| |
I |
' STANFORD ARTIFICIAL INTELLIGENCE PROJECT
MEMO AIM-142

COMPUTER SCIENCE DEPARTMENT
REPORT NO. CS-205

AN ALGEBRAIC DEFINITION OF-SIMULATION BETWEEN PROGRAMS

(g
{

BY
ROBIN MILNER

FEBRUARY 1971

COMPUTER SCIENCE DEPARTMENT

STANFORD ARTIFICIAL INTELLIGENCE PROJECT FEBRUARY 1971
MEMO NO. AIM-142

COMPUTER SCIENCE DEPARTMENT
REPORT NO. CS205

AN ALGEBRAIC DEFINITION OF SIMULATION BETWEEN PROGRAMS

by: Robin Milner

ABSTRACT: A simulation relation between programs is defined which
is quasi-ordering. Mutual simulation is then an
equivalence relation, and by dividing out by it we
abstract from a program such details as how the sequencing
is controlled and how data is represented. The equivalence
classes are approximations to the algorithms which are
realized, or expressed, by their member programs.

A technique is given and illustrated for proving simulation
and equivalence of programs; there is an analogy with Floyd's
technique for proving correctness of programs. Finally,
necessary and sufficient conditions for simulation are given.

DESCRIPTIVE TERMS: Simulation, weak homomorphism, algorithm, program
correctness, program equivalence.

The views and conclusions contained in this document are those of the
authors and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Advanced Research
Projects Agency or the U.S. Government.

This research was supported mainly by the Science Research Council,
Great Britain and in part by the Advanced Research Projects Agency of
the Department of Defense (SD-183) U.S.A.

1. INTRODUCTION

One aim of this paper is to make precise a sense in'which two
programs may be said to be realizations of the same algorithm. We can
say loosely that for this to be true it is sufficient though perhaps not
necessary that the programs do the same 'important' computations in the
same sequence, even though they differ in other ways: for example
(1) We may disregard other computations perhaps different in the two
programs, which are ‘'unimportant' in the sense that they are only
concerned with controlling the 'important' ones, (2) The data may flow
differently through the variables or registers, (3)The data may be
differently represented in the two programs. The program pairs in
Figures 1, 2, which are studied in detail in Section 4, illustrate points

(1), (8) respectively; a trivial illustration of (2) is the following pair

of programs:

read X,y read X,y
X:=x+ty yi=x +y
print x print y

Although the above prescription is vague, we give a relation of simulation
between programs which may fairly be said to match it. The relation
turns out to be transitive and reflexive but not always symmetric; however
mutual simulation is an equivalence relation, and it is the equivalence
classes under this relation which may be regarded as algorithms =- at least
this is an approximation to a definition of algorithm.

We show also that there is a practical technique for proving
simulation in interesting cases = though unfortunately simulation between

programs handling the integers, for example, is not a decidable (or even

partially decidable) relation. Under a simple restriction simulation
ensures the_equivalence (as partial functions) of the programs, so this is
also a technique for proving equivalence; however in general equivalent
programs will not satisfy the simulation relation.

I also claim that in order to prove by Floyd's [1] method the
correctness of a program A, in a case where data is represented unnaturally,
perhaps for efficiency's sake, the easiest and most lucid approach is
rather close to first designing a program B which is simulated by program
A and which represents the data naturally, and then proving B correct.

This was in fact the original motivation for studying simulation, and
is discussed in more detail in Milner [2], which contains a first attempt
at the definition of simulation. The sequel [3] generalizes the definition

and the current paper is a synthesis of the two, and may be read independently.

2. NOTATION

We denote relational composition by Jjuxtaposition; if

RCAxB, SC B x C then RS = {(a,c&ﬁatn(a,b)eR,(b,c)eS}. The inverse

of R is R_l = {(b,a),(aﬁﬂeR}_ We intentionally confuse a (partial)

function F: A - B with the relation F = {(a,by|b=F(a)}. R induces a
function ImR:2A - EB; for S C A, ImR(S) = {B‘Baes.(a,b)eR}. For a function F

we sometimes write F(S) for ImF(S). The domain of RC A x B is dom R

ImR(A), and the Fange of R is ran R = mer(B)= For any set A, IA

N

A x A is the identity relation on A.

3. PROGRAMS AND SIMULATION

We first introduce a definition of program which enables

simulation properties to be stated and proved succinctly.

Definition. A program & is a quadruple (Din'Dcomp’Dout’F>

where D, are disjoint domains and F:D -» D is a total
i

D
n'Dcomp’ out

i = D ith tricti
function (D Din U Dcomp U out) wi restrictions

(i) F(p, U D) D Ub

in comp comp out

(1ii) The restriction of F to D is the identity ID
out out

We call D, ,D

n t the input, computation and output domains of &.
i

»D
comp’ ou

Conditions (i) and (ii) ensure that starting with'a member of
. and i F repeatedly we get either an infinite sequence in
D1n applying p y g d

D or a finite sequence in Dco followed by a single repeated

mp

member of D : We have (ii) merely to keep F total, which the
out .

comp’

theory requires.
Why must the domains be disjoint? What about a program which
inputs an integer and outputs an integer? Here one might argue that

D, =D = [integers]; but we get into no trouble having two formally

disjoint domains with for example an injection or a bijection between them.

In fact, 1n practice we can distinguish between an input object and an output

object of a program; for example they occur on different media, or at different

spatial locations. We are concerned with a level of abstraction (i.e.
abstraction from real computers operating on physical data symbols) lower

than that in which a program is considered as for example a function from

integers to integers.

Definition. A computation sequence of ¢7 is a sequence {dili >0 3

where d_eD, , d; = F(di), i 2 0, and_either dieDcomp’l > 0 or for

some k dieD 0 < 1 < k and di=dkeD i > k.

comp, out , —

Definition. A program (7 determines its associated partial function

7: D D
a: in ~ “out
in an obvious way.
Often we would have Dcomp = N x E, where E 1is the set of

possible state-vector values, and for non-recursive (flowchart) programs
N is the finite set of nodes of the flowchart while for recursive programs
N is the infinite set of possible states of a pushdown store.

Before dealing with simulation, we state without proof some
theorems concerning correctness and termination of programs. Theorem 3.1
embodies Floyd's [1] method of proving partial correctness of programs.
There is also a correspondence with Manna's work - for example in [h];
on Theorems 3.1 and 3.2 correspond to Theorems 1 and 2 of that paper.
However, Manna is concerned with the representability of verifications
(as defined below) in first order predicate calculus; we perhaps gain
in succinctness by stating results algebraically and ignoring the
question of representability.

Hence forward we assume that the suffix 'in' to a symbol denoting
a set implies inclusion in D, . Similarly for 'comp', 'out'.

Definitions. ¢7 is partially correct w.r.t. Sin’sout

LA
if a(sin) < S.out'

A
@ is totally correct w.r.t. Sinl SOut if in addition & 1is

total on S,
in.

S is a verification of ¢ or S verifies ¢, 1if S € D and

F(S) C S.

Theorem 3.1

Given S, , S

in’ “out
g partially correct w.r.tinS. Sout]¢$
[There is a verification Sin U ScompUSout of /7] d

Theorem 3.2

Given Sin’sout

[@7 totally correct w.r.t. Sin'sout] o ”
?

. . . 7
[For every verification Sin @] Scomp

V4
U Sout of 7,

I
Sip N S;é;é:"‘soutﬁséut7£m[:1

in

Corollary. (Set S =D)
out

[@ total on Sin] s

: : : v ? I3 ? 4
[For every verification Sin Uscomp Us out of 7, S:’Ln N Sin% ¢ =Sout
Now assume two programs, 7 = <Din’Dcomp’Dout’F>
’ ! F r
and 7" = <Din’Dcomp’Dout ,F').
Definition. Let RC D x D'. Then R is a weak simulation of ¢ by #Z’if
.] . ’
(1) R < Dinx Din U Dcomp % Dcomp U Dout % Dout

(ii) R F’ cCF R.

Condition (ii) simply states that R is a weak homomorphism between

the algebraic structures (D,F),(D',F'>- This concept is used in automata

1 O

theory to define the notion of covering = see for example Ginzburg [T, p. 98].

'
Now denote R N (Dinx Din) by Ry, and R R

so that R = R R R
in U comp U out

Theorem 3.3.

If R is a weak simulation of & by /7’ then

. 4 2
(1) Rina ca Rout

(ii) R™l is a weak simulation of a by d

A
(1ii) R°Y dc 4 r7L
in out

similarl
comp’ “ou Yr

and these parts are disjoint.

Proof (i) The condition R F' C F R may be restated

¥d,d’. (d,d’YeR = (F(d),F’(d’)YeR (#)
Now suppose <do’d1,<>e Rin A@'. Then for some d('), (do,dQe R, and é" (d(’)) -
d{(, so there is a computation sequence aa,d'l ,dé,......of a@’. Now
consider the computation sequence do’dl"“'dk""' of 7. We may prove
by induction using (*) that (di,d]f:>e R, 1 > 0. Hence dke Dout’ <do’dk>€ 6/7‘,

A
’
and so <do’dk>e a R ut*

7
(dysde Ry, .

t

(ii) It is enough to show Rl CF' R™L. But ‘this follows

easily from the fact that (*) is equivalent to RF' C FR.
(iii) Follows directly using (i) and (ii). |

Theorem 3.3(i) says that the diagram

Din ——A—> Dout
a

R
Rin out

1
p! —> D’
in ~ out
dl
semi-commutes (i.e. we have C not =). If we wish to be able to use

@' to do the job of @, we need more: we need the following to commute

A
a
Rin R-l
out
4 1
in— 5 Plout
é;l
\ , A A, =1 .
i.e. we require @ = Rip @ Rout' Theorem 3.4 below shows that for this

it is sufficient to require R to be a strong simulation of & by d',

where

Definition. A weak simulation R of & by &’ 1is a strong simulation

if in addition R, ,R’1 are total and single valued.
in' out
Note that Rl is not necessarily a strong simulation of ¢’

by ¢, so unlike weak simulation, strong simulation is not symmetric.

Theorem 3.4

. . . P A B
If R is a strong simulation of ¢ by @’ then & = R, d R .

in out
- : -1 -1
Proof (o) Post multiply Theorem 3.3(i) by Rout and use RoutRout c IDout

(R;< single valued).

. s -1
(C) Premultiply Theorem 3(ii) by Rin and use IDin c RinRin

(R, total). O
in

(Note that in the above we did not use the totality of R-1 nor the

out’
single valuedness of Rin)'
Let us return to the discussion of algorithm in the introduction.
If there is a strong simulation of ¢ by ¢’ we say (¢’ Strongly

simulates & , and it is easy to show that this is a transitive reflexive

relation, i.e., a quasi-ordering. Mutual strong simulation is therefore

* an equivalence relation, and the equivalence classes may be thought of as

algorithms, each of which is realized by its member programs. Moreover,
if we divide out by this equivalence relation we obtain from the quasi-
ordering of programs a partial ordering of algorithms.

It is worth noticing that there is always a weak simulation

between any pair of programs - just take R = ;25 - so a similar definition

of "g' weakly simulates ¢" is vacuous.

We finish this section with two simple results which exhibit the

close relationship between verifications and simulations.

Theorem 3.5

If R is a simulation of & by @ then
(i) dom R verifies @

(ii) ran R verifies 7.

Proof In view of Theorem 3.3(ii) we only prove (i). Clearly domR C D,
and we only need show F(domR) < domR, i.e. Vd. dedomR = F(d)ecdomR.
But de domR = 3d’. (d,d’)eR

= 3d’. (F(d),F'(d*))eR

=» F(d)e domR. O

This theorem says that simulation of ¢ by a’ implies the

partial correctness of ¢ w.r.t. domRin, domRout. However, normally we

i i i S. .S where S is
are interested in partial correctness w.r.t. an 0 2out out

much smaller than dom R

out; for example if Rou

is total then dom R =
ou

t t

i svays p i . when S D .
Dout' and ¢ is a,Stays partially correct w.r.t S.ln out out = out

Theorem 3.6

If S verifies ¢ and R 1is a simulation of ¢ by d' then

Img(S) verifies '.

Proof We require F’(Imp(S)) ¢ ImR(S) .

But F’(ImR(S)) - I_mRF,(S)

c Im. (s) since RF' ¢ FR
= ImR(F(S))
c ImR(S) since F(S) cS. N

Thus in a precise sense a proof of partial c arectness of a’
may be factored into a proof of partial correctness of ¢ together with

a proof of simulation of & by a -

4. APPLICATION TO FLOWCHART PROGRAMS

In this section, we show how we may demonstrate a simulation
between two programs in a manner which bears a close relation to Floyd's
method for proving correctness of a single program. Of the two examples,
the first has the same data representation but different control in the
two programs.

Given a flowchart program with input domain D:‘Ln’ state-vector
domain E, output domain Do and nodeset N, and given also an input

ut

function fin:Din—) E and output function fo tE - D it is a simple

ut out’
matter to formalize it as a program according to our definition, with
D = NxE and F<D - D defined in terms of f, ,f and the tests
comp in’ out
and assignments in the boxes. Alternatively, we may formalize it by

selecting a subset MC N so that every cycle in the flowchart contains

a member of M (we call such an M a cycle-breaking set) and define

Dcomp instead as M x E . The cycle breaking property ensures that
F : D> D is again total.

=MxE, D/ =MxE".

Now suppose in ¢ and ¢ we have Dcomp - comp

@ and @ may have been obtained by the above formalization from flow-

chart programs, for example. If R is a simulation of (¢ by a’, we

have R c(M x E)x(M’x E'), and to exhibit R it is sufficient
comp comp

to- exhibit R _, for each meM, m’e¢M’ where

Rmmv = {<e’e,> I((m!e> :<m’se’>>€ Rcmp}°

In the following two examples we exhibit the Rmm' and also indicate
how the proof of RF' C FR would go.

Example 1. (See Figure 1). Assume that inputs to each program are

PROGRAM Q

i:=0
e
i < 3n?
Yes T @
No

i < 6n?

No

Figure 1
10

PROGRAM &’
i:=0
l
= »
i <2n?
QD es No
=i+1
- g(x)
P
i < 4n?
6) Yes No
=i+1
= g(x)
4’
A i < 6n?
@ es NO
=1i+1
= g(x)
v

pairs (n,x), state vectors are triples (i,n,x>, and only x 1is
output. The node-set {1,2} has been chosen to formalize ¢, and

{1/,27,3’} to formalize @’. So if J,p denote integers and reals

we have
- n’ = .
Dip = Din 4 xR
E=E' =JdxJdxRD = {1.2}xE; Dl = {1/,2%,3'}x;
4
Dout = Dout: =R

and F , the transition function for ¢, 1s given by

F(d) = if de;Dirl then (1,{0,n,x)) where (n,x) = d

else if de?comp then let (m,(i,n,x)) = d;

if i + 1<3n then (m, (i + 1,n,g(x)))

else if i + 1<6n then (2,{ i + 1,n,g(x)))

else g(x)
else d
F/ for @' is defined similarly.

We postulate a simulation R by giving Rin’ R and an'

out

for (m,m’d¢ {1,2}x{1',2',5'}, as follows:

Rin = IDinu' Rout = Tpout’ Rizs = Royr = ps
Ry,’= f{{i,n,x),{(i,0,%))|i< 2n}

Ryys= {({i,n,x),(i,n,x))|2n < 1 < 3n)}
Rypr= {{(5,0,00,(1,0,%) |30 < 1 < 4n)
Rozre ({1,030 ,(L,m,3) [bn < 4 < 6n)

For example, we may think of R12J as containing all state-vector pairs

attained at the node-pair (1,2'§ when @,7' are obeyed synchronously

starting from an input pair in R'in' However, it contains also many other

11

¢ 2an3did

T+ 4y = :yyt L <> 00 =:00
£ = :(yy)ss J :
S
A.rv._nu = 1
(L)pu = :U
T+3%1=1:
(x1)3 = £
ou e
—
— - \NN

5
\\\

o

~

Y

T+ Uy = :yy =
£ = ss
() mmh*

{
ﬂ D RvaH0ed

state-vector pairs (since there is no constraint on x in the definition
of ng,), and simulation will normally have this generous property.
RlS' is here taken as the empty set, because the node pair (1,3"Y i s
never reached.
To prove RF' C FR we must show that for all d,d’

<d,d'>eR = (F(d),F'(d')) eR
and this may be done by cases

Case 1: (d,d’y¢R

Case 2: (d,d'\eRout

Case 3 ,: (d,d’y = ((m,e),(m’,e”)) where (e,e')eRmm,
which is a fairly--routine matter using the definitions of F,F’, and
we leave it to the reader.

Now since R is a strong simulation, and indeed Rin’Rout are
identities, Theorem 3.4 entitles us to conclude g = a’.
Example 2. (See Figure 2). This example illustrates simulation between
two programs with different data representation. We describe this
example in less detail, to save space. Each program is supposed to
input a string o, a character £ and a string 7, and to output the
result of substituting 1 for E everywhere in g. Thus if S is the
!

alphabet of characters, Dajf Din = S* x S x S* (where S* is the set of

i = D' = S§*, Program handles strings
strings over S) and Dout D out S g a ring
and characters directly, using the functions hd,tl,()(concatenation) and
the null string g¢. The three inputs are to the program variables 0o

g, T, respectively, and output is from the variable go. On the other

hand, program (@ represents each string as a segment of an integer-

indexed character array; on input the two input strings are stored in arrays

s,t (indexed from 1) their -lengths + 1 in integer variables hl, kl and the

13

character in x, and output is the string ss(1),ss(2)
The flowcharts are formalized as programs (in our sense) with

node-sets {1,2}, {1/,2’}, and we have D, = {1,2} x (the set of possible

omp

values for the program variable vector of ¢}, and similarly for Déomp’

F and F', the transition functions, are easy but tedious to define. We

now exhibit a simulation by giving Rin’ R and the Rmm’ for (m,m'\e

out

{1,2} x {17,27}, using an auxiliary function seq: arrays x integers x integers 3

strings defined by
The string a(i),a(i+l),......a(j-1) if i <j
seq(a,i,) = {

Arbitrarily defined if i > j.

5Rysr - R0y 05
in out DOut 12 21

Rlll= {<<O'o ,c,co,§,-'n,"'o sT,\ :(Sshshlsssahh:xsy’t:k:k]-»} !Pl};

(o) TO’ 3 3 3 b} bl b} 3 3’ bl b
{¢{Oo »0,06,E»T»To »TY»(s,h,h1,ss,hh,x,y,t,k k1>>|P2]

Ropr=
where P, =g, = seq(s,1,hl) Ao = seq(s,h,hl) a 7o = seq(t,1,kl) A
oc = seq(ss,l,hh) 2 € = x A 1<h <hl A 1<klA 1<hh
and P, = PlA'r=seq(t,l,k)A'ﬂ=yAlSkSkl.

Now as in Example 1 the proof of RF’ € FR must proceed by
- cases; it will use certain properties (or axioms) concerning the string
handling functions, the array and integer handling functions and the

R

function seq. We leave it to the reader again. Again, since Rin’ out

A
are identities we have proved that ﬁ==afﬁ

There are some interesting points about this example.
(1) It seems that program ¢ is more natural than ', though this

asymmetry was not present in Example 1. In fact, program ¢’ is only a

slight modification of part of a real program written for use rather than

14

as an example. In the process of proving a’ correct using Floyd's
technique, I found that the assertions associated with parts. of the
program were most naturally expressed using the function seq, and that
the terms appearing in these assertions“were precisely those which are
and R

here related (in R to the variables of ¢. In fact, (this

1’ 22‘)

is discussed in more detail in [2]) the task of proving a' correct
factored simply into two tasks = that of proving ¢ correct (an easier
task since ¢7 is more natural and closer to programmer's intuition)

and that of proving the simulation. This 'factoring' was made precise by
Theorem 3.6.

(2) Unlike in Exgmple 1, the flowcharts here have identical shape, and
it is meaningful (and even true!) to say that under identical inputs the
programs follow the same path. In Example 1 such a statement would not
be meaningful, but in Section 5we show that a similar statement has
meaning in cases more general then Example 2, and provides us with
necessary and sufficient conditions 'for the existence of a simulation

between two programs.

5. PARTITIONED SIMULATION

We now obtain necessary and sufficient conditions for the
existence of simulation between two programs ¢ and a.
Definition. If J is any indexing set and TTJ = {le jeJ} ,1T} = {C;ljeJ}

are partitions of D respectively, then (TTJ,TT3) is a

D ’
comp’ ~comp

partition pair for D (Of course any two domains can have a

DI
comp’ “comp

partition pair, but we are only concerned with computation domains).
Definition. Computation sequences {di} in &, {d]'_} in @' agree for

‘ . .. _ P
(TTJ,TTJ> if Vi,j. die:Cj <=> dieCj.

15

. !
Definition. A simulation R respects (WJ,ﬂ3§ if R c U (c, x Cj)

Theorem 5.1

. . . * :
Weak Simulation Theorem). leenRingDinxDinanda

, D’ , the following two statements

. 4
partition pair (TrJ,‘ITJ) of D comp

omp

are equivalent:

(a) Computation sequences {di] of @, (df)y ©°f a for

* ’
which ({do ,dd) eR; always agree for (TTJ:TTJ>~_

*
(b) There is a weak simulation R=§n U Reomp U Rout of 7

by ' which respects (TTJ, 3 .
Proof (a) = (b)\.' It is enough to take
’)
R = ((e,e')lThere are computation sequences {di} of a, {di} of q’ for

* _ 'as
which (do ,do')eRin and for some Kk e—dk,e -dk3

(b) = (a). Assume R. Take any computation sequences
y . ’ . ‘ .
{di}, {di] for which (do,do)eRin- Then we have Vi . (di,di)eR since
? * .
R is a simulation, so either (di’di>€Rin U R, ¢ or for some jeJ dieCj
and d:{eC:’i since R respects (ﬁJ,TT\;)- Thus (a) follows. cl

Theorem 5.2

. . X * 7 ¥*
a C
@trdng ¥igelatmon Rin__o_r_c]) . Dirl X Din’ Rout c Dout x
r i * *-1 both single-valued and total, and ' a
Do’ut with Rin' Rou‘t' 1ng vaiu ’ <TTJ’1TJ>

partition pair of , the following two statements are equivalent:

D D!
comp’ comp
(a) §= R*:n 6?' R;";é-, and computation sequences {di] of g,
i

{dg] of @' for which {do ,do{)eRin always agree for (1TJ,TT3>-

* ¥*
(b) There is a strong simulation R = R i, Y Rcomp UR j,¢ of

d by @' which respects (TTJ,TT3>-

16

Rajof=> (b). By the corresponding proof in Theorem 5.1 there is

#*
a simulation R, U R UR which respects (T and for

D
in comp out JNI

which

(e,e')eRout = For some (d,d')eR.*in, e = 4(d) and e' = &'(d').

? »* . A - * A *-:_1
=» (e,e")eR out® Since d =R, @ R ° and both
*

A .
R in and a’ are single valued.

* *

*
R out’ whence R ., UR UR is also a simulation

Thus Rou in comp out

c
t —
respecting (TTJ,TT') and moreover a strong one, from the conditions of the Theorem.

*
(b) = (a). Take any doeD, , and dJ = Rin(do). This is defined

*
since R in is total. Then by Theorem 5.1 the computation sequences

{ di} , {d]'_} agree for (TTJ,TT‘})- It follows also from this that either

both or neither of &(do), &'(do') are defined. If neither, then neither
* A *a1

in 2" R out is defined for do. If both, then

A *-1
and dk = d(do)s dli = dA'(dC:)’ But dk = Rout (d{()

A
of the functions &, R

*
I3
for some k (dk ,d k) eR

ut
* * Ha]

, — : . .

and d’ = Rin(do) so the functions d, R in alRout both yield result
*-1

dk for argument d,, since Rou; is single valued.

It foll that §=r", &' r1L 1

ollows at d = in out " c

(Note that this proof nowhere uses the totality of R:;t)
Now the coarsest partition pair (WJ,ﬁj) has J a singleton,
and any simulation respects it. We therefore have the following corollary

to' Theorem 5.1.

UR

out

. * . . . _ ¥

Corollary 5.3. Given Rin there is a weak simulation R = Rin U Rcomp
/. . . . L4 .

of 7@ by & if and only if computation sequences {di} in d, {di} in d’
such that <{do ’d°,>eRIn always have lengths either both undefined or

equal (the _length of [di} is defined as min{kldkeDout}). a

17

There is a corresponding corollary to Theorem 5.2, which we omit.

Finally, we give a corollary for flowchart programs-of the same

shape.
= ! = '+ call N the node set
Corollary 5.4. Let Dcomp N x E, Dcom_p N x E';

r _ 7
(common to ¢ and). Define My = ((n) x E|neN) My = {{“} x E |neN} .
Then two computation sequences agree for (TTN,‘IT{I) exactly when they trace
the same node path, and so we have the following:

*
there is a weak simulation R = RY. UR UR of

Given R, ., in . “comp out

@ by 5' which respects (TTN,TT@ if and only if every pair of computation

sequences {di3 in @, {dl} in @ such that {dg ,do',)eRi*n trace the

same node path. _ O
Again, there is a corresponding corollary to Theorem 5.2. If

as in Section U4t we exhibit Reomp by exhibiting Rnn’ C E x E’ for

n,n’¢ N, then "R respects (Tl'N, 1(1)" means Rnn' = ﬂ, n 74 n'. This is

the situation in Example 2 of that Section.

18

6. CONCLUSIONS AND POSSIBLE DEVELOPMENTS

The idea of simulation, which is really an application of the
notion of weak homomorphism, 1s interesting in two ways: theoretically,
because it allows one to abstract some irrelevant detail from programs to
come closer to a definition of algorithm, and practically because there is
a manageable technique for proving simulation between programs, which in
some cases may make easier the task of proving a program correct.

There are two possible directions for development. First, we
have restricted to a single-valued, total transition function F. The
situation looks rather different when we relax these conditions - for

example we should consider computation trees rather than sequences.

Second, we should consider simulation of parallel programs, and treat
programs which perform the same computations but not necessarily in the
same sequence as serializations of the same parallel program = or of
mutually simulating parallel programs. These extensions may bear the same
relation to the work of Manna [5]) and Asheroft and Manna [6] on the
correctness of nondeterministic and parallel programs as the present

paper bears to Manna's earlier work on serial programs [4].

19

ACKNOWLEDGEMENT S
This work owes much to Peter Landin who largely pioneered
the algebraic approach to programs. This paper is in the spirit of
[8], although that paper is concerned with the structure of a single
program (as a product algebra) rather than relations between programs.
I also had profitable discussions with Peter Landin, Rod Burstall and

John Laski.

20

REFERENCES

[1] Floyd, R.W., "Assigning Meanings to Programs", Proceedings of
Symposia in Applied Mathematics, American Mathematical Society,

Vol. 19, 19-%2 (1967).

[2] Milner, R., "A Formal Notion of Simulation Between Programs",

Memo 14, Computers and Logic Research Group, University College
of Swansea, U.K. (1970).

[3] Milner, R., "Program Simulation: An Extended Formal Notion"

Memo 15, Computers and Logic Research Group, University College
of Swansea, U.K. (1971).

[4] Manna, Z., "The Correctness of Programs", J. of Computer and Systems
Sciences, Vol. 3, No. 2, 119-127 (1969).

[5] Manna, Z., "The Correctness of Non-deterministic Programs", Stanford
Artificial Intelligence Project, Memo AI-95, Stanford University

(1969).

[6] Ashcroft, E.A., and Manna, %., "Formalization of Properties of
Parallel Programs", Stanford Artificial Intelligence Project, Memo
AI-110, Stanford University, (1970).

. [7] Ginzburg, A., Algebraic Theory of Automata, Academic Press (1968).

[8] Landin, P., "A Program-Machine Symmetric Automata Theory",
Machine Intelligence 5, ed. D. Michie, Edinburgh University Press,

99-120 (1969).

21

