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Abstract:

This paper describes two extensions to the semaphore operators

originally introduced by Dijkstra. These extensions can be used to
reduce: 1) the number of semaphore references; 2) the time spent 1n

critical sections; and3) the number of distinct semaphores required
for proper synchronization without greatly increasing the time required

for semaphore operations. Communicating semaphores may be utilized not

only for synchronization but also for message switching, resource alloca-

tion from pools and as general queueing mechanisms.
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Introduction

The introduction of semaphore operations by Dijkstra(l) in 1965
was motivated by the necessity of providing for correct interactions
among a set of independent asynchronous processes which share data.
For example, if a process is updating information in a common table,
there exist moments when this updating Is only partially completed.
If, at this point in time, another process were to attempt to update
thi s common table, it might destroy the partially updated information
or otherwise behave incorrectly.

Some form of cooperation among the processes is required, and
Dijkstra clearly demonstrated the benefits of using semaphore
operations to provide the mutual exclusion over other mechanisms
utilizing tests on shared variables.

Figure 1. illustrates this use of semaphores. The variable
access-table is considered to take on integer values and is
initialized to one prior to starting process 1 and process 2. The P
operation, when issued by a process, decreases its argument by one and
allows the process to continue execution (i.e. accesses the table) if
the result is non-negative. If the result is negative, the process
issuing the P Is suspended until the value of its argument is
increased towards zero. The V operation always increases the value of
its argument by one and can never suspend the process issuing it. | f
its argument was originally negative when the V was issued, one
suspended process waiting on this semaphore is enabled for execution.
Each of these operations is considered indivisible; there is a form of
mutual exclusion within the semaphore mechanism which ensures that one
semaphore operation is completed prior to initiating a second®.

* We observe that this is a stronger statement than
that which is actually required for proper behavior.
We need only insure that no two semaphore operations

: on the same semaphore variable be in progress.
There arise cases where a number of semaphore operations
should be in progress, e.g. multiprocessing situations,

.or (as we shall see later) if one semaphore operation
- takes longer than some (real-time) constraint permits.

What mechanisms are required to implement semaphore operations?
The V operation requires little work if its argument is non-negative.
But, if it is negative, we must provide for the dequeueing of one
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element from a list of suspended processes (and enable the running of
that process). Also, some mechanism must be provided to return the
how empty queue element to a pool*.

* The semaphore operation itself need not perform
this task. A supervisory function might do it, but
in any case the work must be done.

Whenever the semaphore variable becomes negative, the P operation
requires the addition onto a queue of an element which has access to
the information required to restart the suspended process. Figure 2
demonstrates two situations which may arise from P and V operations.

Producer-Consumer Relationship

Semaphores may be used to synchronize otherwise completely
asynchronous processes at certain points during their execution. In
particular, a large variety of process-pairs within a supervisory
system may be viewed as having a producer-consumer relationship. The
producer is generating information at some rate; the consumer
processes this information at a rate which may be faster or slower
than the producer, but the consumer is constrained not to get “ahead”
o‘f the producer. The producer may also be constrained never to get
more than some number of messages ahead of the consumer”.

* Di jkstra(l) credits C.S. Sholten with discovering
this use of semaphores for bounded buffering.

Figure 3. illustrates this producer-consumer relationship.”

* The terms “producer” and “consumer” apply only to
the relationship between two processes and with respect
to some object being transferred. One process in
"Figure 3 is producing filled buffers and is consuming
empty ones. The other process is producing empty
buffers and is consuming filled ones. This symmetrical
relationship is not the case in general as later
examples wi 11 demonstrate. A single process is often
a consumer with respect to a second process, and a
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es producer with respect to a third.

~. We contrast the use of semaphores In producer-consumer relations;
i.e., Where a process performs P and V operations on different

semaphores, from mutual exclusion, where the same semaphore is used.

There are many other examples of the producer-consumer
relationship within a multiprogramming system. Table | lists a
variety of typical cases.

Many-to-one and One-to-many Relationships

In a one-to-one producer-consumer relationship, semaphores as
previously described, generally are sufficient for providing proper
synchronization without requiring mutual exclusion semaphores.
Consider the situation shown in Figure 4 where a number of
producer-consumer pairs are taking buffers from a common pool. Pal rs
of processes (P1,€1),...,(Pn,Cn) are in a one-to-one producer-consumer
relationship with respect to information in the line buffer lists.
The processes (Cl,. . .Cn) and the pool B are in a many-to-one
producer-consumer relationship with respect to buffers which are no
longer in use. The pool B and the processes (P1l,...,Pn) are in a

- one-to-many producer-consumer relationship with respect to buffers
available for use.

The coordination required by the producer-consumer situation
depicted in Figure 4. requires at least four types of semaphores.
One semaphore variable filled(i), serves to indicate the number of
filled buffers in the shared line buffer list and a P operation on it
causes the activity of the consumer to be suspended whenever there are
no line buffers to be processed. Another, free, indicates the number
of free buffers in the pool and causes the operation of a producer to
be suspended whenever it requires a buffer but there is none in the
pool. The final two semaphores, access-oo00l and _access-list(i), serve
to effect the constraint that only one producer or consumer process at
a time may manipulate the linkages in the lists of free and filled
buffers. The semaphores_free and _access-o000l are peculiar to the pool
of buffers and are used by all of the producer and consumer processes.
The semaphores filled(i) and _.access-1ist(i) however, are unique to
producer-consumer pal ri, and are established and initialized at the
time that the pair is established. A fifth semaphore, _emptfii,) which
is also unique to producer-consumer pair i, may be used to control how
far the producer may get ahead of the consumer and hence, the maximum

) humber of buffers that the pair may be utilizing at any given time.
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Figure 5. indicates a flow diagram of the operation of one producer
and consumer pair when the coordination is effected by the use of SE
these five semaphores. Observe that 2+3N semaphores are required for --
N producer-consumer pa i rs.

There are several problems with the use of semaphores in |
effecting the required coordination for this situation. First, the P
and V operations are indivisible and hence present a potential
bottleneck in the operation of the system. Second, if we assume a
first-come-first-serve discipline of the associated queue we will not
al low the producers’ requests for buffers to be recognized in any
order other than that inherent in the time-sequence in which the
producers issued P operations (although a more complex program, with
several more semaphores and hence even more bottleneck potential,
could be used). In particular, the priority of a producer's right or
need to obtain a buffer from the pool cannot be expressed directly.
Third, there is no provision for the producer directly to affect the
order-in which the consumer processes the messages and hence it cannot
cause a message to be processed before other messages that the

consumer has not yet processed. Fourth, translation of this flow
diagram into code would result in a program, the intent of which is
not immediately obvious from a perusal of the code, except by someone
thoroughly familiar with the operation of semaphores or by the aid of
other documentat ion.

The rest of this paper develops a mechanism for the solution of
these problems which are inherent in the use of semaphores. A
formalism is developed for the succinct specification and efficient .
implementation of:

. Message switching and communication in general
. synchronization of the use of shared resources
. coordination of asynchronous processes
. resource al location

whi ch, at the same time,

. requires fewer references to semaphores
(by reducing the need for mutual exclusion) thereby reducing
the potential bottlenecks,

.. reduces the number of different semaphores required, adding
eff icfency and clarity to the programming,

. allows more equitable service to be guaranteed to the
processes

which may be made to wait as a result of a P operation,
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. al lows a process which issues a P operation to specify its
a priority with respect to other

processes which may be waiti ng on the same semaphore,
. allows a process which issues a V operation to affect the,
decision as to which waiting process should be restarted next.

Communicating Semaphores

We observe that in the example of Figure 5 , when we determine
the existence of a free buffer in the pool (using free), we have not
received i ts_jdentification(or address). We use a second semaphore
(access-pool) to surround a critical section where we extract its
address and unlink it from the pool. The semaphore_free has allocated
a buffer (since free is immediately decreased), but it has not
provided specific information on which buffer we should use.
Communicating semaphores (csems) operate similarly to Dijkstra’s
semaphores; however, a Send operation, in addition to having the
semantics of granting permission to proceed, may pass a message to the
process issuing a Receive operation. These extended operations are
denoted by Receive. and Send to distinguish them from the usual P and V
operations.”

* These operations produce the same result as conventional P and
V operations if null messages are passed. Wirth (2)
independently observed that a message exchange system

sending null messages can be used to effect the same
synchronization that P and V provide.

Syntactically, we may use the Send operation on the left hand
side of an assignment statement; i.e., Send(sem)= message. The value
of sem will be increased by one, and, if sem is initially

hon-negative, the message (or a pointer to i t) wi 11 be 1 inked to the
queue associated with sem,lIf sem is negative, a process suspended on
the sem queue wi 11 be enabled to run, and the message will be passed
to this process. The Receive operation appears on the right hand side
of an assignment statement; i.e., message =Receive(sem). When
executed, sem is decreased, and if it becomes negative, the process is
suspended as for a P operation. If sem is non-negative, a message Is
taken from the sem queue and assighed to message as its value. If the
process i s suspended, when it is re-enabled it will receive a message
from the Send operation which caused it to awaken.
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Figure 6. illustrates the nature of the queues that may be
associated with sem. Figure 6b. is identical to the case of Figure
2b. However, Figure 68, shows information queued up whenever an -
excess of messages (or permission)_ exists.

Does this extension require any additional mechanism for the
Receive and Send operations? In large part it does not since the
queueing of messages by Send is similar to the queueing of processes
by a P operation. ° The only change is returning a value to a process
issuing a Receive when that process is enabled to run. (Il t does take
more time however to enqueue a message rather that simply increasing
the value of sem.)

Have we reduced the number of semaphores and critical sections
required? Figure 7. demonstrates a csem solution to the example
given previously. We sti 11 have the global semaphore _free and the
private semaphores emptyv(i) and filled(i) for each pair i, but the
global access-pooland local access-list(T) are not needed. We now
require N semaphores and N+1 csems instead of 2+3N semaphores as in
the previous solution. Nor do we have any critical sections
remaining. In order to initialize the system, the creator of the
buffer pool must set up the semaphore free by initializing free to
zero, and then performing Send(free)= bufferl, Send(free)=
buffer2,..., for example. For each pair, _filled(i) is initially zero,
and empty(j) is set to some value appropriate for producer-consumer
pair 1.

Csems with priorities

Csems, as formulated so far, have attacked the bottleneck problem
by reducing the need for mutual exclusion and thereby the number of

"references to semaphores. However, nothing has been done to allow the
processes which issue the Receive and Send operations to affect the
priority with which messages are transmitted or received.

For example, many different processes may be transmitting
messages to a process which prints them on a console typewriter. We
may choose to have high priori ty messages appear as soon as possible,
whereas other messages are to be typed in the order they are received.

In another application we may have several output printers: one
is reserved for listings of less than some maximum size; otherwise we
want the shortest listing to be printed next on the first available
device. The second extension to semaphores permits the solution of
these problems in a straightforward and transparent manner. |
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To permit the specification of a priority for a Receive

gy operation, the queue is made into a ranked queue, and the syntax:of
| the Receive operation is changed toallow the specification of a

second parameter to indicate the rank with which the return address
should be linked in the queue for this semaphore variable. The
specification of a priority with which a message is to be transmitted

via Send is provided in an analogous manner*. ]

* |[t should be pointed out that semaphores without priorities
still require the implementer to choose a queueing discipline
for messages and processes. Most natural would be FIFO,
although LIFO may have some utility in situations where
a priority interrupt nesting mechanism is in force.

The manner of handling the queueing of Receive or Send elements
(when required) is according to the relative rank of the entries, and
FIFO for entries of equal rank. These operations must be indivisible
and the most efficient implementation of the queue will be a linked
list since we may have to insert an element into the middle of the
list™.

* In general, we expect to find fairly short queues
associated with semaphore variables. In this case, we can
simply scan down the list until we have found the point for
insertion and complete the Receive or Send operation. In
those cases where the list is very long (which can be
immediately seen from the value of sem), a more
sophisticated search mechanism may be desirable. On the
other hand, we may interrupt any operation on a semaphore as
long as we complete it prior to initiating a different

- operation on the same semaphore. One bit in the head of the
semaphore queue would be sufficient to mark “operations in
progress”.

We have not described how the ranks affect the matching and
dispatching of Receive’s and Send’s queue elements. One choice might
be to simply have the highest Receive entry match the highest Send

k entry. In this case, the queues that arise will look like those in

(8)



7]

Figure 6a. or 6b. (with rank information appended to each element).

A more interesting approach is to match only when the rank of a
Receive entry is greater than or eaual to the rank of a Send entry.
This algorithm for Receive and Send operations with conditional
matching is shown in Figure 8. it is now possible that both process
and message entries will be presentin a semaphore queue, since the
ranks of the processes may be lower than the ranks of the messages.
This requires maintaining two lists or using some interlacing
technique using an additional bit on each queue element.

We can now achieve the behavior suggested earlier for multiple
output writers, i.e., even though there are (long) messages available,
a printer may remain idle until shorter messages arrive.

Figure 9. shows an example of many-to-many synchronization and
allocation using conditionally matched csems. Each program produces
output destined for a printer. The text (or the name of the disk file
containing it) is passed to a printer via a Send operation on a global
semaphore _printer.The priority shown in this example is the actual
1inecount, but some other measure could be used as well. There are
two printer processes called Exoress and Normal. The shortest text in
the printer queue will be selected whenever a printer is free;
however, no output longer than 2000 lines wi 11 be printed by EXxoress.
Short jobs will also appear on Normal whenever it is free. output
longer than 100 thousand lines will be suspended until a new printer
process is started to accept such longer jobs. User programs cannot
determine the properties of the printer processes. If the normal

printer is out of service, an operator may change the rank of the
Receive operation in the Exoress process to accept more work if
desired. Conversel y, an operator might lower it if very sha t Exoress
jobs have to wait too long for a printer.

Other features

There are several other functions related to csems which are

quite useful in the construction of a multiprogramming system. We
propose a HOLD operation which suspends further matching of Receive
and Send queue entries. This enables global control (as by a human
operator ) of the system behavior. The details of HOLD are
straightforward and will be given elsewhere. We do have to consider
what to do with a process that tries to HOLD a queue which is already
held, etc!

The operations which a human operator would have to perform may
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be easily permitted by another extension. A CONVERT would hold a
queue and return a copy of the queue structure in a form suitable for
inspection and manipulation (e.g. on a scope at the operator’s

. console). Modifications of the structure, ranks, etc. of an unusual
nature could now be performed. The semaphore queue would then be
RECONVERTed and RELEASEd in order to permit the standard algorithms to
proceed.

Problems not vet discussed

There are a variety of questions which have not been discussed in
this paper. We have not described the means of creating new
semaphores and establishing initial communication (sharing of common
semaphores ) between processes, nor have we discussed where semaphore
queue elements are taken from or what to do should a process go amuck
and generate extremely many queue entries (or how to prevent it from
doing so). These issues will be discussed in a separate paper.

The csems as described do not prevent their misuse by creating
deadly embrace situations. They are not intended to resolve that form
of conflict. However, since by using csems we require fewer
semaphores and fewer critical sections, we will enhance programming
correctness and clarity, thus avoiding some blunders. Similarly,
csems do not provide any functions which could not be constructed in
principle from conventional semaphores. We assume that the
construction of the Receive and Send operations is well optimized and

: either microcoded or hardwired into our computer system. By making
use of these operations for a wide variety of applications we take

advantage of a highly efficient and guaranteed mechanism. Reproducing
these same general queue mechanisms in many places throughout a large
operating system is subject to error and differences in programmer
ability. We do not believe the solution to the construction of large
programs and systems lies in the exclusive use of a set of completely
hon-redundant atomic operations; rather, we need more powerful and
-generally applicable primitives which are well implemented at the
hardware or firmware level.

Summary

- A csem Is a data structure composed of two ranked lists of
entries that represent, respectively, processes which are waiting to
receive messages and are waiting to be enabled, and messages that are
available for transmission. The csems effect buffered communication

between asynchronously operating processes for the purposes of
. synchronization, coordination, and allocation as well as for normal
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message switching. The algorithms for controlling the transmission
are non-interruptible primitive instructions, the operation of which
can be modified by the processes completing the communication by
specifying a rank which affects: 1) the order in which the requests
are satisfied; and 2) whether or not a given message will satisfy a
given request.

Csems help to reduce the amount of time processes are executing
critical sections, reduce the total number of semaphore operations

performed, and reduce the number of semaphores required. These
reductions produce greater program clarity. Utilization of csems for
the diverse applications previously described may also. help to
increase program correctness by providing more appropriate,
well-debugged and efficient primitives.
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sem-var

sem-var

-3

Figure 2: (a) No processes waiting

(b) Three processes suspended
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av" empty = N

initially filled = 0
access-list = 1

produce consume

message message

P(empty) V(filled) P(filled) | v( =F tP(free) P( access-list)
:

P(access-pool) get next message
from the chain

get the address of a[Le buffer in the ed V(access-list)

V(access-pool)} get the message from
the buffer

put message into

the line buffer P(access-pool)

P(access-1ist) put line buffer
back into pool

chain line buffer ont

end of list for V(access-pool)
consumer

| Vaccess-1ist) |

PRODUCER CONSUMER

Figure 5: Producer-consumer problem with a buffer pool
and limited use of-buffers
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sem

REE
. Process 1 |

DX] Message 1 S list | - R list

(a) (To)

Figure 6: (a) Queue assoclated with sem when more Send than Receive
operations have been performed

(b) The converse situation
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vt Produce Consume

| message message

P(empty) Send (filled)=K |} |I=Receive(filled) V( empty)

K=Receive (free)

put message into get message from the
line buffer K buffer I

Lo [send (sree) =: |
PRODUCER CONSUMER

Figure Ts Solution to example of Figure 5 using csems
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pr

EXPRESS PRINTER Program i
do forever; |

text=Receive( printer,2000); fe

print text on printer 1; ’ — csem Send(printer, Linecount)
end; printer end;

J

4

)

NOW PRINTER *

do forever; | .
text=Receive(printer,10000) ; | Progrem J
print text on printer 2; :

end : Isend( printer,1inecourt)
: =text;

| end;
é

Figure 9: Many programs producing output for an express or normal printer,
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_ Producer Consumer Information Exchanged

a program output device output text

last one to use next 'process to pooled buffers
a buffer need ‘a buffer

CPU program CPU cycles

program CPU program instructions

scanner parser modified program text

one phase of a the next phase intermediate data
multiphase

algorithm

terminals multiaccess service text strings or input

programs

resource allocator process resource name or description

Table I: Several producer-consumer relationships in a

Multiprogrammed System
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