URAND
A UNIVERSAL RANDOM NUMBER GENERATOR

BY

MICHAEL A. MALCOM
CLEVE B. MOLER

STAN-CS-73-334
JANUARY 1973

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY




-

URAND
A UNIVERSAL RANDOM NUMBER GENERATOR
by

Michael A. Malcolm and Cleve B. Moler

ABSTRACT

A subroutine for generating uniformly-distributed floating-point
numbers in the interval [0,1) is presented in ANSI standard Fortran.
The subroutine, URAND, is designed to be relatively machine independent.
URAND has undergone minimal testing on various machines and is thought to
work properly on any machine having binary integer number representation,
integer multiplication modulo m and integer addition either modulo m
or yielding at least )?,og2 (m) significant bits, where m is some
integral power of 2

Upon the first call of URAND, the value of m is automatically
determined anti appropriate constants for a linear congruential gcnerator
are computed following the sugpestions of D. E. Knuth, volume 2. URAND
is guaranteed to have a full-length cycle. Readers arc invited to apply
their favorite statistical tests to URAND, using any binary machine, zng

report the results to the authors.

The project was supported by the Office of Naval Research, Contract
NOOO14-67-A-0112-0029.



r—

— r—

URAND —- A Universal Random Number Generator

Michael A. Malcolm and Cleve B. Moler

The Fortran subroutine for computing random numbers which we des-

cribe in this brief report is intended for publication in a forthcoming

Prentice-Hall textbook: Computer Methods for Mathematical Computations,

by G. E. Forsythe, M. A. Malcolm and C. B. Moler. Other Fortran sub-—
routines in this book (e.g. the linear equation solver, 0.D.E. solver,
etc.) are somewhat novel in that they are coded in a relatively machine-
independent style. Among other things, this means that each subroutinc,
1f necessary, deduces necessary parameters of the computer arithmetic
system at the time it is executed. Techniques related to those given in
Malcolm (1972) are used for obtaining floating-point parameters. In the
same spirit we have attempted to program a relatively machine independent

random number generator which we modestly call URAND which stands for

"universal random number generator," and fortuitously for "uniform random

"

number generator . To date, URAND has undergone only minimal testing on
an IBM 360, CDC 6600, PDP 10 and SIGMA 7. Since it is purported to work
properly on most computers in use, URAND must be tested on many more com-
puters using a variety of statistical tests. We encourage readers to

try URAND on their computers and test it using their favorite statistical
tests. Feedbuck Irom our readers will be greatly appreciated. WC are
particularly interested in learning of results of the '"spectral test"
described in Knuth, vol. 2, p. 82.

A source listing of URAND in ANSI standard Fortran is included at

the end of this report. We will briefly describe the rationale which led



to some of the seemingly "random" statements in URAND.

A linear congruential sequence of' integers is obtained by setting

Yn+l = aYn + ¢ (modulo m), n>1 R (%)

on the n-th call of URAND. These are converted into floating-point

numbers in the interval [0,1) and returned as the value of URAND. The

resulting value of Yn is returned through the parameter IY and

+1
should be used for the actual parameter in the subsequent call. op the

first call of URAND, 1IY should be initialized to an arbitrary integer
value.

. The values of m, a and ¢ are computed automatically upon the

initial entry. The main assumption here is that the machine uses binary

. integer number representation and multiplication is performed modulo m
L where m is a power of 2 . This assumption simplifies the computation
of (¥) . URAND discovers the value of m/2 by testing successive powers
L of 2 until a multiplication by 2 produces no increase in magnitude.
It is also assumed that integer addition is either modulo m , or at
~ least 2%%(m)significant bits are returned. The values of a and c
are computed fallowing the advice of Knuth which he summarizes (see p. 78
W
and p. 155, vol. 2):
- i) Pick a to have three properties:

a mod 8 =5

m/100 < a <m - ym

The binary digits of a have no obvious pattern.
ii) Pick ¢ as an odd integer with

$~i-3v

In the source code, a is called IA , and c¢ is called IC . The random



-

Y
bit pattern of a is achieved by calling DATAN(1.DO) which returns the
double-precision value of 7/l which, on a binary machine, is the shifted
bit pattern of # . The division by 8.D0 and multiplication by m/2 is
hopefully accomplished without unduly altering this pattern. The double-
precision value is finally converted to an integer, multiplied by

8 and incremented by 5 to insure a3 mod 8 = 5. The resulting value of'

ﬂ
> -

a 1s roughly % T o This satisfies the inequality constraints. The
value oif ¢ 1is computed directly from the definition (ii). We realize
that some Fortran compilers don't convert constants like 8.D0 to exact
floating-point representations, but this problem will probably be of little
consequence.

The sequence [Yn] is guaranteed to have maximum period length
m by Theorem A given in Knuth, p. 15. However, one must remember that
the least significant binary digits of the Yn will not be very random.
When the Yn are converted to floating-point numbers, the least signi-
ficant digits are usually not important. To compute a random integer
between 0 and k-1 , one should multiply the result of' URAND by k
and truncate the result.

We wish to thank Fred Fritsch and Neil Goldman for testing earlier

versions of URAND.



Q

«

aQ O

Q QO

QO Oa

FUNCTION URAND(IY)

INTEGER IA,IC,ITWO,IY,M2,M
DOUBLE PRECISION HALFM
DOUBLE PRECISION DATAN,DSQRT
DATA M2/0/,ITWO/2/

IF (M2 .NE. 0) GO TO 20

IF FIRST ENTRY, COMPUTE MACHINE INTEGER WORD LENGTH

M=1
10 M2 = M
M = ITWO*M2

IF (M .GT. M2) GO TO 10
HALFM = M2

COMPUTE MULTIPLIER AND INCREMENT -FOR LINEAR CONGRUENTIAL METHOD

IA
IC

i

8*IDINT (HALFM*DATAN (1.D0)/8.D0) + 5
2*IDINT (HALFM* (0. 5D0~DSQRT (3.D0)/6.D0)) T 1

S IS THE SCALE FACTOR FOR CONVERTING TO FLOATING POINT

§ = 0.5/HALFM
COMPUTE NEXT RANDOM NUMBER
20 IY = IY*IA + IC

THE FOLLOWING STATEMENT IS FOR COMPUTERS WHERE THE
WORD LENGTH FOR ADDITION IS GREATER THAN FOR MULTIPLICATION

IF (IY/2 .GT. M2) IY = (IY - M2) - M2

THE FOLLOWING STATEMENT IS FOR COMPUTERS WHERE INTEGER
OVERFLOW AFFECTS THE SIGN BIT

IF (IY .LT. 0) IY = (IY + M2) + M2
URAND = FLOAT(IY)*S

RETURN

END



r—

[~

REFERENCES

Knuth, D. E. (1969), "Seminumerical algorithms," The Art of Computer
Programming. Vol. 2, Reading, Mass.: Addison Wesley.

Malcolm, M. A. (1972), "Algorithms to reveal properties of floating-
point arithmetic," Comm. ACM, vol. 15, no. 11, November,

HO-%H1.



