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| Abstract

Let K-l,my,yeeeom denote non-negative 1ntegers, and suppose the

— greatest common divisor of Myyeee,m 1S 1 . We show that 1f

S10 =eesSy are sufficiently long blocks of consecutive integers, then

the set mS, + Leet m BS contains a sizable block of consecutive integers.

For example; 1f m and n are relatively prime natural numbers, and |

uw, U, v, V are integers with U-u > n-1 , vV-v > m-1, then the set

L miu, utl, . . .sU}+n{v,v+1,...,V} contains the set
| {mu+nv-o(mn), . . . ,mU+ nV -o(m,n)} where (myn) = (m-1) (n-1) is the

largest number such that o(m,n)-1 cannot be expressed in the form

i mx+ny with x and y non-negative integers.

.
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: LINEAR COMBINATIONS OF SETS OF CONSECUTIVE INTEGERS

| by D. A. Klarner and R. Rado

Let K-L,m,ee,my denote positive integers such that My eeesly
have greatest common divisor 1 , and let t denote an integer.

- A well-known result 1n the elementary theory of numbers 1s that the

_ equation

i (1) mE to eetmx = t

has infinitely many solutions in integers Xs ky Furthermore,
L there exists an integer o(m) which depends on

| m = (ms v0 mmm) such that (1) has a solution in non-negative integers
hy ' Hoy for all t > o(m) , but no solution of this kind exists when

| t = o(m)-1 . In this note we prove a refinement of this result by
showing that a set of consecutive integers can be obtained by allowing

. the x, in (1) to range over suitable sets of consecutive integers.

| For example, every number t with 6 <t < 11 can be expressed in
the form 3x+4y with 0 <x <3, 0 <y <2 . Later on we express

facts like this by writing

(2) [6,11] © 3[0,5]+ L[0,2] .

The following notation 1s used: I , N , and P denote the set

of all integers, the set of all non-negative integers, and the set of

all positive integers respectively. Also, for any pair of elements

i,jeI , define [i,j]= {x: xel, 1 < x < j}; furthermore, given sets

Ise mm I C I together with elements Myyeeesm el , define
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3 . .o = o «es + - : —

| k
a For each keP and J © I , let J denote the set of all k-dimensional

vectors over J ; nextkK for eledents %, yer with x = (25000) .
_ Vy = (v1 coe) define the usual dot product X-y = x;y,+ | ES

finally, define X < y whenever xX. < Ys for i = 1,...,k , and

define x < y whenever Xs < Yi for i = L,.e.,k

Our main result may be succinctly stated in this notation as

follows.

THEOREM 1: Suppose K-Lmi,eee, | €P and M5. em have greatest

L common divisor 1 ; let m = ms ams TL) and m max {m, , « ¢.,m, } ;

| suppose 3, veI® satisfy
(4) V-1i1i > (m-1,...,m-1)

L (5) me (vV-u) > 2(m=1) (m, + . etm) .
; Then
1

6 meu + 0 m Me - m

| (6) (m) , mov =o (m)] C m, [u,v J+ cee em lu, v s
where u = (uy seeesu) ; Vo= (viseeesv,) , and o(m) is the function
defined after (1).

Before proving Theorem 1, we shall state and prove a result

-dealing with the 2-dimensional situation which is sharper than the

result provided by taking k = 2 1n Theorem 1. Furthermore, the proof

of Theorem 2 gives some insight for the proof of Theorem 1.
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3 THEO& 2: Suppose m, ,Mm,€eP such that m, and m, are relatively

prime; also, Suppose wu,,uy Vy,V, € I such that vy-u, > m,-1,

- vot, 2 m, -1 - Then

N (7) [my+ muy + (my -1) (my=1) , mov)+ my, = (my =1)(m-1)|

Proof: It is well-known that o(m,,m.) = (m,-1)(m.-1) , where
-L o A Lal

0(my,m,)-1 denotes the largest integer not expressible in the form

m,X+ m,y with X,yeN . Tet m = (n,m) , ou = (uy,u,) , and

Vv = (vy5v,) , then it follows from the definition of o(m) that

(8) meu+o(m) +N C m, (ug +N) + my, (u +N) ,
CE — f— -—

(9) m-v-o(m) ~-N C m, (vq -N) +m (v,-N) :
|

~ Hence, the intersection of the sets on the left in (8) and (9) is

| contained in the intersection of the sets on the right in (8) and (9).
That 1s,

I (10) [meu+ o(m),mev -o0(m)] c
| (my(uN) + my (ugh) ) N (my(vy -N) mo (v,-N))

| Now we prove a remarkable 1dentity which gives a valid instance of
" intersection distributing over addition.

he NY) + - —(11) (my (uy +N) + m, (u +N)) Nn (mq (vy N) m, (Vv, N))

my (ut) 0 (vy) ) + my( (ug) Nv)

Of course, the set on the right in (11) is just

(12) mq (u,v, ] +m, [u,v]
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so (10), (11), and (12) combine to imply (7). It remains to prove (11).

| Consider the set of points 1x1 in the Cartesian plane. The

subsets (u,+N) x (us +N) and (v,-N) x (V,-I) of I xI lie in upper

and lower quadrants of the plane whose intersection contains the set

[uv] X [u,v] . This situation is illustrated in Figure 1. We want

to study the linear form mix + m,y evaluated over all points

(x,7) eI xI ; in particular, we are interested in points which have

equal evaluations. Given an element hel , the set Ly of all points

(21) €l xI such that m,X + m,y = h is situated on a unique line

having slope -m, /m, . Also, 1t 1s easy to see that if

L (x',y") e (IxI)N L , then L = L(x! + my, y? - jm, ) JeIl .

| To prove (11), note that the set on the right is contained in the
set on the left; suppose the reverse 1s not true. From this assumption

| we shall deduce a contradiction. Under this assumption it follows that
there exists an hel such that Ly, has points in common with both

U = (Cay) x (ugh) \ (lug,v, 1 X [uy v,])
and

V = ((vy-N) x (v,-N)) \ (lus vy] X [u,,v,1) y

but Ly has no point in common with

ly
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Figure 1. The set of points (u +N) x (u +N) oo9 lies in the quadrant

| above and to the right of the point (u,,u,) , the set of points
( 1°72v, =I) X (v,-N) lies in the quadrant below and to the left of the

. Point (v1 v,) rand the set of points Uys vy] x[uy,v,] lies 1n
the box.
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| Suppose (x',y"') €L, Nuand (x",y") € Ly, Nv ; since (x,y!) £B,
either x! < u; or yt > Vy If x' < Uy then x" > vy because

(x,y), (x",y") ¢L, and (x",y")£B . In this case we suppose (x' y*)

has been selected from Ly N U "so that x! is maximal, and (x",y")

has been selected from L, NV so that x" is minimal. Since

(xt,y"), (x",y") ¢lL, , and L, NB = ¢ , we must have x"-x! = mn |

But, x! -, and x" > Vv, implies x*'+1 <u, and x"-1 > Vy hence,

m,-2 = x"-x'~2 > V4 , contradicting the hypothesis vy =u > my-l

In the case y' > Vo it follows that y" < Us, . This time the

points (x',y') and (x",y") are selected so that ¥' is minimal

and y" 1s_maximal. The argument goes just as before; we must have

yr-y" _ my which leads to the contradiction Vou, < m, =2 + This

| completes the proof of Theorem 2.

Now we prove Theorem 1. To do this, we prove an identity having

I the form of (11), but subject to the conditions (4) and (5).

| LEMMA. If k-dimensional vectors m , u , and v satisfy the hypothesis

| of Theorem 1, then
~ k k k

(13) Lom (usm) nl mo (v.-N) = L mn ((w +N)0 (v -N)
. 1=1 i=1 1=1

r Theorem 1 1s an immediate consequence of the Lemma; its application

| + 1s the justification of the penultimate equality in the following string
of formulas.



(14) [meuto(m),n.v-om)] =

| (mea+o(m)+N) 0 (R7-0(m) -N)

| m, (u,+N) n m, (v,-N) =i=1 tt 5 1370

y km.{(u.tN) N (v-N)) _ m,[u.,v.] .on { 1 L LR TE.|

To prove Theorem 1 completely, it remains to prove the Lemma. For

. .o=_k - - :
each ieI , let L, = {11: XI”; mex = i} , and suppose the Lemma is

false. Then there exists hel such that L Nu, L NV £6, but2

L L nB=4¢ where
Se| U={x:xeI" , x >a}\B

- - _k -

| V = {x: xeI » Xx <v}\B
| B=lupvylxees xlu,v,] :

~ Suppose Xx'eU is selected so that

k

(15) 5 max{v,,x!}
i=1 od

is minimal, where x' = (x3, 00x) . Since x'¢B , there exists

re[l,k] such that x > v . Furthermore, there exists se[1,k] such
V 4 : ; < v = ~that x. < Vv. since otherwise x' > v , which implies h = Mex! > Mex

for all x < v , contradicting the assumption L, NV EP Of course,
r #s , sowehave

(161 h = m.x!+ r - + ;) L 11 m, {x}. my) tm (xg m,.) ’
ifr,s
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| (17) x! -m_ -u +1) ~-m -u =
| rs "Yr 2 (vy 1 5s Tr °C Vp muy) “mgtlo>

| (vp-u)-m+1 >o0 .

| Hence, by the minimality assumption made in (15),

(18 maxiv r - + t
) (vps x) mg} max{vg , xi +m] 2 max{v,, x} + max{v_,x!}

Hence,

1 — .(19) maxiv, xl+m } > max{v_,x!'} = vo

!  ]
X + Mm, > Vg 5

4 -

| Xe > Vo m, > Vm .
This implies

| (20) xt > V- (my ...,m) .
L Suppose x"eV is selected so that

| k
q (21) 2 min{u,,x!}

| 1=1
| .

: is maximal where x" = (x! '0 405%) . Now an argument running parallel

| to (15)-(21) can be given to show that

Together (20) and (22) imply

(23) HERI— cr? mew!

0 = mex! -mex? > ) m; ((v; -m+1) = (u, +m-1))1=1

_ k

= me (v-u) - 2(m-1) ). m. .
1=1
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| But (5) implies

> (24) me(v-u) -2(m-1) y m, > 0
i=1 N

so (23) provides the required contradiction, and we conclude that the

Lemma 1s true.

The results proved in this paper arose in connection with our

! investigation [1] of the smallest set {mex :1) c P containing 1 which

is closed under the operation mex where m = (m, . ma, ) is a given
- k-tuple of relatively prime positive integers.
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