
ALGOR ITHMS TO REVEAL PROPERTIES OFFLOATING-POINT

| ARITHMETIC

BY
{

MICHAEL A. MALCOLM

STAN-CS-71-211

MARCH, 1971

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

AIGORITHMS TO REVEAL PROPERTIES OF FLOATING-POINT

ARITHMETIC

by

Michael A. Malcolm

~ Abstract

Two algorithms are presented in the form of Fortran subroutines.

Each subroutine computes the radix and number of digits of the floalting-

point numbers and whether rounding or chopping 1s done by the machine

on which it 1s run. The methods are shown to work on any "reasonable"

floating-point computer.

Keywords: Floating-Point Arithmetic

High-Level Languages

Philosophy of Language Design

This research was sponsored by the Office of Naval Research under grant

numberNOOO14-67-4A~0112-0029, The National Science Foundation under grant
number NSF GJ 408 and the Atomic Energy Commission under grant number

AT (04-3) 326, PA 30.

1. Introduction

A large percentage of the practical numerical algorithms in use today

require some information about the actual floating-point number system on

which they are implemented. For example, a zero finder must use some sort

of "machine epsilon" to determine when it has found a "zero". An iterative

improvement subroutine in a linear system solver must stop iterating when

the corrections no longer affect the answer. Some other algorithms which

require this type of information are: eigenvalue-eigenvector routines,

ordinary differential equation solvers, function minimizers, etc.

Usually this information is supplied to the algorithm in one of two

ways : It 1s either passed as a parameter or it is imbedded in

one or more constants. In the first case, each user 1s faced with the

problem of understanding another confusing parameter in the calling sequence

and he 1s likely to not know what to use for a "machine epsilon". In the -

second case, the "magic" numbers in a program are often not understood by

people reading or translating the program. When the subroutine 1s moved

from one machine to another, these numbers are seldom changed to reflect

the properties of the new machine -- even when the author of the original

program provides explicit comments in the program telling what the constants

mean and how to change them.

Since one of the original motivations for designing and implementing

high-level languages was to allow a program written for one machine to

run on other machines, I think that this problem reflects a serious

shortcoming of languages like Fortran and Algol. Such languages should

provide standard functions which return information pertinent to the machine.

1

However, given these shortcomings, it 1s reasonable to ask: How can

information about the number system of a computer be determined auto-

matically? That 1s, can a subroutine written in Fortran compute this

information?

The Fortran subroutine given in the next section partially solves

the problem for a large class of floating-point systems. Another

Fortran subroutine, presented in Section 3, solves the same problem

for a more restricted set of floating-point systems.

2. The Fortran Subroutine ENVRON

For the remainder of this paper, a floating-point number system F

will be characterized as follows: Each number will have a radix fB

and a t-digit mantissa where t >1 . Usually fp is 2 ; 8 , 10 or 16 , but B

will only be restricted to be a positive integer greater than 1 . The

exponent e 1s assumed to lie in the range

m<e<M,

where m < 0 and M >t . Each nonzero xeF has the representation

x = + .d.d....d, B° ,
— 12 t

where d;5 : cody are integers satisfying

0 < a, <p-1 , (1 = Leet)

The number 0 belongs to F . No assumption is made about the representation

of 0 ; however it 1s usually represented by

0 = + .00...0-8" .

If x #0 and dy #0, then x is said to be normalized. All

floating-point operations (e.g., addition and multiplication) are

~ assumed to result in either 0 or a normalized floating-point number.

2

The machine will do either proper rounding or chopping (truncation).

The machine epsilon mentioned in the previous section is the

smallest positive floating-point number €¢ such that €¢®1l > 1 , where

® denotes floating-point addition. Thus, one could compute € from

B and t.

The Fortran subroutine shown in Figure 1 can be called with the

Fortran statement

CALL ENVRON (IB, IT, IR)

If the Fortran program is running on a machine with a floating-point

number system of the type just described, then the actual parameters

will be returned with the values

IT = t 3

O , if the machine does chopping,
IR =

1 , 1f the machine does proper rounding.

1 SUBROUTINE ENVRON(BETA,T,RND)
2 INTEGER BETA, T, RND
5 RND = 1
4 A= 2,

5 B = 2.

0 100 1r ((A+1.)=-A.NE.1l.) co 10 200

0 GO TO 100

0 200 1Fr (A+B.NE.A) co TO 300
10 B = 2.%B

11 GO TO 200
12 300 BETA = (A+B) - a
13 rr (A+ (BETA-1) .BQ.A) RND = 0
14 T=0

15 A=1
16 400 T = T+1

17 A = A*BETA

18 rr ((A+1)-A.EQ.1) GO TO 400
19 RETURN
20 END

Figure 1

3

Suppose the machine on which ENVRON 1s executing has the

floating-point system F . Then the consecutive integers

t

t
can be represented exactly in F . Integers larger than Pp which

can be represented exactly are

t t T t+1 ttl 2
p+, pH+B, BtH,B LB HP,. . .

Thus, the difference between neighboring floating-point numbers in the

t+1
interval (85,8] is B . The first part of ENVRON (lines 4 through 8)

tests successive powers of 2 until a floating-point number (A) in

this interval 1s found. Lines 9 through 12 add successive powers of 2

to A until the next floating-point number (A+B) is found and then B

is computed by subtracting these two numbers. To determine whether rounding

or chopping is being done (line 13), B-1 is added to A . Now, since A

1s 1n the interval

+

gt <a < gt 1

the number t can be computed by

t=] log. A| logy A] .

However, possible 1naccuracies 1n computing the logarithm are avoided by

determining the power of B required to shift the least significant digit

of an integer out of the mantissa. The smallest such exponent is equal

to t .

The time required for ENVRON to execute 1s roughly proportional to

log, B' . For any practical application, the execution time is negligible.

It 1s important to note that the algorithm used in ENVRON does not

rely upon the use of guard digits in the floating-point additions.

Lt

The author believes this algorithm to be a very efficient way of

computing Bp , t and whether the floating-point system rounds or chops.

3. A Special Algorithm for the Cases B = 2, 4, 8, 10 and 16

After using the technique described in the previous section to

determine the number Ace (s%,8% 1 , the following trick can be used

. to determine both B and whether rounding or chopping 1s done:

1. Set B:=A+15 (B is another floating-point representation).

2. If B=A , then B=16 and chopping is done.

3. If B=A+8 , then B=8 and chopping is done.

I, If B=A+10 , then B=10 and chopping is done.

5. If B=A+12 , then B=4 and chopping is done.

6. If B=A+1h , then P=2 and chopping is done.

Te If B=A+16 , then rounding is done and B is either 2, 4, 8 or 16.

38. If B=A+20 , then B=l10 and rounding is done.

The case B=A+1l6 can be resolved by

1. Set B:=At+5.

2. If B=A , thenp=16 .

3. If B=A+4 , then B=h .

4. If B=A+6 , then p=2 .

5. If B=A+8 , then B=8 .

|] _

A For-bran subroutine incorporating this idea and using the same

name and calling sequence as the subroutine given in Section 2 1s shown

in Figure 2. Although the code 1s longer than the version in Figure 1,

the execution time for this version 1s slightly smaller.

SUBROUTINE ENVRON(BETA,T,RND)
INTEGER BETA, T, RND

C

C THIS VERSION WORKS FOR MACHINES WITH BASE 2, 4,8, 10 OR 16
C

RND =O

A= 2.

10 1F ((A+1l.)=-A.NE.l.) GO To 20
A= 2.%A

GO TO 10

20 I = IFIX((A+15.)-A) + 1
GO TO (3fu,u%.31,4,L,1,%0,1,50,1,60,1,70,1,80,1,1,1,90),I

1 STOP

30 BETA= 16

GO TO 100

40 BETA = 8

GO TO 100

50 BETA = 10

GO TO 100

60 BETA=4

GO TO 100

70 BETA=2

30 GO TO 100 RND = 1

I = IFIX((A+5.)-A) + 1
co To (82,1,1,1,84,1,86,1,88),1

82 BETa = 16

GO TO 100

8k BETA=4

GO TO 100

86 BETA=2

GO TO 100

88 BETA=S8

GO TO 100

go RND = 1
BETA = 10

100T = 0

A=1

110 T = T+1

A = A¥BETA

rr ((A+1)-A.FQ.1) GO to 110
RETURN

END

Figure?

6

L. Conclusions

The algorithms given 1n Figures 1 and 2 will determine certain

characteristics of the floating-point number system of any machine

currently in use (at least those floating-point machines of which the

author 1s aware). Specifically, the number base, number of digits and

whether rounding or chopping is done, can be computed automatically.

Programs and subroutines in general use, such as library routines,

should avoid additional parameters in the calling sequence and magic

. constants in the code by using one of these subroutines for computing

the floating-point environment of the current machine. This not only

makes the code more readable but the portability of the program is

greatly increased. The additional execution time required to call such

a routine 1s insignificant compared to these advantages.

Unfortunately, it 1s not possible to write a general subroutine to

compute upper and lower bounds for the floating-point exponent

(m and M) . If underflow and overflow conditions were handled in some

uniform manner, 1t would be possible to do so. Some programs make use

of the values ofm and M . Thus it would be worthwhile for software

manufacturers to consider ways of providing such information automatically.

Automatic determination of properties of the integer arithmetic system

would also be useful. A good universal random number generator could

be written if 1t were possible to automatically determine the magnitude

of the largest representable integer.

Other desirable environmental parameters are listed 1n a paper

by Redish and Ward.

5. Acknowledgment

The author would like to thank Professor Cleve Moler for arousing

his interest in this problem. Mr. Richard Sites contributed some of

the ideas which led to an earlier version of ENVRON. The author

would like to thank Professor Robert Floyd for questioning the

"optimality" of this earlier version and for a discussion which led

to improved versions.

. 6. Bibliography

Redish, K. A. and Ward, W., "Environment Enquiries for Numerical

Analysis", SIGNUM Newsletter 6 (1), January1971, 10-15.

8

