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ABSTRACT1

Co The prablem (attributed to R. M. Karp by Knuth ( see #36 of [11)) is to
describe the sequences of minimum length which contain, as subsequences, all the

permutations of an alphabet of n symbols. This paper catalogs some of the easy

observations on the problem and proves that the minimum lengths for n-5, nab 6
= n=/ are 19, 28 and 39 respectively.” Also presented is a construction which

yields {for n>2) many appropriate sequences of length n®-2n+4 so giving an
upper bound on length of minimum strings which matches exactly all known values,
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: 1 NOTATION.

a) Let S be a sequence of symbols. |S] wil | be used to denote the total
— number of symbols in S and so we observe, for example, |x y x z |= 4.

Na. b) We say xcy in the case where x is a subsequence of y and we say "xis
equivalent to y"* if x can be obtained from y by a simple change of

. alphabet; we denote this equivalence by ‘&’.
_ (e.g. Xyexyyx, xyzxe=l23l)

| c) P(A) is used to denote the set of sequences uhich are permutations of
— an alphabet A. Cardinal ity of P(AJwil | be (JA]}!. Also, P (A,n)i s

| is the set of permutations of all sub-alphabets of A of size n { where
n <|A]). Clearly, P(A)=P" (A, }A}).

d) | f Ai s an alphabet then Q{A)={x | x¢cA” A Vy. (yeP(A)2 yex}} where A’

Lo is the set of sequences over alphabet A. For example, abcacba ¢Q{abc).
Also, Q’(A,n) is taken to be the set {x|xeA” AVy. (yeP{A,n)> yex)}.
So, for example, zyxwxyz €¢ Q {wxyz,2).

—

| e) Now, the LENGTHS of the shortest sequences in U{A) andQ” (A,n) depend
only on the SIZE of the alphabet A. Hence, take M{n) to be the length

-— of the shortest sequence in {12 3...n) and M {n,m} to be the length
of the shortest sequence in Q{123...n ml.
So, for example, M{l)=1,M(2)=3 a nd MN (n,1)=n.

| f) S(n})} denotes the n-th symbol of sequence S.
S(n:m) denotes that cont iguous subsequence of sequence S which is the

~~ symbols from position number n in S to position number m.
# (5S,x) denotes the number of ocurrences of the symbol x in sequence S.

g) “CPAF X" is just an abbreviation for “Consider the Permutations of the
current Alphabet of the Form X". The greek letters uhich appear in X.

w denote arbitrary sequences of symbols.
For examp l e, if the alphabet under discussion were abcde, the command
“CPAF bac" would mean “Consider Permutations of abcde which start with

| b and end with ¢".
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2 SOME EASY OBSERVATIONS.

-

2.1 M(l)=1,

- —— ————

2.2 M213,
- ee-

I. 2.3 M(3)=7,

= 2.4 Wi{n,1)=n.

2.5 M” (n,2)=(2n-1) can be seen as follows:

-— M (n,2) $2n-1 since if A is an alphabet of length n, then the
sequence AA(2:2n) is a member of Q"(A,2).
M’ (n,2)2 2n-1 since if A is an alphabet of 8lzen, S is a member of

w Q” {(A,2) and |S|<2n-1 then at least two of the symbols of A (x and y,
say) only appear once in S; hence 1 of the sequences “xy” and ‘yx’
are not subsequences of S.

C

2.6 M (n,m) 2{m. (2n-m+1)/2) (n2m, of course)

— This result is more easily remembered as
Mn,m}2n + n-1 t N-2 t +oeee t N=-m+l

Suppose A is an alphabet of size n and S is a sequence from Q” (A,m)

Cl of minimum length (i.e. |S|=M"(n,m}). It is noted in {2.4)that
| M”(n,1)=n so take m22, Segment S as TxU uhere the sequences T,U and

the symbol x are chosen so that x does not appear in T but all the

other symbols of A do. Clearly, |T|2{n-1). Now note that al |
permutations of subalphabets of A of size m which start with x are

subsequences of xu. Hence all permutations of subalphabets of A\x
of size {m-1) are subsequences of U (A\x is A without x and

1 |A\x|={n-1) ). IU 2M(n-1,m-1), therefore, and so M (n,m) (which
is simply |S]} is at least {n-1}t 1 t M (n-1,m-1). This recurrence
relation is readily solved to give the result.

\..

2.7 M{n}2(n. (n+l) /2).
a-- i

= Simple coral lary of 2.6’ using M(n)=M" (n,n).

2
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2.8 M (n,m) <(m.(n-1)+1)

N Given an alphabet, A, of size n , the following construction gives an
element of Q” (A,m) of length  mx(n-1)+1 :-
Generate m permutations of the ‘alphabet Al, AZ, A3, . . . Am such that

= Al (n)=A2(1), A2(n}=A2(1) etc. Now, B = Al A2(2:n) A3(2:n)...Am(2:n)
is in Q” (A,m) since if C is any permutation of any subalphabet of A
of size. m, C(]) is either in the j-th component of B or IS the last
symbol of the (j-1}th component (for j>1}.

. 2.9 M{n)<{n.n-n+l)

| A simple corollary of 2.8.

|—

| 2.10 M (n, 3) ={3n-2) (n23).
——— EE EEREEEE

- From 2.6 we get II'(n,3)2(3n-3)}.
From 2.8 we get HM(n,3)<2(3n-2}.
Suppose the lower value is obtained for an alphabet A (|A]=n) and S

_ is a sequence of length 3n=3 which is in Q"(n,3). Now no symbo!| can
appear only once in S for then We would have
|1S|2(2.M{n-1,2)}+1)=(4n-5) which is a contradiction for n23. Hence

| there must be at least 3 symbols which occur just 2 times each for a
= total of 6 times. However M(3)=7 so there must be some permutation of

these three symbols which is not a subsequence of S. This
contradiction gives us the result.

2.11 Members of Q{(12 3) of Length 7.

The fol lowing is an exhaustive list of minimum solutions for a 3

] symbol alphabet. We consider, of course, only equivalence classes
(with respect to the operator =}.

1231213 1231231 1231321

1232123 1232132

— 1213121 1213212

2.12 YScl{A). dacA. #(S,a)2]A|.

Use induction on the alphabet size. The case [A]|=1l is trivial so

suppose the result holds for all alphabets of size less than n, |A]|=n
and Seli{A). Segment S as TxlJ where sequences T,U and symbol x are
chosen so that x does not appear in T but every other symbol of A

does. Use A\x to denote A minus symbol x, and ue get UeQ(A\x)., Now

~ |A\x| = n-I and so we can find y such that #{U,y}2(n-1). Clearly
#(S,yl) zn.
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2.13 ¥SeQ” (A,m). Card({ a | acA A #(S,alz2m }) 2 (n-m+l)
| ——— = = a"== = do fo 21 =

Let A be any alphabet, m be any integer such that |A|2m and S be some
member of Q” (A,m). Select sequence B - a permutation of A such that

— the symbols of B are in order of decreasing frequency in S.

Now take sequence S’ to be the sequence formed by deleting those

symbols from S which are in B{l:in-m}. S is a member of

N Q(B(n-m+l:n)) and so some symbol must appear at least m times in S$’
’ and hence in S.

) Therefore, #(S,B(1)) 2 #(S5,B(2)) 2 .....2 #(5,B(n-m+l))2 m which
i gives the quoted result.
.

2.14 M” (n,m) 2 m{n-m)+M(m)

A corollary of 2.13 .

2.15  M{4)=12.

— Take A to be the alphabet (sequence) 123 4.

- 123412314213 ¢ Q(A) and so M(4)<£12.

o Suppose S ¢Q(A)and |S|«l12,
Compute the least integer | such that S(1:j) contains each symbol
of A. Note j24 and S(j) is not in S{1: j-1).
Considering permutations of A which start with S(j}, we get that
1S]2 3 t #(S5,5(j)) t M3)= 18 t #(S,5(j})).
Using [S|<l2 ue get j=4 and #(5,5(j))=1.
Therefore, S(4) appears only at position 4 of S. Now consider the

-— permutations of A that end with S{4) and get that 42M(3) which
Is a contradiction.

From this contradiction we see that M(4)212.

2.16 V A. ¥xeA, 3S¢Q (A). #(5,x)=1

Suppose we are given an alphabet A and x is some symbol of A. We

take the subalphabet A\x and find some member T from Q(A/x]).
“- Clearly TxTe¢Q(A) and also #{TxT,x}=1.

This is quite a useful result to keep in mind when pondering what

properties members of Q(A) might have.
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3 M{5)=13.

- = EEE RE

Take A to be the alphabet (sequence) 12345 .

-

i) 1234512341523 145213 ¢ Q(A)

so we have M{5)<19 .

. ii) Suppose Self{A)and |S]«19.
+! Break up Sas Ty U (where T and U are segments of S and

Y is a single symbol) such that Ty is the shortest initial

segment of S which is in 0" (A,2) so |Ty|2(5,2)=8.
Choose x in T such that xy is not a subsequence of T (this

| is possible otherwise S was not segmented as prescribed).

Considering members of P(A) starting with xy, get
~-15123 tM@®)t #U,x) t #U,y)=1 6 t#WUU,x)t #U,Y).

Now, supposing x does not appear in U, consider subsequences
of S that end with x and derive the contradiction

| s [2M {4} +2+M (3) =21.
Conclude #{U,x)2l1 (and similarly #(U,y)21).

- Reconciling inequalities, we get #{U,x)=1, #(U,y)=1,|T]|=8,
[lU|=8 and |S]=18.

- In U, x and y appear just once each and so one sequence of
xy and yx , call it Z, is not a subsequence of U.

Consider, then, permutations of A of the form ® and get
[IT] 2 M3) t #(T,x) t #(T,y)2 9 -- a contradiction!

—

| We therefore conclude that M(5)213.

iii) From i) and i i) deduce M(5)=18.

—
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| 4 M(B)=28 and M(7)=33.
- = EEZS=S=N aR EEEEEJIER

i) Take A to be the alphabet (sequence) 123456 .

1234561234516234156231456213

| is in Q(A) so we have M(6)<28.

po.

The proof of M(B)228 is given as Appendix 1 because it is.
long and uninformative.

= These two facts give the result M{6)=28.

Sa©

ii) Take A to be the alphabet 1234567.

123456712345617234s
167234156723 14567213

o is in Q(A) so we have M(7)< 39 .

| M{(7)239( proved as appendix 2 } and so we have M(7)=38,



5 Minimum Length Solutions for Alphabets of Size 4.

Let A be the alphabet abcd.
We wish to enumerate the equivalence classes in Q(A)

or of the minimum length {iel2). Suppose Se¢Q(A) and |S]=12.

Lemma: VYpeA. #(S5,p)22
- pcA A #(S,p)=8 is absurd.

Suppose pecA A #(S,pl=1 We have that S has the form UpV.
CPAF ap to get |[U|2MN(3)=7; CPAF pa to get |V|2M(3)=7 .

- We immediately have the contradiction |S}=|UpV]|2 15.

Lemma: 3p. #(S,p)=2

Suppose not. In view of above lemma, VpeA.#(S,p)23 which
= is a violation of the result 2.12 (page 3).

~- Supposing #(S,p)=2, choose T,U,V such that S = TpUpV.
CPAF pa to get |UV|27; CPAF ap to get |TU|27.
N ow |U|=|UJ+(|S]|-12) = (JU|+]T|+|U}+|V][+2)-12 2 4.

- Also |T|= |S|-2-|U]-|V¥]< 3 and similarly |V|s3.

Suppose |T|<3. ‘Thus 3dxeA. =(xeT)a-(x=p).

_ CPAF xpa to give |V|2M(2)+#(V,x)=3+#(V,x). So #(V,x) =8.
CPAF apx to give the contradiction |T]|2M(2)=3.
Hence |T|=3 and similarly |V|{=3 giving |U|=4.

Suppose geA and -{g=p) A #(T, q)=8.
CPAF gpa to get #(V,q)=8. Hence by a lemma above, #(U,q)22.
CPAF gxp to get the contradiction |U|2M(2)+#(U,q) 25.
Hence V q, qeA > (g=p v #(T,q)=#(V,ql=1).

. From this discussion we get that there are representatives of

_ all the equivalence classes of the form
abcdUdyV where |Ul=b4,|V|=3,ad, beV,ceV.

CPAF ad we get abcU is in Qlab ec) and is of min. length.
= Using result (2.11) we get 5 possibilities for Us namely:

(1) abac (2) abca (3) acba (4) babc (5) bach.

— Similarly UV is in G{a bc) and is of minimum length.
Performing a small amount of hand checking and using 2.11

again we get that there are exactly 9 equivalence classes:-

abcd abca dbac abcd acba dbca abcd bach dabc

abcd abca dbca abcd acba dcab abcd bacb dacb

abcd abca dcba abcd acba dcba abcd bach dcab

I
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6. An n® -2n +4 Construction for Alphabet of size n.

Given an alphabet sequence, A, of length at least three, it

“ i s asserted that the following recipe gives a sequence in Q{A),

Set the sequence variable B «A(2:n};
A-—

Write (A):

DO (n-2) TIRES {UWrite(A(1));UWrite(B(1:n-2));
— B « (B(n-1)B(1l:n-2)};3 ;

Write(A(l)): MWrite(B(1));

hme a
The total number of symbols written = n+ (n-2)x (1+n-2} +2

= n®-2n+4

he We now verify that the sequence produced is indeed in Q(A).

First note that the operation “B «B(n-1)B(1:n-2}" simply
— rotates the sequence of n-I symbols in B.

Next note that the first symbol of A (we will call it a) is

_ written exactly n times, Letting C be the result of the above

construction, we segment C as follows:

C =adaKalLa... aYalab where the (n-1) sequences
J,K,L,...Y,Z do not contain the symbol a.

hae For convenience we will use call J,K,L,.....Y,Z units and will
refer to them as UIl1]l, U2}, ... Uln-1].

A Now J contains all symbols A{2:n) but K,L,...Y,Z each contain
just n-2 of the symbols of A(2:n). However the symbol of A{2:n)
that does not appear in some unit Ulk] is both the last symbol
of Ulk-1] and follows the a that follows Uk] in C.

Let P be a permutation of A. We will show that P must be a

subsequence of C.

Suppose a appears in the jth position of P. We first show that
the string P{l:j)} (simply a if j=l) can be matched to the
the head of C adJaKaL...U(j-1la . Trivially true if j=1.
If j>1 then P{l) is in J, clearly. Also if jsk>1 then P{(k) can
be matched to Uk] if it is in that unit or else the last

“ symbol of Ulk-1].
Similarly the n-j symbols of P(j+l:n) can be matched to
UljlaUlj+1la...alln-1lab . [f j<ksnt hen Plklwill either
match some thingin Ulk-1] or the symbol which follows the a
which follows Ulk-1].

8



7. A More General n®-2n+4 Construction,
2 J P MERRY wWESEERERSS t. 3 3 1 2 1 1 | PETERS EENNEEE

It is asserted that the follouing algorithm, regardless of which
internal choices are made, also produces a member of Q(A) of length n2-2n+4.
The proof. of membership in Q(A) follows by the same method used in proving the
validity of the simpler ‘program’. lt is also readily seen that the previous
construction is a special case of this more general one.

= SUBROUTINE SR1:

Write the symbol [x];
Write the symbol [yl;

SUBROUTI NE SR2:

SR1;

Write in. any order the [n-3] symbols of A which do not include
[x] or [ul o [2].
00 yz AND set z to the last symbol written.

~ SUBROUTINE SRS: .

DO SR2 k-21 TINES;
SRi:

SUBROUTINE SR4:

DO SR2 in-31 TIMES;

SR1:

Wr i te in any order the [n-2] symbols of A which are not [x], [ul;
Wri te the symbol [x];

MAIN ROUTINE:

Write down the alphabet (A);
: DO EITHER {xeA{l};y « any symbol of A(2:n-1);z¢A(n);}

OR {xe AQ; y «A{l);zeAln);};
DO EITHER SR3 OR SR4;

- SYMBOL COUNT.

If M symbols are written each time a certain routine is obeyed
then we say that the SYMBOL COUNT for that routine is M.

Symbol Count for SRl= 2 ;
Symbol Count for SR2 = n-|3

Symbol Count for SR3 ={n-2)%(n-1)+2=n® -3n +4;
Symbol Count for SR4 =(n-3)%(n-1)+(n+l)=n® -3n +4.
Hence Symbol Count for total algorithm sn®-2n + 4 .

Note that no distinct sequences produced by this algorithm are

equivalent since al | such begin uith a copy of the alphabet.

3
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Note also that every sequence so produced ends with some permutation

— of the alphabet.

; Given an alphabet A, the reversat of any sequence which is a member of
T Q(A) is also a member of G(A}. It should be noted that the the reverse of any

sequence generated according to this construction is equivalent to some other
sequence given by the construction.

~

a
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8. Constructing Elements of Q° (A,m}.,

Section 6 contained a simple construction for generating elements of

Q(A) (for given alphabet A of size n>2) which were of length n®-2n+4 . This
algorithm is now modified to generate members of Q" (A,m} (where 2<msn) of
length mn-2m+4.

| Set the sequence variable B ¢ A{n-m+2:n);
: Write(A);

~. DO m-2 TIRES Urite(A(l:n-m+l));
Write( B(l:m-2) );

B «Bi(m-1)B(1:m-2);

Write( A(l:n-m+l) };
Write( B(1) J);

The total number of symbols written is easily seen to be
nt (m2) (n-m+tl t m-2) t {n-m+l)t 1 = mn-2mt4 .

Just as this algorithm is a modification of the one in section 6, the

proof of the correctness of the construction is an extension of the previous

proof,

This construction gives an upper bound on M {n,m} for n2m>2 of mn-2m+4
and so using this knowledge, the proposition 2.14 and the various values of

M(4),M(5),M(B6)&M(7) we already know, we compute the neu results:-

M” (n,4) = 4n-4

M (n,5) = 5n-6
M’ (n,B) = Bn-8
M”(n,7) = 7n-18

11
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9. Discussion,

The construction of section /~gives many sequences of the desired
— length. It gives all nine equivalence classes of sequences in Qa b c d) of

length 12, 128 classes in Q{ab c de) which may or may not be all of them,
and 32,400 classes from UQ{abcdef), It does NOI' get al | the sequences of
Q(a b c¢c d ef) since all the ones produced start with one copy of the
alphabet however the following sequences from d{abc def):

abcdebfdcabedcfbadecbdfacebd

abcdeafdcbaedcfabdecafdbcead

(among others known) DO NOT! In fact, the second of these examples does not
even end with a permutation of the alphabet.

An easy to derive lower bound on the number of classes i s{ {(n-3)!)%(n-1).

We now tabulate the known values of the functions M&M .

m Mm) me-2m+4 M (nh, m)

2 3 4 Zn-1

3 T T 3n-2

N 4 12 12 dn-4

5 19 19 5n-6

6 28 28 En-8

1 39 33 /n-19

) The fact that the actual values of M(n) exactly match the n2-2n+4
~ figure for 2 < n £7 make tne construction relatively important. It also

suggests the obvious conjecture that Min} is exactly n®*-2n+4 for all n>2.
However, there is another competing conjecture which gives exact fit atn=1,2

. as wel | as the other known values of M{n) but is more complicated:-

Min) = n® for n=l

n%-n+l for 25n<3

ne-2n+4 for 4<n<?

nZ-3n+l11l for 8snslS

NE =myn+F (n) for 2™sns 2.2™-1
where F({B)=B8 AF (n)=n+2%F (n-11}.

Of course, knowing whether the value for M{(8) is 51 or 52 would help by
eliminating one of these postulates.

12



=~ It is surprising that the best louer bound we have on Mn) is n®/2
since it would appear that it is of order n®. This conjecture is readily
stated formally as:- }

“ Yk. k<l 2 IN. n>N 2 (Mn): > kkn®)

© It should be noted that just the mechanical checking of the
membership of a sequence (over alphabet A) in A(A)ie quite time- consuming,

| A program is available in ALGOL but (although it includes some means for
= pruning the tree of permutations) takes a long time to check that all

permutations of the alphabet are subsequences of the given sequence. The

actual times on a POP18 are 3, 17 and 60 seconds for alphabets of sizes 8, 9
— & 10 respectively.

- REFERENCE:

1. Chvatal,V., Klarner,D.A., Knuth,D.E., “Selected Combinatorial Research

~ Prob| ems”, Report CS 292, Computer Science Department, Stanford University,
June 1972.
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APPENDIX 1. Proof of M{B)228.

Take A to be an alphabet of size 6 (|A|=B).
Moreover, suppose SeQ(A) and |S|<28 .

Now choose sequences TT, V and symbols x,y such that
a) Tx is the shortest head of S that is in Q" (A,2);

b)yY is the shortest tail of S that is in Q”(A,1);
Choose uel such that w=x A ={uxcT).

We have immediately that |T|218,|V|25 and from consid-
eration of the elements of P(A) of the forms wxx 6 By
get |S|2|Tj+1+M(4), |S|2|V|+1+M(5), |T|s14, |V|<7, |S]|225.
Hence we can segment S as the sequence TxUyY and note
187) 114, 2<|U] 510, 5s |V| £7, 25< |S] £27.

Again CPAF wxa and get |UyVY|2M({4)+2=14. Hence (using |S}s27)
|T|<12 and (using |V|s7)|U}j26. Also CPAF ay again to
deduce |TxU|2M(5)+1=28. Therefore, |S] 2 28+1+|V|2 26. and
(using |T|<12)|U|27. Lastly (using |S|$27 and |TxU}228),|V|<6 .

Suppose #(U,u)=8. Since |y¥]|< 7 but contains all of A,
| there must be 5 symbols of y¥ which appear just once.
oo Therefore we choose p,q such that p,q,x,w are distinct,

-{pacyV¥) and p,q both appear twice in T. We can do this
since only one symbol of Tx can appear only once. Now CPAF

— awpg to get |[T} 2M3)t A(T,u) t #(T,p) t #(T,gq} 21 2 |
So |T]=12 and #(T,u}=1. Segment S as LuMxUyV¥ noting that since
LuMx is in P(A,2) and #(L,u)=8,|M|24. This gives that |L|s7

| and #(MU,u)=8. M(5,2)=3 so we pick p,g such that =~{pgecl)
= and p,q, distinct, Now CPAF pgwa to get|yV|2M(3)+#(yV,wu) 28,

Thiscontradictionglves #(U,u)2l .

Again CPAF wxa and get  |UyY] 2 M{&)+#(UyV,uw) +#{yV, x) 215.
Use |S]|s27 to get |T|gll and use |V]|s6 to get |U]28.

_ . Now let teA be such that #{U, t}=B. As above we choose p,q
so that t,p,q are distinct, ={(pgecy¥) and p,q both appear
at least twice in T. CPAF atpq to deduce the contradiction

| Tx] 2 M{3) t #(Tx, t) t #(Tx,p) t Alix,q) 21 2 !!
Hence all symbols appear at least once in U.

Yet again CPAF wxa to get |UyY|2 M{4)+#(UyV)+#{UyYV)2 16.
As before deduce |T|<18 and |U|23. Al so CPAF ay to
give |TxUl 2MNGI+#(TxU,y)221 andthen |S|=27,|V]=5
W e also have |T|=18,|U|=18 an d Vt. tcA 2 tel.

~ The proof is concluded by deriving contradictions in the
various possible cases of equality among u,x,y.

— CASE 1, x=y, and 80 S . TxUxY,
We know #(T,x}21 and #{U,x)21 so CPAF ax and get the
contradiction 21 = |TxU| 2 M(5) t #(TxU,x} 22 2

14.



CASE 2. X#L

. CASEZa.ury Le. w,x,y all distinct).
CPAF wxay to get |U| 2N)+#{U,w)+#MU, x)+#WU,y} 210
Therefore #U,W) = #{U,x) = #(U,yl=1.

or Now this gives that one of wx or xw,callitZ, is such that
~{Z ¢ U}, CPAF «ly and get | T| 2 M{3)+#(T,uw) +#(T,x)+#(T,y)
But #{T,w+#(T,yl23 and so |T{2 11 -- contradiction!!

; CASE 2b. u=y.
Find the first symbol of V which is not x 3 call it z.

Note that since yVeP{A)a|yV}=|A|,Zz appears just once in V,
CPAF yxaz to deduce |Ul2M3)+#(U,y)+#(U,x)+#({U,2)2 10,
Immediately we see #{U,x)=#{U,z}=1 and so one of xz,zx

-- { call it Z) is not a subsequence of U.
CPAF «Zy to get |T[ = M(3)+&(T,x)}+#(T,y)+#(T,2).
‘Use #(T,y)+4#(T,2)23 for the contradiction |T}2 11.

|

Y—--
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APPENDIX 2. Proof of M(7)239.

Take A to be an alphabet of size 7 (|A]|=7).
. Moreover, suppose SeQ{A) and [S|<39 .

Choose sequences T,U,Wd and symbols a,b,c such that
~ a) Ta is the shortest head of S that is in Q”(A,1)

b)cl is the shortest tail of S that is in Q”(A,1)

i c) Talb is the shortest head of S that is in GQ’ (A,2)

ha We segment S as TaUbVecW and readily prove:
B<|T|<8, D5<|U|<3, 8<]V|s18, 6s5|U|<8, 365|S|<38;

as well as |T|+|U|s1S,

Suppose for some p in A, #{V,p)=0.
If p is the symbol b, MN (6,3)+#(Talb,p)2 18 >|Talb| so we

. can choose q,r,s such that distinct(p,q,r,s) A={grscTalb)
so that -{(grsp cTalb¥). CPAF qgrspa we get a contradiction

| cv | 24+M(3),
| Otherwise p,b are distinct and M" (B,3)+# (Tal) 2 17 2|Tal] so
“. we rechoose q,r,s such that distinct{p,q,r,s}n =(grscTal)

which means ={grsp<cTalUbV¥). As before get a contradiction.
Lemma 1: VxeA. #(V, x) 21 follows from these contradictions.

-

Suppose peAadistinct{a,p). We know #(T,p)21 and #(Ub,p)21
and #(Y,pl2l and #(cl,p)21l so conclude #(S,pl)24. Also we
have #(V,a)2l and #(cl,a)2l so that #(S,a)23.

We sharpen our i nequa | i ties now. CPAF ax to get | T|s7,|5]237;
CPAF aba to get |T]+|U|s13; CPAF ab to get |Hjs7. Hence

6<|T|<7, b5=|U|=7, 135]V]|=<18, 6<|U|s7, 37<|5]|s38.
-

Suppose, in fact, #(S,a) =3,
We re-segment S as TadaKal where #(TJKL,a)=B a n d Lel.
There is at most one repeated symbol in T since |Ta|<|A|+1.

= Let z denote this symbol if it exists else any symbol of T.
Choose p,q such that distinct(p,q,a,2}) A =~(pg < T).
CPAF pgzaa to deduce that some subsequence G of Kal belongs
to Q(Al) where Al is obtained from A by deleting p,q,a,2.
|G|2M(3)=7 so some symbol of G appears at least 3 times.
So we choose y to be such a symbol and note

distinct{a,y) A #(T,y)=1 A #(KalL,y)23.
Now one of py and yp (call it Z} is not a subsequence of T.
CPAF Zzaa to show we can choose x with the properties

: distinct(x,y,a) A #(T,x)=1 A #(KaL)23.
“

16
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Now, one of the sequences xy and yx is not a subsequence

of T(callitY} and CFAP Yaa to get
[KaL| 2 M(4) + #(Kal,a) + #{KaL,x) + #(KaL,y) 21 9 .

By symmetry |Tad}2l9 to give the contradiction |S]219+13+1.
Lemma 2: VxeA. #(5,x)24 is immediate.

Again CPAF ax to get |T|=b, |S]|=38, #(S,a)=4;
Also CPAF ac to deriv e |W|=b, |Uj+|V|=23, #(S,c)=4,
Then CPAF aba to get |YcW| 2 M(5}+#(Ycl,a)+#(Vcld,b) > 23
which leads to 1B<|V|<18 a n t i 5s]U]<7.

Suppose that p,q are such that =-{(pgcV). We have that
- #{Talb,p)+#(Talb,q)23 . Now |Talb|<l5 and so

| Talb| <M” (5,3)+#(Talb,p) +#(Talb,q) . Hence we
choose j,k, such that distinct(j,k,!,p,q}A=(jkl c Talb).

_ CPAF jkipga so |cU]2M(2)+5=8>|cld| -- a contradiction!
T hus YpeA, YaeA, #IY,p)+#(V,q)23.
In particular, letting zbe the first symbol of cl which is not
one of a,b, H#V,al+#(V,b)+#(V,2)2 5.

~ CP AF acxz to get |Y| 2 M4) +#(V,a)+#(V,b)+#(V,2) 2 1 7
Thus we have new bounds for U,Vi-  5g[U|s6, 17<|V|[s18

o We now choose sequence H and symbol d such that
dHcW is the shortest tail of S in Q{A),

By symmetry with the results for U we have that 5<|H|<b
and so we re-segment S as TaUbGdHcW where

= |T|=6, ©O5<|U|<b, 182|G|<12, ©5<|H|<6, |W|=6, |S|=38,
#(S,al=4, #(S,c)=4,

“ Suppose x is such that x=aax=cn ~(ecl).
If xb then CPAF abex to get

|dHcl| 2 M(4)+{(#{dHcl,a) +# (dHcld, b) ) +# (dHcl,e} 2 12+3+2
- a contradiction.

= If xzd then CPAF aedc to get
| Tab] 2 M{4)+(#(TaUb,c)+#(Talb,d))+#(Talb,e) 2 124342

- - also a contradiction.

The remaining case is x=b=d, Lemma 1 (with #(S,c)=4) gives
that #{TalUb,c)<2 and since there is at most one symbol in Talb
appearing 3 times, we choose p,g{not c or b) so that #{Talb,p)<2
and #(Talb,q)<2. Since M(3)=7 there is some permutation Z of
c,p,q that is not a subsequence of Tab. CPAF Zba to get
[Hcl| 2 M(3)+# (Hel, b) +# (Hcl, c) +# (Hcl, p) +# (Hel, gq) 2 741424242 = 1 4
- a contradiction.

From these 3 contradictions we get (x¢A a x=anx=c)o #(G,x)21.
Now suppose —f{ael). Choose p,q,r so that distinct(a,p,q,r) and
={pgr c dHcl). CPAF aapqgr. Clearly ael [else |T|2M(4) | and so
#(Talb,a)22. Hence

| Talb| 2 M3} +#(Talk,a) +....+#{Talb,r) 2 742424242 =1 5
From this contradiction we get #{(G,a)21 and by symmetry #(G,c)21.

Lemma 3: VxeA., #(G,x)21 follows.
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Suppose xcA axmaaxwc, #(T,x)=#(W,x)=1, #(Ub,x)21, #{dH,x)21
and #(G,x)21 to yield

Lemma 4: VxeA. (xwa A xmc) 2 #(S, x)25.

Suppose distinctla,b,c). -
= We first choose z to be the first symbol of W which is not a,b.

b-anb2c so we have bel, bedH giving #(GdH,b) 22.
z#a A z#c so we have zeG, zedH giving #(GdH,2) 22.
Also axc so aedd and we have aeG giving #(GdH,a) 22.
CPAF abaz to derive |GdH|2 M{4)+#(GdH, a)+#(GdH,b)+#(GdH,z) 2 1 8.
We get from this that |U]=5 and also #{GdH,b} = 2 = #(GdH, 2).

_ This then gives that #(5,2)=5 and #(5,b)=b|

Let p,q,r be the 3 symbols of the A which are not a,b,c,2z.
H(S,a) + #{S,b) t #(S,c) + #(S5,2) = 4+44545 « | 8

— so H{S,p)+#(S,9)+#(S,r) = 28.
Since no symbol appears twice in Talb, can choose a permutation
Z of pgr so that ~{ZcTalbl.

_ CPAF Zax to get 25=|GdHcl[2M(4) +(28-6)=26- a contradiction,
Simi larly distinct(a,d,c)’ gives a contradiction.

Lemma 5: -distinct(a,b,c) A ~distinct(a,d,c).

In view of lemma 5, two important cases are a=c and -{a=c).

ee CASE 1. a=C,
Suppose first that acl. Clearly |U|=b and |Talb]=14.
Letting z be the first symbol of W not a,b  CPAF abaz to
g e t|GdH| 2 12+#(GdH,a) +# (GdH, b) +#(GdH, z} 217.
But |GdH|=17 so we see H{GdH,b) = 2 = #{GdH, 2).
Thus #(S,a)+#(S,b)+#(S,2) =14,

Now choose p,q,r,s such that pqgrsabz is a permutation of A and

— #(S,p)2#4(S,q)2#(5,r)2#(5,8). Now since some symbol appears
at least 7 times in S, #{(S,p)27 a nd #(S,q)+#(S,r)+#(S,s)<l7.
Hence #(S,s)s5 and so #(S,p)+#(S,q)+#(S,r}219.
Now each of p,q,r appears exactly twice in TaUb and so

i} H#(GdHal, p) +# (GdHal, g) +# (GdHall,r} 2 1 3
ii) since M(3)s/7 there is a permutation of pgr

(cal I it Z) such that =(Z < Talb).

CPAF Za to get 24 =|GdHall|2 M(4)}+13 = 25.
This contradiction gives us #{U,a)=8.

Again letting z be the first symbol of W not a,b we have
#(GdH, a)2>2, #(GdH,b)22, #{Gdh,z)22 so CPAF abaz to

deduce |GdH|218 and hence |U}=b a n d #(S,b)=#(S,z)=5
Similarly, #(S,d}=5 a n d |H]|=5.

|G|=12 a n d #(G,a) =#(G,b)=2 so the other 5 symbols appear
a total of 8 times in G. Hence choose p,q so that ={pqg<G)

and distinct(a,b,p,q). -(abpqcTalbl) so CPAF abpga
to derive a contradiction |dHal|27 +3%2+ 1 = 14,

18
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We have asb and cwd so Lemma S¢gives both bsc and d-c,
Hence S looks | ike TaUbGaHbl with |T|=b,55|U|<B, 18<|G|s12,
C<IH|<6, |W|=6, #{G,a)=#(C,b)=l, #{(T,b)=#{U,a)=l.
Clearly #{TUH,a) = 8 = #{UHW,b)-

We can write the alphabet in order of decreasing frequency in

S as pqgrstab where al | except a,b occur at least 5 times and
— #(S,p)27. Hence, as p,q,r,s,t appear a total of 38 times

#(S,t)=5 and #(5,8)<b and #(S,p)+#(S,q)+#(5,r)}2 19.

= CASE 2a: [U|=5 .

Some permutation, Z, of pqr will not be a subsequence of Talb
— so CPAF Za to get |GaHbl|2 12+19-6 = 25.

This gives us that #{(S,p)+#(5,q)+#(S,r)= 13 and #(S,s)=6.
We. then deduce #(S,p)=7,#(5,q)=#(S,r)= 6.

= Now if z denotes the last symbol of T ' then CPAF za to get
3 2 = |albGaHbW| 2 M(B) + #(5,2)~- 1 or #(5,2)s5
But zwa so #(S5,2)25 so we deduce t-t.

— Similarly the first symbol of W is t.

Recall that =(Z c Talb), #(G,a)=#(G,b)=sl and note #(G, t)=l.

. CPAF Zaba to deduce that ab <« G.
CPAF Ztba to deduce that tbc G.

Similarly deduce that atc G.
i.e. a precedes t precedes b (in GJ}.

.

Suppose t is not the last symbol of U. We find y,z such that
~{yzt¢ TaUb) and so -(yztabc TaUbGaH}). CPAF yztab for
the contradiction by which we can conclude U(5)=t,

We have that S has the form T” tal’ ftbGaHbtW” where T't-T,
U'ft=U a n d t= (this defines T’, U’, f, W).

~ Clearly f=a, f=b,f=t and so #(S, f}26.
Now =(tfc Talb) so CPAF tfaab to get |G]|27+3+#(G,f).

Suppose #(G,f)=1. From #(S, f)26 deduce #{H, f}=2,
“ Now one of tf,ft is not in G = call it Z.

CPAF able to get |aHbl|27+1+2+2+3=15- a contradictions
Hence we have #{G,f)=2 and |(G|=12 so |H]|=b.

Now let the last symbol of T' be g and suppose bug,
-(gb ¢c Tal) and =(tacG) so ={(gbta c TaUbG).
CPAF gbtaa to get a contradiction,
Hence the last symbol of T' is Db.

Now ={(bfc 77 tal”) but we have =(tac bl) so -(bfta < TaUbG).

CPAF bDbftaa to get 12 =|Hol|2 7+1+1+2+2 = 13,
~ This last contradiction dispenses with CASE 2a.
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CASE 2b: |[H|=5 .
The elimination of this case is similar to CASE 2a.

— CASE 2c: |U|=5 a |H|=5.
We have so far that S = TaUbGaHbd w i t h |T|=|U|=|H|=]|W|=6
|G|=18, #(G,a)=#(C,bl=l, #(TUH,a} = #{(UHU,b) = O.

=~ Suppose first that #(S,s)=5,
Without loss of generality suppose 8 precedes t in G.
-{abts¢ TaUbGa). Moreover i f any p, g or r precedes 8 in H

— then CPAF abtsa to get |Hbl|>7+1+1+4=13~ a contradiction.
Hence only t may precede sin H.
Similarly only 8 may follow t in Us
Now CPAF atasb to get |G|2M(7)+#(G,a) +#(G,b) +#(G, 8) +#(G, t) =11.
The contradiction serves to give us  #(S,s)n5.
Hence #(S,8)=s6 and #(S,p)a7, #(S,q)=#(S,r)=6,

- Letting--.x be the duplicated symbol in U and y the dup! icatetd
symbol in H, #(U,x)=2, #(H,y) =2,
If x-y then #(S,x)27 so x-p and thus #{(G,x)=1,

. One of yt, ty (cal lit Z) is not a subsequence of G.
CP AF abla to get |HoW|27+1+14243elé4~ contradiction.

Else ifuspthen #(S,ylsb (note yma, yrb, ust) and #(G,y)s=l
| One of yt, ty (cal lit Z) is not a subsequence of G.
~ CPAF abla to get |HoW|27+41+414243=14~ contradiction.

ElsexwyAay-p so x#p and #(S,x)=b,
One of xt, tx (callitZ)is not a subsequence of G.

— CP AF «Zab to get |Tal|27+1+1+2+3=14~ contradiction.

This trio of contradictions completely eliminates CASE Zc.

..

CASES 2a,2b,2c all provided contradictions as did CASE 1
so the assumption that |S5]|<33 is proved impossible.

_ Q.E.D.
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