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Abstract

An efficient algorithm is presented for determining whether or not
a given graph is planar. If V is the number of vertices in the graph,
the algorithm requires time proportional to V log V and space proportional
to V when run on a random-access computer. The algorithm constructs
the facial boundaries of a planar representation without backup, using
extensive list-processing features to speed computation. The theoretical
time bound improves on that of previously published algorithms. Experimental
evidence indicates that graphs with a few thousand edges can be tested

within seconds.
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Introduction

The problem of embedding a graph in a plane arises in several fields.

In engineering, discovering whether a given circuit may be laid out in a
plane is of interest in integrated circuit design; in chemistry, determining
isomorphism of chemical structures may be made much easier if the structures
are planar. The earliest characterization of planar graphs was given by
Kuratowski [5], who showed that every non-planar graph contains a subgraph
which upon removal of degree two vertices is isomorphic to one of the graphs
in Figure 1. However, searching for such subgraphs directly may require

an amount of time at least proportional to fg, if not much worse, where V
is the number of vertices in the graph. It is clear that more efficient
procedures are needed to analyze large graphs.

The planarity problem has attracted numerous researchers and many
algorithms have been described in the literature [1, 2, 3, 6, Tl.
Surprisingly little work has been directed toward a rigorous analysis of
their running times, however, and algorithms which are obviously inferior
to previously published algorithms continue to be published. Shirey [T7]
has grouped a number of the better methods into what he calls the Goldstein
approach. Using list processing and programming tricks, he has proved an

asymptotic time bound of V5 for his variation of the algorithm. The only

other competitive algorithm is due to Lempel, Even, and Cederbaum [6].



Shirey indicates a probable time bound of v for their algorithm, although
neither he nor the originators discuss implementation. <la&rjan has programmed
the L.E.C. algorithm, giving a time bound of 'a , although without proof [8].
We now have a proof of this time bound, and we also believe that Goldstein's
algorithm, if implemented optimally, will run in time V2 . However, our
proposed algorithm is even faster, and it includes several procedures for

graph manipulation which are interesting in their own right.
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Figure 1: Kuratowski subgraphs

General Description

Let G = (V,&) be an undirected graph, where V is a set, called
the vertices, and & is a set of unordered pairs of vertices, called the
edges. Let V be the number of vertices, and E the number of edges.
We assume that G contains no loops and no multiple edges. Let G be
planar, and suppose it is drawn in the plane. The connected sets of points
in the plane formed when the edges and vertices of G are deleted from this
representation are called the faces ¥ of the graph. If there are F faces,

then V+F = E+2 [4]. It follows from this familiar result that any planar



graph satisfies the inequality E < 3V- 6 . Thus we may restrict our
consideration to graphs having 3V- 6 or less edges; other graphs may
be immediately classified as non-planar.

The planarity algorithm operates by dividing G into biconnected
components, and attempting to construct a planar representation for each
biconnected component (G is planar if and only if all of its biconnected
components are planar [4]). Given a component, the facial boundaries of
a planar representation are constructed in the following manner: first a
cycle (a simple closed path) is found. All the points on this cycle are
marked as old, and a planar representation of the cycle is constructed.

Next a simple path joining two old points is found and added to the
representation. The new path either divides a face of the current represen-
tation into two new faces, or else makes the graph nonplanar. New paths

are added until the entire component has been represented or until a path
which may not be added is found.

We encounter one difficulty in adding paths to a partially constructed
representation; namely, we may find it possible to put a path into the
interior of several different faces. If a choice is made arbitrarily for
such a path, then at some later time we may find a path which cannot be
added to the current representation, but may be added if a different choice
had been made at a previous step. If the algorithm is to be efficient, this
possibility of alternate choices must be eliminated. A special part of the
algorithm is designed to look ahead to discover which selection is necessary
in order to represent the graph in the plane, if such a representation is
possible. Thus a path is not added to the representation until either the
face it must divide is known exactly, or the decision is known to be

arbitrary.



One more step is crucial in decreasing the running time of the algorithm.
Each path is selected to start from a vertex of small degree in the current
representation; in particular, from a vertex of degree five or less. If no
such new path exists (because all edges from vertices of degree five or less
are already used) then a vertex of degree five or less and all adjacent
edges are marked as deleted. This device decreases the running time of the
algorithm from kV2 to k V log Vv
List processing techniques are used extensively to speed the algorithm.
The graph is represented as a set of lists of edges. A list of adjacent
edges 1is given for each point; in addition, since each edge appears twice,
both occurrences of an edge have pointers to each other. This facilitates
deletion of edges from the graph. We will consider separately and in
detail the various parts of the algorithm, but due to space limitation we
omit complete proofs of correctness and of the time bounds. These will
appear in a Stanford Computer Science Technical Report. The parts are the
routine for finding biconnected components, the routine for finding paths,
the routine for deciding where to add a path, and the routine for building
a planar representation. The total time required by each of these algorithms
. except the last is proportional to the number of edges in the graph. The
representation-building algorithm requires time proportional to V log V .
Thus the total algorithm has a theoretical time bound of k V log V
for some k . Further, the storage space required by the algorithm is

proportionalto V



Finding Biconnected Components

We break a graph into its biconnected components by performing a
depth-first search along the edges of the graph. Each new vertex reached
is placed on a stack, and for each vertex a record is kept of the lowest
vertex on the stack to which it is connected by a path of unstacked vertices.
When no new vertex can be reached from the top of the stack, the top vertex
is deleted, and the search is continued from the next vertex on the stack.

If the top vertex does not connect to a vertex lower than the second vertex
on the stack, then this second vertex is an articulation point of the graph.
All edges examined during the search are placed on another stack, so that
when an articulation point is found the edges of the corresponding
biconnected component may be retrieved and placed in an output array.

When the search is exhausted, a complete search of a connected component
has been performed. An unreached vertex 1s selected as a new starting point
and the process is repeated until the entire graph has been examined.
Isolated vertices are not listed as biconnected components, since they'have
no adjacent edges. They are merely skipped. The details of the algorithm
are given in Figure 2. Note that the flowchart gives a non-deterministic
algorithm, since any new edge may be selected in block A. The actual program
is deterministic; the choice of an edge depends on the particular representation
of the graph. The algorithm requires less than k max(V,E) steps, for

_some suitable k , since only a finite amount of manipulation is performed
with each vertex and each edge. Since E <3V-6 for planar graphs, the
time bound is Xk,V for a suitable k, . The amount of space required is

1 1

also proportionalto V
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Flowchart for Biconnected Components Algorithm.



Finding Paths

The path finding algorithm finds the paths used to build the graph
in the plane. The starting vertex for each successive path may be chosen
arbitrarily; in fact, the initial gdge of each successive path may be
selected arbitrarily from the set of unused edges. The algorithm is highly
dependent on the graphs being biconnected. 1In order to find a new path,
the initial edge is selected and the head of the edge is checked. If this
vertex is old, the path consists of a simple edge. If the vertex has never
been reached before, a depth-first search is begun which must end in a
path since the graph is biconnected. The search generates a tree-like
structure; sgecifically, it is a tree with extra edges connecting some nodes
with their (not necessarily immediate) ancestors. (We will visualize the
tree drawn so that the root, which is an ancestor of all vertices, is at the
bottom of the tree.) Enough information is saved from this tree so that if
a vertex in it is reached when building another path, the path may be
completed without any further search.

The flowchart (Figures 3 and 4) gives the details of the algorithm.
It is divided into two parts: one for the depth-first search process and
one for path construction using previously gathered information. Let us
consider path generation using depth-first search; that is, suppose the
algorithm is applied and that the head of the first edge selected is
previously unreached. Referring to the flowchart, we see that the search
process is very similar to that used in the biconnectivity algorithm.
A search tree is generated, and each edge examined is either part-of the
tree or connects a vertex to one of its predecessors in the tree. LOWPOINT
is a variable which gives the number of the lowest vertex in the tree

reachable from a given vertex by continuing out along the tree and taking
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one edge back toward the root. The forward edges point along this path,
while the backward edges point back along the tree branches. The depth-
first search used here is exactly the same as in the biconnectivity algorithm
and because the graph is biconnected, LOWPOINT of a given vertex must point
to a node which is an ancestor of the immediate prédecessor of the given
vertex. In particular, LOWPOINT of the second vertex in the search tree
must indicate an old vertex which is not the startpoint. Therefore the
algorithm will find a path containing the initial edge. ©Note that all
vertices encountered during the search process must either be old or
unreached, since every vertex reached in a previous search either has had
all its edges examined or has been included in a path.

Let us now suépose that the head of the first edge has been reached
previously but is not marked old. Then the forward and backward pointers,
. along with the LOWPOINT values, allow the algorithm to construct a path
without further search. There are several possible cases. First, if the
number of the head of the initial edge is less than the number of the
startpoint, then following backward edges will certainly produce a simple
path, since the numbers of vertices along such a path decrease and the root
of every search tree is an old vertex. If the initial edge is part of the
search tree and the startpoint is the predecessor of the second vertex,
then LOWPOINT of the second vertex must be less than the number of
startpoint. Following forward edges until reaching a vertex lower than the
startpoint and then following backward edges will produce a simple path.
The last case to consider occurs when the initial edge is not part of the
search tree but points from & vertex to one of its descendents in the tree.

In this case some vertex in the tree between the startpoint and the second

vertex of the path must have a LOWPOINT value less than the number of the
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startpoint. If we follow backward edges until reaching the first such
vertex, then follow forward edges until a vertex numbered less than the
startpoint is reached, and finally follow backward edges until an old
vertex is reached, we will generate a simple path.

To derive a time bound for thé algorithm, we assume that one vertex
is marked old initially, and a different vertex is selected as the initial
startpoint. The algorithm is then run repeatedly with arbitrary startpoints
until all edges are used to form paths. Each execution of the algorithm
produces a simple path, if the graph is biconnected. Since each edge is
examined at most once in the search section of the algorithm, and since each
edge is put into a path once, the time required to execute the algorithm
until no edg;s are unused is proportionalto E . Since E <3V-6,

for some k , the time required is less than kV . The space used is

also proportionalto V

Resolving Ambiquity in Adding Paths

In this section we describe the algorithm which determines the vertices
from which new paths should be started and which supplies the representation
building algorithm with a sequence of paths along with sufficient information
to resolve ambiguities as to which face should be divided. First a cycle
is found and then a path 12 is found connecting two vertices on the cycle.
The cycle is then considered to consist of two paths between the two vertices.

The following sequence of steps is repeated until every edge of the
graph lies in some path or the graph is found to be nonplanar. (In the
process a pushdown store is maintained of all paths which may divide more

than one face along with a list of paths found but not yet given to the
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representation building algorithm. Along with each path on the pushdown
store is a pointer to a copy of the path in the list of paths not yet
given to the representation building algorithm.)

The path finding algorithm is ask?d for a path Pi from a
vertex Ve o Let Gi denote the last vertex in path pi . A check is
made to see if there exists a path already found containing both Vi
and Gi . (Vertices on paths, with the exception of the first and last
vertices, are numbered sequentially so that this test can be performed in
a finite number of steps per path independent of path length.) If there
is no path containing both A and Gi , then the path 1 divides a
unique face. If the pushdown store is empty, the path is given to the
representation buiiding algorithm. Otherwise the path is placed on the list
of paths since even though it divides a unique face we must first put in
all previously found paths and one of these is waiting on the pushdown
store since it divides more than one face. In either case, the paths
containing Ve and Gi are divided in two at the vertices Vo and Gi .

If on the other hand the path starts and ends at vertices on the same
path, then an ambiguity as to which face should be divided exists.
Whenever such a situation arises, the algorithm immediately tries to resolve
the ambiguity. Assume path Dy starts at vertex vy and ends at
vertex 6.l where Ve and §i are both on path p.J .  Then the path pi
is’ stored on the pushdown list and the path finding algorithm is directed
to start paths from vertices on path Pi or vertices between vi and Gi
on path P., . Let the next path found be Dy - One of four situations

arises.

12



i) The last vertex of path Py is on the same path as the first
vertex of pk . In this case, a new ambiguity exists and pk
is added to the pushdown list. The process of resolving the
ambiguity of s is interrupted and the algorithm starts to
resolve the ambigquity 5f Py -

ii) The last vertex of path P is on a path other than p:.L or pj.
In this case the endpoint of pk uniquely determines the face to
be divided by p; and is called the resolving point of path p; -
The path pi is removed from the pushdown store. If the pushdown
store is empty, then all paths on the list of paths can be given

to the representation building algorithm. If the pushdown store

is not empty, then the top path is a path which we were trying to
resolve but were interrupted in the process. We return again to
this process.

iii) If pk connects Pj to a vertex on jp:.L between vi and Gi ,
then pk divides a unique face but does not resolve the
ambiguity of p; . We simply place P, on the list of paths
and continue trying to resolve p; -

iv) If Py ends at a vertex on p; but outside the portion of the
path from'v:.L to ;i , then the situation is similar to case iii
but the set of vertices from which we can start paths to resolve

Pi must be extended.

Space does not permit a more detailed analysis and many details have
been omitted. For example, the test whether there exists a path ‘containing
both vy and Gi takes time proportionalto the degree of the vertex Vi
This would add an additional factor of V to the running time were it not

for the fact that the computation is arranged so that all paths are started
from vertices which appear to be of degree 5 or less. The interested reader

13



is referred to the more detailed treatise of the algorithm along with

its ALGOL implementation and an analysis of the running time which

will appear in a Stanford Computer Science Technical Report.

Building a Planar Representation

We store the part of the graph which has been examined as a set of
cycles, one corresponding to each face of a planar representation of the
graph. Each cycle is a doubly linked circular list of the vertices on the
boundary of the face. Corresponding to each vertex is a list of cycles in
which the vertex appears. The cycle-building process, when given a path
starting from a vertex of degree five or less, and when also (possibly)
given a resolving point for the path, searches the five (or less) cycles
containing the startpoint of the path, in both directions, looking for the
endpoint of the path. The resolving point is also noticed if found. If
the endpoint is not found in any of these cycles, the graph is nonplanar.
If the endpoint is found, the cycles in which it appears are searched for
the resolving point, 1if such a search is necessary to resolve ambiguity
concerning which cycle should be divided. The selected cycle is then split
at the start and end points of the path, the path is added to each piece,
and the construction of the new cycle is complete. If a resolving point
is used, its location is saved until it is an endpoint of a path, so that
unnecessary searches are not made. In addition, cycles which are known to
need no further dividing are removed from the vertex lists. Such cycles
occur when points are deleted because they have five or fewer incident edges,

all of which have been added to the planar representation.
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The theoretical execution time of the planarity algorithm is dominated
by the time necessary to search the cycles containing the startpoint of a
path for the endpoint and resolving point. We consider the time necessary
to search the particular cycle containing the endpoint and the resolving
point. Since the same amount of time is spent searching each cycle
containing the startpoint, the total time is at worst five times this
quantity. To bound the time we will consider searching for endpoints and
resolution points separately. The time spent searching for both
simultaneously must be no greater than the time spent in separate searches.

We need a lemma, the proof of which is omitted.

Lemma: (a) x log x + y log y + min(x,y) £ x + y log(x+ty) 1 < ayx,y
(b) (x+ta) log(x+a) + (y+a) log(y+a) +min(x,y) < (x+y+2a) log(xry+2a)

(c) (x+a) log(x+a)+y log y < x log x+ (y+a) log(y+ta) if x <y .

Consider the time spent looking for endpoints. Assume that at some
step we have cycles of length Zl,. ..,Em and that k vertices do not yet
appear in cycles. Suppose lm > li for all 1 < i <m-1 . We claim that

the search time from this step on is bounded by

m-1
iy ' QD'@&;@ i :lzi log £, + (2_+2k) log(2, + 2K)

Since m = 0 and k = V initially, this will give a total time bound
of v log v . (To simplify matters, we neglect constants of proportionality
throughout this discussion.) We can prove the bound by induction on k
For fixed k , we use induction on m

Assume a path of length a 1s to be added to the representation.
Without loss of generality, we may assume that the endpoint being considered

is either in cycle 1 or in cycle m. Suppose it appears in cycle 1 and the
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cycle is to be broken into two pieces of lengths !l-b and b and the
path added to each piece to form two new cycles. Then the time from this

step is
Tt = min(zl-b,b) + T(ll-b+a,a+b,22,23...Zm}{—a)
<Mipty @ o1y
since
min(ll-b,b)+-(£l—b+a) log(ll-b+a)4- (a+b) log(a+b)+ (lm+2k—2a) log(lmf2k—2a)
< (Jll+2a) log(£l+2a) + (£m+2k-2a) log(lm+2k-2a)

< #; log £+ (lm+2k) 1og(zm+2k) by Lemma 1.

If the endpoint appears in cycle m, then either lm-b+a > zi for
1< i <m or there exists j such that lj > lm—b+a and_lj > zi for
1<i<m. In these cases we may prove T'< T as above, using Lemma 1.
Thus we have the desired time bound, since T after the last stop is 0

Now consider the time necessary to find resolving points. After
finding a resolving point, we do not search for anotker until a path which
has this resolving point as one of its endpoints is added to.the representation.
. Then a path not in the original cycle exists between the startpoint and the
resolving point. Thus the original cycle is by this time divided at the
startpoint and resolving point . The analysis above thus also gives a time
bound on searching for resolving points. Thus the total time required to
construct a planar representation is k V log V , for some constant k ,

The representation-building algorithm also uses space proportional to V .

16



Experimental Results

The planarity algorithm has been programmed in ALGOL W for the
Stanford 360/67 and tested on a number of graphs. Experimental evidence
indicates that memory space is the limiting factor and the algorithm must
be reprogrammed if it is to handle graphs with more than 2000 edges. The
current version of the algorithm consists of 985 lines of AILGOL. Graphs
with 100 edges are handled in less than one second. A planar graph with
1000 vertices and 2000 edges was run in 12.7 seconds. Nonplanar graphs
may have somewhat smaller running times since the algorithm stops as soon

as a nonplanar subgraph is discovered.
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