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ABSTRACT: In this work we show that it is possible to express
1 most properties regularly observed in algorithms in
terms of 'partial correctness' (i.e., the property that
the final results of the algorithm, if any, satisfy some

given input-output relation).

2 This result is of special interest since 'partial
correctness' has already been formulated in predicate
calculus and in partial function logic for many classes

of algorithms.
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Introduction

We normally distinguish between two classes of algorithms: deterministic
algorithms and non-deterministic algorithms. A deterministic algorithm
defines a single-valued (partial) function, while a non-deterministic algorithm
defines a many-valued function. Therefore, while there are only a few
properties of interest (mainly, termination, correctness, and equivalence)
for deterministic algorithms, there are many more (determinacy, for example)
for non-deterministic algorithms.

In this work, we show that it is possible to express most properties
regularly observed in such algorithms in terms of the 'partial correctness'
property (i.e., the property that the final results of the algorithm, if
any, satisfy some given input-output relation).

This result is of special interest since 'partial correctness' has
already been formulated in predicate calculus for many classes of deterministic
algorithms, such as flowchart programs (Floyd (1967 a) and Manna (1969)),
functional programs (Manna and Pnueli (1970)), and Algol-like programs
(Asheroft (1970)); and also for certain classes of non-deterministic algorithms,
such as choice flowchart programs (Manna (1970)) and parallel flowchart
programs (Ashcroft and Manna (1970)). See also Cooper (1969 a, 1969 b).
Similarly, Manna and McCarthy (1970) have formulated 'partial correctness®

of functional programs in partial function logic.







1. Deterministic Algorithms

An algorithm P (with input variable x and output variable z) is

said to be deterministic if it defines a single-valued (partial) function

z = P(x) mapping D, (the input domain) into D, (the output domain).

That is, for every &eD_ , P(t) 1is either undefined or defined with

P(t) €D, .
Examples: In the sequel we shall discuss the following four deterministic
algorithms for computing =z = x! where Dx = DZ = {the non-negative integers} .

(a) The flowchart programs Py (Figure 1) and P, (Figure 2). Here

2
(yl,ye) — (yl_l’yl'yE) ; for example, means that ¥y is replaced

by yl—l and Yo is replaced by Y15 simultaneously.

(b) The functional programs

P5: z = F(x) where
F(y) <= if y = O then 1 else y*F(y-1) ;
and
P: z = F(x,0) where

F(x,y) <= if y = x then 1 else (y+1) -F(x,y+1) .

Here '<=' stands for 'is defined recursively by' (see McCarthy (1963)).
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Figure 1: The flowchart program Pl for computing z = x!

C_smart >

I (yl’y2) « (0,1) ,

Figure 2: The flowchart program P2 for computing z = x!



Let V(x,z) be a total predicate over D XD, (called the output

predicate), and let EeD_ . We say that

1. (i) (P,&) is partially correct with respect to V¥ if

either P(t) is undefined, or P(t) is defined and V(&,P(E)) = T ;

(ii)  (P,t) is totally correct with respect to ¥ if P(¢) is

defined and V(&,P(t)) = T ;

(iii) (P,t) is defined if P(t) is defined.

Let Pl

i.e., algorithms with the same input domain D_ and the same output

and P,a be any two comparable deterministic algorithms,

domain DZ We say that

2. (i) (Pl, £) and (Pg, £) are partially equivalent if either Pl(g)

or P2(§) is undefined, or both P,(t) and Pg(g) are defined

and Py( £) = Py(E);

(ii) (Pl, £) and (Pg,g) are totally equivalent if both Pl(g)

and Pe(g) are defined and Pl(g) = Pg(g) .

3. (i) (Pl’ t) is an extension of (PQ, £) if whenever Pg(g) is
defined, then so is Pl(g) and Py(§) = P2(§) ;
(ii) (Pl’ ¢) and (P2, t) are equivalent if either both Pl(g) and
P2(§) are undefined, or both Pl(g) and Pg(g) are defined
and P, (&) =P,(¢) .
Our main purpose in this section is to show that all these properties
can be expressed in terms of partial correctness as described in the

*
following theorem -/

X For abbreviation, we use ~ V¥ to define the predicate which is T
exactly for those values where V is F , V¥ to mean "for every
output predicate ¥ . ..", and HV to mean "there exists an output
predicate ¥ such that . .." .



THEOREM 1

(a) (P,&) is totally correct w.r.t. V¥ if and only if (P,t) is not

partially correct w.r.t. ~ V¥ ;

(b) (P, &) is defined if and only if (P,t) is not partially correct

w.r.t. F (false);

(e) (Pl,g) is partially equivalent to (Pe,g) if and only if V¥ [(pl,g)

is partially correct w.r.t. ¥ or (Pz,g) is partially correct

we.rot. ~ VY]

(d) (Pl,g) is totally equivalent to (P2,§) if and only if Wy [ (Pl,g)

is not partially correct w.r.t. V¥ or (P2,§) is not partially

correct w.r.t. ~y] ;

(e) (Pl’ ¢) is an extension of (PE’ ¢) if and only if ¥V [(Pl,g) is
partially correct w.r.t. ¥ implies (P2,§) is partially correct
w.r.t. V] ; and finally

() (Pl, €) is equivalent to (Pg,g) if and only if vV [(Pl,g) is

partially correct w.r.t. V¥ if and only if (Pg,g) is partially

correct w.r.t. V] .

Proof of Theorem 1. The proof of (a) is straightforward. (b) is a
special case of (a) since by definition (Pl, t) is defined if and only
if it is totally correct w.r.t. T (true). (c), (d) and (e) are best proven
by considering the corresponding contra-positive relations and using the

fact that Pl(_E,) and P2(§) are defined and Pl(g) # P2(§) if and only

if P(8) andPy(E) are defined and EV[V(E,P (8)) # V(E,P,(E))] -

(e") (Pl,g) is not partially equivalent to (Pe,g) (i.e., both Pl(g)

and P,(&) are defined and Pl(g) # Pg(g)) if and only if '.EW[(Pl,g)

is not partially correct w.r.t. V¥ and (P2,§) is not partially correct

w.r.te ~ V]




(a*) (Pl,g) is not toally equivalent to (P2,§) (i.e., either Pl(g)

or Pe(g) is undefined, or both Pl(g) and Pg(g) are defined and

I’l(ﬁ) # P.(t)) if and only if FNI[(Pl,g) is partially correct w.r.L. V¥

and (P, ¢) is partially correct w.r.t. ~ V] ; and

(e') (P;»t) 1is not an extension of (Pyy k) (i-e., either P, (&) 1is

defined and Pl(g) is undefined, or both Pl(g) and Pe(g) are defined

and Pl(g) £ P,(£)) if end only if HW[(Pl,E) is partially correct

w.r.t. ¥ and (P2, £) 1is not partially correct w.r.t. V] .

(£) follows directly from (e) since (Pl,«’;) is equivalent to (Pe,g)

if and only if (Pl,g) is an extension-of (P2,§) and (Pe,g) is an

extension of (Pl,g) )

Suppose for a given deterministic algorithm P (mapping integers
into integers) we wish to formulate properties such as being total and
monotonically increasing (i.e., x > x' = P(x) > P(x') ). Unfortunately,
our definitions of partial and total correctness are not general enough to
include such simple properties in a natural way. However, we can include
them by introducing more general notions of partial and total correctness.
Let P, (L < i < n) be n deterministic algorithms with input
variables X, output variables zi » input domains Dx. , and output
domains Dz. s respectively. Let ﬁ/(xl, Zys e wsXps Zn) b: any total predicate
i

over DxlxDle XDXnXDZn and let gieDXi (1 < i< n).We say that

4. (i) (Pl’ El), .. .,(Pn,gn) are partially correct w.r.t. ¥ if either

at least one of the Pi(gi) is undefined, or each Pi(gi) is
defined and V(£,,P (E1), -+ost ,B (£ )) =T .

(ii) (Pl, gl),,,.,(Pn, §n) are totally correct w.r.t. ¥ if each

Pi(&;) .. oooo..and V(E,P(E]), e 5P (E)) = T



Note that for n = 1 we obtain properties 1(i) and 1(ii) as special
cases of properties 4(i) and U(ii), respectively. TFor n = 2 and
wlr(xl,zl,xg,za): Xy = X5 D 2y = 2, , properties 4(i) and 4(ii) reflect
properties 2(i) and 2(ii), respectively. For n = 2 and
\lr(xl,zl,xz,zg): Xy > X, D z; > 2, vwhere P, and P, are identical to P ,
we obtain the above monotonicity property.

It is interesting that these general notions of correctness can
still be expressed just by means of the usual partial correctness, as

described below.

THEOREM 2

(a) (Pl, E,l),,,.,(Pn, E,n) are partially correct w.r.t. V if and only if

H\l!l.,.E[\I!n{ Pl(gl) is partially correct w.r.t. ¥,
and P2(§2) is partially correct w.r.t. ¥,
and Pn(gn) is partially correct w.r.t. \Irn

and Vyl...Vyn[\lfl(gl,yl) and ... and \Irn(gn,yn) implies ’\I!(gl,yl,...,gn,yn) 11

(v) (Pl,gl),,,. " (Pn, En) are totally correct w.r.t. ¥ if and only if

LAZERR AR Pl(gl) is partially correct w.r.t. ¥,

and P2(§2) is partially correct w.r.t. 11:2

and Pn(gn) is partially correct w.r.t. v,

implies Hy,. . 'Hyn[wl(gl’yl) and . . . and ’l’n(gn:yn) and qf(El,yl, o arf n‘yn) 13 .

Proof of Theorem 2. It is straightforward that the right-hand side of (a)

implies the left-hand side. To prove that the left-hand side implies the
right-hand side, choose »yi in such a way that \lri(gi,'qi) = T if

_and only if Pi(gi) is defined and 0, = Pi(gi) .. (b) follows from (a)
since (Pyst1), o wax (B, £ ) are totally correct w.r.t. ¥ if and only if

(Py5 §.1).~...,(Pn, ¢,) are not partially correct w.r.t. ~V .
7



2. Formulation of Partial Correctness of Deterministic Algorithms

The above results imply that if one knows, for example, how to
formulate partial correctness of a given deterministic algorithm in
predicate calculus, the formulation of many other properties of the algorithm
in predicate calculus is straightforward. ag g matter of fact, partial
correctness has already been formulated in predicate calculus for many

classes of deterministic algorithms.

In this section we illustrate the flavor of such formulations.

(A) Flowchart Programs and Predicate Calculus

~ Let us consider, for example, a flowchart program P of the form

described in Figure 3, with a given output predicate V(x,z) over DxxDz .

Here, input(x) maps D into Dy s test(x,y) predicate over
DXny > operator(x,y) maps y imto Dy , and output(x,y) maps

D xD into D
X y .

¥ < operator (%,y)

&

Figure 3: The flowchart program P



We associate a predicate variable (unspecified induction hypothesis)
Q(x,y) with arc « and the given output predicate V(x,z) with arc B ,

and construct the following formula WP(X,\I!) :

TQ{ Q(x,input(x)) --- initialization
A YylQ(x,y) A ~ test(x,y) D Q(x,operator(x,y)) ] --- induction
A VylQ(x,y) A test(x,y) D V(x,output(x,y)) 13 --- conclusion

or equivalently,

3{ Q(x,input(x)) --- initialization
A IyIP (test (x,y) THEN ¥(x,output (x,y)) --- conclusion
ELSE Q(x,operator(x,y)) 1} . --- induction

Here, IF A THEN B ELSE C stands for A 5 B) A (~A D C) . Note that
Do IF A THEN B ELSE C is logically equivalent to (DA A DB)A(DA~ADC).
The key result is that for any given input ger s (P, t) is partially

correct w.r.t. V¥ if and only if WP(g,w) is true (Manna (1969)).

Example 1: 1In particular, for the flowchart program Py (Figure 1),
*
it follows tha.t:J (Pl, ¢) 1is partially correct w.r.t. z = x! if and

only if W_ (&,z=x!) is true, where W_ (&,z=x!) is
P B

g{ Q(t,&,1)

A 1y Vy,[Q(8,y,,y,) DIF ¥, =0 THEN y, =¢! ELSE Q(£,y,-1,¥,°¥,) 11

Note that for Q(g,yl,yg) being the predicate yz'yl! = t£! , the formula

in braces { 1} 1is true.

*
X Here, DX=DZ = {the non-negative integers} , y= (yl’ye) » and

Dy= {all pairs of non-negative integers} .

9



Example 2: For the flowchart program P, (Figure 2), it follows
similarly that: (P2, ) is partially correct w.r.t. z = x! if and only

if W_ (t,z =x!) is true, where W_ (&,z=x!) is
Pa Fa

Q{ Q(&,0,1)

A Wy ¥9,[Q(8,¥15¥,) DIF yy =& THEN y, =t! ELSE Q(&,y,+1, (y3+1) *v,) 1.

Note that for Q(g,yl,yz) being the predicate y, = y;! , the formula in

braces { 1 is true.

(B) Functional Programs and Predicate Calculus

Consider, for example, a functional program P of the form

z = F(x,input(x)) where

F(x,y) <= if test(x,y) then output(x,y)

else operatorl(x,y,F(x,operator2(x,y))) ,

with a given output predicate V(x,z) over D, XD, . Here, input (x)
maps D into Dy , test (x,y) is a predicate over DxXDy , output(x,y)

maps DXny into DZ , operatorl maps DXXDyXDZ into DZ » and
2 D into D
operator2 maps < X Dy in o)

we associate a predicate variable (unspecified induction hypothesis)

Q(x,y,z) with F(x,y) , and construct the following formula WP(X, ¥) e

-~ conclusion

7Q { Vz[Q(x,input(x),z) o Y(x, Z)l
A Vy[IF-tes‘t(x,y) THEN Q(x,y;output(x,y)) -- initialization
ELSE Vt[Q(x,operator2(x,y),t)

5Q(x,y,operatorl(x,y,t)]]} -- induction

The key result is that for any given input EeD_ , (P,&) is

partially correct w.r.t. V if and only if WP(g,ILr) is true (Manna and

Pnueli (1970), see also Park (1970)).

10




Example 3: For the functional program P5 :
z = F(x) where
F(y) <= if y = O then 1 else y-F(y-1) ,
it follows that: (P5’ t) is partially correct w.r.t. =z = x! if and

only if Wy (¢,z =x!) is true, where WP (t,z=x!) is
3

m{ vzlQ(t,z) o z=¢Et]
A Vy[IF v =0 THEN Q(y,1) ELSE vt[Q(y-1,t) D Q(v,y-t)]11}.

Note that for Q(y,z) being the predicate z = y! the formula in

braces { } is true.

Example 4: For the functional program Py, :

z = F(x,0) where

F(x,y) <= if y = x then 1 glse (y+1) *F(x,y+1)

it follows that: (Ph,g) is partially correct w.r.t. z = x! if and

only if W_ (&,z=x!) is true, where W_ (&,z=x!) is
Py By

2{ vz[Q(E,0,2z) o z = £!]
AVY[IF y = & THEN Q(&,y,1) ELSE vt[Q(£,y+1,t) DQ(E,y, (y+1)*t) 11} -
Note that for Q(&,y,z) being the predicate z-y! = E! , the formula
in braces { } is true.

The formulas constructed here are independent of the syntax of the
language in which the algorithms are expressed, and, therefore, we can
use our results to formulate in predicate calculus the equivalence of
algorithms defined by different languages. From part (f) of Theorem 1
it follows, for example, that for every input ¢ , (Pl, £) and (P5’ t)

are equivalent if and only if 'V’\II[WP (&,V) = W% (&,¥)] is true.
1

11



The reader should realize that the flowchart program P (Figure 3)
can be represented equivalently (see McCarthy (1962)) by the functional

program P!

z = F(x,input(x)) where

F(x,y) <= if test(x,y) then output(x,y) else F(x,operator(x,y)) .
However, W, (x,V¥) is

3{ vz[Q(x, input(x), z) o ¥(x, z) ]
AVy[IF teSt(X)Y) THEN Q(X:Y:Mt,(x’y))

ELSE Vt[Q(x,operator(x,y),t) D Q(x,y,t)113;
while WP(x,\tf) was

#{ Q(x,1input(x))

A VylQ(x,y) o 1| F test(x,y) THEN ¥(x,output(x,y)) ELSE Q(x,operator(x,y))]} .

Although both WP(X,\II) and Woo (x,V¥) essentially formulate partial
correctness of (P, x) w.r.t. V¥ , they seem to be quite different.
Intuitively, the difference between the two formulations is that Q(x,y)
in WP(x,\lr) represents all current values of (x,y) at arc « during
the computation of P , while Q(x,y,z) in W, (x,V¥) represents the

final value of z when computation of P starts at arc o with initial

values (x,y) .

(C) Functional Programs and Partial Function Logic

Consider again a functional program P of the form

z = F(x,input(x)) where

F(x,y) <= if test(x,y) then output(x,y)

else operatorl(x,y,F(x,operator2(x,y))) »

with a given output predicate V(x,z) .

12




We construct the following formula WP(X, ¥) :

ZF{ [*F(x,input(x)) >¥(x,F(x,input(x))) 1
A ¥y[F(x,¥) = if test(x,y) then output(x,y)

else operatorl(x,y,F(x,operator2(x,y)))1} .

Here, " HF " stands for "there exists a partial function F mapping
Dxny into D, such that . ..M " XF(x,input(x)) " stands for the
total predicate (mapping D, into {T,F} ) " F(x,isput(x)) defined";
and -)——(: is just the natural extension of the usual equality relation,
defined as follows: A z B if and only if either both expressions A
and B are defined and represent the same element (of DZ , in this case)
or both expressions are undefined.

The key result is that for every given §<-:DX , (P, t) is partially

correct w.r.t. V¥ if and only if VJP(E,W) is true (Manna and McCarthy (1970)).

Example 5: For the functional program Pb, :
z = F(x,0) where
F(x,y) <= if y = x then 1 else (y+1) F(x,y+l) ,

it follows that: (Ph,g) is partially correct w.r.t. =z = x! if and

only if W_ (&, z=x!) is true, where W_ (£, z=x!) is
aFr{ [*F(&,0) o F(§,0) = £t]

*
A ¥y[F(t,y) = if y = & then 1 else (y+1)-F(&,y+1)]}
Note that for F(¢,y) being the partial function

Et/yt if y<¢
F(t,y) =
undefined if y>¢

the formula in braces { } is true.

13




3. Non-Deterministic Algorithms

One natural extension of our study is obtained by considering non-
deterministic algorithms rather than deterministic algorithms.
An algorithm P (with input variable x and output variable z) is

said to be non-deterministic if it defines a many-valued function p(x) ,

mapping elements of DX (the input domain) into subsets of DZ (the
output domain); that is, for every 35V P(t) is a (possibly empty)
subset Z of DZ » Wwhere each (e€Z 1is the final result of some

computation of P with input £ .

Examples: We first describe three non-deterministic programs for computing
z = x! , making use of the deterministic programs Pl-Ph introduced in

Section 1.

(a) Parallel flowchart program: In Figure 4 we have described a simple

parallel flowchart program P_. for computing z = x! . The program

5
includes a '"BEGIN-END' block which consists of two branches, the left
branch being the body of program Pl and the right branch being the
body of program P2 , after changing the test statements to ¥y = yi

in both.

14



© (¥2¥357,) « (%,0,1)

(v175) = (v1*+L, (vi+1)y,)

L o=

(yl) YQ) « (yl'l} yin)

I e

Figure 4: The parallel flowchart program P5 for computing z = x!

15



The program is executed as follows. First statement o is
executed. Entering the block either the statements in B or the
statements in 7 are executed, chosen arbitrarily. The execution
proceeds asynchronously, i.e., between the execution of two consecutive
B's , we may execute an arbitrary number of ¥'s ; and conversely,
between the execution of two consecutive y's we may execute an
arbitrary number of B's . B and 7 cannot be executed at the
same time. Therefore, one can consider execution to be performed
with a single processor switching between the two branches. We exit

- from the block and execute statement & when either of the two branches
reaches the END node. Such parallel programs are discussed in detail

in Ashcroft and Manna (1970).

(b) Choice flowchart program: In Figure 5 we have described a choice
flowchart program for computing z = x! . A branch of the form R

is called a choice branch. It means that upon reaching the choice

branch during execution of the program, we are allowed to proceed with
either branch, chosen arbitrarily. Such choice flowchart programs have

been discussed in detail by Floyd (1967 b).

Note that for any given input x both 135 and P6 yield the
same set of computations. For x = 3 , for example, there are
exactly 8 different possible executions of each program. 1, general,

for every non-negative input x , there are o different possible

computations of each program.

16



(vy5 ¥15¥,) « (%, 0, 1)

(p¥p) = (v =Ly wo)| |(75v,) < (3341, (32+1) 'y, | - CHAIT

:

Figure 5: The choice flowchart program P6 for computing z = x!

(c) Choice functional program: Consider the following choice functional
program P7 :
z = F(x,0) where

F(y,y') <= if y = y' then 1 else choice(y F(y-1,y'), (y'+1) -F(y,y'+1)) .

The choice function here has the same meaning as the choice branch
in Py ; 1t corresponds to McCarthy's (1963)_amb (ambiguous) function.
For every non-negative input x there are again 2* different possible

computations of P7

17



In this section we shall discuss several properties of non-
deterministic algorithms. For non-deterministic algorithm P and

input ger we say that

1.(1) (P, ) 1is Y-defined if there exists a finite computation P
with input ¢ (or, equivalently, P(t) # @ );
(ii) (P, &) is y-defined if every computation of P with input ¢
is finite;

(iii) (P,t) is partially determinate if all finite computations of

P with input & yield the same final result (or, equivalently,
P(t) is either empty or a singleton);

(iv) (P, t) is totally determinate if all computations of P with

input ¢ are finite and yield the same final result.

Let V(x,z) be a total predicate over D, xD, , and let £eD .

A finite computation of P with input €& is said to be correct w.r.t. ¥

if for its final value { , V(&,{) = T . We say that

2.(1) (P,t) is partially H-correct w.r.t. ¥ if either there exists

an infinite computation of P with input & , or there exists a
finite computation of P with input & which is correct w.r.t. V¥ ;

(ii) (P, &) is totally 7-correct w.r.t. ¥ if there exists a finite

computation of P with input ¢ which is correct w.r.t. Vv ;

(iii) (P,t) is partially Y-correct w.r.t. ¥ if every finite computation

of P with input ¢ 1is correct w.r.t. V¥ ;

(iv) (P, ¢) is totally V-correct w.r.t. V¥ if every computation of P

with input ¢ is finite and is correct w.r.t. V¥ .

Let P, and P, be any two comparable non-deterministic algorithms,

1 2

i.e., algorithms with the same input domain D, and the same output domain Dz .

- We say that
18



3.(1)

(i1)

L. (i)

(i1)

(Pl,g) and (PE’ E) are partially determinate-equivalent if all
finite computations of PJ_ and P2 with input & yield the
same final result (or, equivalently, Pl(g) U Pe(g) is either

empty or a singleton).

(Pl, t) and (P2, t) are totally determinate-equivalent if all

computations of Pl and 13‘2 with input & are finite and yield

the same final result.

(Pl,g) partially extends (PE’ t) if, for every finite computation

of P2 with input & , there exists a finite computation of Pl

with input ¢ that yields the same final value (or, equivalently,

2 () 27,(6) )3
(Pl:i) totally extends (PE,E.) if (Pl,g) partially extends

(P2, £) , and if there exists an infinite computation of P, with

input ¢ , then there is also an infinite computation of Pl with

input ¢

(Pl, £) and(Pz, t) are partially equivalent if (Pl,g) partially
extends (PE’ t) and conversely (or, equivalently, Pl(g) =P2(§) )3

(Pl’ £) and (Pg,g) are totally equivalent if (Pl,g) totally

extends (PE’ t) and conversely.

Our main purpose in this section is to show that all these properties

can be expressed in terms of the two notions of partial correctness,

namely partial H-correctness and partial V-correctness.

19



THEOREM 3

(a)

(b)

(c)

(a)

(e)

(8)

(h)

(1)

(3)

(P,t) is H-defined if and only if (P, &) is not partially Y-correct

w.r.t. F (false);

(P,€) is V-defined if and only if (P, t) is not partially H-correct

w.r.t. F (false);

(P,t) is partially determinate if and only if ¥v¥[ (P,t) is

partially V-correct w.r.t. ¥ or (P,t) is partially V-correct
W.I‘.t. ~ w] ;

(P,t) 1is totally determinate if and only if WV[ (P,t) is not

partially ®-correct w.r.t. ¥ or (P,t) is not partially H-correct
W-I‘.'t. N"’] ;

(P,£) is totally H-correct w.r.t. ¥V if and only if (P,&) is not

partially V-correct w.r.t. ~ V¥ ;

(P,t) is totally V-correct w.r.t. ¥ if and only if (P,t) is not

partially "-correct we.r.t. ~ V¥ 3

(Pl, t) and (P2,§) are partially determinate-equivalent if and
only if W[ (Pl,g) is partially V-correct w.r.t. V¥ or (P2, £)
is partially V-correct w.r.t. ~ V¥] ;

(Pl, ¢) and (PE’ t) are totally determinate-equivalent if and only if

Wl (Pl’ £) is not partially #-correct w.r.t. ¥ or (P2, £) is not

partially H-correct w.r.t. ~ V] ;

(Pl,g) partially extends (P2,§) if and only if W![(Pl,g) is
partially V-correct w.r.t. ¥ implies (Pe,g) is partially

V-correct w.r.t. V] ;

(Py,€) totally extends (P,,&) if and only if YV (P,,8) is
partially ®#-correct w.r.t. ¥ implies (Pl,g) is partially

q-correct w.r.t. V] ;
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(k) (Pl’ £E) and (P2, t) are partially equivalent if and only if

VW[(Pl,g) is partially y-correct w.r.t. V¥ if and only if (P,,%)
is partially V-correct w.r.t. ¥] ;

£) (Pl,g) and (Pe,g) are totally equivalent if and only if VW[(P:L,E,)

is partially W-correct w.r.t. V¥ if and only if (Pg,g) is

partially H-correct w.r.t. V] .

Proof of Theorem 3: (a), (b), (e) and (f) are straightforward by

definition. (c), (d), (g), (h), (i), and (j) are best proved by
considering the corresponding contra-positive relations. (k) and (2)

follows from (i) and (j), respectively.

4, Formulation of Partial Correctness of Non-Deterministic Algorithms

For a given non-deterministic program P and an output predicate
¥(x, z) , we would like to construct two formulas Wﬂ(x,lll) and Wv(x,w)

in predicate calculus, such that for every given input value EeDX :

(1) (P, &) is partially H-correct w.r.t. V¥ if and only if Wo(&,V)
is true, and
(i1) (P, &) is partially V-correct w.r.t. ¥ if and only if W'(t,V)

is true.
Then, using the formulas Wﬂ(x,ur) and Wv(x,v) » the formulation of the
other properties of P in predicate calculus is straightforward.

Following Ashcroft and Manna (1970), one can formulate properties of

the parallel flowchart P_ by first translating it to the equivalent choice

5
flowchart program Py and then make use of the formulas qg (x,V¥) and
WY (x,¥) . We shall therefore illustrate the construction of Wa(x,V) and

Ps
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Wv(x,\lr) Only for the choice flowchart program Pg (Figure 5) and the

choice functional program P

T

that the effect of the choice branch is represented by an ' v ' conneclive

. The main idea behind this formulation is

in w‘l‘(x,ﬂf) , while it is represented by an 'A ' connective in WV(X,III)

(see Manna (1970)).

To construct WYP(E , 2 =x}) , associate the predicate variable
6
Q(g,yl,yi,yg) with arc & in Figure 5 and the predicate variable z = x!

with arc B . Then Wg (¢, z =x!) is
6

gaf{ Q(e,t,0,1)
1 1 — t - T
- ' . ! ' .

ELSE [Q(E,y1-1,¥],v7¥5) A Q& y,¥i+L (vi+1) -y,) 113,
The reader can verify easily that for every non-negative integer & , the
formula W_VP(g , 2 =x!) is true for Q(g,yl,yi,yz) being the predicate
Vo vt = Eleylt w‘q‘ (¢, 2z =x!) is similar with the 'A ' connective
271 1 P6
replaced by 'V?'.

To construct WY (¢ , z =x!) , associate the predicate variable

P,
7
Q(y,y',z) with the function variable F(y,y') . Then W% (£, z=x!) is:

.
dQ{ vz[Q(t,0,z) D z = £1]

A Yy¥y'[IF y = y' THEN Q(y,y',1)
ELSE Vt[Q(y-1,y',t) D Q(y,¥',y-t) ]

A (v, yLt) o Qlyyt, (v'+1) @ 111

The reader can Verify easily that for every non-negative integer £ , the

formula WYP(g » 2 =x!) is true for Q(y,y',z) being the predicate

7
zZ.y't =yt . WI% (6, 2z =xt) is similar with the 'A' connective replaced
7
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