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1. Introduction

Knuth, [11], Dixon, [6] and [7], and Heilbronn, [8], have recently
investigated in considerable depth the average number of divisions performed
in the Euclidean algorithm for integers. Although many interesting questions
remain unanswered, the relatively elementary result of Dixon in [7] already
suffices to completely determine the average computing time of the Euclidean
algorithm to within a constant factor, which factor is in any case dependent
on the particular computer used and inessential details of the implementation.
Such a determination of the average computing time of the Euclidean algorithm
is the main result of the present paper. The maximum and minimum computing
times of the Euclidean algorithm for integers will also be derived since,
although their determination is quite elementary, they have apparently not
previously been published. These computing times are ail derived as functions
of three variables, namely the lengths of the two inputs and the length of the
resulting g.c.d. (greatest common divisor). Previous results on the computing
time of the Euclidean algorithm ([2] and [11], Section L4.5.2, Exercise 30) have

been limited to upper bounds on the maximum computing time.



2. Dominance and Codominance

The relations of dominance and codominance between real-valued functions
were introduced in [3], where they were used in the analysis of the computing
time of an algorithm for polynomial resultant calculation. The related concepts
and notation have subsequently been adopted by several authors, for example,
Brown, [1], Heindel, [9], and Musser, [12]. The definitions and some funda-
mental properties will be repeated here since they will not yet be familiar to
many readers.

If £ and g are real-valued functions defined on a common domain S we say
that f is dominated by g, and write f 4 g, in case there is a positive real
number c such that f(x)< c-g(x) for all x S. We may also say that g dominates
f, and write g » f. Dominance is clearly a reflexive and transitive relation.
It is important to note that the definition is not restricted to functions of
one variable since the elements of S may be n-tuples.

Knuth ([lo], pp. 104-108) defines f(x)=0(g(x)) in case there is a positive
constant c such that |f(x)|< c’lg(x)l. As long as one is dealing only with non-
negative valued functions, this formally coincides with the definition above of
f< g. Although Knuth implies that this definition is applicable only when f
and g are functions of one variable, he in fact uses it for functions of more
than one variable (e.g. [1l], p. 388) in a manner which is consistent with our
definition. Thus dominance is apparently a new notation and terminology but
not a new concept. Although Knuth discussed at length the logical weaknesses
of the O-notation, he chose not to abandon it in favor of 'the more natural
notation of an order relation.

If £ 4 g and gli f then we say that f and g are codominant, and write
fA~g. Codominance is clearly an equivalence relation. If f £ g but not g 4 £

then we say that f is strictly dominated by g, and write f4 g. We may also

2
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say that g strictly dominates f, and write g »f. Strict dominance is

clearly irreflexive and transitive. Whereas the O-notation has no counter-—

parts for the codominance and strict dominance relations, it will become
apparent that these are important concepts in algorithm computing time analyses.
Furthermore, the O-notation has a somewhat different meaning in asymptotic a-
nalysis than the one used by Knuth (see, e.g., [5])

If £ and g are functions defined on S and Sl is a subset of S, it will
often be convenient to write £ £ g on S, in case fl < 8> where fl and g, are
the functions f and g restricted to §,. Also, if s € §;x...xS , a Cartesian prod-
uct, we will denote by fa the function £ restricted to ({a}nsgx...xSn)ﬂ S; that 1is,

fa(XE’""Xn)=f(a’x2’“"xn) for (a,x .,xn)é s. Similarly we may fix any

03
other of the n variables of f.
Dominance and codominance have the following fundamental properties, most

of which were listed by Musser in [12].

Theorem 1. Let £, fl’fg’ 8> 8 and g be non-negative real valued functions
on S, and let c be a positive real number. Then

(a) fm~ct

(b) If £, L8, and f, X g, then £,+f,4 g,78, and £ fej 8" 8-

(c) 1f £, < g and f2 { g, then f +f2 4 g.

1

(d) max(f,g)™ f+g.

() If 1< f and 1 4 g, then f+g 4 f'g.

(f) If 14 f, then f~ ftc.

(g) Let S& S].x...xSn and a€ Sl' If £ 4 g, then fa < g, "

(h) Let S=SIUS2. If £ 4 gonS and f{ gon Sy, then £ £ g on S.

Proof. These properties follow immediately from the definition, except
for (e). To prove (e), assume 1 ﬁ f and 1 ﬁ g so that, for some positive real
number ¢, cf > 2 and cg > 2. We then have (cf-2)(cg-2)> 0, so
c2fg+)+2 2c(f+g) > c(f+g)++. Hence cgfg_>_ c(f+g), cfg> f+g and ftg 4 fg. |

>
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3. Computing Time Functions

Let A be any algorithm and let S be the set of all valid inputs to A

(the elements of S may be n-tuples). We associate with A a computing time
function tA defined on S, tA(x) being the number of basic operations per-
formed by the algorithm A when presented with the input x, a positive in-
teger. This assumes that the algorithm is unambiguously specified in terms
of some finite set of basic operations. Changing the set of basic operations
(as in reprogramming the algorithm for a different computer) will result in
changing the computing time function t,, Alternatively, we could take the
view that this represents a change in the algorithm. However, if Bl and B2
are two sets of basic operations such that each operation in B; ¢an be per-
formed by a fixed sequence of operations in B2, and vice versa, then the com-
puting time functions associated with Bl and B2 for any algorithm A are co-
dominant, and we will concern ourselves only with the codominance equivalence
class of tA' Thus the choice of basic operations is somewhat arbitrary. We
assume a choice which is consistent with any of the existing, or conceivable,
random access digital computers but, in order to avoid the triviality of
finiteness, with a memory which is indefinitely expandable.

The function t, is frequently too complex to be of interest for direct

A
study. Instead, we ordinarily decompose S into a disjoint union S = U:;lsn,
where each Sn is a non-empty finite set, S being a denumerable set. The choice

of decomposition is made on the basis of some prior knowledge or some conjecture

about the general behavior of tA' Relative to a decomposition.G?={Sl,52,53,...3

+
of S we define maximum, minimum and average computing time functions, tA’ tA and

*

tA onQV as follows, where lSnl denotes the number of elements of Sn'

tZ(Sn)=maxx P SntA(x) , (1)
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tA(Sn)=minxE SnﬁA(x), (2)

t:(sn)={ <£ES tA(S)}/ISnl ‘ (5)

As illustration, and in preparation for our analysis of the Euclidean
algorithm, let us consider the computing times of the classical algorithms
for arithmetic operations, that is, addition, subtraction, multiplication
and division, of arbitrarily large integers. We assume that all integers are
represented in radix form relative to an integral base g2, as discussed by
Knuth in [11], Section 4.3. We know that the computing times of these al-
gorithms depend on the lengths of the inputs.

Following Musser, [12], we denote by LB(a) the B-length of the integer a,
that is, the number of digits in the radix form of a relative to the base B.
If [x] is the ceiling function of x, the least integer greater than or equal

to x, we have
LB(a)=f10gB(‘a‘+1)], (4)
for a#0, and we define LB(O)=1.

In most contexts the base g is fixed and we write simply L(a) for the
length of a. The omission of the subscript is further justified by the ob-

servation that, y being any other base, we have

L~L,
Ly (5)

where L and L are functions defined on the set I of all integers. In fact,
Y

we can use the definition (4) when a is any real number and we thenhave
La(a)"ln(‘a‘+2) on R, (6

where fn is the natural logarithm and Ris the set of all real numbers, and
(6) clearly implies (5). The length function also has the following easily

verified fundamental properties:
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L(atb) < L(a)+L(b) for a,b £1I, (7)
I the set of integers,

L(ab)~ L(a)+L(b) for a,b€ I-{0}, (8)

L([a/b])~L(a)-L(b)+l for a,b €I and |a|>|b|>0. (9)

We will also need the following theorem.

ol

n
Theorem 2. (a) L(TTI;=lai) izi___lL(ai) for a;,...,a € 1. (b) L(‘[Ti=la‘i)~

n
Zi:ll"(ai) for al,""ane I-f—l,O,l}.

Proof. L(ab)< L(a)+L(b) for a,b €I, so L(rrril=1ai)5z?:=ll‘<ai) by induc-—

tion on n, proving (a). To prove (b), assume first that 2§lai\<5 for 1< 1 < n.

= B
zn L(ai), so ZI],;IL(ai)S (logQB)L(TrI;_:lai) .

i=1

Then L(TTII1 1ai)->- logBT(Ii;l‘al‘é(log 2)log21'|?____1lai|2 (1og62)1og22n=(log62)n=(1og82)

. _ n
Next, assume LB\(ai.),Z 2 for 1<i<m, and let li—LB(ai). Then L(ﬂi=lai)210g8

£ -1
\ 1 n n
(Mg lad) > 10g6(ﬁri‘=15 >=E=1( £,-1) ZZ‘i‘=lzi/2, sozizl L(a,) <L(m _ja.)-

Combining these two cases, we may assume L(ai)=l for 1<i < m and L(ai)z 2
. n
for mtl< i < n. Then z i=1L(ai)S (logEB)L(ﬂmi=1ai) + 2L(Tr1;___m+lai)§ 2(log25)
q 0

(L(T_qa, HL(T] g8, ) 1< b (Log LT ja.) since L(a)+L(b)< 2L(ab) for
a,b€& 1-{0}.1

It should be noticed that a simple inductive proof of (b) was not
possible because n is regarded as a variable, not as an arbitrary but fixed

positive integer. As an immediate corollary of Theorem 2,‘we have
b
L(a”)~bL(a) for a,b€ I,|a|> 2 and b> 0. (10)

If A, M and D are the classical algorithms for addition (or subtraction),
multiplication and division, respectively, as described in [11], Section 4.3,

then we clearly have
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t (a,b)~L(a)+L(b) for a,b & I-{0}, (11)

A\
tM(a,b)"’L(a)-L(b) for a,b €I-10}, (12)
tD(a,b)wL(b) . L([a/b]) for a,bf I and |a|>Ib|>0. (13)

1i.us, for these algorithms, the natural decomposition of the set

g=(a,b):a,bé I] consists of the sets 5 n={(a,b):L(a)=m&L(b)=n}. If we

b

L

. o . + . - *
wr ite t "{m,n) in place of t (%m n), and similarly for t and t , then from
’

“11), (12) and (1%), and using (9), we have

tZ(m,n)ﬂit;(m,n)ﬁJtZ(m,n)aaﬁ+n, (14)
+ - *

ek (mm) o £ ()~ £ (m,n) (15)
t;(m,n)m)tB(m,n)AJt;(m,n)ﬂUn(m-n+1) for m> n. (16)

Thus for these algorithms the maximum, minimum and average computing
times all coincide. This will not be the case for the Euclidean algorithm,

to which we now turn.
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4. The Maximum and Minimum Computing Times.

For simplicity, and without loss of generality, we will consider the
following version of the Euclidean algorithm, for which the permissible in-
puts are the pairs (a,b) of positive integers with a>b. The output of the

algorithm is the positive integer c=gcd(a,b).

Algorithm E

(1) [Initialize.] cc—a; d«b.
(2) [Divide.] Compute the quotient g and remainder r such that c=dq+r
and 0< r < d, wusing algorithm D..

(3) [Test for end.] c¢=d; der; if d#0, go to (2).

-/

(4) Return.
This algorithm computes two sequences, (al,ag, e ,a£+2) and (ql,qg, ‘o ,qf)

4pa 4, for I< i< ¢, and a£+2=0.

= = = + i <a
such that a.=a, a b, ai qiai a with 0<Z i +1

1 +1 it2

al,...,ajz_'_1 are the successive values assumed by the variable c¢ and ql,...,qf

~) is called

are the successive values assumed by the variable (. (al""’al+a

the remainder sequence of (a,b) and (ql,...,qz) is called the quotient sequence
of (a,b). Steps (2) and (3) are each executed [/ times; this is the number of
divisions performed, which we denote by D(a,b).

By (13), the computing time for the ith execution of step (2) is
~ L(q.)L(ai+l). The computing time for the ith execution of step (3) is

certainly dominated by L(a since at most it requires copying the digits of

i+l)
ain and a 4o In an implementation of the algorithm in which a large integer
is represented by the list of its digits (e.g. [4]) such copying is unnecessary
and the computing time for each execution of step (3) is~1. For the same

reason, we will assume that the single executions of steps (1) and (4) have

computing times V1. We then have
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elab)m) 1o iLla,) Llay,,). (17)

If instead we were to assume that copying is required in steps (1) and (3),

(17) would still hold after adding L(a,) to the right hand side. But L(al)“‘"

1)
L(q1)+L(a2) <4 L(ql)L(ag), so (17) holds in any case.

From (17) we will derive the maximum, minimum and average computing times
of Algorithm E, by analyzing the possible distributions of values of the a; and
95 obtaining the codominance equivalence classes of these computing times as
functions of L(a), L(b) and L(c). Thus we consider the decomposition of &into

the sets
Sm,n, k=1 (8,b) :L(a)=mgL(b)=ngL(gcd(a,b))=k} , (18)

withm >n >k > 1. We may verify that each set Sm is non-empty as follows.

B3

m-1 m- 1 k- -1
If m=k, then (Bm l’én l)e Sm Nk If m>k, let aglgl-i-gk . and b=an . Then
b b
- k-1 .
c=gcd(a,b)=g  , L(a)=m, L(b)=n and L(c)=k, so (a,b)€ S, o k' As above, we will
b 3

- *
and similarly for t_ and t_.

+
(s E E

write t; (m,n,k) in place of tp

m,n,k)’
+
Theorem 3. tE(m,n,k) 4 n(m-k+l).

Proof. Since b=a,> a_> . ..> a , we have by (17) that

27 % 1+l
ep(a,b) 4 (b)) 1 L(a;) - (19)

Since L(a) ~L(a+l) for a > 1 and since a, > 2 we obtain, by Theorem 2,
1 -1
( ( +1)).
=g Mlag)~ Lla,m_y (a;+1)) (20)

i = + + -
Since a.=q.a, ., ai+2> 458i+0™@ o> Wwe have qi+l< ai/e}i+2 for i< { and hence

P-1 .
/ - < 3 3 3 1 - 1
TTi=1‘qi 1)< alaE/azaﬂﬂ_' Combining this with q}z al/a£+l yields

-1 2
q,M;-1(a;%1) < ab/e”. (21)
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Since L(ab/cg) SL(ag/c2)~ L(a/c)~L(a)-L(c)4l, (19), (20) and (21)

yield
tp(a,0) & L(b) [L(a)-L(c)H1} , (22)
from which Theorem 3 is :'meediate.l

+(m,n,k)~ n(m-k+1), for which purpose we

We now proceed to prove that tE

need the following two theorems.
Theorem k. tE(a,b) > D(a,b){D(a,b)+L(gecd(a,b))}.

Proof. Let (ql,...,qz) and (al, o ,am) be the quotient and remainder

sequences of (a,b), c=ged(a,b) and k=L(c). By (17),
tp(a,d) ¥ ) fqila). (25)

Since a =0, a

= = + > + . . B
42 ¢ and a;=q;a, a. ai+1 a4y @ simple induction

+1 +1 it —

. .th . .
shows that a£+2-i > cFi, where Fi is the i1 term of the Fibonacci sequence,

. ~ _ _ i
defined by F =0, F;=l and F, ,=F +F ., . But([10], p. 82) F ., > §7//5, where

2 i +1
$=(1+/5)/2, and $7>/5 so Fi+5 > ¢*. Hence EleL(ai)Z i=210g6(CFi)_>_

l(logec)+ f;i logegéi > lZ(loch)+(£_2—2)(10gB¢). So for k >2 and { > L,

§=1L(ai) > %_k£+(l/l6)(log8¢ I v k£+£2 while for k=1 and [ > L,

1 2 2 2 2
ZizlL(ai) > (1/16)(10g8525)/z > I ~kity . For L <3, f=1L(ai) > L(c)=k~kf+i.

2 .
So by Theorem 1, part (h), Zf=1 > kg+f for all k and [, proving the theorem,

since £=D(a,b). §

Theorem 5. For every positive integer n, there exist positive integers
e and £ with e > £, L(e)=L(f)=n, gcd(e,f)=1, and D(e,f)=n.

(h)_,

h . . . .
Proof. Let F( ) be the generalized Fibonacci sequence defined by FO 5

10
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h) (h)_(h), _(h) - (h)

p(h)o =

| '=h, and F. 5 =F; '+ Fiyp fori 200 If esF .0 o f=FI(1h) them e > £ > ¢
and Fr(:-i’ g(h,). % F](_h)=h, th)=l, 0 is the remainder sequence of (e, f) so

ged(e,f)=1 and D(e,f)=n. Hence it suffices to show that for every n > 1 there

h)

n+l < B. It can be verified by calculation

-1
is an h > 1 such that Bn < Fr(lh)s F<

that for n <6 this holds with h=n.

(h)

Since o +th for n > 1 (see [10], Section 1.2.8, Exercise 13) and

nl
Fn=(¢“-6“)//5 where f=-¢ '=§(1-/5) for n > 0 (see [10], Section 1.2.8, Formula
(1)), we have |F_-g"/5|=|9"//51=(18/p1"//5)¢". But |B/g17< 009, so
| F_-g"//5 |< .005 " for n >5 and hence F_/F _; < 1.005 #°/.99 g™l < 10118 <
1.6k for n >6.

Assume as induction hypothesis that g < 1“‘)< F(h) < B with h>n>6.

(k
Let k be the least positive integer for which B < F‘_I_i Then k > h and

f::i/Fnﬂ )={Fn+an+1}/{F +(k-1)F 1}< k/(k-1)<7/6, so F(+) < (7/6)}'*(k -1) <(7/6)5“.
Also, F(Eg/Fr(;%ﬂ -~ an+2}/{Fn+an+1}_<_ max{Fn+1/Fn,Fn+2/Fn+l} < 1.64, so

(k) n+l

k. k n+1 n k.)
) < 1eur®) < (7/6) (1.68) e < 26 < 6™ ence o < FU) < B <
and k > h+l > ntl, completing the induction. l

+
o(m,n,K) v n(mekt) .

Theorem 6. t

. ; +
Proof. By Theorem 3, it suffices to prove that tE(m,n,k) > n(m-k+1).
Using Theorem 5, choose e and f with e > f > 0, L(e)=L(f)=n-k+l, gcd(e,f)=1

and D(e,f)=n-k+l. Let b=f and a=etqf where g is the least non-negative integer
m-k

such that e+gf > B . If q=0 then d=e, m=n and L(&)=m-k+l. If q=1, then
= - - -k+
m > n so a=etf < 2e < 2Bn ket i’ Bn kr2 5 Bm ketl and L(d)=m-k+l. If q > 2 then
- + - -
a=etqf < 2et(q-1)f < 2(et(q-1)£)< 28" © < Bm k1 nd L(a)=m-k+1. Also, gcd(a,b)=

ged(f,etqf)=gecd(e,f)=1 and D(&,5)=D(e, f)=n-k+1.
Let c=gk_l , a=ac and b=bc. Then c=gcd(a,b), L(c)=k, L(a)=m, L(b)=n and

D(a,b)=n-k+l. Hence by Theorem L tf(m,n,k) » (ﬂ-k+1){(n-k+l)+k}~n(n-k+1).

11
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Also, by (17), t

E(m,n,k) t L(ql)L(ae)’“(m-n'f-l)(n). So by Theorem 1, part (c),

t;(m,n,k) > n(n-k+1)+n(m-n+1)~n(m-k+1). ]

In the next theorem we obtain the minimum computing time of the Euclidean
algorithm, which is much easier.

Theorem 7. t;(m,n,k)rvn(m-n+l)+k(n-k+l).

Proof. By (17), t};(m,n,k) > L(ql)L(a2)~n(m-n+1). Since qizlai/ai-i'lj we

have q;,,> ai/ai+l and So TTf=l(qi+l) > ﬁ£=1(ai/ai+l)=a/c. sy (17), tE(a,b)N
Z fL(a)L(a,,) 2 L(c)}; leL(qi)'“L(c)Zﬁ___lL(qi+1) > L(c)L(a/c) > L(c)L(b/c) ~

L(c){L(b)-L(c)+1}. Hence té(m,n,k)t}_ k (n-k+1) and by Theorem 1, Part (c)»
t;(m,n,k) > n(m-n+l)+k (n-k+1) .
- - -1
If n=k, let a=Bm 1 and b=sn . so that c=Rn and D(a,b)=1. By (17), this

shows that té(m,n,k) < n(m-n+l) < n(m-n+l)+k(n-k+1).

If n > k, let a=5m_1+5k_l and b=5“_1, so that c=gk'1, L(a)=m and D(a,b)=2.

Then by ( 17), t;:(m,n,k) 4 n(m-n+l)+k (n-k+1) for n > k. Application of Theorem 1,

Part (h), concludes the proof. .

12



5. The Average Computing Time

As observed in the proof of Theorem kL, if a

AV

b and (al’a2""’al+1’a£+2)

¢l//5 Since e > /5, we

is the remainder sequence of (a,b), then a > F

v

1+1
have [ Znﬁj > In a +l. That is,

D(a,b) < (tn #) " (4n a +1), (24)

-1
with (in @) "=2.078 . . ., Dixon established in [6] that for every >0

|D(a,b)-'r£n a| < (in a)%ﬂ'-G (25)

for almost all pairs (a,b) with u > a >b > 1, as u - o, where
=
r=127""fn 2, (26)

and we have 71=0.8i276°.e¢ . By more elementary means, Dixon proved in [7] the
weaker result that
D(a,b) > %/n a (27)

for almost all pairs (a,b) with u >a>b>1as u-w« In the following, we
will show how Dixon's weaker result can be used to prove that the average
computing time of the Euclidean algorithm is codominant with its maximum com-
puting time of n(m-k+l). Before proceeding to the detailed proof, however, I
shall present an intuitive sketch.

It is a well-known result (see [1l], Section 4.5.2, Excercise 10) that
the proportion of pairs (a,b) with u > a > b > 1 for which gcd(a,b)=1 approaches

61 as u » o, We will first generalize this result to the pairs (a,b) with

n-k+ -
% and v = Bn k and conclude,

u>a>b>vasu-v e Next we set u= B
combining this result with Dixon's, that, for n-k large, a‘t least half of the

pairs (a,b) for which u > a > b > v satisfy both ged(a,b)=1 and D(a,b) > %n a.
k_l< c < Bk-}%;r e

For each pair satisfying these conditions and each c with g
obtain a pair (a,b)=(ac,bc) with gecd(a,b)=c, L(a)=L(b)=n and L(c)=k. If m > n

than from each pair (a,b) we obtain at least

13



m-n

38 pairs (a,b) of the form (dq+5,B)for which L(:)=m and these also

=1}

= = = = = -k =
satisfy L(b)=n, L(gecd(a,b))=k and D(a,b) > £in Bn . The pairs (a,b) so

-2 = =
obtained constitute at least .00k = of all pairs in s , and tE(a,b) >

= = *
n(m-k+1) for all (a,b), so tE(m,n,k) > n(m-k+1) for n-k>h, say. But it is
*
trivial that tE(m,n,k) ¥ n(m=k+l) for n-k<h for any constant h, and so

t’E‘(m,n,k)fun(m-kﬂ) .

Theorem 8. Letu and v be positive integers withu>v, let w= u-v, and
let g be the number of pairs of integers (a,b) such thatu> a,b > v and

ged(a,b)=1. Then |q/w2'6/n2|5 (24n w * 4) /w.

Proof. Let v, be the number of integers a such that kla and u> a > v,

k
Then

‘ \)k‘w/k\<l 5 (28)

2
and v, is the number of pairs (a,b) for which k|ged(a,b) and u> a, b > v. By

the principle of inclusion and exclusion,

w 2
q=2 k=l/((k)\)k’ (29)
where # is the Mobius function. gy (28),

1vi-w2/k?\< 2w/ k1 (30)

Multiplying (30 bx/q(k)/wg and summing, we have, by (29),

2 2
|0/ Y, 4(1)/1¥ 1 <(2R 1) /v, (31)
-
where H 1is the harmonic sum‘2;=11/k. Using
:
: o 2
w Z = A(K) /K= f6 (32)
E together with (31) yields
2 ™ 2
fv” /6 | <(ag ) ) b (33)
—
\ 1L
-




@

© 2 -2
+ . .
Butz K= ll/k </w x dx and HWS In wtl, which establishes the theorem

after substitution in (35).‘

Theorem 9. There is a positive integer h such that for n-k%, there

2n-2k+1

—k+* n-k
are at least 0.028 pairs (a,b) for which Bn

>a>b >8

— — ’

ged(a,b)=1, and D(a,b) > 3in a.

Proof. Set u=(5 2y, V=8 , W= u~v. Since 6/772 >0.6, lim

w— ©
(2fnw+k) /w=0, and gcd(a,b)=gcd(b,a), by Theorem 8 there exists h; such that
there are at least 0.3 w2 pairs (a,b) for whichu> a > b > v and gcd(a,b)=1,

for n-k > hl. By Dixon's theorem there is an h, such that if n-k > h2 then

2
D(a,b) < 3/n a for at most 0.05 pairs (a,b) withu> a, b > 1. Hence if

h=max(h1,h2) and n-k > h there are at most (l/h)wg pairs (a,b) for which
u>a>b >v, ged(a,b)=1 and D(a,b) > $/n a. The theorem follows since

w > (/e-1)a"™ and (/8-1)%/8 > (/2-1)%/2 > 0.08. 1

Theorem 10. There is a positive integer h such that for n-k> h, there
m+n-k , _ _
are at least 0.004 B pairs (a,b) such that a > b, L(a)=m, L(b)=n,

L(ged(a,b))=k and D(a,b) > i g™ %

Proof. Choose an h for which Theorem 9 holds. For every pair (a,b)
k-1 k-2 .
satisfying Theorem 9 and every integer satisfying 8 < ¢ < B % we obtain
a pair (ac,bc) with ac > bc, L(ac)=L(bc)=n, L(ged(ac,bc))=L(c)=k, and
n-k .
fn 8 . The mapping f((a,b),c)=(ac,bc) thus
2n-2k+1 k-1
) (/8-1) 8 >0.008¢
-k

defined is one-one so there are at least (0.028
pairs (a,b) with a > b, L(a)=L(b)=n, L(gcd(a,b))=k and D(a,b) > isn g" . If

D(ac,bc)=D(a,b) > Lin a >

wij

m=n this completes the proof, so assume m > n. For each pair (a,b) with
- - -1 -n-1
L(a)=L(b)=n there are at least | (g"-g""")/al> (g"-g""1)/8" > (1-p71)g" " '>

%Bm-n pairs (ag+b,a) with L(aq+b)=m. Since gcd(aq+b,a)=gcd(a,b) and

15
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—

m+n-k

cn-k> (3 m-n)=0.00l&8

B

pairs (aq+b,a) for which ag+b > a, L(aq+b)=m, L(a)=n, L(gcd(aq+b),a))=k

D(aq+b,a)=D(a,b)+l we obtain at least (0.008g

and D(aq+b,a) > L/n Bn_k A |

*
Theorem 11. tE(m,n,k)Nn(m-k+l) .

Proof. Let cl=min(l,%£n B). By Theorems 4 and 10, there exist h and

¢, > 0 such that tE<a,b) > C2D(a,b){D(a,b)+L(gcd(a,b))} > Cacl(n-k){cl(n-k)ﬂ(}
2 - - ), Jntn-k

¢ en(n-k) for n-k>h and for at least 0.004g elements of S . Every
12 m,n,k

-k+ —k+
mkl’ b<5nk1andc<8k,

~
=

element of S is of the form (ac,bc) with a< g

m+n-k+2 *
has at most g elements. Hence, tE(

*
~ n(n-k) for n-k>h. By Theorem 7, tE(m,n,k) 2> n(m-n+l) > n > n(n-k) for n-k< h.

,0 5k

2 -2
5% Shonk m,n,k) > 0.004 ¢ B n(n-k)

mn,K) >

2(m,n,K) > n(n-k)+n(m-ml)=n(m-lH) . hence

*
Hence by Theorem 1, Part (h), tE(m,n,k) >__n(n—k) . By Theorem 7, t
n(m-n+l) so by Theorem 1, Part (c), t

*
by Theorem 6, tE(m,n,k)fv n(m-k+1).
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