
— —_— =. i

“STANFORD ARTI FI CI AL INTELLI GENCE PROJ ECT

MEM) AIM 139

COMPUTER SCIENCE DEPARTMENT

REPORT Nd. STAN-CS-71-189

MATHEMATI CALTHEORYOF PARTI ALCORRECTNESS

BY

| ZOHARMANNA

J ANUARY1971

COMPUTER SCIENCE DEPARTMENT

STANFORD UN VERSITY

| MATHEMATTCAT, THEORY OF PARTTAL CORRECTNESS -/
or

Zohar Manna

Computer Science Department

| Stanford University
|

ABSTRACT: In this work we show that it is possible to express

most properties regularly observed in algorithms in

| terms of 'partial correctness' (i.e., the property that

the final results of the algorithm, if any, satisfy some

given input-output relation).

a This result is of special interest since 'partial

correctness' has already been formulated in predicate

calculus and in partial function logic for many classes

of algorithms.

wl The resesearch reported here was supported in part by the Advanced
Research Projects Agency of the Office of the Secretary of Defense
(Sp-183).

A preliminary version of this work was presented under the
title "Second-Order Mathematical Theory of Computation" at the
ACM Symposium on Theory of Computing (May 1970).

- - TTTTTTy

Introduction

We normally distinguish between two classes of algorithms: deterministic

algorithms and non-deterministic algorithms. A deterministic algorithm

| defines a single-valued (partial) function, while a non-deterministic algorithm

defines a many-valued function. Therefore, while there are only a few

properties of interest (mainly, termination, correctness, and equivalence)

for deterministic algorithms, there are many more (determinacy, for example)

for non-deterministic algorithms.

In this work, we show that it is possible to express most properties

regularly observed in such algorithms in terms of the 'partial correctness!

property (i.e., the property that the final results of the algorithm, if

any, satisfy some given input-output relation).

This result is of special interest since 'partial correctness' has

already been formulated in predicate calculus for many classes of deterministic

algorithms, such as flowchart programs (Floyd (1967 a) and Manna (1969)),

functional programs (Manna and Pnueli (1970)), and Algol-like programs

(Ashcroft (1970)); and also for certain classes of non-deterministic algorithms,

such as choice flowchart programs (Manna (1970)) and parallel flowchart

programs (Ashcroft and Manna (1970)). See also Cooper (1969 a, 1969 b).

Similarly, Manna and McCarthy (1970) have formulated 'partial correctness!

of functional programs in partial function logic.

1. Deterministic Algorithms

An algorithm P (with input variable x and output variable 2z) is

said to be deterministic if it defines a single-valued (partial) function

z = P(x) mapping D. (the input domain) into D, (the output domain).

That is, for every EeD_ , P(&) is either undefined or defined with

P(t) eD, .

Examples: In the sequel we shall discuss the following four deterministic

algorithms for computing =z = x! where D_ = D, = {the non-negative integers} .

(a) The flowchart programs Py (Figure 1) and P, (Figure 2). Here

(¥5¥5) — (y1-1,y¥,) , for example, means that y, is replaced

by y1-1 and Yo is replaced by YY simultaneously.

(b) The functional programs

Pp: z = F(x) where

F(y) <= if y = O then 1 else y*F(y-1) ;

and

Py: z= F(x,0) where

F(x,y) <= if y = x then 1 else (y+l)-F(x,y+l) .

Here '<=' stands for 'is defined recursively by' (see McCarthy (1963)).

F T |

Figure 1: The flowchart program Py for computing z = x!

| (¥15¥5) « (0,1) |

F T

| (rp) «Gp Gp) Oy) Z « Y,

Figure 2: The flowchart program FP, for computing z = x!

3

Let V(x,z) be a total predicate over D_XD, (called the output

predicate), and let EeD_ . We say that

1. (i) (P,&) is partially correct with respect to V if

either P(t) is undefined, or P(t) is defined and V(t, P(E)) = T ;

(ii) (P,t) is totally correct with respect to Vv if P(E) is

defined and V(&,P(t)) = T ;

(iii) (P,t) is defined if P(t) is defined.

Let Py and Py be any two comparable deterministic algorithms,

i.e., algorithms with the same input domain D_ and the same output

domain D, We say that

2. (i) (P58) and (Py; t) are partially equivalent if either P, (&)

or P,(¢) is undefined, or both Pp, (€) and. P,(¢) are defined

and P(t) =P, (&);

(11) (Pj &) and (P,,&) are totally equivalent if both P,(&)

and P,(¢) are defined and Pp, (€) = P,(¢) .

3. (1) (Py t) is an extension of (2, t) if whenever P,(&) is

defined, then so is P, (&) and P(¢) = P(E) ;

(ii) (By, ¢) and (P,; t) are equivalent if either both P(E) and

P,(¢) are undefined, or both Pp, (¢) and P,(¢) are defined

and P, (8) =P, (&) .

Our main purpose in this section is to show that all these properties

can be expressed in terms of partial correctness as described in the

¥/following theorem.

X/
For abbreviation, we use ~ VV to define the predicate which is T
exactly for those values where V is F , VV¥ to mean "for every
output predicate Vv . ..", and HY to mean "there exists an output
predicate ¥ such that . .." .

L

THEOREM 1

(a) (P,&) is totally correct w.r.t. V¥ if and only if (P,t) is not

partially correct w.r.t. ~ ¥ ;

(b) (P, &) is defined if and only if (P,t) is not partially correct

w.r.t. F (false);

(ec) (Py, €) is partially equivalent to (Py, 8) if and only if vv [(Py,¢)
is partially correct w.r.t. V¥ or (Py, ¢) is partially correct

w.r.t. ~V¥]

(4d) (P15) is totally equivalent to (Py 8) if and only if WV [(P,€)

is not partially correct w.r.t. ¥ or (Py €) is not partially

correct w.r.t. ~ Vy] :

(e) (P,5 t) is an extension of (P, t) if and only if Vv [(P,¢) is

partially correct w.r.t. ¥ implies (FP, ¢) is partially correct
w.r.t. ¥] ; and finally

(f) (P35 €) is equivalent to (Pys€) if and only if WV [(P5¢) is

partially correct w.r.t. V¥ if and only if (Py) is partially

correct w.r.t. Vv] .

Proof of Theorem 1. The proof of (a) is straightforward. (b) is a

special case of (a) since by definition (Ps ¢) is defined if and only
if it is totally correct w.r.t. T (true). (ec), (d) and (e) are best proven

by considering the corresponding contra-positive relations and using the

fact that P(t) and P,(E) are defined and P(E) # P(t) if and only

if P(8) and P,(E) are defined and TV[V(E,P,(£)) £ V(E,P,(E))] -

(ec!) (P15) is not partially equivalent to (Ps ¢) (i.e., both P, (&)

and P(t) are defined and P(E) # P,(£)) if and only if 2V[(P,,¢)

} is not partially correct w.r.t. V¥ and (Py ¢) is not partially correct

w.r.t. ~V¥] ;

d

(ar) (Pps 8) is not toally equivalent to (P,,€) (i.e., either P, (€)

or P,(¢) is undefined, or both P, (&) and P,(&) are defined and

Pr (KE) # P.(¢)) if and only if Vl (Py,) is partially correct w.r.lL. V

and (P,, t) is partially correct w.r.t. ~ V¥] ; and

(et!) (P58) is not an extension of (Py, t) (i.e., either P,(£) is

defined and Pp, (8) is undefined, or both Pp, (&) and P,(E) are defined

and Pp, (8) £ P,(E)) if and only if ZY[(BP), ¢) is partially correct

w.r.t. ¥ and (P,s tE) is not partially correct w.r.t. V¥] .

(f) follows directly from (e) since (P15) is equivalent to (Ps E)

if and only if (P15) is an extension-of (Ps) and (Psst) is an

extension of (P58)

Suppose for a given deterministic algorithm P (mapping integers

into integers) we wish to formulate properties such as being total and

monotonically increasing (i.e., x > x! = P(x) > P(x')). Unfortunately,

our definitions of partial and total correctness are not general enough to

include such simple properties in a natural way. However, we can include

them by introducing more general notions of partial and total correctness.

Let P, (L < i < n) be n deterministic algorithms with input

variables Xs output variables Zi input domains D_ , and output
i

domains D, s respectively. Let V(x5205 IEE z) be any total predicate
. 1

over D xD _x...xD xD, and let ED, (1 <i <n). We say that
1 1 n n 1

4, (i) (PsE)s - +5 (B5E) are partially correct w.r.t. ¥ if either

at least one of the P, (&,) is undefined, or each P. (£,) is

(ii) (Ps €1)s.. +5 (BLs £) are totally correct w.r.t. Vv if each

P.(€;)..and V(E P(E) eens P(E) = T

6

Note that for n = 1 we obtain properties 1(i) and 1(ii) as special

cases of properties U4(i) and L4(ii), respectively. For n = 2 and

(xy Z15%p) Z,) Xy =X, D zy = Z, , properties L(i) and 4(ii) reflect

properties 2(i) and 2(ii), respectively. For n = 2 and

V(xy525%,, Z,) : X; > X, D 2; > 2, where P; and P, are identical to P ,
we obtain the above monotonicity property.

It is interesting that these general notions of correctness can

still be expressed just by means of the usual partial correctness, as

described below.

THEOREM 2

(a) (Py, £1)s.. 5 (Ps tE) are partially correct w.r.t. Vv if and only if

CUA:UR Pp (&,) is partially correct w.r.t. ¥;

and P, (£5) is partially correct w.r.t. ¥,

and P(E) is partially correct w.r.t. Vv

and Vy,...Vy [V¥,(€;,y,) and... and ¥ (& ,y) implies V(EsT ys eeest by) 11 5

(b) (P15€1)s..0 « (Py §) are totally correct w.r.t. ¥ if and only if

LATER AAR P(g) is partially correct w.r.t. V,

and P,(&,) is partially correct w.r.t. V,

and P(E) is partially correct w.r.t. Vv,

implies Hy,.. .&y[¥;(&;,y;) end... and v (6,y,) end V(&,¥,, o wut ¥)1} -

Proof of Theorem 2. It is straightforward that the right-hand side of (a)

implies the left-hand side. To prove that the left-hand side implies the

right-hand side, choose V, in such a way that Vv, (8,51,) = T if

_and only if P, (&,) is defined and 7, = P, (E,) .. (b) follows from (a)

since (P1587), o Hw (P,» £) are totally correct w.r.t. V if and only if

(Py, £1). . (Ps3 are not partially correct w.r.t. ~ .
7

2. Formulation of Partial Correctness of Deterministic Algorithms

The above results imply that if one knows, for example, ,.. i,

formulate partial correctness of a given deterministic algorithm in

| predicate calculus, the formulation of many other properties of the algorithm

. in predicate calculus is straightforward. pg a matter of fact , partial

correctness has already been formulated in predicate calculus for many

classes of deterministic algorithms.

In this section we illustrate the flavor of such formulations.

(A) Flowchart Programs and Predicate Calculus

~ Let us consider, for example, a flowchart program P of the form

described in Figure 3, with a given output predicate V(x,z) over DxD, .

Here, input(x) maps D into by » test(x,y) predicate over

Dy x Dy, ’ operator (x,y) maps y into D, >» and output(x,y) maps
D xD into D

Xx" Ty ce

Yy < input (x) |
r

@f = a(xy)

F T

Y © operator (%,v) | zZ output (x,5)

Figure 5: The flowchart program P

8

h I|

We associate a predicate variable (unspecified induction hypothesis)

Q(x,y) with arc a and the given output predicate V(x,z) with arc Bp ,

and construct the following formula Wo (x, Vv) :

H{ Q(x,input(x)) --- initialization

A VylQ(x,y) A ~ test(x,y) © Q(x,operator(x,y))] ~--= induction

A VylQ(x,y) A test(x,y) Do ¥(x,output(x,y)) 1} --- conclusion

or equivalently,

1 { Q(x,input(x)) ~--- initialization

A FyIP (test (x,y) THEN ¥(x,output(x,y)) ~--- conclusion

ELSE Q(x, operator(x,y)) 1} . --- induction

Here, IF A THEN B ELSE C stands for A 5 B) A (~A OD C) . Note that

DD IF A THEN B ELSE C is logically equivalent to (DA A DB)A(DA~ADC).

The key result is that for any given input EeD_ s (Py t) is partially

correct w.r.t. V if and only if Wo (&,¥) is true (Manna (1969)).

Example 1: In particular, for the flowchart program Py (Figure 1),
*

it follows that :/ (Py; t) is partially correct w.r.t. z = x! if and
only if W_ (&,z =x!) is true, where W_ (t,z =x!) is

15] Fy

dQ{ Q(&,&,1)

—_ — 1{ - .
A Ty WylQ(t,y,5¥,)DIF vy, =0 THEN y, =¢&! ELSE Q(&,y,-1,¥,°v,)1}.

Note that for Q(E,¥,57,) being the predicate PER = t! , the formula

in braces { 1} is true.

Et———

wi Here, D_=D = {the non-negative integers}, y= (y1575) , and
D = {all pairs of non-negative integers} .

9

Example 2: For the flowchart program P, (Figure 2), it follows

similarly that: (By t) is partially correct w.r.t. z = x! if and only

if W_ (t,z =x!) is true, where W_ (&,z=x!) is
: P P

2 2

f{ Q(t,0,1)

] A Vy Ty, [Q(E, yy) DIF Yq = £ THEN Yo =E! ELSE Q(t, y +1, (y+1) vo) 13.

Note that for Q(E,5157,) being the predicate y, = y,! , the formula in

braces { 1 is true.

(B) Functional Programs and Predicate Calculus

Consider, for example, a functional program P of the form

z = F(x,input(x)) where

F(x,y) <= if test(x,y) then output(x,y)

else operatorl(x,y,F(x,operator2(x,y))) ,

with a given output predicate V¥(x,z) over DXD . Here, input (x)

maps D_ into D, , test (x, y) is a predicate over Dy XD , output (x,y)

maps D XD, into D, , operatorl maps Dy XD XD, into D, , and
tor? D into D .

operatorz maps UX D, in)

We associate a predicate variable (unspecified induction hypothesis)

Q(x,v,z) with F(x,y) , and construct the following formula Wo (%, Vv)

7{ Vz[Q(x,input(x),z) DO ¥(x,z) 1 -~ conclusion

A Yy[IF test(x,y) THEN Q(x, y, output (x,7)) -- initialization

ELSE Vt[Q(x,operator2(x,y),t)

>Q(x,y,operatorl(x,y,t)l]} -- induction

The key result is that for any given input ED ’ (P,€) is

partially correct w.r.t. Vv if and only if Wo (EV) is true (Manna and

Pnueli (1970), see also Park (1970)).

10

Example 3: For the functional program Py :

z = F(x) where

F(y) <= if y = 0 then 1 else y-F(y-1) ,

| it follows that: (Bs, t) is partially correct w.r.t. z = x! if and
only if W_ (&,z =x!) is true, where W_ (¢,z =x!) is

P P
> 5

ga{ vzlQ(t,z) o> z=¢81]

A Vy[IF y=0 THEN Q(y,1) ELSE vtlQ(y-1,t) © Q(y,y-t)113}.

Note that for Q(y,z) being the predicate z = y! the formula in

braces { } is true.

Example 4: For the functional program Py

z = F(x,0) where

F(x,y) <= ify = x then 1 glse (y+1) "F(x,y+1)

it follows that: (Py, €) is partially correct w.r.t. z = x! if and

only if W_ (&,z =x!) is true, where W_ (¢,z=x!) is
Py Fy

d{ vz[Q(t,0,2z) oz = El]

AVy[IF y = & THEN Q(E,y,1) ELSE velQ(E,y+1,t) QE, y, (y+1) t) 11} .

Note that for Q(¢,y,z) being the predicate z-y! = &! , the formula

in braces { } is true.

The formulas constructed here are independent of the syntax of the

language in which the algorithms are expressed, and, therefore, we can

use our results to formulate in predicate calculus the equivalence of

algorithms defined by different languages. From part (f) of Theorem 1

it follows, for example, that for every input £& , (Py; t) and (Ps, 3
are equivalent if and only if LAZU (e,¥v) = W_ (&,V¥)] is true.1 5

11

The reader should realize that the flowchart program P (Figure 3)

can be represented equivalently (see McCarthy (1962)) by the functional

program P' :

z = F(x,input(x)) where

F(x,y) <= if test(x,y) then output(x,y) else F(x,operator(x,y)) .

| However, TW, (x,¥) is

d3Q{ Vz[Q(x, input (x), z) > V(x, z)]

AVYLIF test(x,y) THEN Q(x,y,output(x,y))

ELSE Vt[Q(x,operator(x,y),t) © Q(X,y,t) 11};

while W(x, Vv) was

#{ Q(x,input(x))

a Vyla(x,y) > 1 F test (x,y) THEN V(x, output (x,y)) ELSE Q(x, operator (x,y))I} .

Although both W(x, ¥) and Wo, (x,V¥) essentially formulate partial
correctness of (P, x) w.r.t. V , they seem to be quite different.

Intuitively, the difference between the two formulations is that Q(x,y)

in Wo (%, V) represents all current values of (x,y) at arc a during

the computation of P , while Q(x,y,z) in Ws, (x,¥) represents the

final value of z when computation of P starts at arc & with initial

values (x,y) .

(C) Functional Programs and Partial Function Logic

Consider again a functional program P of the form

Zz = F(x,input(x)) where

F(x,y) <= if test(x,y) then output(x,y)

else operatorl(x,y,F(x,operator2(x,y)))

with a given output predicate V(x,z) .

12

We construct the following formula W(x, Vv) :

| AF{ [*F(x,input(x)) 2 ¥(x,F(x,input(x)))1
*

A Vy[F(x,y) = if test(x,y) then output (x,y)

else operatorl(x,y,F(x,operator2(x,y)))1} .

Here, " dF" stands for "there exists a partial function F mapping

Dy XD into D_ such that . LM" ¥F(x,input(x)) " stands for the

total predicate (mapping D_ into {1,7}) " F(x,ismput(x)) defined";
Xx

and = 1s Just the natural extension of the usual equality relation,

*

definedas follows: A = B if and only if either both expressions A

and B are defined and represent the same element (of D, , in this case)

or both expressions are undefined.

The key result is that for every given £eD_ , (P, t£) is partially

correct w.r.t. Vv if and only if Wo(E,¥) is true (Manna and McCarthy (1970)).

Example 5: For the functional program P), :

z = F(x,0) where

F(x,y) <= if y = x then 1 else (y+l) F(x,y+1) ,

it follows that: (Py, €) is partially correct w.r.t. z = x! if and

only if W_ (&, z=x!) is true, where W_ (£,z=x!) is
P P
h L

ar{ [*F(¢,0) o> F(&,0) = Et]
X¥

A YVy[F(t,y) = if y = £ then 1 else (y+1) F(&,y+1)]}

Note that for F(t,y) being the partial function

EL/y! if y<¢t
F(&,v) =

undefined if y>¢

the formula in braces { } is true.

13

3. Non-Deterministic Algorithms

One natural extension of our study is obtained by considering non-

deterministic algorithms rather than deterministic algorithms.

An algorithm P (with input variable x and output variable z) is

said to be non-deterministic if it defines a many-valued function p(x) ,

mapping elements of D_ (the input domain) into subsets of D (the

output domain); that is, for every EeD_ P(t) is a (possibly empty)

subset Z of D, , Where each (eZ is the final result of some

computation of P with input £ .

Examples: We first describe three non-deterministic programs for computing

z = X! , making use of the deterministic programs P,-P), introduced in
Section 1.

(a) Parallel flowchart program: In Figure 4 we have described a simple

parallel flowchart program Pg for computing z = x! . The program

includes a 'BEGIN-END' block which consists of two branches, the left

branch being the body of program Py and the right branch being the

body of program P, , after changing the test statements to yp = yi

in both.

|
a

14

@ (y15¥357,) « (%,0,1)

© |
|

F

|e “= (y1-Ly7v,) (v1,95) = (71+, (yi+1)y,) |

®

Figure 4: The parallel flowchart program P, for computing z = x!

15

The program is executed as follows. First statement a is

executed. Entering the block either the statements in B or the

statements in 7 are executed, chosen arbitrarily. The execution

proceeds asynchronously, i.e., between the execution of two consecutive

B's , we may execute an arbitrary number of y's ; and conversely,

between the execution of two consecutive y's we may execute an

arbitrary number of B's . B and 7 cannot be executed at the

same time. Therefore, one can consider execution to be performed

with a single processor switching between the two branches. We exit

" from the block and execute statement © when either of the two branches

reaches the END node. Such parallel programs are discussed in detail

in Ashcroft and Manna (1970).

(b) Choice flowchart program: In Figure 5 we have described a choice

flowchart program for computing z = x! . A branch of the form a
is called a choice branch. It means that upon reaching the choice)

branch during execution of the program, we are allowed to proceed with

either branch, chosen arbitrarily. Such choice flowchart programs have

been discussed in detail by Floyd (1967 b).

Note that for any given input x both Pg and P, yield the
same set of computations. For x = 3 , for example, there are

exactly 8 different possible executions of each program. 1p, general,

for every non-negative input x , there are o% different possible

computations of each program.

16

. |

(

(v5) «EAE“(y+ (y+) yo) | C_HALT>
Figure 5: The choice flowchart program Pe for computing z = x!

(c) Choice functional program: Consider the following choice functional

| program EF :
z = F(x,0) where

F(y,y') <= if y = y' then 1 else choice(y -F(y-1,y'), (y'+1) -F(y,y'+1)) -

The choice function here has the same meaning as the choice branch

in Pg ; it corresponds to McCarthy's (1963) amb (ambiguous) function.

For every non-negative input x there are again o* different possible

computations of E,

17

In this section we shall discuss several properties of non-

deterministic algorithms. For non-deterministic algorithm P and

input Ee we say that

| 1.(i) (P, ¢) is Hd-defined if there exists a finite computation P
with input ¢ (or, equivalently, P(t) # 0);

x (ii) (P, t) is y-defined if every computation of P with input ¢
is finite;

(iii) (P,t) is partially determinate if all finite computations of

P with input £& yield the same final result (or, equivalently,

P(t) is either empty or a singleton);

(iv) (P, t) is totally determinate if all computations of P with

input £ are finite and yield the same final result.

Let V¥(x,z) be a total predicate over DxD, , and let EeD_ .

A finite computation of P with input £ is said to be correct w.r.t. V¥

if for its final value { , V(&,L) = T . We say that

2.(1) (P,t) is partially H-correct w.r.t. ¥ if either there exists

an infinite computation of P with input & , or there exists a

finite computation of P with input & which is correct w.r.t. V¥ 3

(ii) (Pp, t) is totally W-correct w.r.t. ¥ 1f there exists a finite

computation of P with input ¢£& which is correct w.r.t. Vv ;

(iii) (P,t) is partially Y-correct w.r.t. ¥ if every finite computation

of P with input &¢ is correct w.r.t. Vv ;

(iv) (P, ¢) is totally V-correct w.r.t. V if every computation of P

with input é&¢ is finite and is correct w.r.t. V¥ .

Let Py and P, be any two comparable non-deterministic algorithms,

i.e., algorithms with the same input domain Dy and the same output domain D, .

- We say that

18

3.(1) (P,€) and (P,; t) are partially determinate-equivalent if all

finite computations of Py and Pp, with input £& yield the

same final result (or, equivalently, P, (8) U P,(&) is either
empty or a singleton).

(ii) (Py t) and (P,, E) are totally determinate-equivalent if all

computations of Pq and P, with input £& are finite and yield

the same final result.

h(i) (Py5€) partially extends (By t) if, for every finite computation

of P, with input ££ , there exists a finite computation of Py

with input ¢ that yields the same final value (or, equivalently,

(ii) (P15 8) totally extends (P,5¢) if (Py5€) partially extends
(Py» t) , and if there exists an infinite computation of P, with

input & , then there is also an infinite computation of Py with

input §& .

5. (i) (Py t) and (Py; t) are partially equivalent if (P58) partially

extends (By t) and conversely (or, equivalently, Pp, (£) =P, (€)) 3

(ii) (By E) and (P,5¢) are totally equivalent if (Ps) totally

extends (By t) and conversely.

Our main purpose in this section is to show that all these properties

can be expressed in terms of the two notions of partial correctness,

namely partial H-correctness and partial V-correctness.

19

THEOREM 3 Ea

(a) (P,&) is F-defined if and only if (P, £) is not partially V-correct

w.r.t. F (false);

(b) (Pt) is V-defined if and only if (P, t) is not partially H-correct

w.r.t. F (false);

(e) (P,t) is partially determinate if and only if ¥V¥[(P,¢) is

partially V-correct w.r.t. ¥ or (P,t) is partially V-correct

wer.te ~ VY]

(da) (P,t) is totally determinate if and only if VV¥[(P,t) is not

~ partially H-correct w.r.t. Vv or (P,t) is not partially H-correct

w.r.t. ~V]

(e) (P,t) is totally d-correct w.r.t. V if and only if (P,¢) is not

partially V-correct w.r.t. ~ V ;

(f) (P,t) is totally V-correct w.r.t. ¥ if and only if (P,t) is not

partially W-correct w.r.t. ~ ¥ ;

(g) (Pps tE) and (Py €) are partially determinate-equivalent if and

only if VI (P58) is partially V-correct w.r.t. Vv or (B, £)

is partially V-correct w.r.t. ~ V¥] ;

(h) (P35 E) and (P,; tE) are totally determinate-equivalent if and only if

Wl (P, £) is not partially W-correct w.r.t. ¥ or (PB, E) is not

partially d-correct w.r.t. ~ V¥] ;

(i) (Py58) partially extends (P,5¢) if and only if VW (Py, €) is

partially V-correct w.r.t. ¥ implies (Py, €) is partially
V-correct w.r.t. VV] ;

(3) (Pt) totally extends (P,,&) if and only if VI(P,,¢) is

partially H-correct w.r.t. V¥ implies (Py, €) is partially
J-correct w.r.t. ¥] ;

20

(k) (Py; E) and (P,; E) are partially equivalent if and only if

VV (P,,€) is partially V-correct w.r.t. Vv if and only if (P,£)
is partially V-correct w.r.t. V¥] ;

£) (Py5€) and (Py €) are totally equivalent if and only if VWI (P,,¢)

is partially w-correct w.r.t. V if and only if (P,,¢) is

partially Hd-correct w.r.t. VJ] .

Proof of Theorem 3: (a), (b), (e) and (f) are straightforward by

definition. (ec), (4), (g), (h), (i), and (Jj) are best proved by

considering the corresponding contra-positive relations. (k) and (12)

follows from (i) and (Jj), respectively.

4, Formulation of Partial Correctness of Non-Deterministic Algorithms

For a given non-deterministic program P and an output predicate

V(x, z) , we would like to construct two formulas wil(x, ¥) and WY (x, 0)

in predicate calculus, such that for every given input value ed, :

(i) (P, &) is partially E-correct w.r.t. V¥ if and only if WO(E,V)

is true, and

(ii) (P, t¢) is partially V-correct w.r.t. V if and only if WY (eV)

is true.

Then, using the formulas w(x, Vv) and WY (x, ¥) , the formulation of the

other properties of P in predicate calculus is straightforward.

Following Ashcroft and Manna (1970), one can formulate properties of

the parallel flowchart P by first translating it to the equivalent choice

flowchart program P, and then make use of the formulas i (x,V¥) and
5

Wy (x,¥) . We shall therefore illustrate the construction of Wo (x, 0) and.
“6

21

WY (x,V) Only for the choice flowchart program P, (Figure 5) and the

choice functional program EB, . The main idea behind this formulation is
that the effect of the choice branch is represented by an ' v !' connective

in W(x, ¥) , while it is represented by an 'A ' connective in WY (x, v)

(see Manna (1970)).

; To construct Wop » 2 =X!) , associate the predicate variable
AE, 7571575) with arc & in Figure 5 and the predicate variable gz = x!

| with arc B . Then Wy (¢, z =x!) is
6

da{ Q(t,€,0,1)

A Vy Vy vy, Lae, vy5y15y,) © IF yy = y] THEN y, = E!

ELSE [Q(&,y,-1,v]¥;V5) A QE, y5v+1, (v3+1) -y,) 113.

The reader can verify easily that for every non-negative integer ££ , the

formula Wplt z =x!) is true for QE, ¥155757,) being the predicate
Vp Vy! = SEVER . Wp (¢ , Z =X}) is similar with the 'A ' connective
replaced by 'V?'.)

To construct rae: » 2 =x}) , associate the predicate variable
QA(y,y',2z) with the danetion variable F(y,y') . Then w, (6, z=x!) is:

I

AQ{ ¥z[Q(t,0,z) © z = EY]

A VyVy'[IF y = y' THEN Q(y,y',1)

ELSE Vt[Q(y-1,y',t) 2 Q(y,y", yt) |]

A Waly, y+Lt) 2 alyyt, (v1) OUI

| The reader can verify easily that for every non-negative integer £ , the

formula CANE » 2 =x!) is true for Q(y,y',z) being the predicate

zy'! = y! ! Ww (¢, z =x!) is similar with the 'A' connective replaced
7

by fv '.

Acknowledgments: I am indebted to Edward Ashcroft and Stephen Ness for many

stimulating discussions and also for their critical reading of the manuscript

_ and subsequent helpful suggestions-

22

RE [EAL BI

-—

References

E. A. ASHCROFT (1970), "Mathematical Logic Applied to the Semantics of
| Computer Programs," Pa.D. Thesis, Imperial College, London.

E. A. ASHCROFT and Z. MANNA (1970), "Formalization of Properties of
Parallel Programs," in Machine Intelligence 6 (Ed. Meltzer and Michie),
Edinburgh University Press.

D. C. COOPER (1969 a), "Program Scheme Equivalences and Second-Order
Logic," in Machine Intelligence 4 (Eds. Meltzer and Michie),
Edinburgh University Press, 3-15.

| D. C. COOPER (1969 b), "Program Schemes, Programs and Logic," Computation
Services Department, University College of Swansea, Memo No. 6.

R. W. FLOYD (1967 a), "Assigning Meaning to Programs," in Proceedings of
oymposia in Applied Mathematics, American Mathematical Society,

R. W. FLOYD (1957 b), "Non-deterministic Algorithms," JACM (October 1967).

Z. MANNA (1969), "The Correctness of Programs," J. of Computer and System

| Sciences, Vol. 3, No. 2.
| 7— MANNA (1970), "The Correctness of Non-deterministic Programs,"

Artificial Intelligence J., Vol. 1, No. 1.

Z. MANNA and J. McCARTHY (1970), "Properties of Programs and Partial -
Function Logic," in Machine Intelligence 5 (Eds. Meltzer and
Michie), Edinburgh University Press, 79-98.

Z. MANNA and A. PNUELI (1970), "Formalization of Properties of Functional
Programs," JACM, Vol. 17, No. 3.

J. mcCartay (1962), "Towards a Mathematical Science of Computation,"
Proc. IFIP Congress 62, North-Holland, Amsterdam.

J. McCARTHY (1963), "A Basis for a Mathematical Theory of Computation,"
in Computer Programming and Formal Systems (Eds. Braffort and
Hirshberg), North Holland, Amsterdam.

D. PARK (1970), "Fixpoint Induction and Proofs of Program Properties,"
in Machine Intelligence 5 (Eds. Meltzer and Michie), Edinburgh
University Press, 59-78.

bp

23

ACR RI

