. tal EL = (3 = 1,2,...,D) (10.5)
J» stl = §7d,s J “Jr s-1 Js 8 TT

The solution of (10.5) can be given explicitly. Consider the characteristic

equation

.(@) =a + Aa+ o =0

| which has roots Ps and 75 , then
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; = s s s-1 s-1
a B. - 7. Ps ~ 7 ;
| teTB Ty tl BT BLT tao
LL ’ ji 3 J 7d

s-1 _s-=k s-k

Pi 77; h i (10 6a)Fo + —_— T. when B. Y. ca,- ). B = 7 Jr Kk 3 J
1 k=1

| s-1 S 3=1 S=-k-1 6 )i = sq” TE, .-(s=1)p EE. + s -kK)B. TTT. when B. = 7. . (10.6bLL >) "351 B; £350 2 JB; Jk J J

_ Let

| 3 hfe; 3 = COS 8.1 when IN /205] <1

= cosh zd when I» 20] > 1

Then using the initial conditions (10.4a), we may write (10.6a)as

| follows:

) . s-1 p71 sin (s-k)o,_ of - ~ -k- T

| Es 2, cos(s 05); tL w, = cy 3k

when IN /20, < 1 (10.7a)

| S-1 sinh (s-k)z.
As - © S-k-l J

3 - J

- when [A/20,| > 1 (10.7b)

Note that |

) 10-3



2 cos s @.

~2W, =

cosh s 12,
 — J

| given in Section 35. Thus

| M.-P (A STACI > S Ts— Js T Teds = s-k @ 9 (10.9)

_ where

sin m @,
J ' i '

She when |» 5/20, < 1 and 1 = J
m—1

_ 1531; Ses X
sinh m z,

| Ear when [M720 > 1 and 1 = j

= 0 fori £ 5 .

Therefore, if [2/2] > 1 | the effect of the roundoff

(10.9) that nq , May be a good numerical approximation to a(r), (x)
~2 3

_ We now apply the above results to Poisson's equation with

Dirichlet boundary conditions. por the five point difference operator
.

with mesh width & in the x-direction and 4&y in the y-direction,
we have

A, = =D 21 - JT _5 [1 + p°(1 - cos +1 | ’ y= 1

10-4
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and

-

o = (x/ty) or (Ly/ix)

depending on how one orders the equations. By inspection

—

|» /20, | > 1

a for all j ; and hence for large ss , equation (10.1) leads to a

- numerically unstable algorithm. A similar result holds for the nine

point difference approximation to Poisson's equation. Using the five

he point approximation with uniform mesh and any number of grid points, |

equation (10.9) predicts severe loss of accuracy for more than five |

) contractions on a CDC 6600; and this has actually been observed. As

_ noted in Section 3, Hockney [ 6, 7] has combined one or more steps of

CORF with the fast Fourier transform to produce a Poisson solver. For

ha such a use of CORF one must pay careful attention to the above results.

The cyclic odd/even reduction method can be used successfully

- for solving tridiagonal systems of equations. In that situation, one

_ must make provision for the fact that overflow can occur during the

reduction stages.

10-5
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ll. The Buneman algorithm and variants

| In this section, we shall describe in detail the Buneman algorithm

[ 2] and a variation of it. The difference between the Buneman algorithm

and the CORF algorithm lies in the way the right hand side 1s calculated

at each stage of the reduction. Henceforth, we shall assume that in

the system of equations (2.5) T = I the identity matrix of
- order p .

| Again consider the system of equations as given by (2.5) with

k+1
q = 2 -1 . After one stage of cyclic reduction, we have

| X. + (21 ~ A%)x + xX. = y. + vy. - Ay. (11.1)~J=2 P Es EL ET 1. Sy

| for§ = 2,4, ...,q-1 with x = 41 _ ©, the null vector. Note that
the right hand side of (11.1)may be written as follows:

| (1) (1),-1 -1
X =y. , tv. - Ay. = A TVA -

Yi T¥5-1 7 Tye TAY Fit gst Vie -ATy, (112)

| where AL) = (21, - 2%) :
Let us define

X (1) _ ,-1 (1) (1)
: = A . ) = Vy. + vy. -2R . .

| Ps 73 g ds 5-1 7 Jie 2

Then

1) 1 1 1

| ~J ~J ~d

11-1



After r reductions, we have by (3.3)

r+1 r r r) (r)
y' ) - (5 ) + 7 ) ) - a(®) ys : (11.4)

- ~J V3.2 Te ~

) Let us write in a fashion similar to (11.3),

Fo yr) = alr) pr) + ne : (11.5)

Substituting (11.5) into (11.4) and making use of the identity

| (a(1))2 =2T Cas from (3 3), we have the following relationships:
ET P

| r+1 r r)\-1, (r r r| pT) = ptm) La Fyipln pl) gb), (11.68)
~d ~d ~j-2 ~jt2 ~

| oT) = a) ’ alr) - op{THL) | (11.60)
| ~J ~3=2 ~ 342 ~d

T+ -

for J = 127 (1 = 1,2,...,20 fo1) with

(r) (5) (x) (x)

- Po =Pui1=% =%x1=22 2

-1

~ To compute (a(¥)y (p(¥) + p(T) - {Th in (11 6a) we solve the
~s AL ~ AT =
j-2 jre

| system of equations

Tr Tr +1 r Tr Tr
KD pl) pry 0)Lg) lo

I
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: where alr) is given by the factorization (3.10), viz.

2 /

A(T) = - I] (A+ 2 cos ol? I.) ,A J je
EL j=1

r+1
{7 (29 - 1)r/2

i After k reductions, one has the equation

ne ~2 ~pt 72

and hence

k ©)\-1 (k

~2 ~2 2

k) (k) y-1 _(k)
| again ONe uses the factorization of a for computing (A ) 1k :

In order to back solve, we use the relationship

i r r r

4 . X al x ex L = a0) plF) + glo)
: ~3-2 ~~ 542 ~

: . _ktl-r

| for 3= 12" (1 = 1,2,...,2 -1) with x, = Zl = ©

For 3 = oh 3 0 2t,...,2ktl-2r , we solve the system of equations

a x, - p{¥)) = oT) - (x rx) (31.7)
| ~d ~d ~d ~s_ ob ~ oT
» J J

i using the factorization of A j hence

EE. 11-3
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(7) (r)x, = p+ (x, - p (11.8)| Xp = By (xy - By)
"

Thus the Buneman algorithm (variant 1) proceeds as follows:

r r

1) Compute the sequence (2 ) 2! 1 by (11.6) for
19

i 0 k+1

r =1,...,k with 3 ) = 0 for 7 = 0,.4.4,2 , and
| rl
— , (0) = ¥. for J = 1,25 4004,2 -1

~d ~d

“- 2) Backsolve for x using (11.7) and (11.8).

| f Or
_ It 1s possible to eliminate the sequence (p. } . From (11.6b),

we note that

(+1) _ 1 (r) + (r) (r+1) 11.
py =a (Gt Yen my) (13.5)

where

ho=21

Using (11.9) in (1l.6a) and modifying the subscripts and superscripts

_. appropriately, we have

|e (r+1) BN (r) (r-1) + (r) _ (r-1) (xr) Lo +
45 = %5.2n 7 35m 4 Li+n dion

— (r)y-1; (r-1)_ (7) (r-1) (r)+ - 9. 4 + QL. - eq. "+(827) la; -5h 15 ~-2h Ls ~h %3

Co (r-1) (x) (r-1) 11.10
Qin" Yeon tT 45m (11.10)

. —-
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| r .r+l +

| (r) (r)
10 = 2 okt] = © for all r ,

10) =y kt+1en BE for j= 1,2,...,25 "1 ,

~ (1) -1= : +

qs Is5.1 + Yir1 - 2A Ys for 4 = 2,4 e.., oF Lo |
-

{ To solve for £, , we use 'the relationships (11.7) and (11.9) so that
1 r-1 r-1

xX. = 5 (a! ) + qT! ) oT)

(r)y -1 (r)- (A IL li:HE J (111.11)

| Thus the Buneman algorithm (variant 2) proceeds as follows:

| 1) Compute the sequence (qh by (11.10) for _ 1.0
2) Backsolve for Xx. using (11.11).

~)

-

Note that the Buneman algorithm (variant 2) requires half the storage

\ that the Buneman algorithm (variant 1) requires. However, the

| variant 2 algorithm requires approximately twice as many additions.
|

The Ps fs and 1: 's can be written in terms of the x 's. In- =;
Section 13, we shall show how this affects the stability of the methods.

Note
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=

- (1) -1 -1
. =A =X,+A (x, , +x,Ps J; ~J (x5 X01)

and

B (1) (1)
» — . + -. - »35 J5.1 I5+1 “DP

-1 (1)=X, - (A

Xp (A) TA (x,1 + Kin) + Xp

By an inductive argument, it is possible to show that

(r) ~r-1r r+1 _(r)
= xX, + (-1 +. 2; xr (10s L (25. (2x-1) -) (11.12)

| and

r-1

— oy ~5_oF =1 ~j-(2k -1) 3+ (2k-1) ~ 5407 :

= where

oo 57) _ (a(r-1) 4x2) | ,(0)y-1

i 11-6
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12. Applications of the Buneman algorithm to Poisson's equation

As was pointed out in Section b, matrices of the form (2.5)

arise 1n solving the five point finite difference approximation to

Poisson's equation over a rectangular region with Dirichlet boundary

conditions and hence it 1s possible to use the methods of Section 11.

For the five point approximation to Poisson's equation over a rectangular

region with Neumann or periodic boundary conditions 1t 1s necessary to

modify the Buneman algorithms.

For the Neumann boundary conditions, we have the system of

equations

+

ie 2%) = 70

- Xi 1 + Ax, + X41 © Vs (3 = 1,2,...,m=1) ,

k+l

Tm-1 AL Im with m

_ We define

(1 1) (1 1 +NE ) 4 Jo) 4 (BD) for 7 = 0,2,h,...,285"
— ~d ~d ~J

where

1) -1 1 1

BS =A 55» 95 - 2(y; - 35") ’

(1) _,-1 (1) _ (1) .
5 Ps =A Vs ’ 4; = Vil + Yi+1 - “PD; (5 = 2,b4,...,m-2),

(1) _ ,-1 (1) _ (1)
By CA noGy TE By)

12-1



a In general then, as in Section 11, we have for r = 1,2,...,k=-1

‘1 +1) (r+ r+lS01) (m1) (0D) + (41)
: ~d ~d ~d

f where

TT (r+1) _ (zr), (x)y-1,, (x) (x)y  (x+1) _ ,, (x) __(r+1)

! - r+1 +
CARY _ oF) (a(t) Lp(F) p(T) (7) lr) 07) oF) 2p” 1)= ~d ~J ~j-2F ~ge2t ~d ~5-2"  ~gret -

 — for J = io” (i = 1,2,...,25 Fol)

| r+1 Tr r),-1 r (r) r+1 Tr (r+l| pF) J) (0) 2a) (3) (0) ple) ppd),
i ~ ~ “m 2 “a? ~

Finally,

| + + +
| [6 _ gerd) (002) + (1) on

~2 ~2 ~e

1 | where

| = O

| (k+1) (k) ky-1,_ (k) (k) (k)D =py - (A) Ty thm ay) (12.2)
= HK Soke i 6) = Hitl ~ HK

| (kt1) (kX) (x) (kD)
a = Q q ] P 1 I .

_ ~pK ~0 + ~pktl ~oK

CC — 12-2
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| From (5.4) we see that

-
+ + + 3

a1), p(s) (ke)
| ~2 ~ ~P
-

: so that
|

= (k+1) , (u(ctl)y- (4D)
{ ~e 2 ~2
}

-

+ - (k+

(alk 1) aE 1) indicates a solution to the singular system
-3

+1 k+l k+ kt| p(k Lx - o )\ = o 1) . The factorization of gs 1) 1s given by (5.6).~~k TZ-k Zk
— 2 2 2

The backsubstitution process proceeds as in Section 11. It 1s also

— possible to eliminate the pl”) sequence as was done 1n the previous
| section.
A. 1

For periodic boundary conditions, we have the system of equations

{
|

AX, ++ XX TN
{

Xi 1 AX, Xi J or J or ’ ’

L
1 + Zm-1 Ax " Im )

|

— We define

1

- yb) = PENS + q! ) for j = 2,h,...,051
~J ~d ~d

where
he

12-3



oT (1) _ ,-1 (1) _ (1)
| EE EI RE ATECT >

| (1) _ ,-1 (1) _ (1) oo
| ®; - A 23 ’ 25 - V5.1 ¥ Ij+1 B °P , (3 = b,6,...,m-2) ,

(1) _ ,-1 (1) (1)
Py 7 A Ym 2 Im «V1 oo Imad “Pn .

In general for r = 1,2,...,k-1 ,

r+1 r+1) (r+ r+1 oo3! ) = al Hp! 1) + a ) for J = jo (i = 1,2,...,00 5)

| where

: (r+1) _ (7) (r)y-1, (x) , (x) _ (x) (x) _ (2) , (x)_p (r+1)
- P =D - (A ) (p tO =a] ), 2p] ST dpa tq -2p ,

~prtl Sport ~oF  ~Eyot oh ~2 “TT Sm oT Ertl

| (r+) _ ne) _ (a (T)y=1 p(T) + p(T) _ olr)y o{rr1) _ 5 (7) + oT) _ op{rtl)1 =] ili ES SE Ca oly So SH ToBI J oy
FL — J=2 j+e J=-2 jt2

r+1 Tr r)\-1, (r r+1) +71.| p! ) p! ) _ al) *) ¥ oT) o*)) ol ) _ a) + a) 2p 1)~ ~ ~pt pd ~2t pet ©

Finally as (12.1),

+1 + + +

- yk ) _ (kl) pk 1) | ok 1)
| ~ ~0 ~p

where

| 12-4
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~ (k+1)| (k+1) _ (kK) (x) y=1,5 (k) _ (kK) (k+l) _ 5 (RK) _ pfu =p (AT )T(@p may) soa TT EE Ly Ry
— Ek “3k Ekrl” Sok 2k Srl

i and p(k 1) is defined by (12.2). Then

k+l) (k+l) k+1
Be), p(eD) (1)

| ~2 ~2 2

| so that

+ k+1)y- (k+l)
un II I
i of> > ~0

Eo The backsubstitution process proceeds as in Section 11,

| (vr). (r) |
| It is possible to express D. ’ and a; in terms of x, as in
] equations (11.12) and (11.13).

|

| 12-5



13. Accuracy of the Buneman Algorithms

As was shown in Section 11, the Buneman algorithms consist of

. (r) (r)
generating the sequence of vectors 5:3 245 } . Let us write using
(11.12) and (11.13)

| —

(x) _ (xr), (r)
) = X. tg. 13.1aPs Xs 8; (13.12)

\7) = x tx - alr) glx) (13.10)
~d ~3.20 Tip ~d

|—_—

where

~— or-1
/

(r) — r+l (r) + Z,
= = (-1) > L (55 (ze) 3+ (2k-1) (13.2)

|

and

——-

5(r) = (a(r-1) ce a(0)y-1 : (13.3)

Then

—

(r) (r) (r)- _X. < |s x 13.4Ios” 60 < 1s, xl (13.1)

Fs - (x _+x Mo. < 1s) a) x || (13.5)~ ~ Ir .. r 2 ~- J=-2 j+e

where

Hoh, indicates the Euclidean norm of a vector v ,

= lel], indicates the spectral norm of a matrix C , and
14

xl" = 3 lil,

13-1
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: When T =I, we may redefine the polynomials given in Section 3
es in the following way. Let

v= —-a/2 ,

| and define

yy = cos © for lv] <1

| = cosh © for hy] > 1

oT Then in a similar fashion to (10.8), -

p pe (8) = 2 cos (25 cos” ¥) for ly] <1
2

» k -1
EL — = -2 cosh(2" cosh ~ v) for ly | > 1.

| T

~— Thus for A = A”,

| — r-1 :

| Is) 0) = TT ald)
F 7=0

| r-1 1
=T7] max 1 [p .(x,) 177]

. Jiri

| where (M3 are the eigenvalues of A . Therefore for As | > 2,

| _ (rly TTT lcosn 29 g.17%I 5 =2" | | max [cos :
J=0 {e.}

where

| — 6, = cosh (- nN / 2) :
_

| 13-2



Finally,

r-1 :

1s(®) Ay _ pT X max [T [cosh od 0.17% x cosh 2° @.2 AR 1 1

when In| >21 ——

For the five point difference approximation to Poisson's equation

over a rectangular region with Dirichlet boundary conditions

A, = =2(1 + “(1 - COS EEAi e pti

where p = Ix [Ig or (Oy / ox) depending on the ordering of the

equations. Thus

-1 2 ity
= + - —

6, = cosh (1+ p7(L - cos orl)

which implies 0, >1 for all 1 . Then

J -1 _ J -1 2 i -1

max [cosh 2 6. |] = [cosh 2Y {cosh (1 + p (1 - cos 51) ) 3] .
{6.3

13-3
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Thus after some simplification,

C

-CcO

— 1 -Co

sy, — << e (13.6)
2 = r-1 29",

C 1 (1 + e )
1=0

2,- T

~~ where c=2-1, cosh 6; = 1 +p (1 =... 3)

- A similar calculation shows

£) (x) °
g jal) sy cee ® | (13.7)
|

| (2) will pe a
— Therefore from (13.6) we see that for large r, Py

good approximation to X. And from (13.5) and (13.7), we see that
—

) "p[ols x I <2e® XI
- ~d ~35-2F ~j+e 2

(r) This
—_ so that the las I, remains bounded throughout the calculation.~d

explains why the Buneman algorithms lead to numerically stable results

= for solving the finite difference approximation to Poisson's equation.

|Y-—

—

—

—
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14. Conclusions

— The Appendix contains the results of some numerical experiments

involving the application of the Buneman algorithm (variant 1), the

method of matrix decomposition, the method of point successive

— over-relaxation (cf. [10]), and the Peaceman-Rachford alternating

direction method (cf. [11l]) to the five point finite difference

= approximation to Laplace's equation over a rectangle with Dirichlet

boundary conditions. In these experiments the Buneman algorithm was

the most efficient and accurate; however, the method of matrix

_ decomposition was competitive 1n several cases. We conclude, therefore,

| that the Buneman algorithm and the method of matrix decamposition

ja are useful methods in the situations where they apply.

—
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_ Appendix

i Numerical Experiments
To In order to gain computational experience with the methods of matrix

| _ decomposition (MD) and the Buneman algorithm (variant 1),it was decided to
| apply the algorithms to the five point difference approximation of Laplace's

| — equation with Dirichlet boundary conditions. In addition, in order to
compare these methods with established methods, it was decided to apply

- the methods of point successive over-relaxation (SOR) (cf. [10]) and

| Peaceman-Rachford alternating direction method (PR) (cf. [11]) to the

same problems. We did not attempt to-determine which method 1s best in

| — general. Those interested in operation counts, variations of these direct

i procedures, and customizing the direct procedures for particular problems

oT are referred to [4] and [7].

| The following problems were chosen so that the computed error could

| be detemined exactly:

 — Problem #1, u =1 ;

Problem #2, u = cos(x) cosh(y) ;

| ” Problem#3, u = e”(sin(y) + cos(y))

| Problem #4, u = x? - 10x7y° + Sxcy .

) Let

| u = <computed solution of the difference equation>
| - and

N 4 = (mes)11 ® 15 1:03 ;

| the tabulated error 1s
| ” max uu(mesh) d :

One should note that in many cases the tabulated error 1s the truncation

| error of the difference equation.

A-1



| Each of these problems was solved on the following meshes (includes

boundary points):

Mesh #1 20 by 129 |

| Mesh #2 40 by 129 ,

Mesh #3 80 by 129 ,

| Mesh #4 129 by 129 ,

= Let p = x [Ny . Each of the four problems was solved on each of the

four meshes for five values of p :

| 1 AX AN Ps
lL 1 .025 .00025 .01

| 2 .025 .0025 1

FT 3 .025 .025 1.0

4 .0025 025 10.0

| 5 .00025 .025 100.0

Thus each problem was solved on a total of twenty rectangular regions

| These regions were chosen such that the lower left-hand corner of the

= rectangle was always at the origin. The following 1s a table of the

Fo _ coordinates of the upper right-hand corners:

Mesh #1 Mesh #2 . Mesh #3 Mesh #4

o, ( -55 -032) (1., .032) (2., .032) (4., .032)

| px (.5 3.225) (1., 3.225) (2., 3.225) (k., 3.225)

| — py, ( +05, 3.225) (.1, 3.225) (.2, 3.225) (4, 3.225)

p5 (-005, 83.225)  (.01,8225)  (.02,3225)  (.0k, 3.225)

—- A-2



| We define

| V(p,i,Jj) = max {solution of prob #p on region with 0s and mesh #j}

- min [solution of prob #p on region with os and mesh #j}

| Note V(1l,r,j) = 0 for all i and j . The following tables give V

for the other problems:

v(2,1,3)

| Mesh #1 Mesh #2 Mesh #3 Mesh #k

oy 1 ip 1.37 2.0

| Po 15 Ay 1.44 2.1

O= 11.1 11.4 16.4 24.0

py, 11.0 11.0 11. 11.

| Ps 11.0 11.0 11. 11.

V(3,1,3)

| Mesh #1 Mesh #2 Mesh #3 Mesh 7h
Pq .59 1.64 6.22 23.6

os .95 2.24 7.84 29.2

P= 3.84 6.32 17.2 58.5

ol 2 56 2.7 2.97 3.36

os 2.46 2.47 2.5 2.53
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: v(k, 1,3)

| Mesh #1 Mesh #2 Mesh #3 Mesh #h

: oy .018 TT 28.2 323 .0

| os 0 0 ' 28.3 323 .0

P= 219.5 400.0 556.0 1733 .0

o), 22.9 48.2 98.2 158.0

i os 2.29 4.82 9.9 16.1

For the above rectangles, the optimum relaxation factor is given by

| CL 2

o (i,§) = ———

1+ V1 B;

where

| 2 cos =f—— | + cos ==
| Pi N. - 1 128

B — -— J 7 0

2(p4 |

and N. 1s the number of grid points in the x-direction of the j-th mesh.
The initial guess for SOR and PR was the zero vector.

The iteration process was terminated when

+1

| max ou < 107"
| (entire mesh) [8]

| [vt] > 1072

; Optimum PR parameters were determined by Wachspress's algorithm [11]

| Ak



_

| for cycles of length of . Convergence required

| max max Ertl < 107" .= (complete cycle) (entire mesh) u- |

| u?| > 1077

Because of this convergence criterion, a short cycle was desirable.

BN After some experimentation, 1t was decided to use a cycle length of

| _ four exclusively.
All problems were run on a CDC 6600 (about 14 decimal digits of

] oe accuracy); -the RR, MD, and Buneman programs all used the same tridiagonal
system solver. The Q matrix and eigenvalues required by MD were

ae computed with the QR algorithm for symmetric tridiagonal matrices. The

matrix multiplications (Q y) required by MD were performed with a
machine language inner product routine which 1s quite efficient and

. which accumulates the inner products in double precision. It should be

noted that for problems with uniform mesh spacing, these matrix products

- may be performed with the fast Fourier transform; and this makes MD

competitive in speed with the Buneman algorithm. However, MD 1s capable

of handling more general problems such as those with non-uniform mesh

| — spacings; 1n these cases Q must be computed and the matrix products

| performed. Thus the MD routine used in this study gives an indication
- of the kind of performance one might expect with these more general

| problems. Note also that the matrix multiplication (Qly) requires

0(qp°) operations. The Buneman algorithm requires a total of

_ O(ap log, p) operations. Thus as p becomes small,

MD approaches the Buneman algorithm in speed.

B
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| The following tables of computation times are normalized by the

— time required for the Buneman algorithm on Mesh #1:

Computation times for the Buneman algorithm (variant 1) and MD

~ Mesh #1 Mesh #2 Mesh #3 Mesh #4

_ Buneman 1.0 2.08 4.31 6.96

MD 1.18 3.65 14.9 41.0

- Computation time for PR

(These times are averages over all four problems.)

L
Mesh #1 Mesh #2 Mesh #3 Mesh #k4

— 1 2.56 5.17 9.43 15.2

| Po 4.85 10.3 20.6 30.1

BN ps 5.44 12.6 31.2 47.7
Pp), 2.56 7.61 15.2 32.5

Pc 2.25 h.h9 8.58 13.5

C Computation time for SOR

(These times are averages over all four problems.)

| —

Mesh #1 Mesh #2 Mesh #3 Mesh #b

1 40.9 89.0
|

Po 45.1 97.9

ne Pz 16.1 60.1 (not run) (not run)

| PL, 7.58 32.9
Ps 7.22 28.8
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; | Prob 1 Prob 2 Prob 3 Prob 4

’ pp 4-1) 7(-9) 6(-9) 3(-1)

ne. 5 2(-11) 5(=7) (7) 2(-5)

| P= 5(-13) 2(-6) 2(-6) h(-7)

 — o), 2(-13) 1( -g) 1(-8) 2(-9)

: os 2(-13) 1(-10) 1(-10) 2 (-11)

_ Relative error for MD, Mesh #1

Prob 1 Prob 2 Prob 3 Prob UL

o;  5(-T) 5(-7) WT) 3(=T)

= op 1D) 5-1) WT) 2(-5)
| Px L(-9) 2(-6) 2(-6) h(-T7)

= op,  2(-10) 1(-8) 1(-8) 2(-9)

Ps 8(-10) 7(-10) 7(-10) 6(-10)

| Relative error for PR, Mesh #1

| Prob 1 Prob 2 Prob J Prob h

T pp 2(-11)  7(-9) 6(-9) 5(-7)

os 2( -8) 5(-7) L(-7) 2(-5)

| P= 7(-8) 2(-6) 2(-6) 4-7)

- Pl 2(-9) 1(-8) 1(-8) 2(-9)

os 8(-13) 1(-10) 1(-10) o(-11)

|
. —

i
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| Relativeerror for SOR, Mesh #1

| — Prob 1 Prob 2 Prob 3 Prob 4

oy MD) ME) uN) 3(-6)

op U3) UB) UB) 2-5)

_ os S5(-M) Ad) 1) WT)

oy, 3(~4) 3(-4) 5 (4) 9(-6)

~ Pe 3(-1) 3(-k) 3(-1) 5(-5)

Relative error for the Buneman algorithm, Mesh #2

Prob 1 Prob 2 Prob 3 Prob 4

i op MAD) T(-9) 6-9) T(-T)
o, 3-11) 6-7) B=) 5(=5)

- Ps 2(-12) 5(-6) 7(-6) 2( -6)

eo, ~~ 2(-13) 5(-8) 6( -8) 8(-9)

= oc 7(-13) 6(-10) 6(-10) 8(-11)

Relative error for MD, Mesh #2

- Prob 1 Prob 2 Prob 3 Prob k

_ op UD 8-8) ID 8-7)

op 5(-8) 6(-7) 5(-1) 5(-5)
- ps 2(-9)  5(-6)  1(-6)  2(-6)

op 2-9) 6g 6-8 8-9)

oc 5(-10)  1(-9) 1(-9) 3(-10)



: ” Relative error for PR, Mesh #0

_ Prob 1 Prob 2 Prob 3 Prob b

py 2(-11) 7(-9) 7(-9) 7(-7)

| pp MB) ED BD (eb)

| os M6) K-6) 7-6) 2h)

| op 8(-10) 6 6(-8)  8(-9)

- os 5(-12) 6(-10) 6(-10) 7(-6)

} Relative error for SOR, Mesh #0

| — Prob 1 Prob 2 Prob 3 Prob 4
i py H(-H) 4-1) 5(-4) 2(-4)

Lo op (=) 5(-1) 3(-4) 5(-5)
px 1(-3) 6( -b) 2( =k) 2(-6)
op, S5(-W) MW) 6-5) T(-7)

ne ps HH) 4 ay k( =) 8(-5)

; Relative error for the Buneman algorithm, Mesh #3

: — Prob 1 Prob 2 Prob 3 Prob k

| pp 4-11) 7(-9) 6(-9) 5(-8)

| op 3(-11) 6-1) MT) 5(-6)

| ] os 1(-11) 8( -6) 1(-5) 1(-5)
op, H(-13)  2(-T) 2(-7) 3(-8)

= es 2-12)  2(=9)  3(-9)  3(-9)
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: Relative error for MD, Mesh #3

i. Prob 1 Prob 2 Prob 3 Prob 4

po; 1(-9) 8(-9)  7(=9) 5(-8)

| op 1(-9) 6(-7) L(-7) 5(-6)

_ P= 8(-10) 8(-6) 1(-5) 1(-5)

0,  8(-10) 2(-7) 2(-7) 5(-8)

 - os 8(-10) 5(-9) 5(-9) 7(~10)

Relative error for PR, Mesh #2

| Prob 1 Prob 2 Prob 3 Prob 4
op 1-11) 7(-9) 6(-9) 5(-8)

| Po 6( -8) 6(-7) L(-7) 4(-6)
| _ os 3(-6) 8( -6) 1(-5) 1(-5)
| op, 2(-7) 3(-T7) 2(-T) 3(-8)

po 1(-11)  3(-9)  3(-9)  3(-10)

| Relative error for the Buneman algorithm, Mesh #

| Prob 1 Prob 2 Prob 3 Prob 4

py 4-1) T(=9) 6-9) 8(-9)
op 3(-11)  6(-T) W(-7)  T(-T)

_ Px 5(-11) 8(-6) 2(-5) 1(-5)

P), 1(-12) 5(-7) 6(-7) 8(-8)

| os M-12) 6-9) 7(-9) 8(-10)
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Relative error for MD, Mesh #4

Prob 1 Prob 2 Prob 3 Prob 4

— o;  T(-7) 5(-7) 4(-7) h(-7)

oo 29) 6) Ma) 7-7)

os 2(-9) 8( -6) 2(-5) 1(-5)

_ P), 3(-9) h(-T) 6(-7) 8 -g)

Pc 3(-9) 9(-9) 9(-9) 2( -9)

Relative error for PR, Mesh #4

Prob 1 Prob 2 Prob 3 Prob 4

— p;  1(-11)  7(-9) 6( -9) 8(-9)

os He 6-1 MT) 7(-7)

- ps 1(-5)  8(-6) 2(-5) 1( -5)
g fy, 6( -8) 4(-7) 6( ~7) 8(-8)

Ps 3(-11) 6( =9) 7(-9) 8(-10)
| —
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