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( 1. Introduction
—

Knuth, [11], Dixon, [6] and [7], and Heilbronn, [8], have recently

L investigated in considerable depth the average number of divisions performed

i in the Euclidean algorithm for integers. Although many interesting questions
) remain unanswered, the relatively elementary result of Dixon in [7] already

l suffices to completely determine the average computing time of the Euclidean
algorithm to within a constant factor, which factor is in any case dependent

_ on the particular computer used and inessentilial details of the implementation.

Such a determination of the average computing time of the Euclidean algorithm

L is the main result of the present paper. The maximum and minimum computing

t times of the Euclidean algorithm for integers will also be derived since,
although their determination 1s quite elementary, they have apparently not

| previously been published. These computing times are ail derived as functions
of three variables, namely the lengths of the two inputs and the length of the

L resulting g.c.d. (greatest common divisor). Previous results on the computing

: time of the Euclidean algorithm ([2]and [ll], Section 4.5.2, Exercise 30) have

L been limited to upper bounds on the maximum computing time.

i
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2. Dominance and Codominance

|

The relations of dominance and codominance between real-valued functions

— were introduced in [3], where they were used in the analysis of the computing

} time of an algorithm for polynomial resultant calculation. The related concepts

~~ and notation have subsequently been adopted by several authors, for example,

Brown, [1], Heindel, [9], and Musser, [12]. The definitions and some funda-

mental properties will be repeated here since they will not yet be familiar to

LL many readers.

If £f and g are real-valued functions defined on a common domain S we say

= that f is dominated by g, and write f 4 g, in case there is a positive real

number c such that f(x)< c.g(x) for all x S. We may also say that g dominates
Lo -

f, and write g >» f. Dominance 1s clearly a reflexive and transitive relation.

It 1s important to note that the definition 1s not restricted to functions of
 Se-—

one variable since the elements of S may be n-tuples.

L Knuth ([lo], pp. 104-108) defines f(x)=0(g(x))in case there is a positive
Co constant c such that | £(x)1< c-la(x)]. As long as one is dealing only with non-

~ negative valued functions, this formally coincides with the definition above of

f < g. Although Knuth implies that this definition is applicable only when f£
—

and g are functions of one variable, he in fact uses it for functions of more

- than one variable (e.g. [11], p. 388) in a manner which is consistent with our

| definition. Thus dominance 1s apparently a new notation and terminology but
— not a new concept. Although Knuth discussed at length the logical weaknesses

of the O-notation, he chose not to abandon it 1n favor of 'the more natural

—

notation of an order relation.

- If £ 4g and g 4A f then we say that f and g are codominant, and write

fg, Codominance is clearly an equivalence relation. If £f £ g but not g 4 £

L then we say that f is strictly dominated by g, and write f4 g. We may also
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L
say that g strictly dominates f, and write g »f. Strict dominance is

| clearly irreflexive and transitive. Whereas the O-notation has no counter-
parts for the codominance and strict dominance relations, it will become

3 apparent that these are important concepts in algorithm computing time analyses.

L Furthermore, the O-notation has a somewhat different meaning in asymptotic a-
| nalysis than the one used by Knuth (see, e.g., [5]).

| If £f and g are functions defined on S and 54 is a subset of S, it will
often be convenient to write f <£ g on S, in case £ < 81> where £ and 8; are

L the functions f and g restricted to S;. Also, if § © S;x...xS, a Cartesian prod-

i uct, we will denote by f the function f restricted to (fas x...xs ) S; that is,
| £ (xy5000x )=f(a,x,,. 000% ) for (a,x 5.05% )E gs. Similarly we may fix any

8 other of the n variables of f.
) Dominance and codominance have the following fundamental properties, most

| of which were listed by Musser in [12].

‘ Theorem 1. Let f£, SEEDY g, 81 and g5 be non-negative real valued functions

— on S, and let c be a positive real number. Then

L (a) fect
| (b) If f; £8; and f, X &,, then f;+f,4 g,%g, and f;- £2 g;- g,-
L (c) 1f Er < g and £, { g, then £+E, { gq.
. (d) max(f,g) f+g.

. (e) If 1< f and 1 4 g, then f+g 4 fg.

| (f) If 14 f, then f~ ftc.

(g) Let S& SX. .XS and a € 5, - If £f { g, then £ < 8,

L (h) Let s=s,Us,. If £ 4 g on S, and £f< g on Sos then £f < g on 8S.
: Proof. These properties follow immediately from the definition, except
L for (e). To prove (e), assume 1 < f and 1 £{ g so that, for some positive real

: number ¢, cf> 2 and cg > 2. We then have (cf-2)(cg-2)> 0, so

~ c” fgthy > 2c(f+g) > c(f+g)++. Hence “fg> c(f+g), cfg> f+g and f+g 4 fg. |
f 3
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5. Computing Time Functions

L Let A be any algorithm and let S be the set of all valid inputs to A
(the elements of S may be n-tuples). We associate with A a computing time

Fo

had function ty defined on §, t, (x) being the number of basic operations per-

| formed by the algorithm A when presented with the input x, a positive 1n-
Sr

teger. This assumes that the algorithm 1s unambiguously specified in terms

L of some finite set of basic operations. Changing the set of basic operations

; (as 1n reprogramming the algorithm for a different computer) will result in
}

had changing the computing time function t,, Alternatively, we could take the

L view that this represents a change in the algorithm. However, 1f By and B,
are two sets of basic operations such that each operation in B; can be per-

|
Lo formed by a fixed sequence of operations in Bs and vice versa, then the com-

, puting time functions associated with B, and B, for any algorithm A are co-
{

L dominant, and we will concern ourselves only with the codominance equivalence

{ class of Ea Thus the choice of basic operations 1s somewhat arbitrary. We

assume a choice which 1s consistent with any of the existing, or conceivable,

(

| random access digital computers but, in order to avoid the triviality of
finiteness, with a memory which 1s indefinitely expandable.

- The function ty is frequently too complex to be of interest for direct

L study. Instead, we ordinarily decompose S 1nto a disjoint union S = U°_ 4S.
where each S 1s a non-empty finite set, S being a denumerable set. The choice

{

of decomposition 1s made on the basis of some prior knowledge or some conjecture
)—

about the general behavior of ty: Relative to a decomposition of =(5,,5,,5,,- ++;
- of S we define maximum, minimum and average computing time functions, T,, t, and

*

f ty ondf as follows, where EN denotes the number of elements of S.
— +

t =ma t 1a(S, )mmax, oot, (x), (1)
n

|
—

L



— R =m] 2t:(s )emin__ ot, (x), (2)
n

* —

“ £,(S_)={ INCMIEN (5)
| As illustration, and in preparation for our analysis of the Euclidean

algorithm, let us consider the computing times of the classical algorithms

L for arithmetic operations, that 1s, addition, subtraction, multiplication

1] and division, of arbitrarily large integers. We assume that all integers are
represented in radix form relative to an integral base g>2, as discussed by

L Knuth in [11], Section 4.3. We know that the computing times of these al-
) gorithms depend on the lengths of the inputs.

L Following Musser, [12],we denote by bgld) the B-length of the integer a,
| that 1s, the number of digits 1n the radix form of a relative to the base B.

If [xl is the ceiling function of x, the least integer greater than or equal

to x, we have
|N—

Lg(a)=Tlog ({a|+1)1, (lt)
L for a#0, and we define La(0)=1.

In most contexts the base § is fixed and we write simply L(a) for the

L length of a. The omission of the subscript 1s further justified by the ob-
servation that, wv being any other base, we have

|

-
L~L, (5)
By

L where Lg and L are functions defined on the set I of all integers. In fact,Y

we can use the definition (4) when a 1s any real number and we thenhave

—

Lola) in(|al+2) on R, (6

L where [n 1s the natural logarithm and Ris the set of all real numbers, and
(6) clearly implies (5). The length function also has the following easily

verified fundamental properties:

-

5
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L(atb) < L(a)+L(b) for a,b £1I, (7)

— I the set of integers,

| L(ab)™ L(a)+L(b) for a,b& I-{0}, (8)
—.

L([a/b])~L(a)-L(b)+l for a,b €I and |al >|b|>0. (9)
—

We will also need the following theorem.

Theorem 2. (a) L(T,. 8, I ICH for ay,.++;a€ I. (b) Lm,_ a) ~
{ n

L RACH for ayseeesa E I-{-1,0,1}.
n

| Proof. L(ab)< L(a)+L(b) for a,b €1I, so L(1}_ja,)< ) =1k(a;) by induc-
tion on n, proving (a). To prove (b), assume first that 2<|a, |<p for 1< 1 <n.

L Then L(T;_q3,)> log my |e; |=(Log 2) log, TM) |a > (logg2)log,2 =(logg2)n (log 2)
n n

| ) i l(a), so ) iol(a,)< (log, B)L(T; ja.) -
, _ n

Next, assume Loi2y)2 2 for 1<i<m, and let £;=Lo(ay) Then L(TM=p2;)2to8,
L i ) nf I - "  L(a,) <L(M a.)(Mi=plad ) 2 Tog, (mM; 8 )= Jit £;-1) > it i/ © 50) j=1 a3) Slim
{

w Combining these two cases, we may assume L(a,)=1 for 1I<i < m and L(a,)> 2
: Nn n

| for m¥1< i < n. Then > s=b(a;)< (Log, 8)L(T _ a.) n 2L(T, 11134) 2(log, 8)n

(L(1 qa, HLT, 18,01 4 (Log, R)L(T, qa.) since L(a)+L(b)< 2L(ab) for

L a,b€& I-{0} .

It should be noticed that a simple inductive proof of (b) was not

— possible because n 1s regarded as a variable, not as an arbitrary but fixed

positive integer. As an immediate corollary of Theorem 2. we have
-

b

L(a")~bL(a) for a,b€ I,|a|> 2 and b> 0. (10)

- If A, M and D are the classical algorithms for addition (or subtraction),

. multiplication and division, respectively, as described in [11], Section 4.3,
then we clearly have c1

-



t,(a,b)~L(a)+L(b) for a,b& I-{0}, (11)

ty(a,b)~L(a)-L(b) for a,b € I-10}, (12)

~- tyla,b)~VL(b) L([a/b]) for a,b& I and |a|>Ibl>0. (13)

L 11s, for these algorithms, the natural decomposition of the set

; of=((a,b):a,bé I] consists of the sets 3 _={(a,b):L(a)=mgL(b)=n}. If we
— + + - *

wr ite t (m,n) in place of t (S. .)> and similarly fort and t , then from

g “11), (12) and (13), and using (9), we have
+ - * :

t,(mn)~t (m,n)~t (m,n)~mn, (1k)
“ N _ x

| ty(m,n)~ t (m,n) t, (m,n)~ mn, (15)

- ty(m,nj~t (m,n)e ty (m,n) ~vn(m-ntl) for m> n. (16)

Thus for these algorithms the maximum, minimum and average computing
—

times all coincide. This will not be the case for the Euclidean algorithm,

L to which we now turn.

_

a

.
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-
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L. The Maximum and Minimum Computing Times.

. For simplicity, and without loss of generality, we will consider the

| following version of the Euclidean algorithm, for which the permissible 1in-
puts are the pairs (a,b) of positive integers with a>b. The output of the

algorithm is the positive integer c=gcd(a,b).
L.

. Algorithm E

L (1) [Initialize.] cc—a; deb.
(2) [Divide.] Compute the quotient g and remainder r such that c=dqtr

\..

and O< r < d, using algorithm D..

1 (3) [Test for end.] «c¢d; der; if d#0, go to (2).
(4) Return.

.
This algorithm computes two sequences, (aps8550058,,,) and (405905459)

| = = = + 1 1 = .L such that a. =a, a, b, a.=q.a,ta. with Oza. ,<@; 41 for 1< i< f, and a, 15 0

a15e-e58 09 are the successive values assumed by the variable c¢ and PERRRTLY
-

are the successive values assumed by the variable q. (agseera, sn) 1s called

| the remainder sequence of (a,b) and COPRRRPL IY 1s called the quotient sequence
of (a,b). Steps (2) and (3) are each executed !/ times; this is the number of

— divisions performed, which we denote by D(a,b).

By (13), the computing time for the jin execution of step (2) is
- th

~ L(q,)L{a,,) The computing time for the i execution of step (3) is

certainly dominated by RACER since at most it requires copying the digits of

a: and dyn In an implementation of the algorithm in which a large integer

ba 1s represented by the list of its digits (e.g. (41) such copying 1s unnecessary

i and the computing time for each execution of step (3) is~1l. For the same
-

reason, we will assume that the single executions of steps (1) and (4) have

i

C computing times ™~1. We then have
S



J)
. . 1eg(asb)w) fiLlay) Lia) (17)

If instead we were to assume that copying is required in steps (1) and (3),

1 (17) would still hold after adding L(a,) to the right hand side. But L(a,)™

L(q,)+L(a,) 4 L(q,)L(a,), so (17) holds in any case.

From (17) we will derive the maximum, minimum and average computing times

of Algorithm E, by analyzing the possible distributions of values of the a, and
Se

9.5 obtaining the codominance equivalence classes of these computing times as

4 functions of L(a), L(b) and L{(c). Thus we consider the decomposition of &into

i the sets
Sm.n,k= (a,b) iL(a)=maL(b)=naL (gcd (a,b))=k} , (18)

| with m > n > k > 1. We may verify that each set S nk 1s non-empty as follows.
m—1 m—-1 m—-1,6 k—1 _n-1

| If m=k, then (g ~,8 ~)€ Smon,k° If mk, let ag’#g * and b=p Then
k-1

c=gcd(a,b)=g ~~, L(a)=m, L(b)=n and L(c)=k, so (a,b)€ S  , - As above, we will{ El

+ | + oo - *

write to (m,n,k) in place of tp(Sy nx! and similarly for t_ and tp.
{ +

Theorem 3. t_(m,n,k) 4 n(m-k+1).
- E ~

: =a,.> a,> . ..> 1Proof. Since b=a, a, a, Me have by (17) that
=

e (a,b) 4 L(b)) 1L(a,). (19)

3 Since L(a) ~L(atl) for a > 1 and since a, > 2 we obtain, by Theorem 2,
4 1-1

( ~ LL + . 2EREACH Liq mq (a;+1)) (20)
\

| Since a.=q.a. fa. > 93854078 15s we have q,*1< a./a. for i< [ and hence
C pl~ 1) < . ini =mi=1ay 1) ajas/aa, Combining this with q, aja, ylelds

1-1 2

\. q,m 1(q;+1) = ab/c y (21)

.

9
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2 2, 2

Since L(ab/c ) <L(a /c )~ L(a/c)~L(a)-L(c)4l, (19), (20) and (21)

yield

t.(a,b) 4 L(b) (L(a)-L(c)+1} , (22)

from which Theorem 3% 1s immediate. f§

|

We now proceed to prove that MERRIE n(m-k+1), for which purpose we
need the following two theorems.

)

Theorem Uk. to(a,b) > D(a,b){D(a,b)+L(gcd(a,b))}.
Bo

Proof. Let (qy5+-+59,) and (ag, Co i) be the quotient and remainder

L sequences of (a,b), c=ged(a,b) and k=L(c¢). By (17),

1

t.(a,b) >) iek(ay)- (23)

Since 4,150; a,417¢ and a,=q.a. ta, 5 > a. ita os a simple induction

~ shows that a 403 > ck, where F, is the jh term of the Fibonacci sequence,
3 a B i

defined by F =0, F;=1 and F =F. +F_ . But([ 10], p. 82) Foy 2 0"//5, where

2 i y/ +1
( P=(1+/5)/2, and @~>/5 so Fits > @~. Hence Y foglla)z) (Lptos (eF,) 2
— 7-2 i 12

(lo c+) | lo > f(log c)+ lo . So for k >2 and { > k,| (og e)4) I) log d" = 1(logye)+(",)(log f) > =

=a) > Lky+(1/ 16) (Log p | ¥ kit+y while for k=1 and [ > k,
| 1 2 2 2 J) 2

i ._.L(a,) > (1/16)(log @)4~ >» & ~kitl . For I <3, ). ._.L(a,) > L(c)=k~kiti .i=1 i’ = B — - i=1 i

So by Theorem 1, part (h), Yi > kp 4° for all k and [, proving the theorem,
~ since f=D(a,b). §

L Theorem 5. For every positive integer n, there exist positive integers
e and f with e > f, L(e)=L(f)=n, ged(e,f)=1l, and D(e,f)=n.

- (h) (h)_
Proof. Let F be the generalized Fibonacci sequence defined by FJ 1,

_

10
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|

- h) (0) p(n), p(n) (h)e( = = : =
Thy and Fy psy t+ Fiyp for di 200 IE eTF 41 ng =p! 0) then e > f > ¢

C h
and rh, rl J ox pif)an, Fifa, 0 is the remainder sequence of (e,f) so

- gcd(e,f)=1 and D(e,f)=n. Hence it suffices to show that for every n > 1 there
n-1_ _(h)_ o(h) _

is an h > 1 such that g < Fo < F atl © B. It can be verified by calculation

— that for n <6 this holds with h=n.

Since pl J +hF for n > 1 (see [10], Section 1.2.8, Exercise 13) and
- n nl n —~

F =(g"-8"™)/ /5 where B=-g™t=3(1-/5) for n > 0 (see [10], Section 1.2.8, Formula. n —_— b ’

— n An _ n n 5
(14), we have |F_-g"/5|=|8"//51=(|8/81"//5)8". But |B/#1’< .009, so
| F -p"/ /5 |< .005 g" for n >5 and hence F_/F < 1.005 ¢"/ 995 gt < 1.0119 <: n A = n’ n-1 : }

1.64 for n >6.

| n-1 (h) (h) n —
— Assume as induction hypothesis that 8 < Fo < F +l < 8 with h>n> 6.

: Let k be the least positive integer for which B < File Then k > h and
-

(k) ,(k=1)_ (k) (k-1) n
| Foo1/Fogq ={F 4KF_ }/{F+(k-1)F_,3< k/(k-1)<7/6, so F 1 < (7/6)F,, "<(7/6)8 -

= Also pk) p(k) ep +kF_, }/{F +kF_,.}< max{F__./F ,F _/F 1 < 1.64, so> "nt2/ "ntl "ntl ni? n  n+l’— “n+l” "n’ nt2/ "ntl ?

| (k) (k) n n n+l n (k) (k) n+l
_ Foo < LWGhF0 <(7/6)(1.6k)8" <28 < g . Hence A < Foy) <F 5 <p

and k > h+l > ntl, completing the induction. |

— Theorem 6. to(m,n,k)~n(m-k+l).
: +

| Proof. By Theorem 3%, it suffices to prove that tp(m,n,k) > n{m-k+1).
—

Using Theorem 5, choose e and f with e > f > 0, L(e)=L{f)=n-k+l, gcd(e,f)=1
|
i and D(e,f)=n-k+1. Let b=f and a=et+qf where gq is the least non-negative integer

such that e+gf > gk If q=0 then d=e, m=n and L(&)=m-k+l. If q=1, then
| - _ ~k+
he m > n so a=etf < 2e < 2a" ket rp k+l <a k*l ana L(3)=m-k+l. If gq > 2 then

a=et+qf < 2et(q-1)f < 2(et(q-1)f)< pak < gn kt and L(a)=m-k+l. Also, gcd(a,b)=

gcd(f,etqf)=gcd(e,f)=1 and D(d,5)=D(e, f)=n-k+1.

Let e=p" 7? , a=ac and b=Bc. Then c=gecd(a,b), L(c)=k, L(a)=m, L(b)=n and
L—

D(a,b)=n-k+l. Hence by Theorem kh tf(m,n,k) » (n-k+1) {(n-k+1)+} ~n(n-k+1) :
(

" 11



L .
Also, by (17), ti (m,n,k) 2 L(q;)L(a,)¥(m-ntl)(n). So by Theorem 1, part (c),

L to(m,n,k) > n(n-k+1)+n(m-n+1)~>n(m-k+1).

| In the next theorem we obtain the minimum computing time of the Euclidean
-

algorithm, which 1s much easier.

| Theorem 7. t(m,n,k) ~vn(m-otl)+k(n-k+l).

| Proof. By (17), tp (m,n,k) » L(q,)L(a,)vn(m-ntl). since ay7lay/a 50] we
- ¢ (q.+1) > nt (a,/a,,.)=a/c (17), t_(a,b) ~~have q,,,> a;/a;; and So T;_;(q, i=1'"i/ “i+1 © BY i

I £ ~ : +1 ~- Y Lata) 2 Le) tlavu(e)) Lia) = Le)Lla/e) 2 L(e)L(b/e)

5 L{c){L(b)-L(c)+1}. Hence to (m,n,k} > k(n-k+1) and by Theorem 1, Part (c),

. t(m,n,k) > n(m-n+l)+k (n-k+1) .- “1 “1

If n=k, let a=" © and b=p" = so that c=g ~ and D(a,b)=l. By (17), this

shows that to(m,n,k) { n(m-n+l) < n(m-nt+l)+k(n-k+l).
-

C1 ke _ “1

If n > k, let a=g Lig 1 and p=g" L so that c=" , L(a)=m and D(a,b)=2.
|

-

Then by ( 17), to(m,n,k) 4{ n(m-n+l)+k (n-k+1) for n > k. Application of Theorem 1,

5 Part (h), concludes the proof. | |
{

—

—

—

-

-
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| 5. The Average Computing Time

> As observed in the proof of Theorem Lk, if a > b and (aj585,-005a 0,3 5)

is the remainder sequence of (a,b), then a > Foi > 9 1/5. Since e > /5, we

| have / ing > In a +l. That is,

-1

. D(a,b) < (4n @) (in a +1), (24)

-1

with (In 0) =2.078 . . ., Dixon established in [6] that for every > O
-

: +E 2

|D(a,b)-rin a] < (in a)® (25)
~— for almost all pairs (a,b) with u >a >b > 1, as u - », where

Cn?
| r=121"" tn 2, (26)
|

and we have 1=0.84276°.e . By more elementary means, Dixon proved in [7] the

~ weaker result that

D(a,b) > Zin a (27)
-

for almost all pairs (a,b) with u >a >b > 1 as u » ». In the following, we

wn will show how Dixon's weaker result can be used to prove that the average

computing time of the Euclidean algorithm is codominant with 1ts maximum com-

~ puting time of n(m-k+1l). Before proceeding to the detailed proof, however, I

shall present an intuitive sketch.
—

It is a well-known result (see [ll], Section 4.5.2, Excercise 10) that

the proportion of pairs (a,b) with u > a > b > 1 for which gecd(a,b)=1l approaches

-2
i as u —» wo. We will first generalize this result to the pairs (a,b) with

n-k+ _

\ u > a > b > vas u = v —.ow, Next we set u = B 3 and v = g" k and conclude,
combining this result with Dixon's, that, for n-k large, at least half of the

\_

pairs (a,b) for which u > a > b > v satisfy both gecd(a,b)=1 and D(a,b) > #in a.

CL k-1 k-2
. For each pair satisfying these conditions and each c with g <c<B we

obtain a pair (a,b)=(ac,bc) with gecd(a,b)=c, L(a)=L(b)=n and L(c)=k. If m > n

— than from each pair (a,b) we obtain at least

i g



3 ig" pairs (a,b) of the form(4q+6,B)for which L(a)=m and these also
|

= = = = = -k = =

- satisfy L(b)=n, L(gcd(a,b))=k and D(a,b)> £/n 8" . The pairs (a,b) so
-9 = =

od obtained constitute at least .00kg = of all pairs in SH and tz(a,b) 2
-

= = x

n(m-k+1l) for all (a,b), so to(m,n,k) 2 n(m-k+1) for n-k>h, say. But it is
#

- trivial that t (m,n,k) ¥ n(m=k+1) for n-k<h for any constant h, and so
*

to(m,n,k)™¥n(m-ktl).

Theorem 8. Letu and v be positive integers withu>v, let w= u-v, and

a. let g be the number of pairs of integers (a,b)such thatu> a,b > v and
2

ged(a,b)=1. Then |q/w 6/17 |< (2fn w + 4) /w.

Proof. Let Vi be the number of integers a such that k|a and u> a > Vv,

oh Then
(

2

= and Vi is the number of pairs (a,b) for which klged(a,b) and u> a, b > v. By

the principle of inclusion and exclusion,

02) oq AK) (29)k=1 k’

g
where# is the Mobius function. py (28),

2 2,2

_ |v) ~w JK < Pw/k+1 (30)

Multiplying (30 by A (k) Ju" and summing, we have, by (29),
—

2 \w 2

0/9" Puy AC) [KE<(2H+1) fw, (31)
— W

where Bo is the harmonic sum J 1/k. Using

. 3 = &(K)/K=T7/6 (32)
together with (31) yields

2 o 2

» | q/w 1/6 | <( en +1) ) eet VE (33)
-

. Lh
-



|

But ) > 1/K° J: x dx and H < fn wt+l, which establishes the theoremk=wt+1 W Ww

after substitution in (53). |

Theorem 9. There 1s a positive integer h such that for n-k%, there

are at least 0.02g° 2k pairs (a,b) for which SE >a >b > g"

gcd(a,b)=1, and D(a,b) > Zin a.

Proof. Set of gE FE v=g""", w= UeV. Since 6/17 > 0.6, lim N

(2in w+) /w=0, and gcd(a,b)=gcd(b,a), by Theorem 8 there exists h; such that

there are at least 0.3 wv pairs (a,b) for whichu> a > b > v and gcd(a,b)=1,

for n-k > hl. By Dixon's theorem there 1s an h, such that if n-k > h, then

D(a,b) < ifn a for at most 0.05 pairs (a,b) withu> a, b > 1. Hence if

L h=max(h,,h,) and n-k > h there are at most (1/4)w° pairs (a,b) for which
u >a >b >v, ged(a,b)=1l and D(a,b) > $n a. The theorem follows since

w > (/e-1)a"" and (/B-1)°/8 > (/2-1)7/2 > 0.08. I

— Theorem 10. There is a positive integer h such that for n-k> h, there

are at least 0.004 gnnTk pairs (a,b) such that a > b, L(a)=m, L(b)=n,

— L(gcd(a,b))=k and D(a,b) > Zin Ra

a Proof. Choose an h for which Theorem 9 holds. For every pair (a,b)

satisfying Theorem § and every integer satisfying gf < cc < gk-2 we obtain

— a pair (ac,bc) with ac > bc, L(ac)=L(bc)=n, L(gcd(ac,bc))=L(c)=k, and

D{ac,bc)=D(a,b) > Lin a > Fin TE, The mapping f((a,b),c)=(ac,bc) thus

= defined is one-one so there are at least (0.02g° ok (/8-1) ail > 0.008 KH

C pairs (a,b) with a > b, L(a)=L(b)=n, L(gcd(a,b))=k and D(a,b) > iin ok, If
m=n this completes the proof, so assume m > n. For each pair (a,b) with

—- L(a)=L(b)=n there are at least | (g™-g™ 1) /al> (8"-p" 0) /8" = (1-5" Hg" ">

1g 0 pairs (aq+tb,a) with L(aq+b)=m. Since gcd(aq+b,a)=gcd(a,b) and

15
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D(aq+b,a)=D(a,b)+l we obtain at least (0.00887) (2a™ MY =0. ool WK

pairs (aqt+b,a) for which ag+b > a, L(aq+b)=m, L(a)=n, L(gcd(aq+b),a))=k

and D(aq+b,a) > Lin NTR |
Xx

Theorem 11. to(m,n,k) mn n(m-k+1) .

Proof. Let c,=min(1l,3/n 8). By Theorems 4 and 10, there exist h and

c, > 0 such that to(a,b) > c,D(a,b){D(a,b)+L(gcd(a,b))} > cpcq(n-k) fc; (n-k)+k)
o 2 ~ m+n-k
> c en(n-k) for n-k>h and for at least 0.0048 elements of S . Everyi = m,n,k

element of S_ ok is of the form (ac,bc) with a< gm-k+l b< ght kT and c< 8 ©
+n-k+2 * 2 2

SOS; nk has at most a. elements. Hence, te(m,n,k) > 0.004 c;c,B n(n-k)
| x

L ~ n(n-k) for n-k>h. By Theorem 7, tp (m,n, k) 2 n{m-n+1) > n >» n(n-k) for n-k< h.
”

Hence by Theorem 1, Part (h), to (m,n,k) >» n(n-k). By Theorem 7, e(m,n,k) >
_ *

n(m-n+l) so by Theorem 1, Part (c), tp(m,n,k) > n(n-k)+n(m-n+1)=n(m-k+l). Hence
*

by Theorem 6, tp(m,n,k)~ n{m-k+1).

—

|
_

3

ee
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