
STAN-CS-73-350 SU-SEL-73-009

An Almost-Optimal Algorithm for the

Assembly Line Scheduling Problem

by

Marc T. Kaufman -

January 1973

Technical Report No. 53

Reproduction in whole or in part

the’ United Seates Government.

This document has been approved for public
release and sale; its distribution is unlimited.

This work was supported in part by the
. National Science Foundation under

Grant GK 23315 and by the Joint
Services Electronic Programs U.S. Army,

U.S. Navy and U.S. Air Force under
Contract N-00014-67-A-0112-0044.

DIGITAL SYSTEMS LABORATORY

STANFORD ELECTRONICS LABORATORIES

STANFORD UNIVERSITY - STANFORD, CALIFORNIA

CE CE CP EY DEDUCE EE.|

STAN-CS-73-350 SEL 72-009

TT AN ALMOST-OPTIMAL ALGORITHM FOR THE

ASSEMBLY LINE SCHEDULING PROBLEM

by

Marc T. Kaufman

January 1973

Technical Report No. 53

Reproduction in whole or in part
is permitted for any purpose of
the United States Government.

— This document has been approved for public
release and sale; its distribution is unlimited.

— DIGITAL SYSTEMS LABORATORY

Department of Electrical Engineering Department of Computer Science

Stanford University

Stanford, California

- This work was supported in part by the National Science Foundation under
— Grant GK 23315 and by the Joint Services Electronic Programs U.S. Army,

U.S. Navy and U.S. Air Force under contract N-00014-67-A-0112-0044.

E—')

[EF

*

-

AN ALMOST-OPTIMAL ALGORITHM FOR THE

ASSEMBLY LINE SCHEDULING PROBLEM

ABSTRACT

This paper considers a solution to the multiprocessor scheduling

problem for the case where the ordering relation between tasks can be

represented as a tree. Assume that we have n identical processors, and

a number of tasks to perform. Each task T, requires an amount of time

bs to complete, 0 < Hy = k, so that k 1s an upper bound on task length.

Tasks are 1ndivisible, so that a processor once assigned must remain

assigned until the task completes (no preemption). Then the "longest

path" scheduling method 1s almost-optimal in the following sense:

I Let w be the total time required to process all of the
tasks by the "longest path" algorithm.

Let Ww, be the minimal time in which all of the tasks can

| be processed.
Let w be the minimal time to process all of the tasks if

i] arbitrary preemption of processors 1s allowed.
Then: Lx LL Ww < w + k - k/n, where n is the number of

~ processors avallable to any of the algorithms.

.

INDEX TERMS: Multiprocessing, Parallel Processing, Optimal

Scheduling, Tree Graphs, Assembly line Problem

ii

TABLE OF CONTENTS

Page

Abstract :

Table of Contents 11

List of Figures 111

Introduction !

Task Labeling 2

Longest Path Scheduling -- The Discrete Case 2

Examples 12

Extension to Noninteger Tasks 14

Comparison With Other Results 15

Conclusions 17

Bibliography 18

: — 1i1
}

|

CL LIST OF FIGURES

Page

1 Example of a Tree of Tasks :
2 Rewriting Chains of Tasks

| 5

3 A system that illustrates “ = Ww =w + Kk - Mk /n >P f -

4 A system that illustrates w _ _ TL,
b = Ws Ww = “y + k [kn 19

|-

[.

|

1

1. Introduction

The "assembly line" problem is well known 1n the area of multiprocessor

scheduling. In this problem, we are given a set of tasks to be executed by

a system with n identical processors. Each task, Tyr requires a fixed,

_ known time pu, to execute. Tasks are indivisible, so that at most one

processor may be executing a given task at any time; and they are unin-

~ terruptible, so that a processor, once assigned a task, may not leave 1t

until the task is complete. The precedence ordering restrictions between
—

tasks may be represented by a tree (or forest of trees) graph. A task

8 may not be started until all of 1ts predecessors have finished.
This paper examines the execution of such a set of tasks using the

L "longest path" scheduling algorithm. The longest path algorithm assigns
free processors at any time to those available tasks which are furthest

~ from the root of the tree. Processors are never left idle 1f they can be

assigned. T.C. Hu investigated this algorithm for the case where all

tasks are the same (unit) length [Hu 61]. He showed that the total exe-

— cution time is minimal. That is, given the same number of processors, no

other non-preemptive algorithm will complete the tasks in less total time.

BN The results of this paper show that the longest path algorithm remains

"almost" optimal when arbitrary times are allowed for each task. In par-

ticular, the following relations hold:

— Let w be the total time required to process all of the tasks by

the longest path algorithm.

A Let Ww, be the minimal time in which all of the tasks can be

processed by any nonpreemptive algorithm.

’ Let ® be the minimal time to process all of the tasks 1f arbitrary
- preemption of processors 1s allowed.

|

Then: w << w << w ££ w + k - k/n
P o P

where recalling the definitions above, n is the number of processors

used by any of the algorithms and k 1s an upper bound on task length.

Section 2 of this paper gives a labeling procedure which allows one to

find the tasks which are furthest from the root at any time. Section 3

develops the theorem for the case where all task times are integers. Section

4 provides examples which show the inequalities to be tight. Section 5 ex-

tends the result to tasks with arbitrary execution times. Finally, Section

6 compares this result to other published results for related problems.

2. Task labeling

The following algorithm allows one to label the tasks 1n a tree

graph with their level, or distance to the root of the tree:

1. If task T, 1s a root node (has no successors), the level of

T, is by

2. If T is a node whose successor, S, is at level £(S), the

level of T. is £(S) + Mh

] Note that higher levels are further from the root.

3. Longest Path Scheduling —-- The Discrete Case

Let us consider the assembly line problem for the case where the

task lengths Cn) are all integers. If T, 1s any task, _

hy ¢ {1,2,3,...,k? only. Graphically, we can represent the tasks with

their precedence relations and execution times as shown in Fig. 1.

-

|
-

(2)
|
Lo

O direction

| 5) 22 of
execution

| 1Oo ox
(4) 20

1 1 }e—— Root

L legend:

()[level

[M
Fig. 1. Example of a Tree of Tasks

|

|

We first consider an execution procedure which violates the unin-

terruptability condition and which allows tasks to be interrupted and

processors to be reassigned after each unit of time. For this reason, it

1s more convenient to represent a task of length m by a chain of m tasks

of length 1, as illustrated by Fig. 2. The "double bond" symbol 1s used

to 1ndicate we cannot reassign a processor that 1s working on such a chain

when preemption 1s not allowed. Since all tasks in the rewritten graph

have pu=1, we no longer need to state this explicitly. It 1s easy to see

that each chain-task corresponds to a particular multi-unit task in the

original graph. Also, one can quickly verify that the level of the task-

head node (the node furthest from the root) of a chain-task is the same

as the level of the corresponding multi-unit task.

Now consider the execution of a tree of tasks, T, by two longest path

algorithms, G and H. Algorithm G corresponds to the case in which processor

preemption during a multi-unit task 1s not allowed:

Algorithm G: At any time, t, assign the n processors as follows:

(1) If a processor was assigned at time t-1 to a task that is

connected to 1ts successor by a double bond, assign the

processor to that successor (i.e. we are in a multi-unit

task, so stay with that task).

(2) Otherwise assign the processor to (one of) the highest level

task in T that is ready to be executed. This task will always

be a task-head.

Algorithm H 1s an optimal algorithm (one which gives a minimal total

execution time) 1n which we permit the reassignment of any or all processors

5

(5) ~head node

| 1 3 head node (+) chain-task
8 J chain | ©task

——> (degenerate
5 case) |

——— head node

. 2

u chain-task

| Fig. 2. Rewriting Chains of Tasks
t

L -

—

6

at each unit of time, ignoring the uninterruptability condition. Since

all tasks in the rewritten graph are of unit length we may use Hu's

algorithm, as it 1s known to be optimal. The G and H algorithms are

identical 1f there are no multi-unit tasks.

Let “ be the time needed to execute the graph by algorithm H.

Let © be the time needed to execute the graph in minimum time, under

the restriction that multi-unit tasks not be interrupted. Let w be the

time needed to execute the graph by algorithm G, which also may not in-

terrupt multi-unit tasks. Then: oe

w sw, (1) |

We < Ww (2)

Equation (1) follows from the fact that the possible sequences of task 8

assignments by any restricted algorithm are a subset of the possible

sequences available to the optimal unrestricted algorithm, H. Equation -

(2) follows from the definition of an optimal algorithm, since G 1s also

restricted, and so its sequence of task assignments 1s a possible choice

for the algorithm which found Sn

As the tree 1s executed by either algorithm, 1ts depth (the maximum

level of any nodes remaining in the tree) decreases with time. Note that

the depth cannot decrease faster than one level per unit of time, since it

takes (by definition) one time unit to execute a task at any level, and it

must be completely finished before its successor can start. We denote the

depth of the tree by d. (t) or d (t), accordingly as the algorithm executing

the tree is G or H. The following equations derive from the definitions:

d. (0) = d,. (0) = max: level of T. |
1

d. (w) = dp (2p) = 0
_ d(t) 2 d(t+1) = d(t)-1

We are interested in a particular time, t', in the execution by

algorithm G. This is the earliest time at which the depth of the tree

— decreases by one at each further step of execution. Specifically:

| d.(t)-1 = d. (1+1) for all t, t' < t « w,
-

But, d.(t '-1) = d.(t").

= We will reach t' no later than time w-1, since the last unit of execution

time must remove one level of the tree (the root level). On the other
-

hand t' may be zero, meaning that the depth of the tree decreases by one

i every unit of time. If so, G is optimal since no algorithm can go faster,

Hence w=, in this case.

. For t'> 0, the following two lemmas are needed.

i

i

-

8

Lemma 1: Algorithm G uses all n processors at each time unit up to t' .

Proof:

1. G assigns n processors at each time, until there are fewer

than n leaf nodes in the reduced tree. Because we are exer

cuting a tree, the number of leaf nodes at each step is non-

increasing with time. Therefore the number of processors

assigned at each step is also nonincreasing with time.

2. The highest level in the tree is the same at t'-1 and at t',

by the definition of t'. Call this level 4. Hence there is

some node at level &that was not assigned at t'-1, Rut this

node was available for assignment at 1'-1 because {is the

highest level in the reduced tree; and the node thercfore had

no unexecuted predecessors. Thus, there are not enough free a

processors at time t' -1 to cover all of the unexecuted nodes

at level 1, so all n processors must be assigned at time t'-1,.

3. By (1), all n processors are assigned at all earlier times

also. QED,

Corollary 1: At time t' (i.e. after t' units of time have elapsed),

algorithm G has completed execution of a total of ut' unit tasks.

Proof: Immediate.

CL EEE—— =

g) Lemma 2: At time t', suppose algorithm G reduces the highest level in the
— tree to d.(t"). Then the lowest level at which algorithm G has

executed any unit tasks (nodes) is at or above d.(t')-(k-1).

Proof:

We show that, at t', G has not completed execution of any task-

head nodes at a level less than dot"). Then since no multi-unit

~ task 1s longer than k units, the lowest level unit-task in a task-

_ chain which has been executed can be no lower than level

do (t')-(k-1).

L Assume (by way of contradiction) that a task-head node of level

[less than d.(t") was assigned at a time t < t'. Then there must
have been, at this time t, fewer than n leaf nodes at levels at or

i above dc (th). Since nodes have at most one successor, execution of
those nodes could not leave more than n leaf nodes at or above level

d.(t") at any time after time t. Since all of the leaf nodes which

are at or above level d.(t") at time t are actually assigned to

- processors at t, we can reduce the depth of the tree by one level

at each subsequent time unit, down through level do (t"). Then, by

the definition of t', we can remove one level at each subsequent

b time unit. So t 1s an earlier time for which algorithm G begins

removing one level of the tree at each time unit. But t' is the

earliest time for which this property holds (contradiction). So

there 1s no assignment to such a task-head at time t << t'.

QED.

10 SR

Theorem; w= dy + k - fi/ 0]

Proof:

At t', G has executed nt' nodes (by Corollary 1).

The 'lowest level executed by G at time t' is at or above -

level ds (t")-(k-1) .(by Lemma 2). Let 4be the lowest level at

which any node has been executed by G. Let q = d (t")-lrL. It

requires gq more units of time to complete all unit tasks 1n the —

tree that are at levels at or above level {, (since we will com-—

plete one level per unit of time from now on), This means that —

there are at least (nt'+q) unit tasks at or above level 4, in

total. G then requires £-1 more units of time to complete the

remainder of the tree (i.e. all those nodes at levels less than £). LL

Algorithm II must execute _at least (nt'+q) nodes to complete

all nodes 1n the tree at or above level £, after which 1t also -

has 4-1 more levels to execute to complete the tree. So:

for G: ww =1" + g + {1-1

; nt' + q _
forH: w_ > |——| + 4-1

p = n

- nt' + q : : Lo
since 1t takes at least — units of time to finish

(nt! + g) nodes with n processors.

Then: -
|

w~-w <(t" +dq-+ 4-1) | [2 x] + oo |p — n

<t' -t g-[t" + g/n]
|

<t' + q-t- [o/q -

<q - [4/1]

11

Now, since

— = d t! = J + 1q 6°)

and J >d (t') - (k-1)
G

| we have:

< t') - (d_ (t')-(k-1 + 1L q d.() (d.(())

SO, dq - k, and we can write:

Ww <<» + k - k (3) QED
< wy ” QED.

Then, combining (1), (2) and (3):

— Ww <w <Ww <w_ +k - |k : 4EE ; [x/q (4)

L_

|SU

-

—

L-

12

4, Exampl cs

The following; constructions demonstrate that each combination of

inequalities is attainable, thus Proving (U4).to be a tight: bound.

Example 1: © = ww = O®
2 0)

Trivially, any—- tree with unit tasks only, e.g. 0
Example 3: £8 = (1) = @ + k - [%/ nl

~ _s

(n+1) tasks of length k, no precedence constraints

Figure 3. A system that 1llustrates w = w = 3 +k - [k/n]0

It takes 2k units of time to complete these ntl tasks by algorithm G,

H can complet e them in [k(n+1)/n] units of time.

ck - [k(n+1)/n) = k= [k/n]

Example 3: wo = ® w= w_-tk- [1/7
TEES p o’ p .

O !
1 1

! () This area contai us
| k(n-1) unit tasks,

: ; spread asevenly as

: cee ‘ possible over the
first n tasks.

Kk (3 kK k k (+) k (5 yeas A
(n+l) tasks of length k

Figurc 4. A system that illustrates ® = Ws
= + k - kw w, [/ 1]

13

The optimal completion time for this system 1s reached by starting

ry one processor on task A (of length k) and the other n-1 processors

| on the unit tasks. The optimal time 1s 2k. Algorithm G completes

all of the tasks above the length k tasks and then one of the length

- k tasks before it starts task A . Algorithm G's time is:

5 2k + rm] .- n

The difference between these two times is:

k(n-1

| en) = 5 = Kk ~- BH .9 n n n

_

i

14

5. Extension to nvohinteger Tasks

This result can be extended to trees for which tasks take arbitrary

time, so long as the times are all mutually commensurable.

Let e be the largest real number such that all task times are mul-

tiples of e. Muntz and Coffman have shown [Mu70] that there is an

integer, s, such that if each task is split into chain-tasks, with each

node of length e, ns, application of Hu's algorithm to the resulting graph

yields an execution time which 1s minimal among all algorithms, including

processor sharing and arbitrary preemption. Application of algorithm G,

of course, yields the same results as before because the chain tasks

cannot be broken.

This extension 1s reducible to the integer case, where the basic

unit of time is e/ns rather than 1. So we can rewrite (4) as:

Ww CW CWEWw + cfnm - | k)p Oo p e/ns n(e/ns)

w <w <w<w + k- (e/ns) EP 0 P €

. However, since e divides k, = is integral and

w <w € w<w+ k - (e/ns) (kse)
P oO P

Ww = Ww < w< w+ k - (k, n). (5)
P 0 P

15

6. Comparison With Other Results

= Hu's algorithm is optimal for trees with unit tasks only. Manacher

| [Ma 67] and Graham [Gr 66, Gr 69, Gr 72] have investigated longest-

path scheduling for structures other than trees. Manacher, using simu-

_ lation, observed that longest-path schedules tended to be close (within

15%) to optimal in a small set of test cases. Graham has shown in [Gr

66] that, for general directed acyclic graphs, the ratio between the

time required to execute the graph with a random list and the optimal

-

time 1s given by:

— w/w 2 -1/n

He also conjectured that this ratio can be improved if a longest-path

- schedule is used, to:

- w/w, < 2 - 2/(n+1)

though this has not yet been proved.

In [Gr 69, Gr 72] Graham presents bounds on execution time for

— systems in which the tasks are all independent (no precedence constraints).

] He showed that the "decreasing list" schedule, which is equivalent to a

= longest-path schedule in this case, satisfies:

_ w/w, <4/3 - 1/3n

Since this represents a line with a crossing at the origin, it 1s better

- than the result of this paper for small values of wo However, the slope

_ of this line 1s greater than unity while the slope of the inequality in

(5) 1s exactly unity. For w > 3k, (5) 1s a better bound.

— Again in [Gr 72] Graham noted (without proof) that, for independent

tasks:

ol

16 :

w/w <1 + np (6)

where:

8 z max p(T)/3 u(T)
T

In the terminology of this paper, max u(T)=k, the length of the longest
T

task, and:

Zz p(T) < nw
T P

If we then approximate B by k/nw,, we can rewrite (6) as:

w vw <1 + _k . Nn
"70 nw

P

However, dividing both sides of (5) by “ gives us the slightly better

bound:

Ww | Kk
w/w <P l + —r (n-1)

0 w nw
o p

I

:
4 LT

1. Conclusions

In this paper we have considered the "longest-path" scheduling

algorithm as an "almost" optimal algorithm for the scheduling of trees.

An upper bound on the execution time for this algorithm is presented.

and shown to be better than previous upper bounds for related problems.

-

1

BIBLIOGRAPHY

(Gr 66] Graham, R.L., "Bounds for Certain Multiprocessing Anomalies,"

Bell System Tech. J., Vol. 45, No. 9, Sept. 1966, pp. 1563-1581.

| Gr 69] , "Bounds on Multiprocessing Timing Anomalies,"

SIAM J. Appl. Math, Vol. 17, No. 2, March 1969, pp. 416-429.

[Gr 72] , "Bounds on Multiprocessing Anomalies and Packing

Algorithms," Proceedings SJCC, Vol. 40, 1972, pp. 205-217.

[Hu 61] Hu, T.C., "Parallel Sequencing and Assembly Line Problems,"

Operations Research, Vol. 9, No. 6, Nov. 1961, pp. 841-848.

[Ma 67] Manacher, G.K., "Production and Stabilization of Real-Time

Task Schedules," J. ACM, Vol. 14, No. 3, July 1967, pp. 439-

465.

[Mu 70] Muntz, R.R., and E.G. Coffman, Jr., "Preemptive Scheduling

of Real-Time Tasks on Multiprocessor Systems," J. ACM, Vol.

17, No. 2, April 1970, pp. 324-338.

