
| PLANARITY TESTING IN V LOG V STEPS:
EXTENDED ABSTRACT

| BY

JOHN HOPCROFT

ROBERT TARJAN

STAN-CS-71-201

FEBRUARY, 1971

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

REE

PLANARITY TESTING IN V log V STEPS:

EXTENDED ABSTRACT

John Hoptroft

Robert Tarjan

Stanford University, Stanford, California

Abstract

An efficient algorithm 1s presented for determining whether or not

a given graph is planar. If V 1s the number of vertices in the graph,

the algorithm requires time proportional to V log V and space proportional

to V when run on a random-access computer. The algorithm constructs

the facial boundaries of a planar representation without backup, using

extensive list-processing features to speed computation. The theoretical

time bound improves on that of previously published algorithms. Experimental

evidence indicates that graphs with a few thousand edges can be tested

within seconds.

This research was supported by the Advanced Research Projects agency Of

the Office of the Department of Defense, the Atomic Energy Commission,
the Hertz Foundation, the National Science Foundation,and the Office of
Naval Research under grant number N-00014-67-A-0112-0057 NR Ouk-LO2.

PLANARITY TESTING IN V log V STEPS:

EXTENDED ABSTRACT

John Hopcroft

Robert Tarjan

Stanford University, Stanford, California

Introduction

The problem of embedding a graph in a plane arises in several fields.

In engineering, discovering whether a given circult may be laid out in a

plane 1s of interest in integrated circuit design; in chemistry, determining

isomorphism of chemical structures may be made much easier 1f the structures

are planar. The earliest characterization of planar graphs was given by

Kuratowski [5], who showed that every non-planar graph contains a subgraph

which upon removal of degree two vertices 1s 1somorphic to one of the graphs

in Figure 1. However, searching for such subgraphs directly may require

an amount of time at least proportional to ©, if not much worse, where V

is the number of vertices in the graph. It 1s clear that more efficient

procedures are needed to analyze large graphs.

. The planarity problem has attracted numerous researchers and many

algorithms have been described in the literature [1,2, 3, 6, Tl.

Surprisingly little work has been directed toward a rigorous analysis of

their running times, however, and algorithms which are obviously inferior

to previously published algorithms continue to be published. Shirey [7]

has grouped a number of the better methods into what he calls theGoldstein

approach. Using list processing and programming tricks, he has proved an

asymptotic time bound of v for his variation of the algorithm. The only

other competitive algorithm is due to Lempel, Even, and Cederbaum[6].

1

b)
Shirey indicates a probable time bound of V~ for their algorithm, although

neither he nor the originators discuss implementation. <l@F¥Jan has programmed

the L.E.C. algorithm, giving a time bound of a , although without proof [8].

We now have a proof of this time bound, and we also believe that Goldstein's

algorithm, 1f implemented optimally, will run in time 'a . However, our

proposed algorithm is even faster, and it includes several procedures for

graph manipulation which are interesting in their own right.

K
Es 3,3

Figure 1: Kuratowski subgraphs

General Description

Let G = (V,&) be an undirected graph, where V is a set, called

the vertices, and € 1s a set of unordered pairs of vertices, called the

edges. Let V be the number of vertices, and E the number of edges.

We assume that G contains no loops and no multiple edges. Let G be

planar, and suppose it is drawn in the plane. Ihe connected sets of points

in the plane formed when the edges and vertices of G are deleted from this

representation are called the faces & of the graph. If there are F faces,

then V4F = E+2 [L]. It follows from this familiar result that any planar

2

|

graph satisfies the inequality E < 5V- 6 . Thus we may restrict our

consideration to graphs having 2V- 6 or less edges; other graphs may

be immediately classified as non-planar.

The planarity algorithm operates by dividing G into biconnected

components, and attempting to construct a planar representation for each

biconnected component (G 1s planar 1f and only 1f all of its biconnected

components are planar [4]). Given a component, the facial boundaries of

a planar representation are constructed in the following manner: first a

cycle (a simple closed path) is found. All the points on this cycle are

marked as old, and a planar representation of the cycle 1s constructed.

Next a simple path joining two old points 1s found and added to the

representation. The new path either divides a face of the current represen-

tation into two new faces, or else makes the graph nonplanar. New paths

are added until the entire component has been represented or until a path

which may not be added 1s found.

We encounter one difficulty in adding paths to a partially constructed

representation; namely, we may find it possible to put a path into the

interior of several different faces. If a choice 1s made arbitrarily for

such a path, then at some later time we may find a path which cannot be

added to the current representation, but may be added 1f a different choice

had been made at a previous step. If the algorithm 1s to be efficient, this

" possibility of alternate choices must be eliminated. A special part of the

algorithm 1s designed to look ahead to discover which selection 1s necessary

in order to represent the graph in the plane, if such a representation 1s

possible. Thus a path 1s not added to the representation until either the

face 1t must divide 1s known exactly, or the decision 1s known to be

arbitrary.

3

One more step 1s crucial 1n decreasing the running time of the algorithm.

Each path 1s selected to start from a vertex of small degree in the current

representation; in particular, from a vertex of degree five or less. If no

such new path exists (because all edges from vertices of degree five or less

are already used) then a vertex of degree five or less and all adjacent

edges are marked as deleted. This device decreases the running time of the

| algorithm from KV to k V log V .
| List processing techniques are used extensively to speed the algorithm.

The graph 1s represented as a set of lists of edges. A list of adjacent

edges 1s given for each point; in addition, since each edge appears twice,

both occurrences of an edge have pointers to each other. This facilitates

deletion of edges from the graph. We will consider separately and 1in

detail the various parts of the algorithm, but due to space limitation we

omit complete proofs of correctness and of the time bounds. These will

appear 1n a Stanford Computer Science Technical Report. The parts are the

routine for finding biconnected components, the routine for finding paths,

the routine for deciding where to add a path, and the routine for building

a planar representation. The total time required by each of these algorithms

_ except the last is proportional to the number of edges in the graph. The

representation-buillding algorithm requires time proportional to V log V .

Thus the total algorithm has a theoretical time bound of k V log V

for some k . Further, the storage space required by the algorithm is

proportionalto V .

Finding Biconnected Components

We break a graph into its biconnected components by performing a

depth-first search along the edges of the graph. Each new vertex reached

is placed on a stack, and for each vertex a record 1s kept of the lowest

vertex on the stack to which it is connected by a path of unstacked vertices.

When no new vertex can be reached from the top of the stack, the top vertex

is deleted, and the search is continued from the next vertex on the stack.

If the top vertex does not connect to a vertex lower than the second vertex

on the stack, then this second vertex 1s an articulation point of the graph.

All edges examined during the search are placed on another stack, so that

when an articulation point 1s found the edges of the corresponding

biconnected component may be retrieved and placed in an output array.

When the search 1s exhausted, a complete search of a connected component

has been performed. An unreached vertex 1s selected as a new starting point

and the process 1s repeated until the entire graph has been examined.

Isolated vertices are not listed as biconnected components, since they'have

no adjacent edges. They are merely skipped. The details of the algorithm

are given in Figure 2. Note that the flowchart gives a non-deterministic

algorithm, since any new edge may be selected in block A. The actual program

is deterministic; the choice of an edge depends on the particular representation

of the graph. The algorithm requires less than k max(V,E) steps, for

“some suitable k , since only a finite amount of manipulation is performed

with each vertex and each edge. Since E < 3V-6 for planar graphs, the

time bound 1s kV for a suitable ky . The amount of space required 1s

also proportionalto V .

| Choose a startpoint.
ah
a

Empty stack of vertices. Number
startpoint and putit on stack

i ©
= Is there an edge out of top vertex on stack?

Yes

Delete edge from graph. Put on stack of edges.

+ Is~head of edge a new vertex?
Nee ee

No Yes

Check to see if number of head new vertex to stack of

of edge is lower than LOWPOINT rtices. Number 1t. Set

of top vertex. If so, set LOWPOINT of the vertex to
LOWPOINT of top vertex equal to equal the number of the
that number. previous top of stack.

Is there only one vertex in stack? | (B) TD |
Yes B | No

1s there an unnumbered vertex?d / Is LOWPOINT of the top vertex AN
NL AE / equal to the number of the next Ya

N, vertex on the stack? | / |
Yes No No | Yes

(a) Let 1t be the new Set LOWPOINT of the next Form a new biconnectedstartpoint. vertex equal to LOWPOINT component by deleting
of the top vertex 1f it edges from edge stack
1s less. until finding one which

connects to a vertex below

the next vertex on the

stack.

oo ~ Remove top vertex from
P stack.

Figure 2: Flowchart for Biconnected Components Algorithm.

6

Finding Paths

The path finding algorithm finds the paths used to build the graph

in the plane. The starting vertex for each successive path may be chosen

arbitrarily; in fact, the initial edge of each successive path may be

selected arbitrarily from the set of unused edges. The algorithm 1s highly

dependent on the graphs being biconnected. In order to find a new path,

the initial edge 1s selected and the head of the edge is checked. If this

vertex 1s old, the path consists of a simple edge. If the vertex has never

been reached before, a depth-first search 1s begun which must end in a

path since the graph is biconnected. The search generates a tree-like

structure; specifically, 1t 1s a tree with extra edges connecting some nodes

with their (not necessarily immediate) ancestors. (We will visualize the

tree drawn so that the root, which 1s an ancestor of all vertices, 1s at the

bottom of the tree.) Enough information 1s saved from this tree so that if

a vertex 1n it 1s reached when building another path, the path may be

completed without any further search.

The flowchart (Figures 3 and4) gives the details of the algorithm.

It is divided into two parts: one for the depth-first search process and

. one for path construction using previously gathered information. Let us

consider path generation using depth-first search; that 1s, suppose the

algorithm 1s applied and that the head of the first edge selected is

previously unreached. Referring to the flowchart, we see that the search

process 1s very similar to that used in the biconnectivity algorithm.

A search tree 1s generated, and each edge examined is either part-of the

tree or connects a vertex to one of its predecessors in the tree. LOWPOINT

1s a variable which gives the number of the lowest vertex in the tree

reachable from a given vertex by continuing out along the tree and taking

T

No

Is there an unused edge from startpoint? (sr)
Yes - |

(No path exists.)

Put edge 1n paths-tack. Let POINT be head
of the edge.

© ies Has POINT been reached previously?

° —@

~ Number POINT.

Is there an unsearched edge from POINT?

No Yes

- | Set backward edge of POINT Mark edge searched.
to edge on pathstack. Set

pastpoint to tail of edge.
If LOWPOINT of POINT less

than LOWPOINT of past- Is head of edge unreached?

point, modify LOWPOINT and N Yes
forward edge of pastpoint © |
to indicate edge to POINT. ee

Is head of edge old Put edge on pathstack.
and not equal to Set POINT to head of

startpoint? edge.

| Yes No vy)

‘Set POINT to pastpoint. If number of head of edge is less
Delete edge from pathstack. than LOWPOINT of POINT, modify
: LOWPOINT and forward edge of POINT

&) | to indicate edge.
Mark allvertices in path old. |
Mark all edges in path used.

Figure 3: Flowchart for Pathfinding Algorithm (I)

8

Is number of POINT ‘less than Yes (\)number of startpoint?

No

Is LOWPOINT of POINT less than

No number of startpoint? es

Put backward edge on Put forward edge on |

| pathstack. Set POINT pathstack. Set POINT
to head of edge. to head of edge.

No Yes Yes

—<_Ls POINT old?p———7— Is WOOT old?)

/ Is number of POINT less than \ Noj
number of startpoint?

| Put backward edge on pathstack. |
Set POINT to head of edge.

No

Is POINT old?

Yes |

Figure 4: Flowchart for Pathfinding Algorithm (II)

one edge back toward the root. The forward edges point along this path,

while the backward edges point back along the tree branches. The depth-

first search used here 1s exactly the same as in the biconnectivity algorithm

and because the graph is biconnected, LOWPOINT of a given vertex must point

to a node which 1s an ancestor of the immediate predecessor of the given

vertex. In particular, LOWPOINT of the second vertex 1n the search tree

must indicate an old vertex which 1s not the startpoint. Therefore the

algorithm will find a path containing the initial edge. Note that all

vertices encountered during the search process must either be old or

unreached, since every vertex reached in a previous search either has had

all 1ts edges examined or has been included in a path.

Let us now suppose that the head of the first edge has been reached

previously but is not marked old. Then the forward and backward pointers,

. along with the LOWPOINT values, allow the algorithm to construct a path

without further search. There are several possible cases. First, if the

number of the head of the initial edge 1s less than the number of the

startpoint, then following backward edges will certainly produce a simple

path, since the numbers of vertices along such a path decrease and the root

) of every search tree is an old vertex. If the initial edge 1s part of the

search tree and the startpoint 1s the predecessor of the second vertex,

then LOWPOINT of the second vertex must be less than the number of

startpoint. Following forward edges until reaching a vertex lower than the

startpoint and then following backward edges will produce a simple path.

The last case to consider occurs when the initial edge 1s not part of the

search tree but points from a vertex to one of its descendents in the tree.

In this case some vertex in the tree between the startpoint and the second

vertex of the path must have a LOWPOINT value less than the number of the

10

startpoint. If we follow backward edges until reaching the first such

} vertex, then follow forward edges until a vertex numbered less than the

startpoint is reached, and finally follow backward edges until an old

vertex 1s reached, we will generate a simple path.

To derive a time bound for the algorithm, we assume that one vertex

1s marked old initially, and a different vertex 1s selected as the initial

startpoint. The algorithm is then run repeatedly with arbitrary startpoints

until all edges are used to form paths. Each execution of the algorithm

produces a simple path, 1f the graph is biconnected. Since each edge 1is

examined at most once in the search section of the algorithm, and since each

edge is put into a path once, the time required to execute the algorithm

until no edges are unused 1s proportionalto E . Since E <3V-6,

for some k , the time required is less than kV . The space used 1is

also proportionalto V .

Resolving Ambiguity in Adding Paths

In this section we describe the algorithm which determines the vertices

from which new paths should be started and which supplies the representation

building algorithm with a sequence of paths along with sufficient information

to resolve ambiguities as to which face should be divided. First a cycle

is found and then a path 12] 1s found connecting two vertices on the cycle.

The cycle 1s then considered to consist of two paths between the two vertices.

} The following sequence of steps is repeated until every edge'of the

graph lies 1n some path or the graph 1s found to be nonplanar. (In the

process a pushdown store 1s maintained of all paths which may divide more

than one face along with a list of paths found but not yet given to the

11

representation building algorithm. Along with each path on the pushdown

store 1s a pointer to a copy of the path in the list of paths not yet

given to the representation building algorithm.)

The path finding algorithm is asked for a path I from a

vertex Ve Let vy denote the last vertex in path i . A check 1s

made to see 1f there exists a path already found containing both ve

and v. . (Vertices on paths, with the exception of the first and last
vertices, are numbered sequentially so that this test can be performed in

a finite number of steps per path independent of path length.) If there

1s no path containing both vs and vs , then the path p. divides a

unique face. If the pushdown store 1s empty, the path 1s given to the

representation building algorithm. Otherwise the path 1s placed on the list

of paths since even though it divides a unique face we must first put in

. all previously found paths and one of these 1s waiting on the pushdown

store since it divides more than one face. In either case, the paths

containing Ve and v, are divided in two at the vertices Voy and vy .
If on the other hand the path starts and ends at vertices on the same

path, then an ambiguity as to which face should be divided exists.

Whenever such a situation arises, the algorithm immediately tries to resolve

the ambiguity. Assume path i starts at vertex Vy and ends at

vertex 6. where Va and vy are both on path p- . Then the path pb,
is’ stored on the pushdown list and the path finding algorithm 1s directed

to start paths from vertices on path p;, or vertices between vs and vs

on path p., . Let the next path found be Dy - One of four situations
arises.

12

i) The last vertex of path p, 1s on the same path as the first

i vertex of Py - In this case, a new ambiguity exists and Py

is added to the pushdown list. The process of resolving the

ambiguity of 1] 1s interrupted and the algorithm starts to

resolve the ambiguity of Py -

11) The last vertex of path Py 1s on a path other than 12 or Ps .

In this case the endpoint of Py uniquely determines the face to

be divided by Ds and 1s called the resolving point of path ps

The path ps is removed from the pushdown store. If the pushdown

store 1s empty, then all paths on the list of paths can be given

to the representation building algorithm. If the pushdown store

is not empty, then the top path 1s a path which we were trying to

resolve but were interrupted in the process. We return again to

this process.

iii) If Py connects bs to a vertex on bs between Vs and vs ,

then Py divides a unique face but does not resolve the

ambiguity of Pp; - We simply place p, on the list of paths

and continue trying to resolve I .

iv) If Py ends at a vertex on 1] but outside the portion of the

path from vy to v, , then the situation 1s similar to case 111

but the set of vertices from which we can start paths to resolve

12 must be extended.

Space does not permit a more detailed analysis and many details have

been omitted. For example, the test whether there exists a path ‘containing

both Vs and vs takes time proportionalto the degree of the vertex v.

This would add an additional factor of V to the running time were 1t not

for the fact that the computation 1s arranged so that all paths are started

from vertices which appear to be of degree 5 or less. The interested reader

13

1s referred to the more detailed treatise of the algorithm along with

its ALGOL implementation and an analysis of the running time which

will appear in a Stanford Computer Science Technical Report.

Building a Planar Representation

We store the part of the graph which has been examined as a set of

cycles, one corresponding to each face of a planar representation of the

graph. Each cycle is a doubly linked circular list of the vertices on the

boundary of the face. Corresponding to each vertex 1s a list of cycles 1in

whichthe vertex appears. The cycle-building process, when given a path

starting from a vertex of degree five or less, and when also (possibly)

given a resolving point for the path, searches the five (or less) cycles

containing the startpoint of the path, in both directions, looking for the

endpoint of the path. The resolving point is also noticed if found. If

the endpoint 1s not found 1n any of these cycles, the graph is nonplanar.

If the endpoint 1s found, the cycles in which it appears are searched for

the resolving point, 1f such a search 1s necessary to resolve ambiguity

. concerning which cycle should be divided. The selected cycle is then split

at the start and end points of the path, the path 1s added to each piece,

and the construction of the new cycle 1s complete. If a resolving point

1s used, 1ts location 1s saved until it 1s an endpoint of a path, so that

unnecessary searches are not made. In addition, cycles which are known to

need no further dividing are removed from the vertex lists. Such cycles

occur when points are deleted because they have five or fewer incident edges,

all of which have been added to the planar representation.

14

|

The theoretical execution time of the planarity algorithm 1s dominated

by the time necessary to search the cycles containing the startpoint of a

path for the endpoint and resolving point. We consider the time necessary

to search the particular cycle containing the endpoint and the resolving

point. Since the same amount of time 1s spent searching each cycle

containing the startpoint, the total time 1s at worst five times this

quantity. To bound the time we will consider searching for endpoints and

resolution points separately. The time spent searching for both

simultaneously must be no greater than the time spent in separate searches.

We need a lemma, the proof of which 1s omitted.

Lemma : (a) .x log x + y log y + min(x,y) £ x + vy log(x+ty) 1 < a,x,y

(b) (xta) log(x+a) + (y+a) log(yta) +min(x,y) < (x+yrea) log(x+y+2a)

(c) (x+a) log(x+a)+y log y < x log x+ (y+ta) log(y+ta) if x {vy .

Consider the time spent looking for endpoints. Assume that at some

step we have cycles of length ts ceed and that k vertices do not yet

appear in cycles. Suppose f > £. for all 1 < 1 <m-1 . We claim that

the search time from this step on 1s bounded by

hy ’ £1 Ed) ior, log £,+ (2_+2k) log(2+ 2k) |
i=1

Since m= 0 andk = V initially, this will give a total time bound

of v log v . (To simplify matters, we neglect constants of proportionality

throughout this discussion.) We can prove the bound by induction on k .

For fixed k , we use induction on m .

Assume a path of length a 1s to be added to the representation.

Without loss of generality, we may assume that the endpoint being considered

is either in cycle 1 or in cycle m. Suppose 1t appears in cycle 1 and the

15

cycle is to be broken into two pieces of lengths t.-D and b and the

path added to each piece to form two new cycles. Then the time from this

step 1s

T!' = min(£,-b,D) + T(2,-bra,atb, bys Lz.. L k-a)

since

min(Z,-b,b) + (£,-b+a) log(L;-b+a) + (a+b) log (a+b)+ (4+2k-2a) log(s +2k-2a)

< (£,+2a) log(2,+2a) > (2, +2k-2a) log(! +2k-2a)

<4; log 4 + (2 +2k) log(# +2k) by Lemma 1.

If the endpoint appears in cycle m, then either ! bra > ks for

1 <i <m or there exists j such that Ls > I -bta and Ls >t, for
1<i<m. In these cases we may prove TI'< T as above, using Lemma 1.

Thus we have the desired time bound, since T after the last stop is 0 .

Now consider the time necessary to find resolving points. After

finding a resolving point, we do not search for anotler until a path which

has this resolving point as one of its endpoints is added to.the representation.

_ Then a path not in the original cycle exists between the startpoint and the

resolving point. Thus the original cycle is by this time divided at the

startpoint and resolving point . The analysis above thus also gives a time

bound on searching for resolving points. Thus the total time required to

construct a planar representation is k V log V, for some constant k ,

The representation-building algorithm also uses space proportional to V .

16

|

Experimental Results

The planarity algorithm has been programmed in ALGOL W for the

Stanford 360/67 and tested on a number of graphs. Experimental evidence

indicates that memory space is the limiting factor and the algorithm must

be reprogrammed if it 1s to handle graphs with more than 2000 edges. The

current version of the algorithm consists of 985 lines of AIGOL. Graphs

with 100 edges are handled in less than one second. A planar graph with

1000 vertices and 2000 edges was run in 12.7 seconds. Nonplanar graphs

may have somewhat smaller running times since the algorithm stops as soon

as a nonplanar subgraph is discovered.

17

References

[1] Auslander, L., Parter, S. V., "On embedding graphs in the sphere",

: Journal of Mathematics and Mechanics, Vol. 10, No. 3 (1961), pp. 517-523.

[2] Bruno, J., Steiglitz, K., Weinberg, L., "A new planarity test based

on 3-connectivity", IEEE Transactions on Circuitry Theory CT 17: 2,

May 1970, pp. 197-206.

[3] Goldstein, A. J., "An efficient and constructive algorithm for

testing whether a graph can be imbedded in a plane", Graph and

Combinatorics Conference, Princeton University, May 1963.

[4] Harary, Frank, Graph Theory, Addison-Wesley Publishing Co., Reading,

Massachusetts, 1969.

[5] Kuratowski, Casimir, "Sur le probleme des courbes gauches en topologie",

Fundamenta Mathematicae, Vol. 15 (1930), pp. 271-283.

[6] Lempel, A., Even, S., and Cederbaum, I., "An algorithm for planarity

testing of graphs", in Theory of Graphs: International Symposium:

Rome, July 1966. P. Rosenstiehl, Ed., New York: Gordon and

Breach, 1967, pp. 215-232.

[7] Shirey, R. W., "Implementation and analysis of efficient graph

planarity testing algorithms", Ph.D. dissertation, Computer Science

Department, University of Wisconsin, June 1959.

[8] Tarjan, R., "Implementation of an efficient algorithm for planarity

testing of graphs", unpublished implementation, Dec. 1969.

18

