
URAND

A UNIVERSAL RANDOM NUMBER GENERATOR

|

»

MICHAEL A. MALCOLM

CLEVE B. MOLER

STAN-CS-73-334

i JANUARY 1973

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

| (5)
"Xawizeo OF



CC ———————————==
= _

URAND

9 A UNIVERSAL RANDOM NUMBER GENERATOR

| } oy
Michael A. Malcolm and Cleve B. Moler

ABSTRACT

A subroutine for generating uniformly-distributed floating-point

numbers in the interval [0,1) is presented in ANSI standard Fortran.

The subroutine, URAND, is designed to be relatively machine independent.

URAND has undergone minimal testing on various machines and 1s thought to

work properly on any machine having binary integer number representation,

integer multiplication modulo m and integer addition either modulo m

or yielding at least Log, (m) significant bits, where m is some

integral power of 2 .

i Upon the first call of URAND, the value of m 1s automatically

determined antl appropriate constants for a linear congruential generator

are computed followingthe suggestions of D. E. Knuth, volume 2. URAND

i 1s guaranteed to have a full-length cycle. Readers arc invited to apply
| their favorite statistical tests to URAND, using any binary machine, znd

report the results to the authors.

The project was supported by the Office of Naval Research, Contract

i NOOO14-67~A-0112-0029.



|

_ Cp et2

URAND --A Universal Random Number Generator

Michael A. Malcolm and Cleve B. Moler

The Fortran subroutine for computing random numbers which we des-

cribe in this brief report 1s intended for publication in a forthcoming

Prentice-Hall textbook: Computer Methods for Mathematical Computations,

by G. E. Forsythe, M. A. Malcolm and C. B. Moler. Other Fortran sub-

routines 1n this book (e.g. the linear equation solver, 0.D.E. solver,

etc.) are somewhat novel in that they are coded 1n a relatively machine-

independent style. Among other things, this means that each subroutine,

~~ 1f necessary, deduces necessary parameters of the computer arithmetic

system at the time it 1s executed. Techniques related to those given in

Malcolm (1972) are used for obtaining floating-point parameters. In the

3 same spirit we have attempted to program a relatively machine independent

| random number generator which we modestly call URAND which stands for
"universal random number generator," and fortuitously for "uniform random

| number generator." To date, URAND has undergone only minimal testing on
| an IBM 360, CDC 66000, PDP 10 and SIGMA 7. Since it is purported to work

i properly on most computers in use, URAND must be tested on many more com-
puters using a variety of statistical tests. We encourage readers to

l try URAND on their computers and test it using their favorite statistical

tests. Feedback Irom our readers will be greatly appreciated. WC are

particularly interested in learning of results of the "spectral test"

described in Knuth, vol. 2, p. 82.

A source listing oi URAND in ANSI standard Fortran 1s included at

the end of this report. We will briefly describe the rationale which led



to some of the seemingly "random" statements in URAND.

| A linear congruential sequence of' integers 1s obtained by setting

Yo ar +c (modulo m), n> 1, (x)

on the n-th call of URAND. These are converted into floating-point

numbers in the interval [0,1) and returned as the value of URAND. The

resulting value of Y o+1 1s returned through the parameter IY and

should be used for the actual parameter in the subsequent call. op the

first call of URAND, IY should be initialized to an arbitrary integer

value.

. The values of m, a and ¢ are computed automatically upon the

initial entry. The main assumption here is that the machine uses binary

integer number representation and multiplication 1s pertormed modulo Mm

| where m is a power of 2 . This assumption simplifies the computation

of (¥) . URAND discovers the value of m/2 by testing successive powers

| of 2 until a multiplication by 2 produces no increase in magnitude.

| It 1s also assumed that integer addition 1s either modulo m , or at
least Zog, (m) significant bits are returned. The values of a and c

| are computed fallowing the advice of Knuth which he summarizes (see p. 78
and p. 155, vol. 2):

- 1) Pick a to have three properties:

a mod 8 = 5

i m/100 < a <m - ym

The binary digits of a have no obvious pattern.

11) Pick ¢ as an odd integer with

In the source code, a is called IA , and c is called IC . The random



)

bit pattern of a is achieved by calling DATAN(1.DO) which returns the

double-precision value of 7/} which, on a binary machine, is the shifted

bit pattern of # . The division by 8.D0 and multiplication by m/2 is

hopefully accomplished without unduly altering this pattern. The double-

precision value 1s finally converted to an integer, multiplied by

8 and incremented by 5 to insure a mod 8 = 5. The resulting value of’

a 1s roughly aT ~ 5 . This satisfies the inequality constraints. The

value of ¢ is computed directly from the definition (ii). We realize

= that some Fortran compilers don't convert constants like 8.D0 to exact

floating-point representations, but this problem will probably be of little

consequence.

. The sequence [y,] 1s guaranteed to have maximum period length

m by Theorem A given in Knuth, p. 15. However, one must remember that

ha the least significant binary digits of the ro will not be very random.

] When the LS are converted to floating-point numbers, the least signi-
ficant digits are usually not important. To compute a random integer

| between 0 and k—-1 , one should multiply the result of' URAND by k
and truncate the result.

L We wish to thank Ired Fritsch and Neil Goldman for testing earlier
| versions of URAND.



=

FUNCTION URAND(IY)

INTEGER IA,IC,ITWO,IY,M2,M
DOUBLE PRECISION HALFM

DOUBLE PRECISION DATAN,DSORT

| DATA M2/0/,ITW0/2/
IF (M2 .NE. 0) GO TO 20

C

¢ IF FIRST ENTRY, COMPUTE MACHINE INTEGER WORD LENGTH

C

: M=1

10 M2 = M

M= ITWO*M?2

IF (M .GT. M2) GO TO 10

HALFM = M2

C

C COMPUTE MULTIPLIER AND INCREMENT -FOR LINEAR CONGRUENTIAL METHOD

C

IA = 8*IDINT (HALFM*DATAN(1.D0)/8.p0) t+ 5

~ IC = 2*IDINT(HALFM#*(0.5D0~-DSQRT(3.D0)/6.D0)) + 1
C

C S IS THE SCALE FACTOR FOR CONVERTING TO FLOATING POINT

C

- S = 0.5/HALFM
C

| C COMPUTE NEXT RANDOM NUMBERC

20 IY = IY*IA + IC

C

| ¢ THE FOLLOWING STATEMENT IS FOR COMPUTERS WHERE THE
C WORD LENGTH FOR ADDITION IS GREATER THAN FOR MULTIPLICATION

C

| IF (IY/2 .GT. M2) IY = (IY - M2) - M2C

C THE FOLLOWING STATEMENT IS FOR COMPUTERS WHERE INTEGER

C OVERFLOW AFFECTS THE SIGN BIT

C

IF (IY .LT. 0) IY = (IY + M2) + M2

URAND = FLOAT (IY)*S
RETURN

END



- REFERENCES

. Knuth, D. E. (1969), "Seminumerical algorithms," The Art of Computer
Programming. Vol. 2, Reading, Mass.: Addison Wesley.

2 Malcolm, M. A. (1972), "Algorithms to reveal properties of floating-
point arithmetic," Comm. ACM, vol. 15>, no. 11, November,
949-951.

|
-


