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( ON THE SOLUTION OF MOSER'S PROBLEM IN FOUR DIMENSIONS

Abstract

$C The problem of finding the largest set of nodes in a d-cube of

side 5 such that no three nodes are collinear was proposed by Moser.

, Small values of d (viz.,d <5) resulted in elegant symmetric

. solutions. It is shown that this does not remain the case in Ub

dimensions where at most 43 nodes can be chosen, and these must not

include the center node.

& ~~.

¢ 1. Introduction

Given a standard 2-dimensional tic-tat-toe board, what 1s the

maximum number of squares that can be occupied such that no three

. occupied squares are in a straight line? The largest solution occupies

six squares, and it is unique modulo rotation. The problem as generalized

) to a d-dimensional tic-tat-toe board was proposed by Moser [3], [2].

\ A set of nodes of a d-dimensional board is said to be a solution if no

three nodes of the set are in a straight line. The problem is to

determine the largest solution for d-dimensions. We denote the number

¢ of points in the largest solution by F(d) . We have

F(l) = 2 (two solutions modulo rotation),

F(2) = 6 (unique solution modulo rotation), and

.
F(3) = 16 (unique solution modulo rotation -- see Figure 1).

1
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The "unique" solution for d =3 is shown in Figure 1. It is easy to

C show that 40 < F(4) <W6 . Chvétal [1] demonstrated a lower bound for

F(d) that gives F (4) > h2 , and, 1n general, F(d) > 32a . He also

showed that there exists a solution using 43 nodes.

'. Maximal solutions in one, two and three dimensions have the property

that at least one in each case 1s symmetric about the center, leading one

to hope that there might exist such nice" maximal solutions for all

s dimensions. Unfortunately, this 1s not true for the four dimension case.

It is shown that any maximal solution in 4 dimensions has 43 nodes,

and the center node is not occupied, i.e., 1t cannot be symmetric about

« the center,,

C 2. Some Results for Two and Three Dimensions

The following results can be easily verified, and are stated

without proof.

¢
(1) The unique solution for F(2) occupies all four side nodes and

two opposite corner nodes.

There are five solutions for a two-dimensional board with 5

¢ occupied nodes (modulo rotation and mirror image). These are shown

in Figure 2, and will subsequently be referred to as a, b, ¢, d, e .

(8 (2) For a three-dimensional board, the unique best solution has 16

nodes distributed 6, 4, 6 in the three parallel planes (along major

axes) as presented in Figure 1.

¢
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Figure 1

The l1l6-node solution in three dimensions.
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Figure 2

The five-node solutions 1n two dimensions.
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(3) For a three-dimensional board, if 6 nodes are occupied in the

¢ middle plane, the best solution has 14 occupied nodes.

(4) If a solution for the 3-D problem has 6, 5,4 occupied nodes in

parallel planes then the middle five must be of type e , and of the 4,
&

one must be a center node in the plane.

; (5) If a solution for the 3-D problem has 5, 5,5 occupied nodes,

¢ the configuration must be (a,e,c) or (a,e,e) .

(6) If the center node is occupied in a solution for the 3-D problem

then no more than 14% nodes can be occupied. This follows from the
|©

general result that if the center node 1s occupied 1n a solution for d

d.
dimensions then the solution can have at most (3 +1)/2 nodes.

¢ (7) If the left plane in a 3-D solution has 6 occupied nodes and

the right plane has either 5 in configuration e or the 4 corners

then the middle plane can have at most 3 occupied nodes.

&

(8) There exists no 5, 4,5 solution in 3-D where the two 5's are

in configuration e (in any relative orientation).

&

© 3. The Proof of F(4) < 43

8 A 4-D board 1s represented by a tableau of 9 planes each

containing nine points. The planes will be referred to as A,B,...,I as

below.

$ A B C

D El F

G H I

¢



|| will represent the number of occupied nodes in A , etc. In

C addition, implicit use will be made of the symmetries of the problem.
Points in a plane will be referred to by adjectives "center", "side",

| and "corner". Also, planes A,C ,G and I will be called corner-planes,

< etc. "Mid row" refers to D, E, F , similarly for "mid col", etc.

|Mid row | obviously means the number of occupied nodes in the middle

row, and so on. The row-vector of a solution refers to the number of

« occupied nodes in the three columns, e.g., (15,14,13) means
|1eft col] = |A| + ID| + I = 15 , etc.; and similarly for the column

vector (the first element refers to the top row).

< In the proof below it is assumed that there is a solution with bk
nodes and a contradiction is obtained by case analysis. The cases where

|E| <5 and |E| = 6 are easy and are disposed of first.

¢

|E| < 3 in a Solution with bi nodes

Both |D| and |F| cannot be 6 , otherwise the best possible row

& vector is (14,15,14) by (3) and (2) (since |E| £ 4) and that sums to

only 43 .

If (mid row | > 15 it must be distributed 6,3,6 —— contradiction.

6 If |mid row| = 14 , i.e., 6,3,5 the best row vector is

(1h,14,15) since the middle colunn also can't contain 15 nodes (by

the previous case).

¢ If |mid row| = 13 , i.e., 5,3,5 , 6,3,4 or 6,2,5 the best row

vectors are (15,13,15) , (14,13,16) and (1k4,13,15) respectively.

Tf |mid row\ = 12 , i.e., both ID| and |F| are not 4 , then a

 & row vector (16,12,16) is impossible.

If |mid row| < 11 the best row vector is (16,11,16) .

p)



|E]| = 6 1n a Solution with 44 Nodes

- By (3), [A]+ [I] <8, |B}+ |u| <8, |c|+ |¢] <8, |p|+ |F| <8,

which gives a maximum possible solution of only 38 nodes.

C We next prove a contradiction if |E| = 5.

|E] = 5 1n a Solution with 44 Nodes

Case 1: |mid row| = 15
«

(1) If the mid row is 5,5,5 and the column vector is (16,15,13) .

Then D is a , E 1s e and |7| = 5 by (5), and |A] = IC | = 6 .

C Since |A| = 6 and D 1s a , |G| < 3 by (4). Since Ic = 0
and |Fl=5, |I] < 4 by (2). As |bot row| = 13 , |H| = 6,

but this is impossible because in B all four corners are occupled

and in E (=e) three are occupied.

(ii) If mid row is 5,5,5 and the column vector is (15,15,1k) .

Then D is a , E is e, |F|l = 5 as before. The best row

C vector is then (14,15,15) for which F is e by (4), (5).

1f || = 6 then by (4), |G] < 4, lI] <4 , and since

|bot row| = 14 , |H| = 6 and |G] = |I| = 4 . Then, as

C | Left coll = 14, |A| = 5 and then |B] = 4 . But from H , E

and B and by (4) the center node of B must be occupied, which

implies that [top row| <14 by (6) -- a contradiction.

C If |c| = 5 then |I]| = 5 and \a\ = 5 (since \a\ < 5

by A, E, I and if |A| < 5 then |top row| < 15). Now if

we look at the triangle formed by A , C and I , each line 1is

« distributed 5,5,5 which means that one end of each line must

6
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be configuration a , and the other not an a , by (5); and that

N is clearly impossible.
If |¢] < 4% then |I|= 6 , |A] = 6 since

| third col| = | top row| = 15 ; but that is impossible (A,E, I) .

C (iii) If mid row is 6,54, i.e., |F| = 4 , then the center node of

F is occupied by (4), and the best possible row vector is

(1k,15,1%) by (3), (2), and (6).

C

Case 2: |mid row|< 14, and |mid col|< 1k

Now |D}|+ |F| <9 and |B|+ |H| < 9 as |E| = 5 . Also,

- \a\+ |I| <10 , and |c| + |¢] < 10 by (2); hence the solution has no

more than 4% nodes.

C This leaves only the most "difficult" possibility open, i.e.,

El = 4 .

« |E| = 4 in a Solution with 44 Nodes

Case 1: |mid row| = 16

By (2), |D] = |F| — 6 , and E has the four corner nodes occupied.

- BY (3), |left coll, |right col| < 14 , leaving |B| = |H]| = 6 . 1t

follows that |left col| = |right col| = |top row| = |bot row| = 14 .

Now consider the planes A , C , G and I . Since all side nodes in

- B,D, F and H are occupied, at most 4 side noes of A and C

together can be occupied; and similarly for G and I . Also, as all

L corner nodes of E are occupied, A and I together can have at

“ most 4 occupied corner nodes; and likewise for C and G . This,

i
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together with the four center nodes of A , C , G andI gives a total

C of 20 . We want 16 of these nodes to be occupied.
(1) If any corner plane, say A , has all 4 corner nodes occupied

1ts center node can not be occupied, and also no corner nodes can

q be occupied in C , G or I ,~leaving at most 5 center nodes

and 8 side nodes —-- a total of only 4+3+8 = 15 .

(11) If any corner plane, say A , has 3 corner nodes occupied,

C then no corner node of C or G can be occupied, and at most

one of I can be occupied. Also, only 3 center nodes and 8

side nodes can be occupied, giving only 3+1+ 3+ 8 = 15 .

S -

(iii) If in A two "adjacent" corner nodes are occupied there can be

no corner nodes in C or G , leaving a total of 2 corners

(in A) + 2 corners (in 1) + 4 centers + 8 sides = 16 .

- But all 16 cannot be taken since, as all centers are occupied,

each of A, C , G and I must have 2 adjacent sides occupied

(to total 8 ). But the orientation of the two sides in I has

~ to be the same as in A (and different from C and G ). But
this conflicts with the corners occupied in I .

Te (iv) If in A two opposite corner nodes are occupied, say top-right
and bottom-left (abbreviated tr and bl ), then the tr , bl

nodes in I cannot be occupied. If any of the other two corner

C nodes in I 1s occupied then no corner node in C or G can

be occupied. And, 1f no corner node in I 1s occupied then

only the tr , bl nodes in C , G can be occupled, and at most

C 2 of these can be taken. Either way, the maximum possible 1s

only 4 corners + 3 centers + 8 sides = 15 .

38
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(v) Hence each of A, C , G and I must have exactly 1 corner

node occupied (to total 16 ). But this cannot be done owing to

C the orientation of the corner nodes in B , D , F and H and the

fact that all their side nodes are occupied (see Figure 1).

C Case 2: |mid row | = 15 , and |mid col| < 15

Ip| = 6, |F| = 5 . Thus |left coll < 14 by (3), and as

|mid col| < 15 we must have |right col| > 15, i.e., F is e by

¢ (4), (5); but a 6,h,e (D,E,F) is not a solution in 3-D by (7).

Case 3: |mid row| = 14 , and |mid col| < 1k

If the mid row is 6,44 , i.e., ID| = 6, then | Left col| < 1h

implying Imid col| = 1b and |right col| = 16 , i.e., F has four

corner nodes occupied; but this is impossible (D,E,F) by (7).

- If the mid row is 5,4,5 then | left col| < 15 and | right coll < 15
and as |mid coll < 1b all are satisfied with equalities. Thus D and

C F are both of type e by (4), (5) and D,E,F is impossible by (8).

Case L: |mid row\ < 15, and |mid col | < 15

C One row and one column must have 16 —-— say the top row and the

left column. Then [A] = Ic| = |G] = 6 . Now looking at the triangle

A,C,G , each line is distributed 6,4,6 , and by (2) the orientation of

C the two 6's is opposite in each line. And this is clearly impossible

for the triangle.

C This exhausts all possibilities, implying that there 1s no solution

| for the 4-D tic-tac-toe problem with U4 nodes. Thus, solutions with

| 13 nodes are optimal.

C 9
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INDEPENDENT PERMUTATIONS AS RELATED TO A PROBLEM OF MOSER

C AND A THEOREM OF POLYA

Abstract §

C Independent permutations and thelr properties are discussed, and

they are shown to be related to the generalization of Moser's problem to

d-cubes of side n with the constraint that a solution have no n

C collinear points. It follows, for example, that there exist total

solutions (i.e., solutions with nt nodes) 1n arbitrarily large

dimensions. These problems are also related to the problem of placing

C n noncapturing superqueens (chess queens with wrap around capability)

on an nxn board. As a special case of this treatment we get Pdlya's

theorem that n superqueens can be placed on an nxn board if and only

“ if n 1s not a multiple of 2 or 3 .

C 1. Introduction

A chess queen 1s a piece that can move horizontally, vertically, or

) diagonally, any number of squares. We define a more powerful piece which

C we call a superqueen. A superqueen moves like a queen, but when it

reaches an edge of the board it can wrap around to the opposite edge.

Effectively it treats the board as 1f 1t were a torus. A typical

C superqueen on a | X{ board is shown in Figure 1. Squares marked x

denote the squares the superqueen can reach in one move. We ask —-- for

what values of n (n > 1) cann superqueens be placed on an nxn

L board such that no superqueen can capture another? Pélya[7] proved that

11
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this can be done if and only 1f the smallest prime factor of n 1s at

C least five. We relate Pélya's theorem toa concept of independent

permutations on the set D = {0,1,...,n-1} . Indeed, we obtain bounds

on the largest number S(n) of independent permutations on Dy and

C show that Pdlya's theorem follows from-these bounds. We also introduce
two other pieces even more powerful than the superqueen and mention the

conditions under which n of these pieces can be placed on an nxn

C board such that no piece can capture another.

We also relate independent permutations to a problem posed by

Moser [5], [6]. Moser asked for the maximum number f(n,d) ©0f nodes

C of a d-dimension hypercube of side n such that no n of these nodes
are collinear. We find that if d < S(n) then f(n,d) = pat

.

2. Independent Permutations

Given a set D = {0,1,...,n-1} , a permutation on D is a 1-1

C function from Dy onto itself. For any permutation P on D. and

integers a,b where b is 0 , 1 or -1 , the functionP' given by

; P'(x) = P((atbx) mod n) is said to be a modification of P . In the

C special case where b is zero, P' 1s a constant function, and hence

any constant function P' given by P'(x) = a , aeD , 1s a modification

of P .

C A set of permutations (PsP, +5 Py] is said to be independent

if for every P,P. 5B) where PJ 1s a modification of P1 ,

Pp, is a modification of P, , etc., not all modifications constant,

C the function P+ P+ . o..t Py (defined in the obvious way, having the

15
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value (Pi(X) + P}(x) +. + P}(x) mod n) for argument x ) is also a

permutation. Equivalently, for every sequence 89855 +0 +38y of integers
«

and every sequence SEL EEPLF in (-1,0,1}% such that not all b.'s
are zero, the function Pdefined by

= + + ' '

. P(x) P, (a +Dbx) + Co Py(ay bX) mod n , 1s a permutation. As an
example, consider the domain Ds ; the set of permutations (Py; P,}
below 1s independent.

C x P, (x) P(x)

0 0 0

1 L 2

2 5 L

L - p 2 1

b 1 3

Thelr independence can be checked by the definition, but intuitively the
C

justification is the following: the difference between successive

values of P(x) is =-1 (mod 5) , and any nonconstant modification Pq

must have difference 1 or -1 ; similarly, any P} must have
C

difference 2 or -2 . Adding PJ and P, must result in a function

that has a constant nonzero difference between successive values, and

it must hence be a permutation.
«

Some of the interesting properties of independent permutations are

the following:

C (1) If (P,P; . .+5 Py} is independent then so is {P,P - +sPy} where

Py 1s any nonconstant modification of Py .

C (2) Any subset of an independent set 1s independent.

14
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(3) 1If {P;P,, YS is independent then so is {Ptk, Psy. . 5 Py}

. where k 1s any integer and P tk 1s defined in the obvious way, 1.e.,

(Py (x)+k mod n) .

Wei, by. 4 0 AOL 8H is independent then so is {k-P,k-P,...,k-P,} ,
-“ where k 1s any integer that 1s prime with respect to n , and k-P,

is defined in the obvious way as being (k-P, (x) mod n) for argument x .

. (5) If {P,P « XK Ps} is independent then so is {-PysPyy ¢ I

The first four properties are obvious; the fifth one can be proved

C as follows. Note: all arithmetic below 1s modulo n .

Suppose {P,P Co. sPs} is not independent. Then for some

8158ny «ery and SEL TREE where a's are integers and each op

C is 0 , 1 or -1 (not all b.'s zero) there exist distinct integers

Xx and y in the domain D, such that

- «ceo t+ + =P (a + b,x) + P (a, + b,x) + Py(ay bx)
C

- “oe +P, (a; + by) +Py(a,+ by) + +P (a; +Dby) .

Case 1. If b. = 0 , then we can find an a! in D_ such that
C === - 1 1 n

NN

P. (aj) = P. (a) since P; is a permutation. Then

P. (29) + y P, (a; + b,x) = P, (al) + y P. (a, + by)
C 2<i<d 2<i<d

and this would imply that {PsP +sP,] is not independent —- a contra-
diction.

C

15
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Case 2. If oy = 1 then

C
+ + wo +X) + +Play +¥)+ }  Py(a; +x) Pia +x) +} Piag+ by),

2<id 2<i<d

and hence

- P,((a,+x+y)-x) . L PB (a+bx) =
2<i<d

: P.((a,+x+y) -y)+ ). P.(a, +b.y) .11 s 11 1
oo 2<i<d
C Sis

But this implies that {Ps Poy . . +sPy 1s not independent -- a contradiction.

‘ Case 3. by = -1 . This is handled in quite the same way as

Case 2 above: by choosing aq = al-x-y and by = 1 we get

P.(al+ bix)+ ).  P.(a,+b.x) =
C 1'V71 1 > <T<d ivi Ti

: P.(al+Dly) + y. P.(a, + Db.y)
171 1 2<i<a itl i

C

. implying that Py» . P,} 1s not independent -- a contradiction.

C A set of permutations {Py Py; : . +B} is said to be additive

1f for every sequence C1sCpre.+5Cy where each C, is 0 , 1 or -1

| but not all c.'s are zero,

«

L 1" Fy
1<i<d

is a permutation. It 1s easy to check that the properties similar to

(2)-(5) above hold for additive permutations. In addition, additive

16



C

permutations have the property that if the set {P1sPyy ees Py} is

C additive and P 1s any permutation then {P P,P oP; ...,P;P]} 1s

additive where P, °P(x) = P, (P(x)) , etc. The property of independence

1s not preserved in this transformation.

. It follows from the property (4).above that independence implies

additivity. The converse is not true, as may be seen from the following

. example. Permutations Py , P, below are additive, but not independent.

“ A direct check for additivity is trivial, but we may also observe that

Py Pp, are additive because they can be obtained by permuting the

previous example (of an independent, and hence additive, set). They

are not independent because taking Py to be Py itself, 1i.e.,

(0,3,4,2,1) and P, to be (3,0,4,2,1) , and adding we get (3,3,3,4,2)

which 1s not a permutation.

C X P, (x) P(x)
0 0 0

1 3 L

2 L 2
.

> 2 1

L 1 5

C The property of additivity 1s an important one for independent
permuations and we will take recourse to this later.

5. Bounds on S(n)

We are interested in the largest set of independent permutations

for any domain D —— let 1ts size be S(n) . Some values of S(n)

are given below.

| 17



EC

n S(n)

1 1

L 2 1

5 1

L 1

5 2

6 1

7 2

8 1

9 1

- 10 1

11 5

It follows from (3) above that for the evaluation of S(n) we need
C -

only consider permutations P for which P(0) = 0 .

C 3.1 Lower Bound

If n 1s a prime then the set of permutations

k
{1,2.1, 4.1, .-a , 2 +I}

C.

where k = |Log, (n)] -1 and I is the identity permutation over D _ ,

. 1s obviously independent.

C This construction produces an independent set of permutations for

any n by taking k = | log, (m)) -1 where m is the smallest prime
factor of n. Thus we obtain the following result.

L []
Theorem 1. For n > 1, S(n) > |Log, (m) , where m is the smallest

prime factor of n .

The construction above uses permutations of a very special kind,

namely, a-:I where a 1s some integer, and the set of permutations

18
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includes the identity permutation itself. It is interesting that the

smallest example of an independent pair {I,P} where P # a.,I+b for
C

any a,b 1s over the domain D3 (note: for any n , if an independent

pair {P, Py} exists, then there exists a pair of the form {I,P}).
Several examples exist for D , one 1s:

X T(x) P(x)

5 0 0 0

1 1 p,

2 2 8

5 3 11

I L 5

Ie _ p) p) 1
6 6 10

7 7 L

8 8 7

C 9 9 12
10 10 2

11 11 9

12 12 6

C

5.2 Upper Bounds

C

Lemma. If {P Co Py} is an independent set of permutations over D

n >1, such that for all i <d , P. (0) = 0 , then for every pair of

C sequences 8,855 ++ +584 and bysPyy ees by where each as and each bs
is 0 or 1 ,

a;-P(1) + . + a +P (1) = bP (1) + . ..+byPy(1) mod n

C if and only if a, = by, 8, = by eo , a; = by.

19
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Proof. The "if" part is trivial.

For the proof in the other direction assume that there exist
-

distinct sequences of a,'s and b's for which

the sequence C15Cns ++ +5Cy where C. = a.-b, for each 1 < d . Each

Cp is 0 , 1 or -1 , not all c,'s are zero, and

. + . = — :cy P, (0) FC P,(0) 0 as P, (0) 0 for all i

C and

c +P (1) + —— cq Py(1) = 0 mod n

i.e., {Psy oP] is not additive, but this is impossible as shown by
'.

property (4) of independent permutations. This completes the proof.

| It follows from this lemma that od <n , and hence:
Co

Theorem 2. For n >1 , 8(n) < [1og,(n)

C This upper bound 1s about the best nondecreasing bound one can hope

for, since by the lower bound theorem 1t 1s tight when n is a prime.

Theorem 3. For n >1 , let m denote the smallest prime factor of n .

-
Then

m

C

Proof. We will first consider the case m = 2 and show that S(n) <1,

and then show the theorem for odd m . In each case we will only use

the additive property of independent permutations, and hence the upper

C

bound 1s shown to be true even for additive permutations.

20
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n even, m= 2 . Suppose there exist two permutations Py and FP,

over D. that are independent. We wish to derive a contradiction from
C

this.

Now P,(0),P;(1),-..,P;(n-1) are the numbers 0,1,...,n-1 in some

order, as are P,(0),P,(1),...,Py(n-1) , and also
C

Pp. (0) \ P,(0) mod n, Pp, (1) +P,(1) mod n, P, (n-1) +P, (n-1) mod n ,
by the additive property. Therefore

Co ). P, (x) = Lee)(n-1) = (5) mod n
0<x<n-1l

C ~ y P(x) = 2: (0-1) = (3) modn
0<x<n-1

.(n-1

C y P(x) + P(x) z= a:(n-1) = (3) mod n .
0<x<n-1

But

C

Y. P, (x) + P(x) mod n = ) P. (x) + ) P, (x) mod n
0 <x <n-1 0 <x<n-1 0<x<n-1

n,n

C = 3 + 5 mod n

= 0 mod n

- which 1s a contradiction.

n odd, m odd . Let

« 5 = Y up |
0<x<n-1

2 1

C



We will first show that 0 # 0 mod n , and then use this result in the

C proof that follows. We have

—-1 m=-1. .

0 <x<n-l 0<x<n~-1 0<i<m-1

C where ("Th represents Stirling numbers of the second kind -- see, for

example, Knuth [4], pg. 65. Note that when x < i then (3) = 0 by
definition. Hence

“

m-l 5 . X

0<i<m-1 0<x<n-1

-1. n
- Lo" it (gn)
0<i<m-1 1% rd

m-1 n m-1 ; nt

C = ("1 wey (D+ Uy 3 YY)mon)m-1 m0 <i <m-2 1 (i+1)! (n-i-1)

SO

n (n-1)! Y m-1, (m-1)! n-1)}C os (m-1)!= (m-1)! = Fr—++ {TY ssn = T -
m (n-m)! 0<i<m-2 i itl (n-i-1)t.

. Now, the first term on the right hand side 1is

¢ n
(=) (m-1)? (n-1) (n-2) . . . (n-m+l)

n m-1
= (=) (m-1)! (-1)7  (m-1)! mod n

“ n 2
= (=) ((m-1)!)" mod n

£0 mod n

«

since m 1s a prime; and the second term is 0 mod n because
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m—1 (m-1)! n-1):

{ EE ETS and AA are all integral. Thus
o(m-1)! # 0 mod n , and hence ¢ # 0 mod n .

C

We can now prove the desired result. Suppose there exists a set

+

of k = Be independent permutations (Py Pos a. oP} over D, .

C We wish to obtain a contradiction from this.

First, let 5, denote the set of all vectors (815 ++58,) where

each 5, equals 1 or -1 (s stands for "sign"). Consider the sum

. -1

C A = y, Yo (sR (x) + 5, (%) + ...t 5B(x))"...58 YeS, 0<x<n-1 1d e(817-058 0€8, 0<x<

-1

= ). ). (s.B.(x) + . . . +sP (x)11 kK k

© @<x<n-1 (815+ 58, 0€8,

. On expansion, terms in which any P, appears with an odd power are

L cancelled out, and the coefficients of terms in which all P's appear
«

with even powers add up, to give

k m-1

0<x<n-1 1<i, <k 1LL — J — —

J J
m-1 1 2

ER SE Gip Ne J COD Re CO)
1<i, <i, <k “172 "1 2

Jy» 3, even

C - .
J J J

-1 1 2 5

; 1X (7) Tp (0) Fe (ry (9)1<i, <i, <i, <k 91 Y233 1 2 3

0<31s352d3

C dq Jos Jz even
Cops 4s =
JpHdgtds =mtl

25

C



- 1 J1 k-1m- _

1<i <...<1 <k 1 2° k=-1 1 k 1
—- "1 k-1-—

C Ak Co eS! even
Jit .e Fp =m~1

(i.e., all j's are 2)

C m-1 m-1 . CL
where (.7 >) , (. 57.) etc. represent multinomial coefficients.

We use the following notation:

m-1¢ r(x) = ). (B, (x) )
1<1, <k 1

J J
m—1 1 2

1<1, <i, <k 1 “2 1 2

Jy Jo even

C Jytdy =m-1

etc.

C Thus

©)A, 2 | T, (x) + T(x) +... + I, _1(%)
0 <x<n-1

¢ In general, for 1 <p <k , consider the sum

CC

2h

C



_ ) ) ) m~-1A - (51P, (x)+..+sP) (x))
1<t, <I,<... <1,<k (55-58 )e8, 0 <x <n-1 1 p

C

= ). ) P) 0 (s1P, (x)+. . Fs P, (x)=, .0<x<n-1|1<t,<.. <r <x i & 490 AQ 1 pL
« -

When we expand the summations shown in brackets above, all terms in

which any Pp. appears with an odd power are cancelled out, and terms

C like (P, (x)™ appear (5 1) times, terms like1 -

_ J J -
( -l ) (PB; (x)) Lp, (x)) 2 appear P(E >) times, and so on,did 4 io p-

“ to yield

| k-1 k-2 k-A =2F ) (1) T+(C0) TR) + eee + OF) T(x)
C

. We now form the sum

A= ) (-1)®? 25P a
C 1<p<k :

k k-1En) T(x) Yar 7)
: 0<x<n-1 1<p<k P

‘ k=2
+ T,(x) ). (-1)® (5 5)

2<P<k -

|. -

| k-1<p<k P

25

C



We can also form the same sum in another way. Noting that

‘ 0<x<n-l

and using the additive property .of independent permutations we see that

« Ky AP )
A = 2° 0 modnD (p)

i.e.,

A= ) (-1)P 2" Pa
“ 1<p<k

= 2g. ) (-1)® (5) mod n
1<p<k P

. ~ .
==-2 .0 mod n .

But n is odd, and 0 # 0 mod n , hence A # 0 mod n . This is the

C desired contradiction.

Corollary. Let m be the smallest prime factor of n (n >1) .

C Then if n is prime or m < 5 , then S(n) = [10g (m)] .

The smallest values of n for which S(n) is not given by this

C corollary are 49 , 77 , and 91 .

C 4, Relation to Moser's Problem

Let M(n,d) denote the set of all vectors CEFRERFE IY where each

Xx, 1s an element of D_ .and let f(n,d) denote the size of the[4

C largest subset S < M(n,d) containing no n collinear points.

Obviously, f(n,1) = n-1 , and f(n,d+l) < nf(n,d) , so that
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C



f(n,d) < Saat

oC dMoser conjectured that f(n,d) = o(n ) for each fixed n ; this

conjecture has not been proved or disproved yet, though, of course,

f(2,d) = 1 for all d . It has-been shown, however, that

“ d
£(3,d) >c3 Md (see [2]),and £(3,3) =16, £(3,4) = 43 (see [1]).

Also, f(4,2) = 12 , f£(4,3) = 48. These can be shown by the set

iE S cM(L4,3) represented by squares marked x in Figure 2 which represents

a four parallel planes of a cube of side four.

Theorem kL. Given any n and d such that 1 <d < S(n) ,

« £(n,a) = n®n®t

Proof. Given a set of independent permutations {Pys..»Py] on a

C domain D_, we wish to show that

f(n,d) = n¢-not

“ Let S be the set of all (Ks 09%y) eM(n,d) such that

P(x) + P(x,) + : cot P(x) F£ 0 mod n .

d _d-1

C Clearly S contains n -n nodes because for every X 5X,--+0Xy_1

in D, there 1s exactly one X35 for which (X75 %5 0 ..,xd) 1s not
in S . To see that S contains non collinear points, observe that

C any line passing through n points may be represented as:

= » = . es = + .Xq a; +b, Z 5, X, a, + Dl , ) Xg 84 by Z

C where z is a parameter that takes on values 0,1,...,n-1 , and for
each 1 either
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« Tele] Belle]] Rll] fx] Ix
x efx]| [eff] ped] Ix) [¥] Ix]x
x[xx] REx Clxdxlx]  [=l=lx]|
x fx] fx] pl [xx] klxfx]| [lxfxix]

«

Figure 2

«

C

C

C

C

C
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| :

(i) b, = 0 and a.,ed , i.e., x, 1s constant

C (11) ob. = 1 and a = 0 , or

(111i) b., = -1 and a. = n-1 ,
i 1

C and not all b.'s are zero. Then by-the definition of independent
permutations, the function of z defined by

+ ; + ...F + .P. (a, by Z) P.(ay by z)

C

. is a permutation and hence for some value Ofz it equals 0 , and by

the definition of the set S the corresponding node is not in S . This

| completes the proof.
« -—

d d-1

Corollary. Given any d there is an n > 1 for which f(n,d)= n -n

C This follows from the above theorem and from the fact that S(n)

can be made arbitrarily large by a suitable choice of n .

|.

5. Relation to PSlya's Theorem

We return, now, to the problem motivated in the introduction,

Is that 1s, the question of the existence of a configuration of n

noncapturing superqueens on an nxn board. We shall relate the

existence of such configurations to our concept of independent

C permutations.

Theorem 5. Ifn is any integer n > 1 , then n noncapturing

superqueens can be placed on an nyxnh board if and only if S(n) > 2 .

«
Furthermore, the number of ways in which n superqueens can be so placed

equalsthe number of permutations P over Dg such that {I,P} is

independent.
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Proof. All arithmetic below is modulo n . And we use the words

"square" (in an n xn board), "node", and "vertex" interchangeably.

C

(a) If S(n) > 2 there exists a set {P,P} of independent permutations

over D_ Consider the configuration in which superqueens are placed on

« exactly those nodes (X,y) where P, (x) + P,(¥) = 0 . Now, clearly,

there 1s exactly one superqueen 1n every row and column. Furthermore,

two superqueens cannot be on the same diagonal (with wrap around)

because any diagonal can be represented as y = atbx where b 1s 1

) or -1, and aeD_ .then as P, (x) + P(a+bx) must be a permutation[4

(as P.>P, are 1ndependent) there can be only one point on the diagonal

. where it is zero, i.e., there cannot be two superqueens on the diagonal.

(b) On the other hand, 1f there 1s a configuration for noncapturing

superqueens then for each ye there 1s a unique xeD such that
C

there is a superqueen at (X,y) . Let Q denote the set of nodes on

which superqueens are placed. We define the permutation P by

P(y) = -(the unique x for which (X,y)eQ) . P is a permutation because
“

for any x there is a unique y for which (X,y)eQ . Now, the set

{I,P} where 1I is the identity permutation, is independent, because

if not there exist ay,8, €D_; b. 5D, ¢ {0,1,-1} not both zero, and
“

X15%Xp €D 5 Xq # x, such that

I(a +b x1) 1 P( a+b, x1) I(ay by X,) P(a, 5 5)

- Thus

P(agtbyxp) - Plaghb,Xp) = by: (xm)

Now, Db, # 0 because if b, = 0 then b, toc would have to be 0 . By
«

the definition of P , there are superqueens on nodes
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| v, = (-P(a tb, X1)s8,t0,%0) and on Vv, =(-P( a+b, X,) 8 505%)

n | which is the same as (-P(agtb,.x;) +b, (X5-%1),8,%b, X,) . Since
b, # 0 and xq # X, the nodes vq and V, are distinct. Now consider
the line of nodes (X,y¥) given by

C bye x + b,.y = b,-P(ajtb,.x,) +a,.b, + b,.b, x

| (this 1s a valid line since both b,,b, are not zero). But both nodes

. vq and Vo fall on this line and hence in the original arrangement, one
| superqueen can capture another -- a contradiction.

It should be noted that 1n this construction the set of nodes Q

C where superqueens are placed is given by those (X,y) for which
T(x) +P(y) = 0 . Comparing with part (a) of the proof we have a 1-1

correspondence between superqueen solutions and independent permutations

. of the form {I,P} .

From our earlier results (Theorems 1, 3) we see that (for n > 1)

C S(n) > 2 1f and only ifn 1s not a multiple of two or three. We say
a superqueens solution 1s regular if it corresponds to an independent

. set {I,a.-I+b} , otherwise it is nonregular. The smallest nonregular

C solution is for n = 13 (see Section 3.1). Incidentally, PSlya's
theorem can also be used to solve the related problem for super

nite-queens. A nite—queen 1s a pilece that can move like a chess queen

C or a chess knight (two squares 1n a horizontal or vertical direction

and one square 1n an orthogonal direction). A super nite-queen 1s a

nite-queen with wrap-around moves allowed. The problem of placing n

C noncapturing super nite—-queens on an n xn board has been mentioned

several times in the literature (see, for example, Golomb [3]). There
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exists a solution if and only if n > 11 and n is not a multiple of

two or three. We can show this by using independent permutations as

~ follows. Clearly a solution can exist only 1f n 1s not a multiple
of two or three. From the construction in the proof of Theorem 5 we

see that if the independent pair {I, P} in which P has the form

- P = a.I+b , corresponds to a solution to the super nite-queens problem,

| then the knight's-move constraint requires that a # 2,n-2,(n-1)/2,(n+1)/2 mod n .

\ But, for n = 5 or 7 the only independent pairs {I,P} are those for
| which Phastheform a.I+b , and a=2 or 3 if n=5, and

a = 2,3,4% or 5 if n = 7 (see Section 3.1), none of which corresponds

C to a solution. Hence there is no solution for n = 5 or T.But we
can easily get a solution if n > 11 from the independent pair {1,31}

if, if course, n 1s not a multiple of two or three. Also, the example

C of the independent set {I,P} for Dy in Section 3.3 corresponds to a
nonregular solution for the super nite-queens problem. There 1s another

interesting piece which we call a super K-queen. It moves like the super

C nite-queen except that in one move it can take any number of knight
steps in any one direction, whereas the super nite-queen could take only

one step. A proof somewhat similar to the proof for Theorem 5 can be

R used to show that n non-capturing super K-queens can be placed on an
n xn board if and only if n is not a multiple of 2,3,5, or 7

(by showing that if m , the least prime factor of n , is 5 or 7

C then no solution exists, and if m > 11 then {I,3I} corresponds to a
solution). The smallest nonregular solution of super K-queens 1s unknown,

but a computer search shows that only regular solutions exist for n < 25 .

«

52

LC



C

Acknowledgment

C The author 1s pleased to acknowledge several helpful discussions
with Prof. V. Chvdtal of Stanford University.

C

References

[1] A. K. Chandra, "On the solution of Moser's problem in 4 dimensions,"

C in Report No. cs-286, Computer Science Dept., Stanford University,
June 1972.

[2] V. Chvatal, "Remarks on a problem of Moser", Canad. Math. Bull.,

C vol. 15 (1), 1972.

[5] S. W. Golomb, "Sphere packing, coding metrics, and Chess puzzles,"

in the Proceedings of the Second Chapel Hill Conference on

. Combinatorial Mathematics and its Applications, May 1970, pp. 176-189.

[4] D. E. Knuth, The Art of Computer Programming, Vol. 1, Addison-Wesley,

1968.

C [5] L.. Moser, "Problem 21," Proceedings of 1963 Number Theory Conference,

University of Colorado, mimeographed, 79.

. [6] I.. Moser, "Problem P.170," Canad. Math. Bull., Vol. 13, pg. 268

C (1970) .

[7] G. Pdlya, "Uber die 'doppelt-periodischen' Losungen des

n-Damen-Problems," in Mathematische Unterhaltungen und Spiele,

C by W. Ahrens, Verlag und Druck von B. G. Teubner in Leipzig 1918,

pp. 364-3TkL.

¢

C


