
A DESCR IPTION AND COMPARISON OF SUBROUTINES
FOR COMPUTING.EUCLIDEANINNER PRODUCTSON THE IBM 360

[iene a

BY

| M CHAELA. MALCOLM

STAN- CS- 70-175

OCTOBER 1970

COMPUTER SCI ENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UN VERSITY

A DESCRIPTION AND COMPARISON OF SUBROUTINES

FOR COMPUTING EUCLIDEAN INNER PRODUCTS ON THE IBM 360

by

Michael A. Malcolm

I. Introduction

In many algorithms, a Euclidean inner product of two vectors must

be computed with greater precision than the rest of the calculations.

An example 1s the calculation of the residual vector

r = b- AX (1)

used 1n an algorithm for improving an approximate solution X of

the linear system

Ax=Db .

When the inner product occurs 1n an algorithm coded in short

precision, 1t 1s usually sufficient to accumulate 1t in long precision

(double precision). Long-precision arithmetic 1s a hardware feature of

many machines; if so, the inner product is easily coded and quickly

executed. However, when long-precision arithmetic 1s not available, or

when the entire algorithm 1s coded in long precision, the inner product

routine becomes more difficult to code and execution time may become

excessive.

This report 1s primarily concerned with existing routines for

evaluating inner products using more precision than long, for use within

long-precision programs for the IBM System/360.. Several such subroutines

can be called from Fortran H programs; one 1s available for Watfor (or

Watfiv) For-bran programs and one for Algol W.

1

II. Algol w

The double precision inner product routine available for Algol W

programs 1s the

long real procedure ip2 (integer i; integer value by,s, u;

long real a, Db; long real value cc);

comment This procedure computes the sum of products axb and

adds 1t to the extra term c. The bound variable 1 1s used

to indicate the subscript in the components of the vectors

a and b over which the scalarproduct is formed. Although the

procedure body 1s more complicated, it can be illustrated as

follows:

begin long real sum, sum := 0.0L,

for i := f step s until u do sum := sum + a¥b,

sum + Cc

end;

Jensen's device 1s used through the bound variable 1 . For example,

ip2 could be used to compute the vector r in Equation (1) as follows:

for i := 1 step 1 until n do

r(i) := -ip2(k,1, 1,n,A(1,k),x(k), -b(1))

Since each product has 28 significant hex digits and a double word has

only 1b digits, a technique related to that suggested by Mpller [1965]

is used to retain full significance. For illustrative purposes, consider

the following segment of an Algol W program:

real t; long real a, al, a2, b, bl, b2, b3;

comment a and b have been assigned double precision values;

t =a; al := t; a2 := a-al;

t :=b; bl :=¢t; bv) :=Db -bl;

t := b3; b2 :=t; B53 := bd -Db2;

2

The above program segment splits the numbers a and b so that

a= al+ a2

b = bl+b2+Db5 .

Thus

axb = (al+a2) x (bl+b2+Db3)

= al¥bl+ al*(b2+b3) + a2¥bl+ al2¥b2+ a2¥b3 (2)

where* 1ndicates double-precision floating-point multiplication and

the symbols x , + and = have the usual mathematical interpretation.

The terms of Equation (2) are accumulated using a technique

suggested by Malcolm [1970]. It follows directly from Theorem 2 in

Malcolm [1970] that provided n < 15107 , the result (¢) calculated by

1p2 satisfies

E = §(1+¢) (3)

where

le] <b.1671°

and & 1s the exact result. The procedure can be easily modified to

accommodate n > 13107 and still satisfy Equation (3).

The parameters 1 , a and b are passed by name to give maximum

generality. One may wish to modify this to economize on execution time.

3

III. Watfor (or Watfiv) Fortran

The same techniques used in ip2 are implemented in two Fortran

subroutines: DPPUT(A,B) and IPTOTL(S) . The call:

CALL DPPUT(A,B)

adds the product AxB (A and B are double precision) to the

accumulators. The call:

CALL IPTOTL(S)

- sums the accumulators and assigns the long precision result to S . T he

subroutine IPTOTL leaves the accumulators in their initial state (all .

Zero).

The result S (= £) satisfies (3) provided DPPUT has not been

called more than 13,107 times since the accumulators were last initialized.

DPPUT and IPTOTL use a named common area called DPACCC for storing

the accumulators. A BLOCK DATA subprogram 1s used for initializing the

named common data area.

Following 1s an example using DPPUT and IPTOTL to calculate the

r vector in Equation (1).

DP 10 I = 1,N
Dp 5 J =1,N

5 CALL DPPUT(=A(I,J),X(J))
CALL DPRUT(B(I),1.0DO)

10 CALL IPTOTL(R(I))

IV. Fortran H

Several efficient subroutines can be called by a Fortran H program

for computing double-plus inner products.

4

A. VPR2

VPR2 is a subroutine written by Ehrman [1967] that forms the

double-long product of two double precision arguments and adds it to a

double-long sum. For example, VPR2 could be used for computing the r

vector of Equation (1) as follows:

REAT*8 R1(2) ,A(N) ,B(N), X(N) ,R(N)
INTEGER IEXP

DP 10 I = 1,N
IEXP = 0

R1(1) = 0.0DO
R1(2) = 0.0DO
Dp 5 J = LN

5 CALL VPR2(-A(I,J),X(J),R1(1),IEXP)
CALL VPR2(1.0D0,B(I),R1(1),IEXP)
IF (IEXP.NE.O) GP TP 100

10 R(1) = Ri(1)

100 {write error message and/or terminate)

In the above example, Rl is an accumulator with 50 hex digits (two double

words with the exponent) and IEXP 1s used as an indication of underflow or

overflow.

Although VPR2 uses a 20 hex digit accumulator, it can still result

in a large relative error. Examples can be constructed that result in no

significant digits. However,-practical algorithms in which this phenomenon

causes an unacceptable loss Of precision are probably rare.

All calculations in VPR2 are performed in the "general registers”.

Although VPR2 requires a subroutine linkage for each term of the inner

product, execution times compare favorably with the fastest routines.

d

| B. DPAUT and IPTOTL
The routines described in Part III for use 1n Watfor are available

in more efficient versions coded in PL360 for use with Fortran H. The

PL360 versions of DPPUT and IPTOTL differ from the Fortran versions in

1 that full precision accuracy 1s obtained and the result 1s correctly

rounded. This 1s achieved by a technique described in Section V of

| Malcolm [1970]. Also, the result has full precision accuracy and is

| correctly rounded.

| C. DPDOTP

| DPDOTP is a PL360 function subroutine which uses the same techniques

as DPRUT and IPTPTL described above. The function call for DPDOTP has a

variable length parameter list. The full formal parameter list 1is:

| DPDOTP(A,B,N, XTERM, INCA, INCB, PVA, PVB)
| where

A,B —-— The locations of the first components of the long-precision

vectors to be multiplied

N ~~ The number of terms entering the inner product

XTERM -- An extra double precision term to be added to the inner

product (optional)

| INCA —— Number of (double) words separating successive elements of

3 the vector' A (optional)

| INCB —- Number of (double) words separating successive elements of

| the vector B (optional)

| 6

PVA —- Integer vector specifying a permutation of the elements

of the vector A (optional)

PVB —— Integer vector specifying a permutation of the elements

of the vector B (optional)

In the actual parameter list, only the first three parameters (A, B

and N) are required. Default values of the remaining parameters are:

XTERM = 0.0DO

INCA = 1

INCB = 1

PVA(I) = I (I = 1,2500.)

For 1llustrative purposes assume the following declarations

REAI*8 DPDOTP,A(N,N),B(N),C(IN), SUM,R(N), X(N)
INTEGER*4 PA (N)

Note that DPDOTP must be declared as a long-precision floating-point

variable. A statement which sets SUM to the inner product of the vectors

B and C 1s

SUM= DPDOTP(B,C,N)

Another example 1s the calculation of the residual vector in Equation (1):

Dp 10 I = 1,N
10 R(1) = -DPDPTP(A,X,N,-B(I),N)

In this example, INCA must be N because Fortran stores the array A

in column order (see the Fortran IV (H) Programmer's Guide) which means

neighboring elements in a given row of A are separated by N double

words. If the columns of A , in the above example, were permuted as

|

specified by the integer vector PA , the calculation of the residual

vector would then be as follows:

DP 10 I = 1,N
10 R(1) = -DPDYTP(A,X,N,-B(I),N,1,PA)

A PL360 single precision function subroutine for calculating the exact

rounded inner product of single precision vectors 1s also available. This

routine, called SPDOTP, has the same calling sequence as DPDOTP.

D. DOTP

| DOTP 1s an Assembler Language function subroutine written at

Argonne National Laboratories (see Jordan [1967]). The formal parameter

list 1s

DOTP(A, B, N)

: where

| A,BB -- The locations of the first components of the vectors to

| be multiplied

N —-— The number of terms entering the inner product

For example, the residual vector in Equation (1) could be calculated as

follows:

REAL*8 D@TP,A (N,N) ,X(N) ,B(N) ,R(N) , TEMP(N)

DP 10 I = 1,N .
Dp 5 J =1,N

| 5 TEMP(J) = A(I,J)
10 R(1) = B(1) -D@TP(TEMP,X,N)

Note that DOTP must be declared as a long-precision variable.

- 8

/

DOTP uses the same techniques as DPDOTP (i.e., splitting the

operands and 32 accumulators); however, DOTP does a number of internal

subroutine linkages (proportionalto N) to code that 1s in line in

DPDOTP.

v. Comparison of Execution Times

Each of the routines described above has undergone extensive

, tests to insure accuracy. In addition to these tests, each routine

was timed on the 360/67 with the following two calculations:

)Test No. 1: a... XD
kk=l EF

2Test No. 2: a,_ Xb

= k k

Each factor Baye 0 8 by entering the inner product for these tests

was equal to 3.1415926535897932 .

The experimental results are tabulated in Table I in terms of values

of K for determining execution time according to

execution time = K X N

in milliseconds.

The people who programmed the various routines are acknowledged

in Table I.

9

| TABLE I

Values of K for

execution time = K¥no. of terms in inner product (ms)

| Inner Inner K K

Calling Product Product for for

Language | Routine Compiller Programmer Lox X o. Lay xb,

| Algol W | 'ip2 Algol W Michael 0.710 0.703
(w/o SNOCHECK) Saunders

Algol w ip2 Algol W Michael 0.544 0.526
(with $NOCHECK) Saunders

Fortran DPPUT Watfiv Gordon 2.12 2.03

IPTOTL (w/o NOCHECK) Gullahorn

Fortran DPPUT Watfiv Gordon 2.11 2.06

| IPTOTL (with NOCHECK) Gullahorn

Fortran DPPUT Fortran H Gordon 0.424 0.421

IPTOTL opt = 0 Gullahorn

Fortran DPRUT Fortran H Gordon 0.332 0.332

IPTOTL opt = 2 Gullahorn

Fortran DPRUT PL360 Michael 0.212 0.210
IPTOTL Malcolm

Fortran DPDOTP PL360 Michael 0.184 0.184
Malcolm

Fortran | VPR2 0S/Assembler | John Ehrman| 0.196 0.196

Fortran DOTP 0S/Assembler D. Jordan 0.242 0.218

*

/ All tests were performed on an IBM 360/67.

10

VI. Conclusions

Many long-precision routines requiring accurate inner products

can be coded in either Fortran or Algol yy, For Fortran, DPPUT and IPTOTL

are probably the most useful for three reasons: (1) they are easy to use

and fast; (2) accuracy of the result is guaranteed; and (3) programs

using them can be debugged and run with the Watfor (or Watfiv) compiler.

For programs which are to be debugged and run with the Fortran H compiler,

DPDOTP 1s probably the best because 1t 1s easy to use, execution time 1s

+ minimal and the result 1s guaranteed.

11

|

Bibliography

Ehrman, John [1967]. '"Double-Double Accumulation of Inner Products."

Stanford University Computation Center, Extrinsic Program Library No. C 003.

Fortran IV (H) Programmer's Guide. IBM System/360 Operating System.

File No. S360-25, Form C28-6602-3.

‘ Jordan, D. F. [1967]. ANL-F1545-DOTP, "Extra-Precision Accumulating

Inner Product." Argonne National Laboratory, Applied Mathematics

Division. System/360 Library Subroutine. Argonne, Illinois.

November.

Malcolm, Michael [1970]. "An Algorithm for Floating-Point Accumulation of

Sums with Small Relative Error." Technical Report No. STAN-CS-70-163.

Computer Science Department, Stanford University. June.

Mpller, Ole [1965]. "Quasi Double-Precision in Floating-Point Addition."

BIT 5. 37-50.

12

