
| AN N LOG N ALGORITHM FOR ISOMORPHISM OF

PLANAR TRIPLY CONNECTED GRAPHS

|

BY

JOHN-. HOPCROFT

STAN-CS-71-192

January, 1971

COMPUTER SC IENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UN IVERS ITY

AN N LOG N ALGORITHM FOR ISOMORPHISM OF PLANAR TRIPLY CONNECTED GRAPHS

John Hopcroft

Stanford University

Abstract: It is shown that the isomorphism problem for triply connected planar graphs can

be reduced to the problem of minimizing states in a finite automaton. By making

use of an n log n algorithm for minimizing the number of states in a finite

automaton, an algorithm for determining whether two planar triply connected graphs

are isomorphic is developed. The asymptotic growth rate of the algorithm grows

as n log n where n 1s the number of vertices in the graph,

This research was supported by the National Science Foundation under grant number NSF-FJ-96,
and the Office of Naval Research under grant number N-00014-67-A-0112-0057 NR 044-402.
Reproduction in whole or in part is permitted for any purpose of the United States Government.

-

AN n log n ALGORITHM FOR ISOMORPHISM OF PLANAR TRIPLY CONNECTED GRAPHS

John Hoperoft

Stanford University

Introduction

The graph isomorphism problem is to determine 1f there exists a one-to-one mapping of the vertices of a

graph onto the vertices of another which preserves adjacency of vertices. At present there is no known

algorithm for determining if two arbitrary graphs are isomorphic with a running time which is asymptotically

less than exponential. Gotlieb and Corneil [1] have exhibited an efficient algorithm for a large class

of graphs, namely those graphs with no k-strongly regular subgraph for large k .

The isomorphism problem for planar graphs is of interest in the study of chemical structures.

Weinburg [5] has exhibited an algorithm with asymptotic running time of n° for isomorphism of triply

connected graphs where n 1s the number of vertices in the graph. The reason for restricting attention to

triply connected graphs is that a triply connected planar graph has a unique representation on a sphere.

In this paper we show that isomorphism of triply connected planar graphs can be tested in time proportional

ton log n . The algorithm makes use of an n log n algorithm [2] which was developed for minimizing

states in a finite automaton. The basic idea 1s to recognize that minimizing states in finite automaton is

really a process of dividing states into equivalence classes. Thus, the algorithm can be applied not only

to state minimization but to a wide class of partitioning problems of which the isomorphism of triply

* connected planar graphs is a member. As a by product of this approach we can associate with each planar

triply connected graph a unique reduced graph which in the case of a highly symmetric graph provides a

compact encoding of the graph.

Definitions and Notation

A graph G is an ordered pair (V,E) where

(1) Vv is a finite set of vertices and

(2) E is a finite set of unordered pairs of vertices called edges.

Two vertices u and v are said to be adjacent if the edge (u,v) is in E . Two graphs are said to be

isomorphic if there exists a one-to-one mapping of the vertices of one graph onto the vertices of the other

which preserves adjacencies. For isomorphism of triply connected planar graphs it suffices to consider only

regular degree three graphs with labelled edges. The reason for this is that a vertex of degree d >3 can

be expanded into a d-gon and the edges of the d-gon labelled to indicate that they were originally a single

vertex. Since the sum of the degrees of the vertices in a planar graph is at most 6n-12 the number of

vertices in the expanded graph is at most 6n-12.

1

A finite automaton M is a 5-tuple (S,I,5,A,0) where

(1) S 1is a finite set of states

(2) I is a finite set of input symbols

(3) 1s a mapping of S XI into S

(bl) XN is a mapping of S into 0 and

(5) © 1is a finite set of output symbols.

Let I* be the set of all finite length strings of symbols from I including the empty string € . The

*

mapping ® is extended from SXI to SXI in the usual manner [4]. Given two finite automata

M, = (8151,8,,7,0) and M, = (855 I58,550,50) , states g in §; and p in §, are said to be
*

equivalent if for each x in I

MN(81(ay%)) « My(85(as%)) .

The finite automata My and M, are said to be equivalent if for each state gq in Sy there exists at

least one equivalent state p in 5S, and vice versa.

Hoperoft [2 |] has given an algorithm for partitioning the states of a finite automaton into equivalence

classes of states. The algorithm can be used to test the equivalence of two finite automata by treating

them as a single automaton, partitioning the states, and checking each block in the partition to verify that

it contains at least one state from each of the original automata. The asymptotic running time of the

algorithm 4s n log n . Thus we need only show how to associate with each planar triply connected regular

degree three graph G , a finite automaton M(G) such that Gy and Gy are isomorphic if and only if

M(G,) is equivalent to M(G,) . This will be done in the next section. The conversion time is linear and
the number of states in the resulting finite automaton is four times the number of edges in the graph.

Transformation of a Graph to a Finite Automaton

Let G = (V,E) be a regular degree 3, planar, triply connected graph with labelled edges. Assume

G 1s drawn on a sphere. We construct a finite automaton M(G) from G as follows.

M(G) = (S,{R,L},8,N,0) where

(1) s = (Tw, vy [vyul/(u,v) cE}

(2) For each (wv) in E , &{[uyv],R) = [v,w] and &([u,v],L) = [v,x] where the incident edges

at vertex v in clockwise order are (u,v) (v,x) and (v,w)

(3) N([u,v]) = [i,j,2] where i and Jj are the number of edges in the faces to the right and left

of the edge (u,v) when transversed from u to v and where [! is the label of the edge [u,v] .

(4) 0 = IxIx {set of labels) .

Intuitively, the states of M(G) correspond to the edges of G along with a direction. If M is in a

state corresponding to an edge into vertex Vv , then on the next input, M will enter the state corresponding

2

to the edge leaving v which is on the right or on the left depending on whether the input is R or L

respectively.

Since a planar triply connected graph drawn on a sphere has a parity (that is, left and right depend

on whether the graph is viewed from inside or outside the sphere) we define M(G) to be M(G) with L

and R reversed.

Technical Lemma

This section contains a technical lemma used in the next section. The proof of the lemma is not

gssential to the understanding of the remainder of the paper.

Lemma 1: Let G be a biconnected planar graph. Let (v1Vp)s (Voy Vi) EY (V,12V) be a simple path p
in G . Then there exists a face having an edge in common with the path which has the property that the

set of all edges common to both the face and the path form a continuous segment of the path. Furthermore,

when traversing an edge of the face while going fram vi to Vi along the path, the face will be on the

right.

Proof: If the set of edges common to sane face and to the path consists of at least two discontinuous sets

of edges from the path, in both cases the face being on the right of the path, then all faces adjacent to the

path from the right between the two sets of edges are adjacent only on the right. Select one such face.

Either it satisfies the conditions of the lemma or its edges intersect the path in at least two discontinuous

sets of edges. By repeating the process of selecting a face eventually a face satisfying the lemma is

selected.

Thus assume that every face which is adjacent to the path on the right is also adjacent to the path on

the left. No face can be adjacent to the path on both the right and the left at the same edge since the

graph is biconnected. Select a face. Assume that the edge closest to Yn at which the face is adjacent on

the right is closer to vy than the edge closest to vo at which the face is adjacent on the left. Then

each succeeding face adjacent to the path on the right towards Yi must have the same property. But the

face adjacent to (v1) on the right cannot have this property. Hence a contradiction. Thus there

exists a face satisfying the conditions of the lemma.

Major Result

In this section we show that two planar triply connected graphs Gy and Gy are isomorphic if and only

if M(G,) is equivalent to either M(G,) or M(G,)

Theorem: Let Gy and G, be regular degree three triply connected planar graphs with labelled edges.

Then Gy is isomorphic to G, iff either

(1) M(G,) equivalent to M(Gy) , or

(2) M(G,) equivalent to M(G,) .

Proof: (only if) Assume G, and G, are isomorphic. Clearly for Mj = (5, {R, L},81,%50,) and

M, = (8, {Ry L}58,57,550,) , 8, = S, , 0, = 0, and MN = A . (We assume that names of corresponding

nodes in the two graphs are the same. Thus Sq = S, .) It remains to be shown that for each gq ,

8, (sR) = 8,(asR) and 5,(a,L) . 5,(a,L) . Since G; and G, are triply connected, their representations

on a sphere are unique [6]. That is, the order of edges around a vertex is completely specified once a

left-right orientation is established. The only if portion follows immediately.

(if) Without loss of generality, assume M(G,) equivalent to M(G,) . For each state of M(G,) there

exists at least one state of M(G,) equivalent to it. Select a state from Sq and an equivalent state

from S, . Since each state corresponds to an edge and a direction, we can identify an edge and a direction

in Gq with an edge and a direction in Go . Furthermore, the vertices at the endpoints can be identified.

Assume state gq has been identified with state p and that the corresponding edges with their respective

directions have been identified. Then consider states 8,(q,L) and 8,(psL) . These two states must be
equivalent. We identify the corresponding edges and endpoints. We continue on in this fashion always using

input L , 1f possible, to obtain new states to identify. Otherwise we use input R .

The above procedure will eventually map each edge and corresponding endpoints in Gy to an edge and

its corresponding endpoints in G, unless a conflict arises. A conflict arises when we try to identify a

vertex vq in one graph with a vertex Vo in the other which has already -been identified with some Vy # Vy.

We now prove that if M(G,) is equivalent to M(G,) , such a situation is impossible.
Assume a conflict arises. Consider the first such instance. One of the edges in the Last pair identified

must have completed a cycle. Without loss of generality, assume a cycle was completed in Gq Then the

corresponding edge in Gy either did not complete a cycle (the end vertex of the edge in G, was not

previously identified with a vertex of Gy) or it completed a different cycle (the end vertex of the edge

in G, was previously identified with a vertex in Gq other than the end vertex of the edge in Gy) . In

the latter case, the cycle in Gy is of different length than the cycle in Gy . If there are cycles in both

graphs, let c¢ be the shorter of the two cycles. If there is a cycle in only one graph let c¢ be that cycle.

Let p be the path in the other graph corresponding to the vertices on the cycle c¢ . Note that the first

and last vertex-of p correspond to the same vertex in ¢ . Without loss of generality, assume c¢ 1s in Gy .

Since there is a cycle in G1 which is mapped to a simple path in G, , select that cycle c¢ in Gy

which would map to a simple path p in G, but for which no cycle in Gy other than c¢ containing only

vertices from c¢ and its interior would map to a simple path in Gy . By Lemma 1 some face in G, is

adjacent to p on the right and all edges of the face which are common to p form a continuous segment of p .

Star: identifying the edges around this face in Gy with edges in Gy . If a closed cycle 1s completed in

| py

Gy prior to the canpletion of a closed cycle in G, , then there would be a cycle in Gy containing

only vertices from c¢c and its interior which would map to a simple path in Go, a contradiction. If a

closed cycle is completed, in G, prior to the completion of a closed cycle in Gy , then a face with,

say 1 edges in Gy , would map to a path with i edges in Gy . This 1s a contradiction since each state

has encoded in its output the number of edges in the face, namely i . But in Gy the face has at least

i+l edges. Thus we can assume that both paths are completed simultaneously and that two identical faces

have been identified. This implies that the vertex at which the path in G, terminates was previously

identified with the vertex at which the path in Gy terminates. Now c has been divided into two cycles

cy and Coo Assume cycle cy is the face mapped to the face in Gy . Cycle Cs is then mapped to a

path in G, , a contradiction. Since all possibilities lead to a contradiction, we are forced to conclude

'that no conflect can arise and that Gy and G, are indeed isanorphic.

Conclusions

Since the transformation from a graph to a finite automaton is such that graphs G, and G, are

isomorphic if and only if M(G,) and M(G,) are equivalent we can use the state reduction algorithm to test

for isomorphism of planar triply connected graphs in n log n steps. Note that one need not actually

transform the graphs. The state reduction algorithm could be modified to handle graphs directly. It is

anticipated that the algorithm will be programmed and this latter approach will be used. Also, it should be

noted that there exist algorithms [3 |] to determine if a graph is three connected in linear time and to

determine if a graph is planar in n log n time. The planarity algorithm determines the ordering of the

edges about each vertex. Thus, we can start with a list of edges for each graph, rather than the representation

on a sphere, and still determine isomorphism in =n log n steps.

d

!

References

[1] Corneil, D. G. and C. C. Gotlieb, "An efficient algorithm for graph isomorphism," JACM 17,

(1970), 51-6h.

[2] Hoperoft, J. E., "An n log n algorithm for minimizing states in a finite automaton," Technical

Report CS-190, Stanford University, Stanford, California. 1970.

[5] Hoperoft, J. E. and R. Tarjan, "Planarity testing in v log v steps: Extended abstract,”

submitted for publication, Nov. 1970.

[4] Hopcroft, J. E. and J. D. Ullman, Formal languages and their relation to automata, Addison-

Wesley, Reading, Mass. 1969.

[5] Weinberg, L., "A simple and efficient algoritbm for determining isomorphism of planar triply

connected graphs," mse PGEC 13 (1966), 142-148,

[61 Whitney, H., "A set of topological invariants for graphs," Amer. J. Math. 55 (1933), 231-235. .

6

