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Abstract

In this paper, we derive and generalize the methods of Buneman
for solving elliptic partial difference equations in a rectangular
region. We show why the Buneman methods lead to numerically accurate
solutions whereas the CORF algorithm may be numerically unstable.

Several numerical examples are given and discussed.



Introduction

In the first part of this report, we described several direct
methods for solving linear equations arising from elliptic partial
difference equations. In this part, we develop the Buneman algorithms
which are closely related to the Cyclic Odd/Even Reduction and
Factorization (CORF) algorithm which was derived in the first part.

We then show why the CORF algorithm is numerically unstable whereas
the Buneman algorithms yield numerically accurate results. Finally,
we describe some numerical examples and compare the time and accuracy

of several methods for solving them.
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10. Accuracy of the CORF algorithm

As will be shown in Section 11, the CORF algorithm and the Buneman
algorithms are mathematically identical. The difference between the
methods lies in the way the right hand side is calculated at each
stage of the reduction. To the authors' knowledge, this is the only
direct method for solving linear equations in which the right hand side
of the equations plays an important rdle in the numerical solution of
the equations. In this section, we show the difficulties encountered
in using the CORF algorithm. In Section 13, we will prove the stability
of the Buneman algorithms.

A7) (5

Recall from Section 3 that it is possible to compute yj

by the following algorithm:

_ oy (T) _ (D)
To =257 5 My A 5
(10.1)
A T for s = 2,3 of
g = sy Ns-2 7o
so that
r) (r
N, = A( )y< ) .
~o by
Because of roundoff error, one actually computes the sequence
/
~ (2 _ o (T)
To = By oM T Ay Tt S
(10.2)
_ 2 _ r
Ng= “Ang_ 4 =T 5 4 B (5 = 2y.0.,2)
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where 65

~

is the perturbation

as in Section 2, we write

A=qAQ

2

where Q is the set of orthono

T-QaQ

induced by the roundoff error.

Again

(10.3)

rmalized eigenvectors of A and T ,

and A and Q are the diagonal matrices of eigenvalues of A and T ,
respectively. Thus substituting (10.3) into (10.2), we have
£, = -2F Bl = - =N K+ L
S0 R T-zhAitTT (10.ka)
Eo=-NE . -0t +1 (10.4b)
<8 ~8-1 28-2 ~S-1 )
where
- T (r) AT~ _ AT
v =4 I3 Es_' Q Ns 2 5 7 Q és
Because A and Q are diagonal, we may write an equation for each
component of gs; viz.
E. FAEL L+ oo =1 (3 = 1,2,...,D) (10.5)
Js s+1 i3ss g %5, s-1 js s rErrs

The solution of (10.5) can be g

equation

9.(x) of + N+ wg.
J J J

iven explicitly. Consider the characteristic

0

which has roots BJ and 7j , then
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[

Let

A /2w, = cos 8.7
J d

i}

cosh zJd

when | ?\.j/ij |

A
—

N
when l j/2a)j| >1

Then using the initial conditions (10.ka), we may write (10.6a)as

follows:
E. = 20 cos(s 6.)y. +
JrS J J
= -20° cosh (s z Yy
J 33
Note that

sl .y sin (s-k)@j
2, @ sin © *
k=0 9 3
when |)\../2a>.| <1
J dJ
s~1 cokel sinh (s—k)z:j
* z u)‘j sinh z,
k=0 dJ

when |>\J./2wj| > 1
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— M

Cos s Q.
J

1]

S
-2w,
3 By (g y)

cosh s z.
J

given in Section 3. Thus

s-1
. _ P (A,T (I‘) T
Js S( ’ )XJ ’ %;@Q Ss—x %%

where
g sin m O,
J
=Tn Qj when l?\.j/Qa)j] < 1 and
-1
N
{. Hglj (DJ X
sinh m z,
sinh z . When-lhj/thl > 1 and 1 =
" Jd
=0 for i £ 1

Therefore, if IK./2w.|> 1
g J

error can be catastrophic. gowever, if ’K./2w l‘< 1
N L

(10.9) that q , May be a good numerical approximation to A(

2

, the effect of the roundoff

We now apply the above results to Poisson's equation with

Dirichlet boundary conditions.
with mesh width 2Ax

we have

J

in the x-direction and 4y {p the y-direction,

A.o=-2[1 + pg(l - cos 32%)] » ow, =1

10-4

, we see from

(10.8)

(10.9)

r)y(r).

For the five point difference operator



and
o = (&x/oy) or  (Ly/ix)

depending on how one orders the equations. By inspection
N./2w, | > 1
n /20, |

for all j ; and hence for large s , equation ((10.1) leads to a
numerically unstable algorithm. A similar result holds for the nine
point difference approximation to Poisson's equation. Using the five
point approximation with uniform mesh and any number of grid points,
equation (10.9) predicts severe loss of accuracy for more than five
contractions on a CDC 6600; and this has actually been observed. As
noted in Section 3, Hockney [ 6, 7] has combined one or more steps of
CORF with the fast Fourier transform to produce a Poisson solver. For
such a use of CORF one must pay careful attention to the above results.
The cyclic odd/even reduction method can be used successfully
for solving tridiagonal systems of equations. In that situation, one
must make provision for the fact that overflow can occur during the

reduction stages.
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1l. The Buneman algorithm and variants

In this section, we shall describe in detail the Buneman algorithm
[ 2] and a variation of it. The difference between the Buneman algorithm
and the CORF algorithm lies in the way the right hand side is calculated
at each stage of the reduction. Henceforth, we shall assume that in
the system of equations (2.5) T = IP , the identity matrix of
order p

Again consider the system of equations as given by (2.5) with
g =2 “-1. After one stage of cyclic reduction, we have

X. + (21 - AQ)X- + X =Yy +y - Ay 11.1
2 p 237 Zyve T Y5 T Yae Y (11.1)

for j = 2,4,...,q-1 with X, = XQ+1 _ 9, the null vector. Note that

the right hand side of (11.1)may be written as follows:

(1) (1),-1 -1
= + — —1 Ld
Vi D TV T ¥y AV S ATR I yg gt Yy - B Yy (L)
where A(l) = (EIp - A2)
Let us define
(1) _ ,-1 (1) (1)
. =A . . =Y. + . -2R.
5 Ji 0 T5-1 7 T5+1 TRy
Then
1 1 1 1
X§)=A()E§)+q§) . (11.3)
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After r reductions, we have by (3.3)

(r1) _ o (2) L (x) ) (@) (o)
Xj - (XJ._EI‘ " .y,j+2r) A Xj ‘ (11.4)

Let us write in a fashion similar to (11.3),

PSEPONORNON (11.5)

Substituting (11.5) into (11.4) and making use of the identity

(A(r))E =21 P—A(Nl) from (3 ,5), we have the following relationships:

p(‘r-l-l) = p(.r) - (A(r))-l(P( g » T P(r)r - q(.r)) (11.6a)
b ~J ~j.2f  mgeet
G B R N P A (11.60)
=3 o TE-LE VO-Ll

for § =121 (1 = 1,2,...,2571) with

( (
Pér) = Eéizl - gér) = 3‘;21 -

-1
To compute (A(r)) (p(r)r+ p(r) z qu)) in (11 6a) we solve the
~j.2 ~ 542 23

system of equations

@) )

A gy ) L)

=J ~j-2n ~iHe
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(r)

where A is given by the factorization (3.10), viz,

2" p
A(r) = -II (A+ 2 cos oﬁﬂ I) ,
it .

r+l

ogr)= (29 - 1)n/2

After k reductions, one has the equation

A% e A(E) P(l];) + Q(}1;)
~e ~2 ~2
and hence
(k) + (p(k)y-1 (k)
X, _D (A7) aty
~21{ = ~2k =0
K . k) \-1 (k)
again ONe uses the factorization of A( ) for computing (A ) gzk

In order to back solve, we use the relationship

b + A(r) X, t X r A(r) pgr) + qgr)
~j_2r ~d ~jte ~ ~
. _ktl-r .
for 5= 127 (i = 1,2,...,2 -1) with Xp =% 4.9 _ ©

o ~

For j =2r,5 . 2t,...,2k+l-2r , we solve the system of equations

r r
A(r)(xj ) B§ )) - 9§ - (}f. r "X, r) ’ (12.7)
~ j-2 j+e
r
using the factorization of A i hence
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7 7/
- o\D X - (r) (11.8)
5By v (y-py )

Thus the Buneman algorithm (variant 1) proceeds as follows:

r r
1) Compute the sequence {pg )’ ég )} by (11.6) for

0] . k+1l
r =1,...,k with p§ ) =6 for 3 = 0,...,2 , and
kt+1
qgo) = yj for 3 = 1,2,...,2 -1 .

2) Backsolve for %4 using (11.7) and (11.8).

r o\
It is possible to eliminate the sequence {pgr} . From (11.6b),

we note that

p{T oL (ql7) w qlx) ol (11.9)

where

Using (11.9) in (11.6a) and modifying the subscripts and superscripts

appropriately, we have

- -1) .
9§r+l) - %gf%h ) %§fhl) ~§r) th (q3+2h

-1, (r-1) (r) (I‘-l) () ,
e @) §r5h 95 ont Gym T B4y

(r-l) () (r-1)
%in %o * Liamn ] (11.10)
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r

. r+1 +
for 3 = (25,257 . oMoty witn

(r) (r)

Q% © = $ k1 = 8 for all r ,

(0 _ v k1

a; v for 3= 1,2,...,25 11,
(1) -1

_ . +
4 Vit Y - BTy for 5 =2,k ,..., o1,

To solve for X. , we use 'the relationships (11.7) and (11.9) so that

~J
_ 1, (r-1) (r-1) (r)
X, =3 (e Lian Ly )-
(r)y -1
- (AT (i‘j-eh t Ko - ggr)) . (111.11)

Thus the Buneman algorithm (variant 2) proceeds as follows:
(r)
1) Compute the sequence {q; /} by (11.10) for _ 1.0
':J r = b ,o.c,k
2) Backsolve for x. using (11.11).
~J

Note that the Buneman algorithm (variant 2) requires half the storage
that the Buneman algorithm (variant 1) requires. However, the

variant 2 algorithm requires approximately twice as many additions.
The P, 's and q:T 's can be written in terms of the x 's. In

~dJ
Section 13, we shall show how this affects the stability of the methods.

Note
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and

(1) -1 -1
= A =Xx, + A A
PJ Xj ~J (fg-l ~J+l)
(1) (1)
. = 3 + . - .
33 Xg-l ¥J+l EEJ
-1 ,(1)
=X, - (A A
~j- ( ) (Z.(J'l + },.,{J"'l) + fj"‘g ‘e

By an inductive argument, it is possible to show that

p(™)

and

o\

where

r-1

- x + (-1)7* 57 22 (x tx )
3 £y Ri-(2k-1) T Zg*(2k-1)

11-6
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12. Applications of the Buneman algorithm to Poisson's equation

As was pointed out in Section L, matrices of the form (2.5)
arise in solving the five point finite difference approximation to
Poisson's equation over a rectangular region with Dirichlet boundary
conditions and hence it is possible to use the methods of Section 11.
For the five point approximation to Poisson's equation over a rectangular
region with Neumann or periodic boundary conditions it is necessary to
modify the Buneman algorithms.

For the Neumann boundary conditions, we have the system of

equations
by 2x = Yo
X1 + A.icj + X4 ~ vy (3 = 1,2,¢00,m=1) ,
x L +AX =y with m = 274 |
We define
Xgl) = A(l)g§l) + ggl) for j = O,E,M,...,Qk+l
where
Pél) - a7 Yo’ 351) =2y - Pc()l)) ’
R R i A e SRR
e A ML AR )
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- In general then, as in Section 11, we have for r = 1,2,...,k-1
- SH1) () (D) 4 (re)
Y3 %5 %
- where
- P(()r+l) p(r) (A(r )'l (;) (r)) (I’*'l) _ 2((1‘(21‘1‘) - F(()r‘*’l))
«pgﬂl) = P;(,r) @) ) L g r) (r)) (rﬂ) Q(T)r”-(r) r gr+l)
— ~ ~ ~j-2F ~5+of ~j-en ~gte o~
- for 5 = 12570 (4 = 1,2,...,25To1)
;r+l) ( ) (A(r))-l(zp(r) gér)) , %£r+l) _ (r) -2P§f+l)-
- ~m 2¥ 1n-2 ~
Finally,
Ik B Rk 2k
where
(1) _ 7 - (a(1)y2
ktl) _ (k) ky-1 (k) k k
o - 2 @l - A 12.2
ktl k) (k) L (k1)
_ S;k ) - %é + a k+1p £k

- 12-2



r— r—

-

- r rr— rr— r— r—

—

r

From (5.4) we see that

L), p(iel) (1)

(kt1)

= +q
k k ~2k

~2 ~2
so that

X

_ b
Nek = ~2k

(B(k+l))-q(§+l)

Bl gDy | ()
e ~2 ~2

The backsubstitution process proceeds as in Section 11. It is also

(r)

possible to eliminate the Pj

section.

For periodic boundary conditions,

Ay ++ X Xy -
+ + X =
LT X521
X X Ax

~1 + ~m-1  m

We define

S @@, ()
~J ~J

~

where

12-3

(k+1) + (B(k+l))' q(k+l)

~2k

indicates a solution to the singular system

1

. for 7
7; :
I

for j =

= 2,5%,..0,m=1 ,

M, ..

The factorization of B

l,2

(k+1

sequence as was done in the previous

we have the system of equations

ktl

is given by (5.6).



where

(r+l) _

~2r+l

Finally

=27y, E(l) aRATIRL EBél) ,
o) 1)
N I R R P
- (1
A lzﬁ ’ gél) ST R :
In general for r = 1,2,...,k-1 ,
ST () (1) o (el for § =
3 Lj ~J
ORI PO RN NN CORINC)
r+l - (& ~2r ~3 of ~ Zortl "2r+1
_ Pér) } (A(r)) Iv(r) %(r)) , q(r+1
z ~jof Ry
_ . (r) (r)y-1, (r) + (x) _ (r) (r+1) _
p, - (A7) (pzer D W )
as (12.1),
G g(el) (1) (k1)
~2k £2k 32k

where

12-4

j = 4,6,

i2

1l

Do-)m-e) b

™= 1,2,...,2

o

(1) 4 4(8)_pp(r+1)
3; Sz oF ’2r¥1 ¢

(r) + q(r) p(?+l)

”3-2 *J+2 ~

q(r) + r) ep(r+l)

~pT m ¥ =



- (k+1)
(k1) _ () (k) y-1on (k) _ () (1) _ o, (8) _ o (
- =P - (A ) (2p -a ) s oo 4 g %
— Pk B3k Erl ™2k 2ok SRR A
and B(k+l) is defined by (12.2). Then
+ k+1 k+1
S(), | gleD) ), ()
~2 ~2 ~2
so that
+ k+1)y- (k+1)
~2 2 ~e2
- The backsubstitution process proceeds as 1N Section 11.
(+) ) . ,
It is possible to express BSH and ggr in terms of X, @s in
equations (11.12) and (11.13).
g —
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15. Accuracy of the Buneman Algorithms

As was shown in Section 11, the Buneman algorithms consist of

generating the sequence of vectors {Egr),ggr)}
(11.12) and (11.13)

(xr) _ (z), ()

Py " 7%y &5

N C O C)

~d ~j-2t e ~J
where

) @)%

{ r+1

Ngjr = (-1) 55 _gl(fj-(2k-1)+§j+(2k-1)
and

s(r) _ alz-1) | p(0)y-1
Then

I N )

™ L 4 (2) 4 o

log™ - eprx Dl < AT g
where

H'¢ﬁ2 indicates the Euclidean norm of a vector v ,

”C|| indicates the spectral norm of a matrix C ,

hx iu”

13-1
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o

When T ==IP' we may redefine the polynomials given in Section 3

in the following way. Let
y= -a/2 ,
and define

¥ = cos © for |¢| <1

Vv
o]

= cosh @ for |¢| >

Then in a similar fashion to (10.8),

P (a) = -2 cos(2k cos™t

2

¥) for |yl <1

= -2 cosn(2® cosn™ ) for |yl >1 .

Thus for A = AI ,

r-1 .
Is&) 1 =TT a3y,
j=0

() 17

1

where {Ki3 are the eigenvalues of A . Therefore for

r-1 :
15, = 2 TT max Leosh 2 0,17
j=0 {Oi}'

where

-1
6, = cosh (- xi/e)

13-2
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Finally,

-1
(r) ,(r), _ ,-r+l L j -1 T
IIs A 2 X max [T [cosh 2 Oi] x cosh 2 6,

Lg -
o, 3\ 3=0

when |X.|>~2
1 =

For the five point difference approximation to Poisson's equation

over a rectangular region with Dirichlet boundary conditions

_ 2 Am
N = -2(1 + p°(1 - cos p+l))

where p = AX/AW' or (Aw/éx) depending on the ordering of the

equations. Thus
-1 2 im
= + - _
6, = cosh (1 + p7(1L - cos p+l))
which implies Gi >1 for all i . Then

max [cosh o Oi]"l = [cosh pd {cosh_l(l + p2(1 - cos Egi))}]—l .

{63
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b
!

Thus after some simplification,

( ) —cgl —CQl 6)
r e 13,
us HZ = r-1 S+1 < e (
-2 Ol
(1+e )
3=0
2,. T
where c=2r-l, cosh9, =1 +p(1-0:. =
1 1Y
A similar calculation shows
e
”A(f) S(r)nz <2 e 1Y ‘ (15‘7)

(r) will be a
Therefore from (13.6) we see that for large r, Dy

~

good approximation to x. . And from (13.5) and (13.7), we see that

0
HS('r) -t §j+2r)“2 see” X

so that the ”qgr)ng remains bounded throughout the calculation. This

explains why the Buneman algorithms lead to numerically stable results

for solving the finite difference approximation to Poisson's equation.
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14. Conclusions

The Appendix contains the results of some numerical experiments
involving the application of the Buneman algorithm (variant 1), the
method of matrix decomposition, the method of point successive
over-relaxation (cf. [10]), and the Peaceman-Rachford alternating
direction method (cf. [1l]) to the five point finite difference
approximation to Laplace's equation over a rectangle with Dirichlet
boundary conditions. In these experiments the Buneman algorithm was
the most efficient and accurate; however, the method of matrix
decomposition was competitive in several cases. We conclude, therefore,
that the Buneman algorithm and the method of matrix decamposition

are useful methods in the situations where they apply.
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- Appendix

Numerical Experiments

In order to gain computational experience with the methods of matrix
decomposition (MD) and the Buneman algorithm (variant 1), it was decided to
apply the algorithms to the five point difference approximation of Laplace's

— equation with Dirichlet boundary conditions. In addition, in order to
compare these methods with established methods, it was decided to apply
the methods of point successive over-relaxation (SOR) (cf. [10]) and
Peaceman-Rachford alternating direction method (PR) (cf. [11]) to the

same problems. We did not attempt to-determine which method is best in

- general. Those interested in operation counts, variations of these direct

procedures, and customizing the direct procedures for particular problems

are referred to [4] and [7].
The following problems were chosen so that the computed error could
be detemined exactly:
- Problem #1, u =1 ;

Problem #2, u = cos(x) cosh(y) ;
Problem #3, u = & (sin(y) + cos(y)) ;
Problem #4, u = x5-10x5y2 + 5th .

Let

=1
Il

<computed solution of the difference equation>

and

max
(mesh

)Hﬁ ‘: l.O} 5

the tabulated error is

max - u
(mesh) !

|
[
!
|
|
F

One should note that in many cases the tabulated error is the truncation
error of the difference equation.
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- Each of these problems was solved on the following meshes (includes
boundary points):
Mesh #1 20 by 129 ,
Mesh #2 40 by 129,
Mesh #3 80 by 129 ,
Mesh #4 129 by 129 ,
- Let p = Ax/Ay . Each of the four problems was solved on each of the
four meshes for five values of p :
| i AV Dy Ps
- 1 .025 .00025 .01
2 .025 .0025 1
- 3 .025 .025 1.0
4 .0025 .025 10.0
5 .00025 .025 100.0
- Thus each problem was solved on a total of twenty rectangular regions
These regions were chosen such that the lower left-hand corner of the
i rectangle was always at the origin. The following is a table of the
_ coordinates of the upper right-hand corners:
Mesh #1 ' Mesh #2 . Mesh #3 Mesh #4
) py ( -5, 032) (1., .032) (2., .032) (4., .032)
_ e, (5 .522) (1., .322) (2., .322) (., .322)
Px (.5, 3.225) (1., 3.225) (2., 3.225) (k., 3.225)
_ py, (<05 3.225) (.1, 3.225) (.2, 3.225) (.4, 3.225)

Ps (.005, 3.225) ( .01, 3.225) ( .02, 3.225) (.04, 3.225)




We define
V(p,i,J) = max {solution of prob #p on region with Py and mesh #J}
- min [solution of prob #‘p on region with Py and mesh #J]

Note V(1,r,j) = 0 for all i and j . The following tables give V

for the other problems:

v(2,1,3)

Mesh #1 Mesh #2 Mesh #3 Mesh #k
Py .1 R ite) 1.37 2.0
o5 .15 47 1.44 2.1
o5 11.1 11.4 16.4 2l.0
by, 11.0 11.0 11. 11.
Ps 11.0 11.0 11. 11.
v(3,1,3)

Mesh #1 Mesh #2 Mesh #3 Mesh 74
Pl .59 1.64 6.22 23.6
o0 .95 2.24 7.84 29.2
P 3.84 6.32 17.2 58.5
Py, 2.56 2.7 2.97 3.36
o 2.46 2.47 2.5 2.53



v(k,1i,3)

Mesh #1 Mesh #2 Mesh #3 Mesh #4
Py .018 ST7 28.2 323 .0
P 00 (= 28.3 325 .0
P 219.5 400.0 556.0 1723 .0
o), 22.9 48.2 98.2 158.0
fs 2.29 L.82 9.9 16.1

For the above rectangles, the optimum relaxation factor is given by

it

(J-lb(i,j)
1+V1-3B,.
1J

where

2 cos z + cos| ==
Py W, -1 128
2
+
2(p; + 1) .
and_tia is the number of grid points in the x-direction of the j-th mesh.

The initial guess for SOR and PR was the zero vector.

The iteration process was terminated when

+1 |
max |Un n' U’ < 10'”
(entire mesh)| U |
|| > 1077

Optimum PR parameters were determined by Wachspress's algorithm [11]



for cycles of length Qk . Convergence required

max max - < lO_L .
(complete cycle) (entire mesh) U
™| > 1077

Because of this convergence criterion, a short cycle was desirable.
After some experimentation, it was decided to use a cycle length of
four exclusively.
All problems were run on a CDC 6600 (about 1% decimal digits of
accuracy); -the RR, MD, and Buneman programs all used the same tridiagonal
system solver. The Q matrix and eigenvalues required by MD were
computed with the QR algorithm for symmetric tridiagonal matrices. The
matrix multiplications (QTy) required by MD were performed with a
machine language inner product routine which is quite efficient and
which accumulates the inner products in double precision. It should be
noted that for problems with uniform mesh spacing, these matrix products
may be performed with the fast Fourier transform; and this makes MD
competitive in speed with the Buneman algorithm. However, MD 1is capable
of handling more general problems such as those with non-uniform mesh
spacings; 1n these cases Q must be computed and the matrix products
performed. Thus the MD routine used in this study gives an indication
of the kind of performance one might expect with these more general
problems. Note also that the matrix multiplication (QTy) requires
O(qu) operations. The Buneman algorithm requires a total of
O(ap log2 p) operations. Thus as p becomes small,

MD approaches the Buneman algorithm in speed.
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The following tables of computation times are normalized by the

time required for the Buneman algorithm on Mesh #1:

Computation times for the Buneman algorithm (variant 1) and MD

Mesh #1 Mesh #2 Mesh #3 Mesh #
Buneman 1.0 2.08 4.31 6.96
MD 1.18 3.65 14.9 41.0

Computation time for IR

(These times are averages over all four problems.)

Mesh #1 Mesh #2 Mesh #3 Mesh #4
P1 2.56 5.17 9.43 15.2
Po 4.85 10.3 20.6 30.1
o 5.44 12.6 31.2 477
o), 2.56 7.61 15.2 32.5
b 2.25 L.hg 8.58 13.5

Computation time for SOR

(These times are averages over all four problems.)

Mesh #1 Mesh #2 Mesh #3 Mesh #4
P1 ko.9 89.0
P2 45.1 97.9
Pz 16.1 60.1 (not run) (not run)
n 7.58 32.9
fs5 7.22 28.8



Relative error for the Buneman algorithm, Mesh #1

Relative error for MD,

Prob 1
4(-11)
2(-11)
5(-13)
2(-13)
2(-13)

Prob 2
7(-9)
5(-7)
2(-6)
1( -

1(-10)

Mesh #l

Relative error for PR,

Prob 1
5(-7)
1(-7)
1(-9)
2(-10)
8(-10)

Prob 2
5(-7)
5(-7)
2(-6)
1(-8)
7(-10)

Mesh #1

Prob 1
2(-11)
2( -g)
7(-8)
2(-9)
8(-13)

Prob 2
7(-9)
5(-7)
2(-6)
1(-8)

1(-10)

Prob 3
6(-9)
4(-7)
2(-6)
1(-8)

1(-10)

Prob 3
L(-7)
k(-T)
2(-6)
1(-8)
7(-10)

Prob k
3(-7)
2(-5)
L(-7)
2(-9)

2(-11)



Relative error for SOR, Mesh #l

Prob 1
b -b)
1(-3)
5(-k)
3(-4)
3(-1)

Prob 2
B( -4
1(-3)
1( -4)
3(-k)
3(-1)

Prob 3
L(-k)
1(-3)
1(-4)
3(-4)
3(-k)

Prob 4
5(-6)
2(-5)
L(-7)
9(-6)
5(-5)

Relative error for the Buneman algorithm, Mesh o

Prob 1 Prob 2
py h(-11) 7(-9)
P 5(-11) 6(-T)
Px 2(-12) 5(-6)
Py, 3(-13) 5(-8)
oc 7(-13) 6(-10)

Relative error for MD, Mesh #2

Prob 1 Prob 2
Py 1(-7) 8(-8)
e 5(-8) 6(-7)
P 2(-9) 5(-6)
Py, 2(-9) 6( -8)
Ps 5(-10) 1(-9)

Prob 3
6(-9)
h(-7)
7(-6)
6( -8)
6(-10)

Prob ?
1(-7)
5(-7)
7(-6)
6( -8)
1(-9)
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Prob k4
7(-7)
5(-5)
2( -6)
8(-9)

8(-11)

Prob k
8(-7)
5(-5)
2( -6)
8(-9)
3(-10)



Relative error for PR, Mesh #2

Relative error for SOR, Mesh #2

Prob 1
2(-11)
§( -8)
k(-6)
8(-10)
5(-12)

Prob 2
7(-9)
6(-T)
L(-6)
6( -8)
6(-10)

Prob 1
b( -4)
7(-h)
1(-3)
5(-4)
L( -b)

Prob 2
L( g
5(-%)
6( -b)
B k)
L( )

Prob 3
7(-9)
h(-7)
7(-6)
6(-8)
6(-10)

Prob 3
3(-4)
3(-4)
2(-1)
6(-5)
L(-1)

Prob U
7(-7)
5(-1)
2( -6)
8(-9)
7(-6)

Prob 4
2(-k)
5(-5)
2(-6)
7(=7)
8(-5)

Relative error for the Buneman algorithm, Mesh #5

Prob 1
4(-11)
3(-11)
1(-11)
L(-13)

2(-12)

Prob 2
7(-9)
6(-7)
8( -6)
2(-7)
2(-9)

Prob 3

6(-9)
b(-7)
1(-5)
2(-7)
3(-9)
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Prob 4
5(-8)
5(-6)
1(-5)
3(-8)
3(-9)



Relative error for MD, Mesh #

Prob 3
7(-9)
L(-T7)
1(-5)
2(-7)
3(-9)

Prob 3
6(-9)
4(-7)
1(-5)
2(-7)
3(-9)

Prob k4
5(-8)
5(-6)
1(-5)
5(-8)
7(~10)

Prob k4
5(-8)
4(-6)
1(-5)
3(-8)
5(-10)

Buneman algorithm, Mesh #h

Prob 1 Prob 2
P 1(-9) 8(-9)
fs 1(-9) 6(-7)
o5 8(-10) 8(-6)
Py, 8(-10) 2(-7)
e5  B8(<10)  3(-9)

Relative error for PR, Mesh #3

Prob 1 Prob 2
o  1(-11)  7(-9)
oo 6(-8) 6(-T)
P3 3(-6) 8( -6)
o,  2(-7) 3(-7)
Ps 1(-11) 3(-9)

Relative error for the

Prob 1 Prob 2
oy 41D T(=9)
by 3(-11)  E(-T)
P3 3(-11) 8(-6)
p,  1(-12) 5(-T)
Ps h(-12) 6(-9)

Prob 3

6(-9)
L(-7)
2(-5)
6(-7)
7(-9)
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Prob k4
8(-9)
7(-7)
1(-5)
8(-8)
8(-10)



=

r—

Relative error for MD, Mesh #

Prob 1 Prob 2
oy T(-T) 5(-7)
Pys 2( -9) 6(-7)
P3 2( -9) 8( -6)
N 3(-9) L(-7)
fs 3(-9) 9(-9)

Relative error for PR, Mesh #

Prob 1 Prob 2
Py 1(-11) 7(-9)
Po 6( -8) 6(-7)
P3 1(-5) 8( -6)
o), 6( -8) L(-7)
Ps 3(-11) 6( -9)

Prob 3
L(-7)
L -T7)
2(-5)
6(-7)
9(-9)

Prob 3
6( -9)
L(-7)
2(-5)
6( -7)
7(-9)
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Prob k
8(-9)
7(-7)
1( -5)
8(-8)
8(-10)
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