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ABSTRACT

An algorithm is presented for computing the unique stationary

distribution of an infinite stochastic matrix possessing at least one

column whose elements are bounded away from zero. Elementwise convergence

rate 1s discussed by means of two examples.
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1. Introduction

For a denumerably infinite stcchastic matrix P = {pis}
i, =1,2,... a vector x satisfying

(1.1) x >0 , x3 0, x P = x

oo 1s called an invariant measure; any positive multiple of an in-

variant measure 1s one also. If an invariant measure satisfies, in

addition,

' 0

(1.2) x1 =z 3 x. =1
vo i=l *

1t 1s called a stationary distribution.

L In this note we shall display an algorithm for computing a

| stationary distribution x (under conditions on P which ensure
existence and uniqueness) from successive finite matrix truncations

i EP. A similar algorithm when ©P is a finite matrix has been previously
described (Styan, 1970).

It 1s now well known (Feller, 1968) that for an irreducible

ind recurrent (persistent) p apn invariant measure always exists,

and 1s unique, to positive multiples; and is eler.rtwise strictly

rosiltive. In two previous papers (Seneta, 1967, 1968) two al-

-orithms were discussed which yielded pointwise convergence to such

x 5, of vectors computed from -the successive truncations of P ,

shen x 1s normed sO tha. 3 fixed element is unity. If P is in

“Act positive-recurrent, its invariant measure can be normed to

~atisfy (1.2), so that 2 (unique) stationary distribution exists,

and it 1s in this form (of a stationary distribution) that
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2.

invariant measure 1s usually required to be computed, from the

3 Markov chain context in which stochastic positive-recurrent P are

| important. This problem was touched on but not discussed to any

| extent in the two papers cited.

| We shall not necessarily have present in this note the 1ir-

| reducibility of P , but work under the probabilistically restrictive

butclassical, assumption that P satisfies

(1.3) sup {inf p..} > 0
3 i

l1.e. that there is at least one column ofP , say the 5% -th, with

positive elements, which are in addition uniformly bounded away from

L zero 1.e. for at least one j , say J = 3"

|
(1.4) inf Pi 4 >6(3) > 0 .

| i

2. Markov Matrices.

Finite stochastic P with a positive column are classically

. known as Markov matrices (Bernstein, 1946). The condition (1.3) is

| a natural way of extending this terminology to the infinite case,
since, moreover as we shall now sketch, the implications are the

same as 1n the finite case.

The positivity (clone)of the 2 column implies that the

index set of P contains a single essential class (¢ of indices

(i.e. a single closed self-communicating class), which contains 5°

and is therefore aperiodic. Indices outside C , if any, are in-

essential and lead to C The 1n t © i=
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3 recurrent under (1.3) for ,

pik, = 3 pF) Pps > inf p,.% I pix) 557) 0
J] ES KJ = Tx kj x Jk = J >

where = {Ps } + A matrix ©P containing a single essential
aperiodic class, C , which is in fact positive-recurrent, is some-

times called regular; for such P it is well-known that, element-

wise, as r + = , ergodicity obtains, i.e.

'

(2.1) pr 1. x
( ad “np

| where Xx 1s the (unique) stationary distribution ofP , and only
those elements of X = {x(i)} are positive for which i ¢ C . In

i the present situation where (1.3) holds, 1t can be deduced that the
| elementwise approach to the limit 1n (2.1) 1s in fact (uniformly)

geometric. This 'geometric ergodicity' testifies to the restric-

tiveness of condition (1.3).

For the sequel 1t 1s convenient, and results in no loss of

generality to take 5% = 1 , so that

If we denote by (rn) ¥ B “(n)Pis3) the (n x n) northwest corner
truncation of P , then (ny)? 1s in general substochastic, and in
virtue of (2.2) contains a single closed finite set of indices,

(nm) © » which contains the index 1, and so is aperiodic



L 3. The Algorithm

Define the vector y = {y(j’}> 0 by

y(j) = §(3) if J satisfies (1.4)

= 0 otherwise .

Clearly, by assumption, y + 0 , with at least first element
- positive. Focus attention on the following infinite system of

equations, which is certainly satisfied by the unique stationary
(_

distribution corresponding to P :

? Lf t

| (3.1) x (I -(P -1.y)) =y
-

i where x is a vector of unknowns; and on the corresponding (pn x n)
northwest truncated system foreach n = 1,2,.....

(3.2) z (, \I - (, \P 1 | |
| mZ ‘mt TT tf TC mim? 7 my

where (n) 2 ' is a vector of unknowns.
he

It should be noted that the subtraction cf 1°
(n)=~ (n)Y

- from (.yP does not alter the location of the zero and positive

: zlements of (yf and so does not change 1ts essential structure;
'

i however (,yP = (y1 * ( y¥ now has each row sum strictly less than

unity, and by a well known property of such matrices the matrix

| (, I P !
(n)~  (n) (nm) (n)Y )) has an inverse, and, furthermore ,

(, I -(, .P "yyy | "Lk
(n) (nm) Tmt omy) cs Zl? tml my?
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elementwise, so that the inverse has non-negative entries {and indeed

at least one column, the first strictly positive, in virtue of

(2.2)). It thus follows

(3.3) iE | ( 0yy~1

/ m2 Fm {mI mw? Tmt my) 0,0,
( withPY mE 2 (yy

is the unique solution to (3.2), and, further, from (3.2) since

z "oo— - Z P + . . '

(> = @2 "Mm" "mm? ml mY = oy
|
— it follows that

i ' ' ' 0 f\
3.4 . - . . 7, 7,

| (3.4) (MZ "(mt Tm? ml + (m? (n)* ' ALO Hl Coal
on account of the substochasticity of (nyF - Hence, sincen ) !

|]

(rnyY 20,1 0 it follows from (3.3) and (3.4) that

(3.5) 0 < § < '
(D2 (m2) (Hz (Ls

|

where (pn): = {(ny2z(i)} ; and from (3.2) that

(3.6) z = '
(n)S 7 (nm)? Cn) (mt (mY J) + (n)X ‘
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Now since

1 )~ n) | I Ol tk
co ET md 0)

(3.7) / /

(Lf we €Xtend, for the present instance Only, the definition of
| (m)& 7

putting (n 201) =0 tor 1>n) Thus we know that the limit

2" (1)1) = lim :

] no (n)2(1)
LC

exists for each . _

| t= 1,25... although we do not yet know it to be finite.
If we put z - {2 (i)}

(3.5) and (3.6) give, by Fatou's lemna

er

0 < §(1) <z 1 < 1
(3.8) x! we! = ~ ' ,

which implies

%! rl ote
yA [4

zz F : 2 20,40.
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Mow in fact, equality must hold at all entries, for otherwise,

_ Se t tf
z 1 >z 1

| by stochasticity of P . Thus

wt wt

_ z =z P

—- and from (3.8) ,

— HI|

z 1 =1.

-

%

Thus Z is the unique stationary distribution corresponding to P .

.

i Thus, to summarize: the successive solutions (2 >n)<

| n = 1,2,... for the finite systems (3.2) converge elementwise to the
unique stationary distribution corresponding to P . Moreover, from (3.7)

—————————————————————————————————————————————————————————————————————————————————————————————————— J

L the elementwise convergence is monotone increasing in;, thus providing a steadily
| improving bound for the required limit vector.

4. Convergence Rate

It appears that little, 1n general, can be said about the

- convergence rate. This is borne out by the following simple example.

Let p = {p;} be a probability vector with all entries positive
[+]

1... py> 0, I p. = 1, The infinite matrix
i=l

(4.1) P=1.p
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clearly satisfies (1.4), and has unique stationary distribution p .

- If we indicate with a subscript n ... ou.) truncations, then

(4.2) zot Oo

and corresponding to its Perron-Frobenius ©igenvalue,
| | (n)2 1

has left and right positive eigenvectors respectively '

(n)® 1.It follows that on

- L300) pK { = '. k-1(n) (mR “my? m3: mk > k2>1

—

Now a permissible choice of y is gp, wh re
| . . 4°" 0 <8 <1,in which

case (3.3) becomes

| |
(n)2 = ¢ pL, JI - (1- : 'o-1

m2 Len © (ml (mp?

SE ro Xk '= PI (1-¢) : k
_ (n)= k=0 §) Compt (mR

and using (nu, 3)

| [5 2 {(1-8) (,_\p' k |
: KD = 6) (mn)? (n)1’) Jp= ~“N

1 |1-1-8 pT] 0D7 tml (n)l’ *n

Dp - , = (1-6) (1 -
(mB Tm TTYTT mR yD) .

—71. (n)-1 - (1- L ~
C2 (yD
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and we notice that, since (n)P already coincides with the first n
- elements of the stationary distribution p , that the rate of point-

. wl se convergence is that of

= -
(Lo. 4) 1 - r Pj

i=1

tn zero as n + o,

oe are

olnce we/at liberty to choose the {Pp} » Within the constraint
v», > 0 all 1, L P; = 1 , we can arrange to make the converrence

1

or this quantity to zero quite slow e.g. {if we choose Pp. = const
EGE, . - -3. Clty) » Y>0 5, then (4.4) is 0(n ¥) as noo» oo,

It may be relevant to 10%.;, thatfor “this rather specialized

= example ; one of the approximation techniques described in Seneta

| (1967), that of finding successive left Perron-Frobenius eigenvector
of (mF and norming always so that e.g. the first element is

I, unity, "settles down" immediately to the elementsof the stationary

distribution similarly normed, for (n)P/Py colncides with the

~ first n elements of P/py . However, 1t 1s also known by example

(Example (1)in the paper just cited) that the eigenvector con-

vergence for this method can be slow also; and 1n any case the

| "convergence radius' (reciprocal of the Perron-Frobenius eigenvalue)

[op 117%(yp 117 +1

again at rate (4.4).



|. We conclude with another simple example. Tf p = {p..}
| 1]

- is given by P:y = a, Pi i+] =l-ii,31=1,2,... . . . .
| 0 <a <1 , and Ps; = 0 ot hervise©0dwe take v= {y( i) } to bho

= defined by y(1) = (1-y)a , y(j) = 0 otherwise, where go < y < 1,

straightforward calculations give

cy 1 Co
(n)2(1) = Cn) (1 - a)”, 1 =1,2,.gq

where

- )
| =a 1 - y+ y(I-a i

| The difference between the required 1-th component and its approx-

| imations obtained from the n-th iiuncation is thus
: { n

x(i) = z(1) = a(l-a)t Lt _ yaa” |: (n) ni
l-y + y(1l-a)"

0 that the pointwise convergence rate 1s geometric and independent

of ..
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