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ON THE SOLUTION OF MOSER'S PROBLEM IN FOUR DIMENSIONS

Abstract

The problem of finding the largest -set of nodes in a d-cube of
side 3 such that no three nodes are collinear was proposed by Moser.
Small values of d (viz.,d <3 ) resulted in elegant symmetric
solutions. It is shown that this does not remain the case in I
dimensions where at most 43 nodes can be chosen, and these must not

include the center node.

1. Introduction

Given a standard 2-dimensional tic-tat-toe board, what is the
maximum number of squares that can be occupied such that no three
occupied squares are in a straight line? The largest solution occupies
six squares, and it is unique modulo rotation. The problem as generalized
to a d-dimensional tic-tat-toe board was proposed by Moser [3], [2].
A set of nodes of a d-dimensional board is said to be a solution if no
three nodes of the set are in a straight line. The problem is to

determine the largest solution for d-dimensions. We denote the number

of points in the largest solution by F(d) . We have
F(l) = 2 (two solutions modulo rotation),
F(2) = 6 (unique solution modulo rotation), and
F(3) = 16 (unique solution modulo rotation -- see Figure 1).



The "unique" solution for d =3 is shown in Figure 1. It is easy to
show that 40 < F(4) <46 . Chvdtal [1] demonstrated a lower bound for
F(d) that gives F(4) > 42 , and, in general, F(d) > cﬁdﬁﬂd .  He also
showed that there exists a solution using 43 nodes.

Maximal solutions in one, two and three dimensions have the property
that at least one in each case is symmetric about the center, leading one
to hope that there might exist such nice" maximal solutions for all
dimensions. Unfortunately, this is not true for the four dimension case.
It is shown that any maximal solution in 4 dimensions has 43 nodes,
and the center node is not occupied, i.e., it cannot be symmetric about

the center,,

2. Some Results for Two and Three Dimensions

The following results can be easily verified, and are stated

without proof.

(1) The unique solution for F(2) occupies all four side nodes and
two opposite corner nodes.

There are five solutions for a two-dimensional board with 5
occupied nodes (modulo rotation and mirror image). These are shown

in Figure 2, and will subsequently be referred toasa, b, ¢, d, e

(2) For a three-dimensional board, the unique best solution has 16
nodes distributed 6, 4, 6 in the three parallel planes (along major

axes) as presented in Figure 1.



Figure 1

The 16-node solution in three dimensions.
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Figure 2

The five-node solutions in two dimensions.



(3) For a three-dimensional board, if 6 nodes are occupied in the

middle plane, the best solution has 1k occupied nodes.

(4) If a solution for the 3-D problem has 6, 5,4 occupied nodes in
parallel planes then the middle five must be of type e , and of the L,

one must be a center node in the plane.

(5) If a solution for the 3-D problem has 5, 5,5 occupied nodes,

the configuration must be (a,e,c) or (a,e,e) .

(6) If the center node is occupied in a solution for the 3-D problem
then no more than 1lb nodes can be occupied. This follows from the
general result that if the center node is occupied in a solution for d

d.
dimensions then the solution can have at most (3 +l)/2 nodes.

(7) If the left plane in a 3-D solution has 6 occupied nodes and
the right plane has either 5 in configuration e or the 4 corners

then the middle plane can have at most 3 occupied nodes.

(8) There exists no 5, 4,5 solution in 3-D where the two 5's are

in confiqguration e (in any relative orientation).

3. The Proof of F(4) < 43

A 4-D board is represented by a tableau of 9 planes each
containing nine points. The planes will be referred to as A,B,...,I as

below.
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\A\ will represent the number of occupied nodes in A , etc. In
addition, implicit use will be made of the symmetries of the problem.
Points in a plane will be referred to by adjectives "center", "side",
and "corner". Also, planes A,C ,G and I will be called corner-planes,
etc. "™Mid row" refers to D, E, F , similarly for "mid col", etc.
Mid row| obviously means the number of occupied nodes in the middle
row, and so on. The row-vector of a solution refers to the number of
occupied nodes in the three columns, e.g., (15,14,13) means
\left col\ = ‘Al+ ‘D‘+ |G| = 15 , etc.; and similarly for the column
vector (the first element refers to the top row).

In the proof below it is assumed that there is a solution with hk
nodes and a contradiction is obtained by case analysis. The cases where

|E| <3 and |E| = 6 are easy and are disposed of first.

|E| < 3 in a Solution with ik nodes

Both |D| and |F| cannot be 6 , otherwise the best possible row

vector is (14,15,1%) by (3) and (2) (since |E|;é 4) and that sums to

only k43
If (mid row| > 15 it must be distributed 6,3,6 —— contradiction.
If |mid rowl =1 , i.e., 6,3,5 the best row vector is

(14,14,15) since the middle colunn also can't contain 15 nodes (by
the previous case).

If |mia row| = 13 , i.e., 5,3,5 , 6,3,4 or 6,2,5 the best row
vectors are (15,13,15) , (1%,13,16) and (14,13,15) respectively.

1f |mid row\ = 12 , i.e., both |D| and |F| are not 4 , then a
row vector (16,12,16) is impossible.

If |mid row| < 11 the best row vector is (16,11,16) .



|E| = 6 in a Solution with 44 Nodes

By (3), |A]+ |1] <8, |B|+ |g] <8, |c|+ |c] <8, |p|+ |F| <8,

which gives a maximum possible solution of only 38 nodes.
We next prove a contradiction if lEl = 5.

\E\ = 5 1in a Solution with 44 Nodes

Case 1: |mid row| = 15

(1) If the mid row is 5,5,5 and the column vector is (16,15,13) .
Then D is a , E is e and |F| = 5 by (5), and |A] = |c| = 6 .
since |A| = 6 and D is a , |G| £ 3 by (4). Since [C| = 6
and |F| =5, |I| < 4 by (2). As |bot row| = 13 , |#| = 6,

but this is impossible because in B all four corners are occupied

and in E(=e) three are occupied.

(ii) If mid row is 5,5,5 and the column vector is (15,15,11%) .
Then D is a , E is e, |F| =5 as before. The best row
vector is then (14,15,15) for which F is e by (&), (5).

1f |c| = 6 then by (4), |e| <4, ] <%, and since
|bot row| = 14 , |H| =6 and |G| =|I| = 4 . Then, as
|1eft col| = 14, |A] = 5 and then |B| = 4 . But from H , E
and B and by (4) the center node of B must be occupied, which
implies that |top row| < 14 by (6) -- a contradiction.

If |C| = 5 then |I| = 5 and \a\ = 5 (since \a\ < 5
by A, E, I and if |A| < 5 then |top row| <15 ). Now if
we look at the triangle formed by A , C and I , each line is

distributed 5,5,5 which means that one end of each line must



be configuration a , and the other not an a , by (5); and that
is clearly impossible.
If |c| < 4 then |I| = 6 , |A] = 6 since

|third col| = |t0p row] = 15 ; but that is impossible (4,E,I) .

(iii) If mid row is 6,5,4, i.e., |F| =4 , then the center node of
F is occupied by (%), and the best possible row vector is

(l’blS:lh) by (5): (2), and (6).

Case 2: |mid row| < 14 , and |mid col| < 1k

Now |D|+ |F| < 9 and |B|+ |H]| < 9 as |E| = 5 . Aalso,
\a\+ |I] <20, and |c| +|6¢| < 10 by (2); hence the solution has no

more than 4% nodes.

This leaves only the most "difficult" possibility open, i.e.,

|El = 4 .

|E| = 4 in a Solution with 44 Nodes

Case 1: Imid row| = 16

By (2),|D] = |F| — 6 , and E has the four corner nodes occupied.
BY (3), |left col|,|right col| < 1k , leaving |B| = |E] =6 . It
follows that |left col| = |right col| = |top row| = |bot row| = 1L
Now consider the planes A , C , G and I . Since all side nodes in
B, D, F and H are occupied, at most 4 side noes of A and C
together can be occupied; and similarly for G and I . Also, as all
L4 corner nodes of E are occupied, A and I together can have at

most 4 occupied corner nodes; and likewise for C and G . This,
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together with the four center nodes of A , C

of 20

(1)

(1)

(iid)

(iv)

, G and I gives a total

We want 16 of these nodes to be occupied.

If any corner plane, say A , has all 4 corner nodes occupied
its center node can not be occupied, and also no corner nodes can
be occupied in C , G or I ,-leaving at most 3 center nodes

and 8 side nodes -- a total of only 4+3+8 = 15 .

If any corner plane, say A , has 3 corner nodes occupied,
then no corner node of C or G can be occupied, and at most
one of I can be occupied. Also, only 3 center nodes and 8

side nodes can be occupied, giving only 3+1+ 3+ 8 = 15 .

~

If in A two "adjacent" corner nodes are occupied there can be
no corner nodes in C or G , leaving a total of 2 corners

(in A') + 2 corners (in 1) + 4 centers + 8 sides = 16 .
But all 16 cannot be taken since, as all centers are occupied,
each of A, C , G and I must have 2 adjacent sides occupied
(to total 8 ). But the orientation of the two sides in I has
to be the same as in A (and different from C and G ). But

this conflicts with the corners occupied in I

If in A two opposite corner nodes are occupied, say top-right
and bottom-left (abbreviated tr and bl ), then the tr , bl
nodes in I cannot be occupied. If any of the other two corner
nodes in I is occupied then no corner node in C or G can
be occupied. And, if no corner node in I is occupied then
only the tr , bl nodes in C , G can be occupied, and at most
2 of these can be taken. Either way, the maximum possible is

only U4 corners + 3 centers + 8 sides = 15 .



(v) Hence each of A , C , G and I must have exactly 1 corner
node occupied (to total 16 ). But this cannot be done owing to
the orientation of the corner nodes in B, D , F and H and the

fact that all their side nodes are occupied (see Figure 1).

Case 2: |mid row| = 15 , and |mid col| < 15

|Ip} =6, |F| = 5 . Thus |left col| < 14 by (3), and as
|mid col| < 15 we must have |right col| > 15 , i.e., F is e by

(%), (5); but a 6,4,e (D,E,F) is not a solution in 3-D by (7).

Case 3: |mid row| = 14 , and |mid col| < 1k

-~

If the mid row is 6,4,4 , i.e., |P| =6, then |1eft col| < 1k
implying Imid col| = 14 and |right col| = 16 , i.e., F has four
corner nodes occupied; but this is impossible (D,E,F) by (7).

If the mid row is 5,4,5 then |left col| < 15 and |right col| < 15
and as |mid col‘ < 1% all are satisfied with equalities. Thus D and

F are both of type e by (4), (5) and D,E,F is impossible by (8).

Case 4: |mid row\ < 13 , and |mid col| < 13

One row and one column must have 16 -- say the top row and the
left column. Then ‘A\ = ‘C\ = ‘G\ = 6 . Now looking at the triangle
A,C,G , each line is distributed 6,4,6 , and by (2) the orientation of
the two 6's is opposite in each line. And this is clearly impossible

for the triangle.

This exhausts all possibilities, implying that there is no solution
for the 4-D tic-tac-toe problem with 44 nodes. Thus, solutions with

43 nodes are optimal.
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INDEPENDENT PERMUTATIONS AS RELATED TO A PROBLEM OF MOSER

AND A THEOREM OF PéLYA

Abstract

Independent permutations and their properties are discussed, and
they are shown to be related to the generalization of Moser's problem to
d-cubes of side n with the constraint that a solution have no n
collinear points. It follows, for example, that there exist total
solutions (i.e., solutions with n(ifg_l nodes) in arbitrarily large
dimensions. These problems are also related to the problem of placing
n noncapturing superqueens (chess queens with wrap around capability)
on an nyxn board. As a special case of this treatment we get Pélya's

theorem that n superqueens can be placed on an nxn board if and only

if n is not a multiple of 2 or 3

1. Introduction

A chess queen is a piece that can move horizontally, vertically, or
diagonally, any number of squares. We define a more powerful piece which
we call a superqueen. A superqueen moves like a queen, but when it
reaches an edge of the board it can wrap around to the opposite edge.
Effectively it treats the board as if it were a torus. A typical
superqueen on a T x7 board is shown in Figure 1. Squares marked x
denote the squares the superqueen can reach in one move. We ask -- for
what values of n (n > 1) can n superqueens be placed on an nxn

board such that no superqueen can capture another? Pélya[7] proved that

11



Figure 1
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this can be done if and only if the smallest prime factor of n is at
least five. We relate Pélya's theorem to a concept of independent
permutations on the set p = {0,1,...,n-1} . Indeed, we obtain bounds
on the largest number S(n) of independent permutations on Dn and
show that Pdlya's theorem follows from-these bounds. We also introduce
two other pieces even more powerful than the superqueen and mention the
conditions under which n of these pieces can be placed on an nxn
board such that no piece can capture another.
We also relate independent permutations to a problem posed by
Moser [5], [6]. Moser asked for the maximum number f(n,d) 0f nodes
of a d-dimension hypercube of side n such that no n of these nodes

d d-1
are collinear. We find that if d < S(n) then f(n,d) = n -n

2. Independent Permutations

Given a set D = {0,1,...,n-1} , a permutation on D, is a 1-1
function from Dn onto itself. For any permutation P on Dn and

integers a,b where b is 0 , 1 or -1 , the function P' given by

P'(x) = P((atbx) mod n) is said to be a modification of P . In the
special case where b is zero, P' 1is a constant function, and hence

any constant function P' given by P'(x) = a, aeDn , 1s a modification

of P

A set of permutations {Pl,P2,,,.,Pd} is said to be independent
if for every Pi, é,...,Pé where Pi is a modification of P1 ,
Pé is a modification of P2 , etc., not all modifications constant,
the function Pi+-Pé+ Lot Pé (defined in the obvious way, having the

15



value (PiX) + Pébq + . Lt PéUQ mod n) for argument x ) is also a
permutation. Equivalently, for every sequence al,ae,...,ad of integers
and every sequence bl’b2""’bd in {-l,O,l}d such that not all bi's
are zero, the function Pdefined by

11

example, consider the domain D5 ; the set of permutations &ﬁ,Pe}

P(x) = Eﬁa +h.x)+ ... +Pa(gi+bd;) mod n , is a permutation. As an

below is independent.

x Pl(x) P2(x)

0 0 0

1 L 2

2 3 L
- 5 2 1

L 1 P

Their independence can be checked by the definition, but intuitively the
justification is the following: the difference between successive
values of Pl(x) is -1 (mod 5) , and any nonconstant modification Pi
must have difference 1 or -1 ; similarly, any Pé must have
difference 2 or -2 . Adding Pi and Pé must result in a function
that has a constant nonzero difference between successive values, and

it must hence be a permutation.

Some of the interesting properties of independent permutations are

the following:

(l)If‘{Pl,P .., P is independent then so is {Pi,Pe,---,Pd} where

2’ al

Pi is any nonconstant modification of Pl .

(2) Any subset of an independent set 1s independent.

1



(3) 1If {Pl’PE’ ...,Pd} is independent then so is {Pl+k,P2,,,., d}
where k is any integer and Pl+k is defined in the obvious way, i.e.,

(P

l(x)+k mod n)

(h)If[Pl,PQ,,M ) E@@Q% is independent then so is {k-Pl,k-Pg,...,k-Pd} ,
where k is any integer that is prime with respect to n , and k-Pi

is defined in the obvious way as being (k'Pi(X) mod n) for argument x .

(5)1f {Pl’PE’ o K%, Pd} is independent then so is {-P »Byy [ s

The first four properties are obvious; the fifth one can be proved
as follows. Note: all arithmetic below is modulo n

Suppose {-Pl,Pa, ... ,Pd} is not independent. Then for some
al,az,...,ad and bl’b2’°"’bd where ai's are integers and each b.1
is 0, 1 or -1 (not all bi's zero) there exist distinct integers

x and y in the domain Dn such that

-P (&) +byx) + P(ay+ bx) + .- +Pd(ad+bdx) =

l(l

-Pl(al+ bly) +P2(a2 + bey) + et Pd(ad+ bdy) .

Case 1. If bl =0, then we can find an ai in Dn such that

Pl(ai) = -Pl(al) since P; is a permutation. Then

P, (aj) + L P.(a, +b.x) = P_(a!) + E P.(a, + b.y)
ll25i5dlll 1125156.11 i

and this would imply that {Pl’P2""’Pd.} is not independent -- a contra-

diction.

15



Case 2. If bl = 1 then

P (a; +y)+ Z P.(a,+b.x) = P (a,+x)+ E P.(a,+ b.y) ,
v 2<i<a * ¢ 7 L T ocfcg TR

and hence

Py(ag+x+y)-x) , L Pia+bix) =
2<i<d

P.((a,+x+y) -y)+ X P.(a. +b.y)
1* 1 o<i<a ivi 1

But this implies that {Pl, Py .. .,Pd} is not independent -- a contradiction.

Case 3. bl = -1 . This is handled in quite the same way as

Case 2 above: by choosing 8.]'_ = al-x-y and bi = 1 we get

P.(a!+ blx)+ Z P.(a, +b.x) =
1'V1 1 o<i<a ivi i

Pl(ai+biy) + Z Pi(ai +biy)

2<i<ad
implying that {Pl, e ,Pd} is not independent -- a contradiction.
A set of permutations {Pl,PE, .. .,Pd} is said to be additive

if for every sequence C17Cpre . 5Cq where each c, is 0 , 1 or -1

but not all ci's are zero,

E c.- P,

1<i<da 7

is a permutation. It is easy to check that the properties similar to

(2)-(5) above hold for additive permutations. In addition, additive

16



permutations have the property that if the set {Pl,Pe,...,Pd} is
additive and P is any permutation then {Pl°P,P2°P,...,Pd°P} is
additive where EioP(x) = Pl(P(x)) , etc. The property of independence
is not preserved in this transformation.

It follows from the property (4).above that independence implies
additivity. The converse is not true, as may be seen from the following
example. Permutations Pl , P2 below are additive, but not independent.
A direct check for additivity is trivial, but we may also observe that
Pl ) P2 are additive because they can be obtained by permuting the
previous example (of an independent, and hence additive, set). They
are not independent because taking Pi to be Pl itself, i.e.,
(0,3,4,2,1) and Pé to be (3,0,4,2,1) , and adding we get (3,3,3,4,2)

which is not a permutation.

X Pl(x) Pg(x)
0 0 0
1 3 L
2 L 2
p) 2 1
L 1 p)

The property of additivity is an important one for independent

permuations and we will take recourse to this later.

3. Bounds on S (n)

We are interested in the largest set of independent permutations
for any domain Dn —— let its size be S(n) . Some values of S(n)

are given below.

17



n S(n)
1 1
2 1
3 1
L 1
5 2
6 1
T 2
8 1
9 1
10 1
11 3

It follows from (3) above that for the evaluation of S(n) we need

~.

only consider permutations P for which P(0) = 0

3.1 Lower Bound

If n is a prime then the set of permutations

{1,2.1, 4.1, .-a , 2k~I}

where k = Llogz(nlj—l and I is the identity permutation ovean ’

is obviously independent.
This construction produces an independent set of permutations for
any n by taking k = UDgQOMJ -1 where m is the smallest prime

factor of n . Thus we obtain the following result.

Theorem 1. For n >1, S(n) > Uﬂgeﬁﬂj , where m is the smallest

prime factor of n .

The construction above uses permutations of a very special kind,

namely, a-I where a 1is some integer, and the set of permutations

18



includes the identity permutation itself. It is interesting that the
smallest example of an independent pair {I,P} where P # a.I+b for
any a,b 1is over the domain DlB (note: for any n , 1if an independent

pair {P, ,P
-+

2} exists, then there exists a pair of the form {I:P} )

Several examples exist for D13 , one is:

X I(x) P(x)
0 0
1 1 3
2 2 8
3 3 11
L L 5
p) > 1
T 6 6 10
T 7 L
8 8
9 9 12
10 10 2
11 11 9
12 12 6
3.2 Upper Bounds
Lemma. If {Pl, .. .,Pd} is an independent set of permutations over D

n >1, such that for all i < d, Pi(O) = 0 , then for every pair of
sequences al,az, .o .,a.d and bl’be""’bd where each ai and each bi
is 0 or 1 ,

al'Pl(l) + . L+ ad-Pd(l) = bl~Pl(l)+ . ..+bd-Pd(l) mod n

a. =b

if and only if a, = bl, o ottt s By a

19



Proof. The "if" part is trivial.
For the proof in the other direction assume that there exist
distinct sequences of ai's and bi's for which

1+ . ..+ a P

2Py (
the sequence LV EERELF) where ci = ai-bi for each 1 £ d . Each
Cp is 0, 1 or -1 , not all cl's are zero, and

cl-Pl(O)+ oLt cd-Pd(O) =0 as Pi(O) = 0 for all i
and

cl-Pl(l)+ .ot Cd-Pd(l) =0 mod n
i.e., {Pl,. “@Pd} is not additive, but this is impossible as shown by
property (¥) of independent permutations. This completes the proof.

It follows from this lemma that 2d < n , and hence:

Theorem 2. For n >1, S(n) < Llogg(n)_J

This upper bound is about the best nondecreasing bound one can hope

for, since by the lower bound theorem it is tight when n is a prime.

Theorem 3. For n >1 , let m denote the smallest prime factor of n
Then
m
S(n) < = .
Proof. We will first consider the case m = 2 and show that S(n) <1
and then show the theorem for odd m . 1In each case we will only use

the additive property of independent permutations, and hence the upper

bound is shown to be true even for additive permutations.

20



n even, m = 2 . Suppose there exist two permutations Pl and P2

over Dn that are independent. We wish to derive a contradiction from
this.

Now Pl(O),Pl(l),.--,Pl(n-l) are the numbers 0,1,...,n-1 in some
order, as are P2(0),P2(l),-.-,Pé(n-l) , and also
Pl(O) . PE(O) mod n, Pl(l) +P’l(l) mod n, .. Pl(n-l)+P,2(n-l) mod n ,

by the additive property. Therefore

4

L p =200 o (B)man

OSxSn-l 2

O<x§n-l P,(x) —n.z(n-l) = (-g) mod n ,

L 20 +By) = 201 _ (By joq g

0<x<n-1 2
But
Z Pl(X) +P2(X) mod n = z Pl(X) + Z P2 (x) mod n
0<x<n-1 0<x<n-1 0<x<n-1
= -1214- -g— mod n
= 0 mod n

which is a contradiction.

n odd, m odd . Let




We will first show that o # 0 mod n , and then use this result in the

proof that follows. We have

o= L &= L L ("t (2,

0<x<n-1 0<x<n-1 0<i<m-1

where {m—il} represents Stirling numbers of the second kind -- see, for

example, Knuth [4], pg. 65. Note that when x < i then (};) = 0 by

definition. Hence

SO

6= L L ™Yy (%)

0<i<m-1 0<x<n-1 * *
‘ m-1-, . n
R N S EA G

{m-l .y n!
i 3 YTEEDT (meieD) v

-1 n
("N ment (B)+ L
m-1 mT0<i<m-2

(n-1) ! m-1, (m-1)! (n-1)}
(n-m) ! ¥ O<i§m—2{ i } vl ° (n-i-1) 1

c-(m-l)! = (m-1) !na

Now, the first term on the right hand side is

Y(m-1)¢ (n-1) (n-2) . . . (n-m+l)

(

Sis

(%) (m-1) ! (-1)m-l (m-1)! mod n

(%) ((m-l)!)2 mod n

£ 0 mod n

since m 1is a prime; and the second term is 0 mod n because

22



{m—il3 ’ (mi—+l£! , and (_1(11-1_;]-%5'_'- are all integral. Thus

o(m-1)! # 0 mod n , and hence ¢ # 0 mod n

We can now prove the desired result. Suppose there exists a set

+
of k = -I-n-z—l independent permutations [Pl’ Py . . ’Pk} over D

We wish to obtain a contradiction from this.
First, let SP denote the set of all vectors (sl,...,sp) where
each si equals 1 or -1 (s stands for "sign"). Consider the sum

e T L L (5P (%) + s P(%) + ...+ skPk(x))m'l

(sl, ceoy sk)esk 0<x<n-1

-1
2 ) (s, (x) + . . .+ 5,2, (0)"
@<x<n-1 (sl,...,sk)ezsk
On expansion, terms in which any Pi appears with an odd power are
cancelled out, and the coefficients of terms in which all Pi's appear
with even powers add up, to give

o= L2 Lo )"

0<x<n-1 1<iy<k 71

J J
-1 1 2
+ L (™em) e @)
1<i.<i. <k 9192 " 2
B I/ P
Jys J5 even
Jitip=m-1
J J J
-1 1 2 3
. L M e ) (e ()7 (R ()
1<i.<i, <i,<k 919233 1 2 3
Jl) 32’ 35 even

JHightds =m+l
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' Z (o a5, ) () e )
1<i, <. Sk J1de o dkel k1
0<Jl’ . @@T&GD.
Jys - v sl even
Jlf. .+jk_l.-m-l
(i.e., all j's are 2)

-1 m-1
(.M ) L)
J1 do Jy Jdp I3

We use the following notation:

T

1<ij<k 1

where etc.,

(x) )t

i

Tl(X)

Tz(x) = Z

1511<125k

J1 Jdo

jlf j2 even
Jitdp =m-d

etc.

Thus

ho* L

0<x<n-1

In general, for 1 <p <k,

2k

(") (e <x>>

Tl(x) + Tz(x) + ...

represent multinomial coefficients.

32
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+Ty (%)

consider the sum



a - ) L L (o3F Werep, ()

P
1511<12<...<zp5k (sl,...,sP)esp 0<x<n-1 P
= GO0 (SaBe G s (x)"
0<x<n-l1 15£l<...<lP§k by \j/ \j/i; J’U@'QP plp

-

When we expand the summations shown in brackets above, all terms in

which any Pi appears with an odd power are cancelled out, and terms

. -1 - :
like (Pi (x))" appear EP(g_i) times, terms like

J
(") (e, ) i P, () ®  appear 2P(KL

) times, and so on,

to yield ~

A =2P Z (5 ) T, (x) + (1;:2) T, () + ...+ (kap) T,(%)

P 0 <x<n-1 p-1

We now form the sum

A= Z (-1)P &P A

1<p<k
- 2k P k-1
OSXZSM n® L D)
T -1 p , k-2
TRE L TG
+
-1P 1
+ Ty (%) k_l;)sk (-1® (L ey
=0
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We can also form the same sum in another way. Noting that

g = Xm—l

0<x<n-1

and using the additive property .of independent permutations we see that

oKL g 2: (-1)P (g) mod n

1<p<k

- Qk.c mod n

I

But n is odd, and ¢ # 0 mod n , hence A # 0 mod n . This is the

desired contradiction.

Corollary. Let m be the smallest prime factor of n (n >1) .

Then if n is prime or m < 5 , then S(n) =|jpg20®J .

The smallest values of n for which S(n) is not given by this

corollary are 49 , 77 , and 91 .

4, Relation to Moser's Problem

Let M(n,d) denote the set of all vectors Gﬁf""xd> where each
xl is an element of Dn .and let f(n,d) denote the size of the
14
largest subset S < M(n,d) containing no n collinear points.

Obviously, f(m,1) = n-1 , and f(n,d+1) < nf(n,d) , so that
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f(n,d) < nd-n

Moser conjectured that f(n,d) = o(nog for each fixed n ; this
conjecture has not been proved or disproved yet, though, of course,

f(2,d) =1 for all d . It has-been shown, however, that

£(3,d) > C5d/~/d (see [2]),and £(3,3) =16, £(3,4) =43 (see [1]).
Also, f(4,2) = 12 , f(4,3) = 48. These can be shown by the set

S cM(4,3) represented by squares marked x in Figure 2 which represents

four parallel planes of a cube of side four.

Theorem 4.  Given any n and d such that 1 <d <8(n) ,

£(n,d) = nd_nd-t

Proof. Given a set of independent permutations {Pl,...,Pd} on a
domain Dn , we wish to show that

f(n,d) = n%-nd-t

Let S be the set of all (Xj,..:yXg) eM(n,d) such that

Pl(xl)+ PE(X2)+ 3 ..+Pd(xd) £ 0 mod n
Clearly S contains nd—nd_l nodes because for every X »X,s.-X3 1
in Dn there is exactly one X3 for which <Xl’x2’ o ..,xd) 1is not
in S . To see that S contains non collinear points, observe that

any line passing through n points may be represented as:

_ . = = +Db.,.
xl—al+blz,x2 a2+b20Z, ’Xd ad bdz

where z 1s a parameter that takes on values 0,1,...,n-1 , and for

each i either
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X X
X|x X |x
X X
X X |x
Figure 2
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(1) b, = 0 and a;eD , i.e., X, is constant

(i1) b

1 and ai =0, or

(iii) bi -1 and a.i = n-1,

and not all bi's are zero. Then by-the definition of independent

permutations, the function of z defined by

Pl(al4-bl.z)+-...4-Pd(ad4-bd.z)

is a permutation and hence for some value Of z it equals 0 , and by
the definition of the set S the corresponding node is not in S . This

completes the proof.

Corollary. Given any d there is an n > 1 for which f(n,d) = nqqg_l

This follows from the above theorem and from the fact that S(n)

can be made arbitrarily large by a suitable choice of n .

5. Relation to Pdlya's Theorem

We return, now, to the problem motivated in the introduction,
that is, the question of the existence of a configuration of n
noncapturing superqueens on an nxn board. We shall relate the
existence of such configurations to our concept of independent

permutations.

Theorem 5. If n is any integer n > 1 , then n noncapturing
superqueens can be placed on an nyxn board if and only if S(n) > 2
Furthermore, the number of ways in which n superqueens can be so placed
equalsthe number of bermutations P over Dn such that {I,P} is

independent.
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Proof. All arithmetic below is modulo n . And we use the words

"square" (in an n xn board), "node", and "vertex" interchangeably.

(a) If S(n) > 2 there exists a set {Pl,Pe} of independent permutations
over Dn . Consider the configuration in which superqueens are placed on
exactly those nodes (X,y) where Pl(x)+P2(y) = 0 . Now, clearly,

there is exactly one superqueen in every row and column. Furthermore,

two superqueens cannot be on the same diagonal (with wrap around)

because any diagonal can be represented as y = atbx where b is 1

or -1, and aeD_ ,.then as Pl(x) +P2(a+bx) must be a permutation

(as Pl’P2 are independent) there can be only one point on the diagonal

where it is zero, i.e., there cannot be two superqueens on the diagonal.

(b) On the other hand, 1if there is a configuration for noncapturing
superqueens then for each yeDn there is a unique xeDn such that
there is a superqueen at (x,yy . Let Q denote the set of nodes on
which superqueens are placed. We define the permutation P by

P(y) = -(the unique x for which {%,y)eQ) . P is a permutation because
for any x there is a unique y for which {X,y)eQ . Now, the set
{1,P} where I is the identity permutation, is independent, because
if not there exist al,a2 (-:Dn, bl’b2 € {O,l,-l} not both zero, and

X 5%, €D 5 Xy # x, such that

I(al+bl-xl) L astby %) = I(al+bl-x2) + P(a2+b2-x2)

1)
Thus

P(a2+b2-xl) -P(6.2+b2-x2) = by (xe-xl) .

Now, b, # 0 because if b, = 0 then bl too would have to be 0 . By

the definition of P , there are superqueens on nodes
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G

vy = (-P(agtb,. x;),a5+b,.%;) and on v, =(-P( a tb, X5)s8 5P, %50
which is the same as (-P(a2+b2.xl)4—bl(x2-xl),a2+b2.x2) . Since
b2 # 0 and Xy £ X, the nodes vy and v, are distinct. Now consider

the line of nodes (X,y) given by

b, x+b.y = b, .Plagtb,.x ) + a,.by +b,byex)

(this is a valid line since both bl’b2 are not zero). But both nodes
vy and Vs fall on this line and hence in the original arrangement, one
superqueen can capture another -- a contradiction.

It should be noted that in this construction the set of nodes Q
where superqueens are placed is given by those (X,y) for which
I(x) + P(y) ; 0 . Comparing with part (a) of the proof we have a 1-1

correspondence between superqueen solutions and independent permutations

of the form {I,P} .

From our earlier results (Theorems 1, 3) we see that (for n > 1)
S(n) > 2 if and only if n 1is not a multiple of two or three. We say
a superqueens solution is regqular if it corresponds to an independent
set {I,a-I+b} , otherwise it is nonregular. The smallest nonregular
solution is for n = 13 (see Section 3.l). Incidentally, PSlya's
theorem can also be used to solve the related problem for super
nite-queens. A nite-queen is a piece that can move like a chess queen
or a chess knight (two squares in a horizontal or vertical direction
and one square in an orthogonal direction). A super nite-queen is a
nite-queen with wrap-around moves allowed. The problem of placing n
noncapturing super nite-queens on an n xn board has been mentioned

several times in the literature (see, for example, Golomb [3]). There
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exists a solution if and only if n > 11 and n is not a multiple of
two or three. We can show this by using independent permutations as
follows. Clearly a solution can exist only if n is not a multiple

of two or three. From the construction in the proof of Theorem 5 we

see that if the independent pair {I, P} in which P has the form

P = a.I+b , corresponds to a solution to the super nite-queens problem,
then the knight's-move constraint requires that a # 2,n-2,(n-1)/2,(n+1l)/2 mod n
But, for n =5 or 7 the only independent pairs {I,P} are those for
which P hastheform a.I+b, and a=2 or 3 if n =5, and

a = 2,3,4 or 5 if n =7 (see Section 3.1), none of which corresponds
to a solution. Hence there is no solution for n = 5 or 7.But we
can easily get a solution if n > 11 from the independent pair {1,31}
if, if course, n 1is not a multiple of two or three. Also, the example
of the independent set {I,P} for D15 in Section 3.3 corresponds to a

nonregular solution for the super nite-queens problem. There is another

interesting piece which we call a super K-queen. It moves like the super

nite-queen except that in one move it can take any number of knight

steps in any one direction, whereas the super nite-queen could take only
one step. A proof somewhat similar to the proof for Theorem > can be
used to show that n non-capturing super K-queens can be placed on an

n xn board if and only if n is not a multiple of 2,3,5, or 7

(by showing that if m , the least prime factor of n , is 5 or 7

then no solution exists, and if m > 11 then {I,3I} corresponds to a
solution). The smallest nonregular solution of super K-queens is unknown,

but a computer search shows that only regular solutions exist for n <23 .
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