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Abstract

Let k-l,ml,...,mk denote non-negative integers, and suppose the
greatest common divisor of ml""’mk is 1 . We show that if
Sl’ ...,Sk are sufficiently long blocks of consecutive integers, then
the set mlSl+ . --+mKSk contains a sizable block of consecutive integers.
For example; if m and n are relatively prime natural numbers, and
uw, U, v, V are integers with U-u > n-1 , vy-v > m-1, then the set
m{u,utl, . . .,U}+n{v,vl,...,7} contains the set
{mat+nv-o(mn), . . . ,mU+nV-0(mn)} where o(myn) = (m-1) (n-1) is the

largest number such that o(m,n)-1 cannot be expressed in tke form

mx+ny with x and y non-negative integers.

This research was supported in part by the Office of Naval Research under
contract number N-00014-67-A-0112-0057 NROU4-402, and by the National
Science Foundation under grant number GJ-992, Reproduction in whole

or in part is permitted for any purpose of the United States Government.

*

-j Currently Visiting Professor, Faculty of Mathematics, Department of
Combinatorics and Optimization, University of Waterloo, Waterloo,
Ontario, Canada. ’



f

LINEAR COMBINATIONS OF SETS OF CONSECUTIVE INTEGERS

by D. A. Klarner and R. Rado

Let k-l,ml,...,mk denote positive integers such that Myseeeyly

have greatest common divisor 1 , and let t denote an integer.

A well-known result in the elementary theory of numbers is that the

equation
(1) mE F L eetmx =t
has infinitely many solutions in integers X . Furthermore,

there exist;-an integer o(m) which depends on

m = (ml,. “*mk) such that (1) has a solution in non-negative integers
b ' EKM@ for all t > o(m) , but no solution of this kind exists when
t =o(m)-1 . In this note we prove a refinement of this result by
showing that a set of consecutive integers can be obtained by allowing
the X, in (1) to range over suitable sets of consecutive integers.
For example, every number t with 6 <t < 11 can be expressed in

the form 3x+by with 0 <x <3, 0 <y <2 . Later on we express

facts like this by writing
(2) [6,11] < 3[0,3]+ 4{0,2]

The following notation is used: I , N , and P denote the set
of all integers, the set of all non-negative integers, and the set of
all positive integers respectively. Also, for any pair of elements
i,jeI , define [i,j] = {x: xeI, i < x < j}; furthermore, given sets

IP ozzglk C I together with elements ml’”"mkel , define



(3) mI + . etmI = {mlxl+ Ceetmx xel, 1 = Loo,k)} -

k
For each keP and J © I , let J depote the set of all k-dimensional

vectors over J ; next, for elerients i,&elk with x = (xl,...,x )
k 1

Yy = (yl,,m.,yk) define the usual dot product x-y = Xyt - L, 3
finally, define X <f§ whenever Xi < yi for i = 1,...,k , and
define x < y whenever X, < Vi for i=1,.u0,k .

Our main result may be succinctly stated in this notation as

follows.
THEOREM 1: Suppose k-l,m_,.. oy € P and Moy .. TE have greatest
common divisor 1 ; let m = (ml,.gwmk) and m ; max{ml,@@qu} 3

suppose ﬁ,GeIk satisfy

(%) V-ii > (m-1,...,m-1)

(5) me (Vo) > 2(m-1) (m + - -e¥my)

Then

(6) [nea+o(m), mv-o(m)] c m (u,vo I+ e mlu, v s
where 17 = (ul""’uk) s Vo= (vl,...,vk) > and o(m) is the function

defined after (1).

Before proving Theorem 1, we shall state and prove a result
‘dealing with the 2-dimensional situation which is sharper than the

result provided by taking k = 2 in Theorem 1. Furthermore, the proof

of Theorem 2 gives some insight for the proof of Theorem 1.



THEO& 2: Suppose my 5, €P such that m, and m, are relatively

prime; also, suppose I such that v,-u, > m_-1

ulIuE’ Vllvz € l l =z o) 14
V,~u, >m. -1 . Then

2 2=1

(7) [mlul-!-m u, + (m -1) (m l) ; myVy+ mav, (m l)(m -1)1

Proof: It is well-known that o(m,,m.) = (m,-1)(m.-1) , where
<+ [ A =4

G(ml,mg)-l denotes the largest integer not expressible in the form
mx+myy with xyeN . Let m = (m,m,) , u = (u;,u;) , and

v = (vl’VE) , then it follows from the definition of o(m) that

(8) R+ o(®) +N ¢ my(u ) +my(ug)

81

(9) -v-0o(m) -N < ml(vl-N)+m2(v2-N)

Hence, the intersection of the sets on the left in (8) and (g) i
contained in the intersection of the sets on the right in (8) and (9).

That 1is,

(10) [m-u+ o(m),m.v-0(m)]c

u +N) +my(u 5+N) )N (m (vl-N) . my(v,-N))

(my 2

Now we prove a remarkable identity which gives a valid instance of

" intersection distributing over addition.

(1) (my(ug) + my(ugh)) 0 (my (v, -N) +my(v,-N)) =

my ((upt) 0 (vy ) ) + my( (ugh) 0 (v,I))
Of course, the set on the right in (11) is just

(12) ml[ul’vl] +m2[u2} V2] B}
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so (10), (11), and (12) combine to imply (7). It remains to prove (11).

Consider the set of points 1x1 in the Cartesian plane. The
subsets (ul+N) x(u2+N) and (yl-N) x(ve-N) of I xI lie in upper
and lower quadrants of the plane whose intersection contains the set
[ul’vl] X [ug,ve] . This situation is illustrated in Figure 1. We want
to study the linear form mlx+m2y evaluated over all points
(%,¥) eIxI ; in particular, we are interested in points which have
equal evaluations. Given an element heI , the set Lh of all points
(xly) €I xI such that mlx+m2y = h is situated on a unique line
having slope -ml/m2 . Also, it is easy to see that if
(x',y") e (IxI)N L , then L = {(X'+jm2, y! -jml): Jer} .

To prove (11), note that the set on the right is contained in the

set on the left; suppose the reverse is not true. From this assumption
we shall deduce a contradiction. Under this assumption it follows that

there exists an hel such that Lh has points in common with both

U = ((ut0) x (ugr)) \ (lug, vy 1 X Lo, v,])

and
V — ((vl-N) x(v2~N)) \ ([ul, vl} X [ug,vg]) s

but Lh has no point in common with

B = [ul,vl] x[ug,vg]
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Figure 1. The set of points (u,+N) x (u +N
ire - P ( 1) x( ) ) lies in the quadrant

above and to the right of the point
J P ( the set of points

UppUy)
(Vi'N) X (VQ'N) lies in the quadrant below and to the left of the

point (v,,v.) , ;
12 Vo and the set of points [ul’vi] X[ug,Vé] lies in

the box.
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Suppose (x',y") €Ly, NUand (x",y") €L N v ; since (x',y') £B,

either x' < U-l or y' > V2 . If x' < ul ’ then X" > Vl because
(x*,y"), (x",y") el and (x",y") B . In this case we suppose (x*,y%)
has been selected from Lh N U “so that x' is maximal, and (x",y")

has been selected from Lh NV so that x" is minimal. Since

(x',3'),(x",y") €Ly , and L N B = § , we must have x"-x' = m

2 .
But, x'. 4 and x" > v, implies x*+1 <u and x"-1 > Vi hence,
2O = Mot o > - : : :
m2 2 =x"-xt-2 i vlu1 ¢ contradicting the hypothesis vl-ul > mg'l

In the case y' > Vo, + it follows that y" o< U, - This time the
points (x',y') and (x",y") are selected so that y' is minimal
and y" 1is_maximal. The argument goes just as before; we must have
yr-y" o my which leads to the contradiction Voo, < ml-2 . This
completes the proof of Theorem 2.

Now we prove Theorem 1. To do this, we prove an identity having

the form of (11), but subject to the conditions (4) and (5).

LEMMA. If k-dimensional vectors m , u , and Vv satisfy the hypothesis

of Theorem 1, then

k k k
(13) iglmi(uiﬂ\l) N Zizlm.l(v.l—N) = j_zz:; mi((u —l—N) N (vi-N))

Theorem 1 is an immediate consequence of the Lemma; its application

- is the justification of the penultimate equality in the following string

of formulas.



(14) [meu + c(rﬁ),ﬁl.\';_g(n;)] =

(m-u+o(m) +N) 0 (m.v

-o(m) -N) <

k
) = Z mﬁ[ u"l’ V_l]

f k

m, (u,+N - -
& 1( i ) ni=zl: mi(vi N) =
k

z m.{(u.1+N) N (v.-N)

i=1

To prove Theorem 1 completely,

each ieI , let 1. = (ii; J-ceIk
i

false. Then there exists heI such

LhnB=¢;}here

[

U = {x: ZeT® , X >u}\B

k

V= {X: %I , X <7} \B

B = [ul)vl] X oo X[U—k,Vk]

Suppose xX'¢U is selected so that

k

(15) y max{vi,x:!L}
i=1

is minimal, where x' = (x!

,...,xi:) )

re[1,k] such that XI'_ > v

r
'that x{ < V. since otherwise x' >
for all x < Vv, contradicting the a

r #s, sowehave

k
IR R
ifr, s

;O Mex =

i=1

it remains to prove the Lemma. For

i} , and suppose the Lemma is

thatLhﬂU, Lhnviéfé,bu‘b

Since x'¢B , there exists

Furthermore, there exists se[1,k] such

v , which implies h - - -
= mex' > mex

ssumption L NV £ o Of course,

+ .
ms(xé +mr) 3



Hence, by the minimality assumption made in (15),

18 - +

(18) max{v_,x! -m_} max{vs,xé+mr} > max{Vr,X;,}"'max{vs,xé}
Hence,

(19) ma.x{vs,xé+mr} > ma.x{vs,x;} = Vo

x! .
S+mr > vs H

x> v - -
s Smrzvm

This implies

(20) X' > v-(my...,n)

Suppose x"eV is selected so that

k
(21) L min {ui, xY }

1

is maximal where x" = (xj',_, M'MI::) . Now an argument running parallel

to (15)-(21) can be given to show that
(22) X" < u+ (my...,m)

Together (20) and (22) imply

- . k
(23) 0 = m-X'-mex" > i{;l mi((vi-m+l)-(ui+m—l))

k
= m*(¥-u) -2(m-1) 1Z=1 m,



e

But (5) implies

k
(2k) i (V=) -2(m-1) ¥ mg > 0,
=1

so (23) provides the required contradiction, and we conclude that the

Lemma 1s true.

The results proved in this paper arose in connection with our
investigation [1] of the smallest set {m*Xx :1) ¢ P containing 1 which

is closed under the operation m-x where m = (ml,. Hgmk) is a given

k-tuple of relatively prime positive integers.
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