
|

" STANFORD ARTIFICIAL INTELLIGENCE PROJECT
MEMO AIM-142

COMPUTER SCIENCE DEPARTMENT

REPORT NO. CS-205

AN ALGEBRAIC DEFINITION OF-SIMULATION BETWEEN PROGRAMS

ROBIN MILNER

| FEBRUARY 1971

L COMPUTER SCIENCE DEPARTMENT

STANFORD UNIVERSITY

PON

STANFORD ARTIFICIAL INTELLIGENCE PROJECT FEBRUARY 1971

MEMO NO. AIM-142

COMPUTER SCIENCE DEPARTMENT

REPORT NO. CS205

AN ALGEBRAIC DEFINITION OF SIMULATION BETWEEN PROGRAMS

. by: Robin Milner

ABSTRACT: A simulation relation between programs 1s defined which

is quasi-ordering. Mutual simulation 1s then an

equivalence relation, and by dividing out by it we

abstract from a program such details as how the sequencing

is controlled and how data is represented. The equivalence

classes are approximations to the algorithms which are
realized, or expressed, by their member programs.

A technique 1s given and illustrated for proving simulation

and equivalence of programs; there 1s an analogy with Floyd's

technique for proving correctness of programs. Finally,

necessary and sufficient conditions for simulation are given.

DESCRIPTIVE TERMS: Simulation, weak homomorphism, algorithm, program

correctness, program equivalence.

The views and conclusions contained in this document are those of the

authors and should not be interpreted as necessarily representing the

official policies, either expressed or implied, of the Advanced Research

Projects Agency or the U.S. Government.

This research was supported mainly by the Science Research Council,

Great Britain and in part by the Advanced Research Projects Agency of

the Department of Defense (SD-183) U.S.A.

—

1. INTRODUCTION

One aim of this paper 1s to make precise a sense 1n'which two

programs may be said to be realizations of the same algorithm. We can

say loosely that for this to be true it 1s sufficient though perhaps not

necessary that the programs do the same 'important' computations in the

same sequence, even though they differ in other ways: for example

(1) We may disregard other computations perhaps different in the two

programs, which are ‘'unimportant' in the sense that they are only

concerned with controlling the 'important' ones, (2) The data may flow

differently through the variables or registers, (3) The data may be

differently represented 1n the two programs. The program pairs in

Figures 1, 2, which are studied in detail in Section 4, illustrate points

(1), (3) respectively; a trivial 1llustration of (2) 1s the following pair

of programs:

read X,y read X,y

X:=X+Yy yi=X +y

print Xx print vy

Although the above prescription is vague, we give a relation of simulation

between programs which may fairly be said to match it. The relation

turns out to be transitive and reflexive but not always symmetric; however

mutual simulation is an equivalence relation, and it is the equivalence

classes under this relation which may be regarded as algorithms =- at least

this 1s an approximation to a definition of algorithm.

We show also that there 1s a practical technique for proving

simulation in interesting cases = though unfortunately simulation between

programs handling the integers, for example, 1s not a decidable (or even

1

partially decidable) relation. Under a simple restriction simulation

ensures the equivalence (as partial functions) of the programs, so this is

also a technique for proving equivalence; however in general equivalent

programs will not satisfy the simulation relation.

I also claim that in order to prove by Floyd's [1] method the

correctness of a program A, in a case where data is represented unnaturally,

perhaps for efficiency's sake, the easiest and most lucid approach is

rather close to first designing a program B which 1s simulated by program

A and which represents the data naturally, and then proving B correct.

This was 1n fact the original motivation for studying simulation, and

is discussed in more detail in Milner [2], which contains a first attempt

at the definition of simulation. The sequel [3] generalizes the definition

and the current paper 1s a synthesis of the two, and may be read independently.

2. NOTATION

We denote relational composition by Juxtaposition; if

RCA XB, SCB x C then RS = {{a,cy|3b.{a,bYeR,(b,cYeS}. The inverse

of R is RY = { (b,a) | (a,b)eR} . We intentionally confuse a (partial)

function F: A -» B with the relation F = {(a,by|b=F(a)}. R induces a

"function Im, :2% - 0B, for S CA, Im, (S) = {b|3aeS.(a,b)eR}. For a function F
we sometimes write F(S) for Im. (S). The domain of RCA x B is dom R

= Im, (A), and the ¥angeof R is ran R = Me 1(B)= For any set A, L,
CA x A is the identity relation on A.

5. PROGRAMS AND SIMULATION

We first introduce a definition of program which enables

simulation properties to be stated and proved succinctly.

2

Definition. A program& is a quadruple (© ip Pomp? Pout *F7

where Din Peomp?Pout are disjoint domains and F:D -» D 1s a total

function (D=D, U Deomp U Dut’ with restrictions

(1) Fin U D_.omp’ E Deomp U Pout

(ii) The restriction of F to Dt is the identity 15
out

We call Di n*Pcomp Pout the input, computation and output domains of &.
Conditions (1) and (ii) ensure that starting with'a member of

D. and applying F repeatedly we get either an infinite sequence 1in

D_. omp? or a finite sequence in D¢ omp followed by a single repeated

member of Dut. We have (11) merely to keep F total, which the

theory requires.

Why must the domains be disjoint? What about a program which

inputs an integer and outputs an integer? Here one might argue that

Do = Dut = [integers]; but we get into no trouble having two formally

disjoint domains with for example an injection or a bijection between them.

In fact, 1n practice we can distinguish between an 1nput object and an output

object of a program; for example they occur on different media, or at different

spatial locations. We are concerned with a level of abstraction (i.e.

abstraction from real computers operating on physical data symbols) lower

than that in which a program 1s considered as for example a function from

integers to integers.

Definition. A computation sequence of (7 is a sequence fd, |4 > 0 3

where d_eD; > d= F(d;), i > 0, and_either d; De omp, i > 0 or for

some k d; De omp <1 <k and d.=d, eD_ . i > k.

3

Definition. A program(7 determines its associated partial function

7: D Da: in “out |

in an obvious way.

’ Often we would have D_omp = N x E, where E 1s the set of

possible state-vector values, and for non-recursive (flowchart) programs

N 1s the finite set of nodes of the flowchart while for recursive programs

: N 1s the infinite set of possible states of a pushdown store.

Before dealing with simulation, we state without proof some

theorems concerning correctness and termination of programs. Theorem 3.1

embodies Floyd's [1] method of proving partial correctness of programs.

There is also a correspondence with Manna's work - for example in [4];

on Theorems 3.1 and 3.2 correspond to Theorems 1 and 2 of that paper.

However, Manna 1s concerned with the representability of verifications

(as defined below) in first order predicate calculus; we perhaps gain

in succinctness by stating results algebraically and ignoring the

question of representability.

Hence forward we assume that the suffix 'in' to a symbol denoting

a set implies inclusion in D, . Similarly for 'comp', 'out'.
N

- 1 1 1 1 1 i . S LJDefinitions. ¢ is partially correct w.r.t. S,,S_ if as,) S Sut
AN

7 is totally correct w.r.t. S., , S if in addition &is
in out

total on §,
in.

S is a verification of ¢7 or S verifies ¢7, 1f S C€ D and

F(S) C S.

Theorem 3.1

Given Sin’ Sout

[7 partially correct w.r.t, S$. S ut] ©

Th 1ficati S . S
[There is a verification §. U comps out of 7] OJ

4

Theorem 3.2

Given S:n*Sout

[7 totally correct w.r.t. S. Sout? Lod

[For every verification S{_ U S Comp U S_ .t of 7,

% in n s' p = Sout i Sout” pl .

Corollary. (Set Sout = Dut)

[7 total on Sin] 5

[For every verification Sin US Comp 8 S$’ ut of 7, 5S. N S{F 0) 28. FP] I]

Now assume two programs, 7 = (Ds 02 comp Pout *F?

and 7° = (D{ 19D omp* Pout FY.

Definition. Let RC D x D'. Then R is a weak simulation of #7 by #Z7°if

(1) R< Di n¥ DS U D comp x D comp U Dut x Dut

(ii) R F/ CF R.

Condition (11) simply states that R is a weak homomorphism between

the algebraic structures (D,FY,(D',F’). This concept 1s used in automata

theory to define the notion of covering = see for example Ginzburg [7, p. 98].

} Now denote R N (D, X Df) by Ru and Romp’ Rout similarly,

so that R = R.. U Romp U Rut and these parts are disjoint.

Theorem %.35.

If R is a weak simulation of & by 7’ then

(i) R, gc J R
in = out

(ii) R7Ll is a weak simulation of @ by @

(iii) 2 ac 4 RL

Proof (1) The condition R F' C F R may be restated

vd,d’. (d,d’)eR = (F(d),F'(d"))eR (*)

, Ar y y Ar rary _
Now suppose (d_,d) de R. @°. Then for some d_> (dy,d70¢ Rio and (d]) =

d,/, so there 1s a computation sequence df.dy ooo dyes of @'. Now

. consider the computation sequence d sdyseeeedysene of 7. We may prove
. A

by induction using (*) that (d;,d])e R, 1 > 0. Hence d, e Dut? (d_,d, Je a,
A

/ 4 ’ .(dy dye Rout and so (dsdp0e a Rout

(ii) It is enough to show r™1 FCF R™L. But this follows

easily from the fact that (*) is equivalent to RF' C FR.

(111) Follows directly using (i) and (ii).]

Theorem 3%.3(i) says that the diagram

Din ——— Dout
74

R
Rin out

I

p! —> Df
in A out

a

semi-commutes (i.e. we have C not =). If we wish to be able to use

a’ to do the job of @, we need more: we need the following to commute

Dig— = Dout
NN

a

Rin RL
out

4 1 .

Dip D out

7

4 Ar o-1

i.e. we require & = R, « R__. Theorem 3.4 below shows that for this

it is sufficient to require R to be a strong simulation of & by a’,

where

Definition. A weak simulation R of & by @’ is a strong simulation

if in addition Ry Robe are total and single valued.

Note that R-1 is not necessarily a strong simulation of 7’

by d, so unlike weak simulation, strong simulation is not symmetric.

Theorem 3.4

If R is a strong simulation of ¢ by @’ then g = Rin i R_*

Proof (©) Post multiply Theorem 3.3(i) by ROL and use R (RTL Cc IDs

(RoE single valued).

(©) Premultiply Theorem 3(ii) by R:h and use Inin Cc R, RI1

(R; total). []

(Note that in the above we did not use the totality of R7L, nor the

single valuedness of R,.)-

Let us return to the discussion of algorithm in the introduction.

If there is a strong simulation of @ by ¢’ we say (7 Strongly

simulates & , and it is easy to show that this is a transitive reflexive

relation, i.e., a quasi-ordering. Mutual strong simulation is therefore

- an equivalence relation, and the equivalence classes may be thought of as

algorithms, each of which is realized by its member programs. Moreover,

if we divide out by this equivalence relation we obtain from the quasi-

ordering of programs a partial ordering of algorithms.

It 1s worth noticing that there 1s always a weak simulation

between any pair of programs - just take R = § - SO @ similar definition

of "g' weakly simulates ¢' is vacuous.

We finish this section with two simple results which exhibit the

close relationship between verifications and simulations.

7

Theorem %.5

If R 1s a simulation of & by 7’ then

(i) dom R verifies

(ii) ran R verifies 7’. "

Proof In view of Theorem 3.3(ii) we only prove (i). Clearly domR C D,

and we only need show F(domR) C€ domR, i.e. Vd. dedomR = F(d)¢domR.

But de domR = 3d’. (d,d)eR

=» 3d’. (F(d),F'(d’))eR

This theorem says that simulation of ¢ by a’ implies the

partial correctness of d w.r.t. domR, , domR _ . However, normally we

are interested in partial correctness w.r.t. an S+ Sout where S out 18

much smaller than dom Rout? for example 1f R ut 1s total then dom Rout”

h S D .
D ue and ¢ 1s a,Svays partially correct w.r.t Sen out En out = out

Theorem 3.6

If S verifies ¢ and R 1s a simulation of ¢ by a then

Imp (S) verifies 7’.

Proof We require F'(Imp(S)) c Im, (S).

But F' (Im (8)) = Im (S)
c Im__ (S) since RF' ¢ FR
- FR

— Im, (F(S))

= Im (S) since F(S) cS. Ml

Thus 1n a precise sense a proof of partial carectness of a

may be factored into a proof of partial correctness of ¢ together with

a proof of simulation of @ by a.

8

4. APPLICATION TO FLOWCHART PROGRAMS

In this section, we show how we may demonstrate a simulation

between two programs in a manner which bears a close relation to Floyd's

method for proving correctness of a single program. Of the two examples,

the first has the same data representation but different control in the

two programs.

‘ Given a flowchart program with input domain Dine state-vector

domain E, output domain Dut and nodeset N, and given also an input

function taili E and output function fue tE — Dut? it 1s a simple

matter to formalize it as a program according to our definition, with

De omp™ NXE and F<D —- D defined in terms of fo fou and the tests
and assignments in the boxes. Alternatively, we may formalize 1t by

selecting a subset MC N so that every cycle in the flowchart contains

a member of M (we call such an M a cycle-breaking set) and define

D comp instead as M x E . The cycle breaking property ensures that
F : D—->D 1s agaln total.

Now suppose in & and ¢¢ we have De omp = MxE, De omp™ M'x E'.
¢ and a’ may have been obtained by the above formalization from flow-

— chart programs, for example. If R is a simulation of ¢ by &', we

have Romp c(M x E)x(M’x E'"), and to exhibit Romp it is sufficient

to- exhibit Rom’ for each megM, m’ eM’ where

Rom = {(e,e®) | ((m,e) ,(m’,e))e¢ Romp)

In the following two examples we exhibit the R 7 and also indicate

how the proof of RF' C FR would go.

Example 1. (See Figure 1). Assume that inputs to each program are

9

rocan © PROGRAM

0

~

i < 3n?

Yes @
No | Rypr _— 7 Frid

_—
i:=i+1 |— x = g(x)

X: = g(x)

NN

| > R l

NP 3 Y N~ es 0

(<6 ~~
No Yes d ~ | mew

® Rpt
J

X: = g (x) ~
~ Rgg 03! ©, es No

| ~~

~~

X: = g(x)

Figure 1

10

pairs (n,x), state vectors are triples (i,n,x), and only x is

output. The node-set {1,2} has been chosen to formalize &, and

{1,27,3¢} to formalize @’. So if J, denote integers and reals

we have

Din = Dj, TAXA

E=E = x dx R5 Don = [L2hxe; Dl= (17,273);

Pout = DJut = R

and FF , the transition function for ¢7, 1s given by

F(d) = if deD, then (1,{0,n,x)) where (n,x) = d

else if deD . then let (m,(i,n,%)) = d;
if i + 1<3n then (m, (i + 1l,n,g(x)

else if i + 1<én then (2,(i + 1,n,g(x)))

else g(x)

elsed

F! for @' is defined similarly.

We postulate a simulation R by giving R, Rout 2nd Rom?

for (m,m’)¢ {1,2}. {1’,2*,3'}, as follows:

Rin = Liar Rout = pout’ Rize = Ryyr = ps

Ryq'= f{{i,n,x) ,(i,0,x)) |i< 2n}

Ry, r= {({i,n,%x),{(i,n,x>)|2n < i < 3n}

Ron r= {((i,n,x),{i,n,%))|3n < i < 4n)

Ryz7. {((i,0,%),{i,n,x))|kn < i < 6n)}

For example, we may think of Rip as containing all state-vector pairs

attained at the node-pair (1,2°)Y when &,7" are obeyed synchronously

starting from an input pair in Re... However, 1t contains also many other

11

on a
+

i
Ne

on a
[£7] -

0) Ll
=
pe

wn oO
wv co

[¥2)

(4)

r—i IAL ’

i " oI .

I ; = :
La oc
= = L Q

- —

&) = + 0 | ~ “| o —~ nFNo > 2 © + o
0 Mw | It ~—r oO

J od ~~

non .s iv
.e [y) = I I = as
> Ko se es 173] i

\ ~~ nw Oo

~~. J

ob
MH

| | :ord
\ Fe

| &
=)i
:

|] pa
A

| © = ~e |e os |x x .
o ~— = > = o — @)
SE ' L << ¢ 0

il Il od Il i
(19) — LN)

f se .n ve .e b
EI = :

@)

47]

Cee Q
le) (0) 1) c >

- © i [1"
n 1]

i

*® 5 5
b © | =

| A

5 JA
eo

P
: lo)

LC)

3 rd

: _ \ : | 12ad
Ay

state-vector pairs (since there is no constraint on x 1n the definition

of Riss) and simulation will normally have this generous property.

Rize 1s here taken as the empty set, because the node pair (1,3 |S
never reached. !

To prove RF' CFR we must show that for all d,d’

(d,d’YeR = (F(d),F’(d’))eR

and this may be done by cases

case 1: (d,d’YeR

Case 2: (d,d"VeR_

Case 3 ;: (d,d’y = {{m,e),(m’,e’)) where (e,e’yeR /

which is a fairly--routine matter using the definitions of F,F’, and

we leave 1t to the reader.

Now since R 1s a strong simulation, and indeed R: no Rout are

identities, Theorem 3.4 entitles us to conclude g = 2.

Example 2. (See Figure 2). This example 1llustrates simulation between

two programs with different data representation. We describe this

example in less detail, to save space. Each program 1s supposed 10

input a string ¢g, a character € and a string 7, and to output the

"result of substituting + for E everywhere in g. Thus if S is the

alphabet of characters, D., = D;_ = S* x S x S* (where S* 1s the set of

strings over S) and D_. = Dt = S*. Program¢ handles strings

and characters directly, using the functions hd,tl,() (concatenation) and

the null string e¢. The three inputs are to the program variables oI

E, To respectively, and output is from the variable gg. On the other

hand, program 7” represents each string as a segment of an integer-

indexed character array; on input the two input strings are stored in arrays

s,t (indexed from 1) their -lengths + 1 1n integer variables hl, kl and the

13

character in x, and output is the string ss(l),ss(2)..... ..ss(hh-1).

The flowcharts are formalized as programs (in our sense) with

! A?

node-sets {1,2}, {1°,2%}, and we have Deomp = {1,2} x (the set of possible

values for the program variable vector of al s and similarly for Dom
F and F', the transition functions, are easy but tedious to define. We

now exhibit a simulation by giving Rin? Rout and the Rom’ for {(m,m Ye

{1,2} x {1,27}, using an auxiliary function seq: arrays x integers x integers 3

strings defined by

The string a(i),a(i+l),......a(j=1) if i <j

seq(a,i,j) = {Arbitrarily defined 1f 1 > 7.

in D,,’ Tout Dut 12 21

Riq1r= { {({oo s0 500 5€ 5M» To , TY »(s,h,hl,ss,hh,x,y,tk,kl)) |P,};

Roo r= { {{oo s0 500 5 5 Ns To TY) , (8 ,h,hl,ss ,hh,x,y,t k,kl)} | P.}

where P, =o, = seq(s,1,hl) Ac = seq(s,h,hl) a 7, = seq(t,1,kl) A

oc = seq(ss,l,hh)a 8 =xA 1 <h<hlA 1<klA 1<hh

and P, = P, AT =seq(t,l,k) An=y A1<k < kl.

Now as in Example 1 the proof of RF’ C FR must proceed by

- cases; 1t will use certain properties (or axioms) concerning the string

handling functions, the array and integer handling functions and the

function seq. We leave it to the reader again. Agaln, since Ro Rout
A

are 1ldentities we have proved that g = a’.

There are some interesting points about this example.

(1) It seems that program ¢ 1s more natural than a, though this

asymmetry was not present in Example 1. In fact, program a’ 1s only a

slight modification of part of a real program written for use rather than

14

as an example. In the process of proving a’ correct using Floyd's

technique, I found that the assertions associated with parts. of the

program were most naturally expressed using the function seq, and that

the terms appearing in these assertions were precisely those which are

here related (1n Ry , and Ryo) to the variables of ¢. In fact, (this

is discussed in more detail in [2]) the task of proving a’ correct

factored simply into two tasks =~ that of proving ¢7 correct (an easier

task since (7 1s more natural and closer to programmer's intuition)

and that of proving the simulation. This 'factoring' was made precise by

Theorem 3.6.

(2) Unlike in Example 1, the flowcharts here have identical shape, and

it 1s meaningful (and even true!) to say that under identical inputs the

programs follow the same path. In Example 1 such a statement would not

be meaningful, but in Section 5 we show that a similar statement has

meaning 1n cases more general then Example 2, and provides us with

necessary and sufficient conditions 'for the existence of a simulation

between two programs.

5. PARTITIONED SIMULATION

i We now obtain necessary and sufficient conditions for the

existence of simulation between two programs & and a’.

Definition. If J is any indexing set and m5 = {c.] jeJ} TS = {cil jed}
are partitions of Domp’ D comp respectively, then (M5, 1s a

partition pair for Deomp? DC omp (Of course any two domains can have a
partition pair, but we are only concerned with computation domains).

Definition. Computation sequences {d,] in &, {d{] in @ agree for

(MM) if Vi,i. deC <=> dfeCs.

15

. . YJ : !

Definition. A simulation R respects URTLRY if Reomp = U6; X c:)

Theorem 5.1

*

(Weak Simulation Theorem). Given R” cD x Df and a
in = Tin in

¢ os ‘ ’ ’ the following two statements
partition pair URTURY of D_ emp D/ mp?
are equivalent:

(a) Computation sequences {d;} of ¢, (df) ©f a for
d. .d!Y «R: always agree for (TT TTY

¥*

(b) There is a weak simulation R=R, U Rcomp U Rout of 7
’

by 7’ which respects (m5 TD

Proof (a) = (b). It 1s enough to take
’/ ’

R = {ee here are computation sequences {d,] of a, {d/} of gq’ for
* _ ’_7

which (do do YeR, and for some k e=d,,e “ik,

(b) =» (a). Assume R. Take any computation sequences

d.}, {d!} for which do ,dJ V eR, « Then we have Vi . (d,,d!YeR since
i i in 1° 1

2 * .

R is a simulation, so either (d;,d eR, U Rout or for some Jed d; eC,

and d eC; since R respects (T1sT 7) Thus (a) follows. cl
Theorem 5.2

Gtrdng BigelatnonR; 20rCy). D D’ R" c D x— - in=="" "in x in’ out = out
d

D¢ with Ki RL both single-valued and total, and {IT.,T.) a
out in' out’ J"

1t 1 D D' the following two statements are equivalent:
partition pair of comp’ comp’

(a) a= R; a R*-1 and computation sequences {d,] of gq,
in out

{d]] of d@' for which {do ,ddY eR, always agree for (MT
* R R of

(b) There 1s a strong simulation R = R ip U comp U out

d by d which respects UIE

16

Rajof = (b) . By the corresponding proof in Theorem 5.1 there is

» ’
hich and for

a simulation R in U R comp U R ut \ respects (MT |
which

{e,e’)eR = For some {(d d’yeR” e = 4(d) and e' = ad’).? out > in’

; * A ¥ A, Rad
= (e,e’)eR out? Since d=R. &@ R= and both

*

R in and a are single valued.

¥ * R R 1 1| S t]
Thus Rout Cc R out’ whence R in U comp U out is also a simulation

respecting UPN and moreover a strong one, from the conditions of the Theorem.
He

(b) = (a). Take any doeD;, and dg = R, (do). This is defined
*

since R in is total. Then by Theorem 5.1 the computation sequences

{ d,} , {d/] agree for (M55 It follows also from this that either
: A Ar (1? : : :

both or neither of (ds), a (dd) are defined. If neither, then neither

A * A, *-1
. of the functions &, R in 7° R out 1S defined for do. If both, then

* A A *-1
’ _ | SE / 4 _ V4

for some k Ce ,d 1 eR out and d, = dds), do = @' (dy). But dy = Rut (45)
* * a H=l

;! : y :

and dg = R; (do) so the functions a, R in a Rout both yield result
*-1

dy for argument d,, since Rout is single valued.

It foll that G=R. O'R 2]ollows at d= in out C

. (Note that this proof nowhere uses the totality of R™)
Now the coarsest partition pair (TTP has J a singleton,

and any simulation respects it. We therefore have the following corollary

to' Theorem H.1.

: * : : : I.
Corollary 5.3. Given R; there is a weak simulation R = R; UR gn, UR ¢

of @ by @' if and only if computation sequences {d,] in d, {d/] in a

such that (do dd) eR; always have lengths either both undefined or

equal (the length of {d,} is defined as min{k|d eD_ .}). []

17

There 1s a corresponding corollary to Theorem 5.2, which we omit.

Finally, we give a corollary for flowchart programs-of the same

shape.

= ' = '- call N the node set

: Corollary 5.4. Let Domp N x E, D ¢ omp N x E'; ode set
r /

(common to ¢ and ¢¢'). Define My = { X E|neN) / My = {a x E me { :
Then two computation sequences agree for (Me Ty exactly when they trace

the same node path, and so we have the following:

Wo

Given R, , there is a weak simulation R = RY UR omp UR of

d by 5' which respects (MT) if and only if every pair of computation
I. / ’ *

sequences {d.3 in d@, {d;} in @ such that {dg »do) eR, trace the
same node path. _ OC]

Again, there 1s a corresponding corollary to Theorem 5.2. If

as in Section 4 we exhibit Reomp by exhibiting R , CE x E’ for

n,n’e¢e N, then 'R respects (MoT? means R_ / = 0,n # n'. This is

the situation in Example 2 of that Section.

18

6. CONCLUSIONS AND POSSIBLE DEVELOPMENTS

The idea of simulation, which 1s really an application of the

notion of weak homomorphism, 1s interesting in two ways: theoretically,

because 1t allows one to abstract some irrelevant detail from programs to

come closer to a definition of algorithm, and practically because there 1s

a manageable technique for proving simulation between programs, which in

some cases may make easier the task of proving a program correct.

There are two possible directions for development. First, we

have restricted to a single-valued, total transition function F. The

situation looks rather different when we relax these conditions = for

example we should consider computation trees rather than sequences.

Second, we should consider simulation of parallel programs, and treat

programs which perform the same computations but not necessarily in the

same sequence as serializations of the same parallel program =~ or of

mutually simulating parallel programs. These extensions may bear the same

relation to the work of Manna [5] and Ashcroft and Manna [6] on the

correctness of nondeterministic and parallel programs as the present

paper bears to Manna's earlier work on serial programs [4].

19

ACKNOWLEDGEMENTS

This work owes much to Peter Landin who largely pioneered

the algebraic approach to programs. This paper is in the spirit of

[8], although that paper is concerned with the structure of a single

program (as a product algebra) rather than relations between programs.

I also had profitable discussions with Peter Landin, Rod Burstall and

John Laski.

20

REFERENCES

[1] Floyd, R.W., "Assigning Meanings to Programs", Proceedings of

Symposia in Applied Mathematics, American Mathematical Society,
Vol. 19, 19-32 (1967).

* [2] Milner, R., "A Formal Notion of Simulation Between Programs",
Memo 14, Computers and Logic Research Group, University College

| of Swansea, U.K. (1970).

[3] Milner, R., "Program Simulation: An Extended Formal Notion"
Memo 15, Computers and Logic Research Group, University College
of Swansea, U.K. (1971).

[4] Manna, Z., "The Correctness of Programs", J. of Computer and Systems
Sciences, Vol. 3, No. 2, 119-127 (1969).

[5] Manna, Z., "The Correctness of Non-deterministic Programs", Stanford
Artificial Intelligence Project, Memo AI-95, Stanford University
(1969).

[6] Ashcroft, E.A., and Manna, Z., "Formalization of Properties of
Parallel Programs", Stanford Artificial Intelligence Project, Memo

AI-110, Stanford University, (1970).

. [7] Ginzburg, A., Algebraic Theory of Automata, Academic Press (1968).

[8] Landin, P., "A Program-Machine Symmetric Automata Theory",
Machine Intelligence 5, ed. D. Michie, Edinburgh University Press,
99-120 (1969).

21

