A DESCRIPTION AND COMPARISON OF SUBROUTINES
FOR COMPUTING.EUCLIDEAN INNER PRODUCTS ON THE IBM 360

{lf"‘ [}

BY
yl CHAELA. MALCOLM

STAN- CS-70- 175
OCTOBER 1970

COMPUTER SCI ENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNI VERSITY

A DESCRIPTION AND COMPARISON OF SUBROUTINES

FOR COMPUTING EUCLIDEAN INNER PRODUCTS ON THE IBM 360

by

Michael A. Malcolm

I. Introduction

In many algorithms, a Euclidean inner product of two vectors must
be computed with greater precision than the rest of the calculations.

An example is the calculation of the residual vector
r = b-AX (1)

used in an algorithm for improving an approximate solution X of

the linear system

Ax=Db

~ ~

When the inner product occurs in an algorithm coded in short
precision, it is usually sufficient to accumulate it in long precision
(double precision). Long-precision arithmetic is a hardware feature of
many machines; if so, the inner product is easily coded and quickly
executed. However, when long-precision arithmetic is not available, or
when the entire algorithm is coded in long precision, the inner product
routine becomes more difficult to code and execution time may become
excessive.

This report is primarily concerned with existing routines for
evaluating inner products using more precision than long, for use within
long-precision programs for the IBM System/360.. Several such subroutines
can be called from Fortran H programs; one is available for Watfor (or

Watfiv) For-bran programs and one for Algol W.

II. Algol w

The double precision inner product routine available for Algol W

programs 1is the

long real procedure ip2 (integer i; integer value £, s, u;

long real a, b; long real value c);

comment This procedure computes the sum of products axb and
adds it to the extra term c. The bound variable i is used

to indicate the subscript in the components of the vectors
a and b over which the scalarproduct is formed. Although the

procedure body is more complicated, it can be illustrated as

follows:

begin long real sum, sum := 0.0L,
for 1 :=f step s until u do sum := sum + a*b,

sum + C

end;

Jensen's device is used through the bound variable i . For example,

ip2 could be used to compute the vector r in Equation (1) as follows:
for 1 := 1 step 1 until n do
r(i) := -ip2(k,1, 1,n,A(i,k),x(k), -b(i))

Since each product has 28 significant hex digits and a double word has
only 14 digits, a technique related to that suggested by Mgller [1965]

is used to retain full significance. For illustrative purposes, consider

the following segment of an Algol W program:

real t; long real a, al, a2, b, bl, b2, b3;

comment a and b have been assigned double precision values;
t = aj; al :=t; a2z := a-al;

t :=b; bl :=t; b3 :=Db -Dbl;

t = Db3; b2 :=t; b3 = bl -b2;

The above program segment splits the numbers a and b so that

a=al+a2

b = bl+b2+ b3
Thus

axb = (al+a2) x (bl+ b2+ b3)

= al¥bl+al*(b2+b3) + a2¥bl+ al¥b2+ a2¥b3 (2)

where * indicates double-precision floating-point multiplication and
the symbols x , + and = have the usual mathematical interpretation.
The terms of Equation (2) are accumulated using a technique
suggested by Malcolm [1970]. It follows directly from Theorem 2 in
Malcolm [1970] that provided n < 13107 , the result (E) calculated by

ip2 satisfies

£ = E(1+¢) (3)
where

le] < k16717

and & 1is the exact result. The procedure can be easily modified to
accommodate n > 13107 and still satisfy Equation (3).
The parameters i , a and b are passed by name to give maximum

generality. One may wish to modify this to economize on execution time.

III. Watfor (or Watfiv) Fortran

The same techniques used in ip2 are implemented in two Fortran

subroutines: DPPUT(A,B) and IPTOTL(S) . The call:
CALL DPRUT(A,B)

adds the product AXB (A and B are double precision) to the

accumulators. The call:
CALL IPTOTL(S)

- sums the accumulators and assigns the long precision result to S . T he
subroutine IPIOIL leaves the accumulstors in their initial state (all
Zero).

The result S (= E) satisfies (3) provided DPRUT has not been
called more than 13,107 times since the accumulators were last initialized.
DPPUT and IPTOTL use a named common area called DPACCC for storing
the accumulators. A BLOCK DATA subprogram is used for initializing the

named common data area.
Following is an example using DPRUT and IPIOTL to calculate the

r vector in Equation (1).

D 10 I = L,N
pp 5J=1,N
5 CALL DPRUT(=A(I,J),X(J))

CALL DPPUT(B(I),1.0DO)
10 CALL IPTOTL(R(I))

IV. Fortran H

Several efficient subroutines can be called by a Fortran H program

for computing double-plus inner products.

A. VPR2

VPR2 is a subroutine written by Ehrman [1967] that forms the
double-long product of two double precision arguments and adds it to a
double-long sum. For example, VPR2 could be used for computing the r

vector of Equation (1) as follows:

REAT*8 R1(2) , A(N) , B(N) ,X(N) ,R(N)
INTEGER IEXP

Dp 10 I = L,N
IEXP = 0
R1(1) = 0.0DO
R1(2) = 0.0DO
Dp 5 J = 1,N
5 CALL VPR2(-A(I,J),X(J),R1(1),IEXP)
CALL VPR2(1.0D0,B(I),R1(1),IEXP)
IF (IEXP.NE.O) G T 100
10 R(1) = R1(1)

100 {write error message and/or terminate)

In the above example, Rl is an accumulator with 30 hex digits (two double
words with the exponent) and IEXP is used as an indication of underflow or
overflow.

Although VPR2 uses a 30 hex digit accumulator, it can still result
in a large relative error. Examples can be constructed that result in no
significant digits. However,-practical algorithms in which this phenomenon
causes an unacceptable loss of precision are probably rare.

All calculations in VPR2 are performed in the "general registers".
Although VPR2 requires a subroutine linkage for each term of the inner

product, execution times compare favorably with the fastest routines.

B. DPWT and IPTOTL

The routines described in Part III for use in Watfor are available

in more efficient versions coded in PL360 for use with Fortran H. The

PL360 versions

of DPRUT and IPTOTL differ from the Fortran versions in

that full precision accuracy is obtained and the result is correctly

rounded. This is achieved by a technique described in Section V of

Malcolm [1970]. Also, the result has full precision accuracy and is

correctly rounded.

cC. DPDOTP

DPDOTP is a PL360 function subroutine which uses the same techniques

as DPRUT and IPTPTL described above. The function call for DPDOTP has a

variable length parameter list. The full formal parameter list is:

DPDOTP(4,B,N,XTERM, INCA, INCB, PVA, PVB)

where

XTERM --

INCA —-

INCB —--

The locations of the first components of the long-precision
vectors to be multiplied

The number of terms entering the inner product

An extra double precision term to be added to the inner

product (optional)

Number of (double) words separating successive elements of
the vector' A (optional)

Number of (double) words separating successive elements of

the vector B (optional)

PVA —— Integer vector specifying a permutation of the o) ements
of the vector A (optional)
PVB —— Integer vector specifying a permutation of the elements

of the vector B (optional)

In the actual parameter list, only the first three parameters (A, B

and N) are required. Default values of the remaining parameters are:

XTERM = 0.0DO
INCA =1
INCB = 1
PVA(I) = I (T = 1,2y...)
PVB(I) = T (I = 1,25..4)

For illustrative purposes assume the following declarations

REAL*8 DPDOTP,A(N,N),B(N),C(N),SUM,R(N),X(N)
INTEGER*4 PA (N)

Note that DPDOTP must be declared as a long-precision floating-point

variable. A statement which sets SUM to the inner product of the vectors

B and C 1is
SUM= DPDOTP(B, C,N)
Another example is the calculation of the residual vector in Equation (1):

Dp 10 T = 1,N
10 R(1) = -DPDPTP(A,X,N,-B(I),N)

In this example, INCA must be N because Fortran stores the array A
in column order (see the Fortran IV (H) Programmer's Guide) which means
neighboring elements in a given row of A are separated by N double

words. If the columns of A , in the above example, were permuted as

specified by the integer vector PA , the calculation of the residual

vector would then be as follows:

D 10 I = L,N
10 R(1) = -DPDPTP(A,X,N,-B(I),N,1,PA)

A PL360 single precision function subroutine for calculating the exact
rounded inner product of single precision vectors is also available. This

routine, called SPDOTP, has the same calling sequence as DPDOTP.

. D. DOTP

DOTP is an Assembler Language function subroutine written at

Argonne National Laboratories (see Jordan [1967]). The formal parameter

list is
DOTP(A, B,N)
where
A, B -- The locations of the first components of the vectors to
be multiplied
N -- The number of terms entering the inner product

For example, the residual vector in Equation (1) could be calculated as

follows:

REAL*8 D@TP,A(N,N) ,X(N) ,B(N) ,R(N) , TEMP(N)

Dp 10 I = L,N .
Dp 53 =1,N
5 TEMP(J) = A(I,J)
10 R(1) = B(l) -D@PTP(TEMP,X,N)

Note that DOTP must be declared as a long-precision variable.

7/
DOTP uses the same techniques as DPDOTP (i.e., splitting the

operands and 32 accumulators); however, DOTP does a number of internal
subroutine linkages (proportionalto N) to code that is in line in

DPDOTP.

V. Comparison of Execution Times

Each of the routines described above has undergone extensive
, tests to insure accuracy. In addition to these tests, each routine

was timed on the 360/67 with the following two calculations:

N
Test No. 1: 2: a... X b
K=l ik k
5
Test No. 2: a X b
= k k

Each factor Biye 9 By bk entering the inner product for these tests
was equal to 3.1415926535897932
The experimental results are tabulated in Table I in terms of values

of K for determining execution time according to
execution time = K x N

in milliseconds.

The people who programmed the various routines are acknowledged

in Table I.

TABIE I

Values of K for

*
execution time = K¥Xno. of terms in inner product (ms) —/
Inner Inner K K
Calling Product Product for for
Language Routine Compiler Programmer %;aik)<bk %;ak>d3k
Algol W | 'ip2 Algol W Michael 0.710 0.703
(w/o $NOCHECK) Saunders
Algol w ip2 Algol W Michael 0.544 0.526
(with $NOCHECK) Saunders
Fortran DPRUT Watfiv Gordon 2.12 2.03
IPTOTL (w/o NOCHECK) Gullahorn
Fortran DPRUT Watfiv Gordon 2.11 2.06
IPTOTL (with NOCHECK) Gullahorn
Fortran DPRUT Fortran H Gordon 0.424 0.421
IPTOTL opt = 0 Gullahorn
Fortran DPPUT Fortran H Gordon 0.332 0.332
IPTOTL opt = 2 Gullahorn
Fortran DPPUT PL360 Michael 0.212 0.210
IPTOTL Malcolm
Fortran DPDOTP PL360 Michael 0.184 0.184
Malcolm
Fortran VPR2 0S/Assembler John Ehrman 0.196 0.196
Fortran DOTP D. Jordan 0.242 0.218

0S/Assembler

Wi
All tests were performed on an IBM 360/67.

10

VI. Conclusions

Many long-precision routines requiring accurate inner products
can be coded in either Fortran or Algol y. For Fortran, DPPUT and IPTOTL
are probably the most useful for three reasons: (1) they are easy to use
and fast; (2) accuracy of the result is guaranteed; and (3) programs
using them can be debugged and run with the Watfor (or Watfiv) compiler.
For programs which are to be debugged and run with the Fortran H compiler,
DPDOTP is probably the best because it is easy to use, execution time is

minimal and the result is guaranteed.

Bibliography

Ehrman, John [1967]. "Double-Double Accumulation of Inner Products."

Stanford University Computation Center, Extrinsic Program Library No.

Fortran IV(H) Programmer's Guide. IBM System/360 Operating System.
File No. S8360-25, Form C28-6602-3.

Jordan, D. F. [1967]. ANL-F1545-DOTP, "Extra-Precision Accumulating
Inner Product." Argonne National Laboratory, Applied Mathematics
Division. System/360 Library Subroutine. Argonne, I1linois.

November.

Malcolm, Michael [1970]. "An Algorithm for Floating-Point Accumulation of

Sums with Small Relative Error." Technical Report No. STAN-CS-70-163.

Computer Science Department, Stanford University. June.
Mﬁller, Ole [1965]. "Quasi Double-Precision in Floating-Point Addition."

IT 5. 37-50.

12

C 003.

