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ABSTRACT

An algorithm is presented for computing the unique stationary
distribution of an infinite stochastic matrix possessing at least one

column whose elements are bounded away from zero. Elementwise convergence

rate is discussed by means of two examples.
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1. Introduction

For a denumerably infinite stcchastic matrix P = {pij},
i,j =1,2,... a vector x satisfying
' U
(1.1) x>0 ,x4%40, x P = x

is called an invariant measure; any positive multiple of an in-

variant measure is one also. If an invariant measure satisfies, in
addition,
1 0
{(1.2) x 1 = 7% X = 1
oo i=1

it is called a stationary distribution.
In this note we shall display an algorithm for computing a
stationary distribution x (under conditions on P which ensure

existence and uniqueness) from successive finite matrix truncations

P . A similar algorithm when P is a finite matrix has been previously

described (Styan, 1970).

It is now well known (Feller, 1968) that for an irreducible
and recurrent (persistent) P an invariant measure always exists,
and is unique, to positive multiples; and is eler .rtwise strictly
rositive. In two previous papers (Seneta, 1967, 1968) two al-
~orithms were discussed which yielded pointwise convergence to such
x , of vectors computed from -the successive truncations of P ,
shen X is normed so tha. a fixed element is unity. If P is in
ract positive-recurrent, its invariant measure can be normed to
~atisfy (1.2), so that 2 (unique) stationary distribution exists,

and it is in this form (of a stationary distribution) that
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invariant measure is usually required to be computed, from the
Markov chain context in which stochastic positive-recurrent P are
important. This problem was touched on but not discussed to any
extent in the two papers cited.

We shall not necessarily have present in this note the ir-
reducibility of P , but work under the probabilistically restrictive
butclassical, assumption that P satisfies

(1.3) sup {inf p..} > 0

j HEREE

%
i.e. that there is at least one column of P , say the j -th, with
positive elements, which are in addition uniformly bounded away from

F
zero i.e. for at least one j , say j =3

(1.4) i o> 8(3
12f Pij 6(3) > 0

2. Markov Matrices.

Finite stochastic P with a positive column are classically
known as Markov matrices (Bernstein, 1946). The condition (1.3) is
a natural way of extending this terminology to the infinite case,
since , moreover as we shall now sketch, the implications are the
same as in the finite case.

The positivity (clone) of the j 2 column implies that the
index set of P contains a single essential class ¢ of indices
(i.e. a single closed self-communicating class), which contains j"'c
and is therefore aperiodic. Indices outside C , if any, are in-

essential and lead to C The in £ o 4~
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recurrent under (1.3) for ,

- . . (p-1) . ¥
K ka* > 1;f pkj* ﬁ pj"k = 6(3) >0

(r)
i3
aperiodic class, C , yhich is in fact positive-recurrent, is some-

r _ . . . .
where P = {p.."} . A matrix P containing a single essential
times called reqular; for such P it is well-known that, element~
wise, as r + ® , ergodicity obtains, 1i.e.

(2.1) P 41 . x

~

where X is the (unique) stationary distribution of P , and only

-~

those elements of x = {x(i)} are positive for which i ¢ C . In

the present situation where (1.3) holds, it can be deduced that the
elementwise approach to the limit in (2.1) is in fact (uniformly)
ceometric. This 'geometric ergodicity' testifies to the restric-

tiveness of condition (1.3).

For the sequel it is convenient, and results in no loss of

generality to take j* = 1 , so that
(2.2 '
) pil > 8(¢1)> 0 > 1 =1,2,.....,
If we =
we denote by (n)p '(n)pij} the (n x n) northwest corner
truncation of P , then (myf is in general substochastic, and in

virtue of (2.2) contains a single closed finite set of indices,

(n)C » which contains the index 1, and so is aperiodic
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3, The Algorithm

Define the vector y = {y(j»} > 0 by

~

y(j) = 6(3) if j satisfies (1.4)

=0 otherwise

Clearly, by assumption, y $+ 0 , with at least first element
positive. Focus attention on the following infinite system of
equations, which is certainly satisfied by the unique stationary

distribution corresponding to P :

! t '

(3.1) x (I - (P - 1.y =y

where x is a vector of unknowns; and on the corresponding (n x n)

northwest truncated system foreach n = 1,2,.....

;. _ ) ' _ 1
(3.2 m?Z (I - (P = mi.m? ) T oy

where (n)2 ' is a vector of unknowns.

It should be noted that the subtraction c¢?¢ 1 '
)z ¥
from ()P does not alter the location of the zero and positive
zlements of (n)P and so does not change its essential structure;

!
however ( 4P - (31 * ¢ 3¥ now has each row sum strictly less than

unity, and by a well known property of such matrices the matrix

1
((n)I - (n)P - (n)% ) (m)?Y )) has an inverse, and, furthermore ,
v @ '
- - . = k
@ = P =l ¥ 7 F D (P - 1)

k=0
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elementwise, so that the inverse has non-negative entries {and indeed

(2.2)). It thus follows

QO
-
e~
o
-

] ] t
3.3 = - - . -1
( )J m2 Fm¥ (I (P -l YT >

. |
(Wlth (n)%2 2 ()Y

is the unique solution to (3.2), and, further, from (3.2) since

' '

(mZ " m?Z% (m ' '

o
PP mE ml ¥ T gy

it follows that

n n
(3.4) (n)E"cnr‘h - cm%"cn)% - (n)%"(nﬁ | M@MMM@&@ f (n)!v'(:;i

on account of the substochasticity of (myP - Hence, since
]
()Y 20,40 it follows from (3.3) and (3.4) that
(3.5) 0 < < '
(1) < (n)21) < ()2 (et 1

where  (n): = {¢ y2(i)} ; and from (3.2) that

(3.6) z ' ' !
M F Pl ) Y
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Now since

i L Tollows that

(3.7) 4

4
(n+1 )E, 2 n)i

(if we eXtend, for the present instance only, the definition of

z by
ttI 3 — ] (n)f\/
putting (n*z<l) =0 for 1i>n) Thus we know that the limit

exists for each i=1,0,...

If we put z = {z (i)}

(3.5) and (3.6) give, by Fatou's lemna

%

(3.8) L %! )
E 2> 2 (P -1 - y ) + y'

-~

P

~

which implies



Mow in fact, equality must hold at all entries, for otherwise,

by stochasticity of P . Thus

and from (3.8) ,

it

!N
2 el
"
=

%
Thus z is the unique stationary distribution corresponding to P

]

Thus, to summarize: the successive solutions ()2
n)<

n =1,2,... for the finite systems (3.2} converge elementwise to the

unique stationary distribution corresponding to P . Moreover, from (3.7)

)

the elementwise convergence is monotone increasing in (n)z , thus providing a steadily

improving bound for the required limit vector.

4,  Convergence Rate

It appears that little, in general, can be said about the

convergence rate. This is borne out by the following simple example.

Let P = {p;} be a probability vector with all entries positive

-]

l.e. P.~l> 0, 'El p. = 1 ., The infinite matrix
is -

(4.1) P:l.E
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clearly satisfies (1.4), 54 has unique stationary distribution p .

If we indicate with a subscript n the usual truncations,

(4.2) .
()’ (n)? ‘ (n)Pt

and corresponding to its Perron-Frobeniys ©igenvalue,

has left and right positive eigenvectors respectively
It follows that
(4.3 ) pK { - ' k-1 )
(n) ‘R Tl i me
beo
b
Now a permissible choice cf yv is &p , wh re
5 pErt 0 0< 8 o<

~

case (3.3) becomes

! '

L.
2 7 82 [ I - (1-9 (ml " (e 171

(o]

1
S¢yP L (1-8)K ) 'k
()% 2 §) ((n)% (n)R )

N

and using (y,3)

[s 3 - ' K '

| 5., :
I—(1-§ ((H)E .(n;§7 T

. ¥ 7 1
B Tz T (1-8) @ - (M2 "(mL) ,
n)

1
Lo =8 (500 (D)

(n)

-~

then

-~

(n)R

k
k

1

D

» in which



and we notice that, since already coincides with the first n

(n)2
elements of the stationary distribution p , that the rate of point-

wi se convergence is that of

I zero as n + o,
o are
Since we/a i : 1thi 1
»lnce we/at liberty to choosc the {pi} > Within the constraint

b, > 0 all i, : Py = 1 , we can arrange to make the converrence
i

51 this quantity to zero quite slow €.9. if we choose P: = const
j-(1+Y) -

» Y>0 , then (4.4) is 0(n”Y) a5 n - o,

It may be relevant t= n0* ., that for ithis rather specialized
exanple ; one of the approximation techniques described in Seneta
(1967), that of finding successive left Perron-Frobenius eigenvector-
of (n)P and norming always so that e.g. the first element is
unity, "settles down" immediately to the elements of the stationary
distribution similarly normed, for (n)g/pl coincides with the
first n elements of E/pl . However, it is also known by example
(Example (1) in the paper just cited) that the eigenvector con-
vergence for this method can be slow also; and in any case the
'convergence radius' (reciprocal of the Perron-Frobenius eigenvalue)

[npp, 1170 41

again at rate (4.y).
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e conclude with another simple example. Tf p = {p..}

ij
is given by P;y = ay pi,i+] =1l-1ii,1=1,2,...
0 < a <1

,  and Pff = 0 ot hervise . o . d we take y.={yCi)} to bhe
defined by y(1) = (1-y)a

, ¥y(3) = N otherwise, where

0 <y < 1,
straightforward calculations give

({1 = ey -t i=1,2,.

where

i

C(n) = a f l-y
VT -y F y(Imayn

————

The difference between the required ji-th component and its approx-
imations obtained from the n-th iruncation is thus
s f n
x(i) - z(i) = a(1-a)"1 y(1-a)
(n) .
- -y + y(l-a)™

so that the pointwise convergence rate is geometric and independent

of o .
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