ALGOR ITHVSE TO REVEAL PROPERTIES OF FLOATING-POINT
ARITHMETIC

BY

MICHAEL A. MALCOLM

STAN-CS-71-211
MARCH, 1971

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

AIGORITHMS TO REVEAL PROPERTIES OF FLOATING-POINT

ARITHMETIC

by

Michael A. Malcolm

Abstract

Two algorithms are presented in the form of Fortran subroutines.
Each subroutine computes the radix and number of digits of the floating-
point numbers and whether rounding or chopping is done by the machine
on which it is run. The methods are shown to work on any "reasonable"

floating-point computer.

Keywords: Floating-Point Arithmetic
High-Level Languages

Philosophy of Language Design

This research was sponsored by the Office of Naval Research under grant
number NOOO14-67-A-0112-0029, The National Science Foundation under grant
number NSF GJ 408 and the Atomic Energy Commission under grant number
AT (04-3) 326, PA 30

1. Introduction

A large percentage of the practical numerical algorithms in use today
require some information about the actual floating-point number system on
which they are implemented. For example, a zero finder must use some sort
of "machine epsilon" to determine when it has found a "zero". An iterative
improvement subroutine in a linear system solver must stop iterating when
the corrections no longer affect the answer. Some other algorithms which
require this type of information are: eigenvalue-eigenvector routines,

" ordinary differential equation solvers, function minimizers, etc.

Usually this information is supplied to the algorithm in one of two
ways : It is either passed as a parameter or it is imbedded in
one or more constants. 1In the first case, each user is faced with the
problem of understanding another confusing parameter in the calling sequence
and he is likely to not know what to use for a "machine epsilon". In the
second case, the "magic" numbers in a program are often not understood by
people reading or translating the program. When the subroutine is moved
from one machine to another, these numbers are seldom changed to reflect
the properties of the new machine -- even when the author of the original
program provides explicit comments in the program telling what the constants
mean and how to change them.

Since one of the original motivations for designing and implementing
high-level languages was to allow a program written for one machine to
run on other machines, I think that this problem reflects a serious
shortcoming of languages like Fortran and Algol. Such languages should

provide standard functions which return information pertinent to the machine.

However, given these shortcomings, it is reasonable to ask: How can
information about the number system of a computer be determined auto-
matically? That is, can a subroutine written in Fortran compute this
information?

The Fortran subroutine given in the next section partially solves
the problem for a large class of floating-point systems. Another
Fortran subroutine, presented in Section 3, solves the same problem

for a more restricted set of floating-point systems.

2. The Fortran Subroutine ENVRON

For the remainder of this paper, a floating-point number system F
will be characterized as follows: Each number will have a_radix B
and a t-digit mantissa where t >1 . Usually B is 2 ; 8 , 10 or 16 , but B
will only be restricted to be a positive integer greater than 1 . The
exponent e 1s assumed to lie in the range
m<e<M,

where m < 0 and M >t . Each nonzero xeF has the representation

_— Y e
x =+ .d.d5...4,8%

where dl" .th are integers satisfying
0 < di_<a-1 , (1= 1yeeet) .
The number 0 belongs to F . No assumption is made about the representation

of 0 ; however it is usually represented by
O = + oOOoo.O'Bm .

If x #0 and dl #0, then x is said to be normalized. All
floating-point operations (e.g., addition and multiplication) are

assumed to result in either 0 or a normalized floating-point number.

The machine will do either proper rounding or chopping (truncation).

The machine epsilon mentioned in the previous section is the

smallest positive floating-point number € such that €e®1l > 1 , where
@ denotes floating-point addition. Thus, one could compute € from
B and t.

The Fortran subroutine shown in Figure 1 can be called with the
Fortran statement

CALL ENVRON (IB, IT, IR)

If the Fortran program is running on a machine with a floating-point
number system of the type just described, then the actual parameters

will be returned with the values

IB=g,
IT =%,
O , if the machine does chopping,
IR =
1 , 1if the machine does proper rounding.
1 SUBROUTINE ENVRON(BETA,T,RND)
2 INTEGER BETA, T, RND
5 RND =1
4 A=2.
5 B = 2.
b 100 1r ((A+1.)=-A.NE.1l.) co 10 200
7 A= 2.%A.
8 GO TO 100
9 200 1r (A+B.NE.A) co TO 300
10 B = 2.%B
11 GO TO 200
12 300 BETA = (A+B) - a
13 1r (A+(BETA-1) .FQ.A) RND = 0
14 T=0
15 A=1
16 koo T =T+1
17 A = A*BETA
18 e ((A+1)-A.FQ.1) GO 1O 400
19 RETURN
20 END

Figure 1

3

Suppose the machine on which ENVRON is executing has the

floating-point system F . Then the consecutive integers
t
0’1,2’0..,5

can be represented exactly in F . Integers larger than Bt which
can be represented exactly are

po+p, ph2p, p+3p, BT, gL,

Thus, the difference between neighboring floating-point numbers in the

+
t,Bt l] is B . The first part of ENVRON (lines 4 through 8)

interval [B
tests successive powers of 2 until a floating-point number (A) in
this interval is found. Lines 9 through 12 add successive powers of 2

to A until the next floating-point number (A+B) is found and then B

is computed by subtracting these two numbers. To determine whether rounding

or chopping is being done (line 13), B-1 is added to A . Now, since A

is in the interval

+
ﬁt <A < Bt 1 ,

the number t can be computed by

t= _logB Al .

However, possible inaccuracies in computing the logarithm are avoided by
determining the power of B required to shift the least significant digit
of an integer out of the mantissa. The smallest such exponent is equal
to t

The time required for ENVRON to execute is roughly proportional to
log2 B’ . For any practical application, the execution time is negligible.

It is important to note that the algorithm used in ENVRON does not

rely upon the use of guard digits in the floating-point additions.

)

The author believes this algorithm to be a very efficient way of

computing B , t and whether the floating-point system rounds or chops.

3. A Special Algorithm for the Cases B = 2, 4, 8, 10 and 16

After using the technique described in the previous section to
. t _t+l . .
determine the number Ae [B'," ~) , the following trick can be used

. to determine both B and whether rounding or chopping is done:

1. Set B:=A+1l5 (B is another floating-point representation).

2. If B=A , then B=16 and chopping is done.

3. If B=A+8 , then B=8 and chopping is done.

L. If B=A+10 , then B=10 and chopping is done.

5. If B=A+12 , then B=t and chopping is done.

6. If B=A+14 , then B=2 and chopping is done.

Te If B=A+16 , then rounding is done and B is either 2, 4, 8 or 16.
8

. If B=A+20 , then B=10 and rounding is done.
The case B=A+16 can be resolved by

1. Set B:=A+5.

2. If B=A , then p=16

3. If B=A+h , then p=4 .
L. If B=A+6 , then B=2

5. If B=A+8 , then B=8

A For-bran subroutine incorporating this idea and using the same
name and calling sequence as the subroutine given in Section 2 is shown
in Figure 2. Although the code is longer than the version in Figure 1,

the execution time for this version is slightly smaller.

SUBROUTINE ENVRON(BETA,T,RND)
INTEGER BETA, T, RND
C
C THIS VERSION WORKS FOR MACHINES WITH BASE 2, 4,8, 10 OR 16
C
RND = O
A= 2.
10 1F ((A+1.)-A.NE.l.) GO 10 20
A = 2.%A
GO TO 10
20 I = IFIX((A+15.)-A) + 1
GO TO (3fu,}.31,.4,4,1,%0,1,50,1,60,1,70,1,80,1,1,1,90),I
1 sTOP
30 BETA = 16
GO TO 100
40 BETA =8
GO TO 100
50 BETA = 10
GO TO 100
60 BETA=4
GO TO 100
70 BETA=2
go GO TO 100 RID = 1]
I = IFIX((A+5.)-A) + 1
co Tto (82,1,1,1,84,1,86,1,88),1
82 sBETa = 16
GO TO 100
8k BETA=4
GO TO 100
86 BETA=2
GO TO 100
88 BETA=8
GO TO 100
go RND =1
BETA = 10
100T =0
A=1
110 T = T™+1
A A¥BETA
r ((A+1)-A.FQ.1l) GO 1o 110
RETURN
END

Figure2

L. Conclusions

The algorithms given in Figures 1 and 2 will determine certain
characteristics of the floating-point number system of any machine
currently in use (at least those floating-point machines of which the
author is aware). Specifically, the number base, number of digits and
whether rounding or chopping is done, can be computed automatically.

Programs and subroutines in general use, such as library routines,
should avoid additional parameters in the calling sequence and magic
constants in the code by using one of these subroutines for computing
the floating-point environment of the current machine. This not only
makes the code more readable but the portability of the program is
greatly increased. The additional execution time required to call such
a routine is insignificant compared to these advantages.

Unfortunately, it is not possible to write a general subroutine to
compute upper and lower bounds for the floating-point exponent
(m and M) . If underflow and overflow conditions were handled in some
uniform manner, it would be possible to do so. Some programs make use
of the values of m and M . Thus it would be worthwhile for software
manufacturers to consider ways of providing such information automatically.
Automatic determination of properties of the integer arithmetic system
would also be useful. A good universal random number generator could
be written if it were possible to automatically determine the magnitude
of the largest representable integer.

Other desirable environmental parameters are listed in a paper

by Redish and Ward.

5. Acknowledgment

The author would like to thank Professor Cleve Moler for arousing
his interest in this problem. Mr. Richard Sites contributed some of
the ideas which led to an earlier version of ENVRON. The author
would like to thank Professor Robert Floyd for questioning the

"optimality" of this earlier version and for a discussion which led

to improved versions.

6. Bibliography

Redish, K. A. and Ward, W., T"Environment Enquiries for Numerical

Analysis", SIGNUM Newsletter 6 (1), January 1971, 10-15.

