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ABSTRACT

We derive the joint equilibrium distribution of queue sizes in a
network of queues containing N service centers and R classes of customers.

The equilibrium state probabilities have the general form:
P(S) = cd(s) fl(xl)fg(xz)...fN(xN)
where S is the state of the system, Xy is the configuration of customers at

the ith service center, d(S) is a function of the state of the model, E is

a function that depends on the type of the ith service center, and C is a

normalizing constant. We consider four types of service centers to model central

processors, data channels, terminals, and routing delays. The queueing disci-

plines associated with these service centers include first-come-first-served,

processor sharing, no queueing, and last-come-first-served. Each customer
belongs to a single class of customers while awaiting or receiving service

at a service center but may change classes and service centers according to
fixed probabilities at the completion of a service request. For open networks
we consider state dependent arrival processes. Closed networks are those with
no arrivals. A network may be closed with respect to some classes of

customers and open with respect to other classes of customers. At three of



the four types of service centers, the service times of customers are
governed by probability distributions having rational Laplace transforms,
different classes of customers having different distributions. At first-
come-first-served type service centers the service time distribution must
be identical and exponential for all classes of customers. Many of the
network results of Jackson on arrival and service rate dependencies, of
Posner and Bernholtz on different classes of customers, and of Chandy on
different types of service centers are combined and extended in this paper.
The results become special cases of the model presented here. An example
shows how different classes of customers can affect models of computer
systems.

Finally, we show that an equivalent model encompassing all of the
results involves only classes of customers with identical exponentially
distributed service times. All of the other structure of the first model
can be absorbed into the fixed probabilities governing the change of class

and change of service center of each class of customers.
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Introduction

Networks of queues are important models of multiprogrammed and time-
shared computer systems. Work on this application in the last several
years has produced a variety of models meant to capture important aspects
of computer systems. The results of this paper unify and extend a number
of those separate results in a single model. The principal contribution of
the paper is to combine recent results on networks of queues of several
different service disciplines and a broad class of service time distributions
with earlier results on networks of queues containing different classes of
customers. We derive the equilibrium state probabilities for the general
model. The technique of analysis uses Whittle's concept of independent
balance [16,17]. From the complete equilibrium distribution of states of
the model, we derive several less complex descriptions of the steady state
performance of the model. In the case of certain open networks, we obtain
some particularly simple formulas giving the marginal distribution of cus-
tomers at a service center of the network.

The model is motivated by the conception of a computer system as a
network of processors (CPU's, I/0 processors, terminals) and a collection of
customers (jobs, tasks). The processors are grouped in equivalence classes
called service centers and the customers may enter the system from the
outside, pass from service center to service center competing for the
processing resources of a service center with the other customers at that
center, and eventually leave the system. Different service centers may
have different scheduling capabilities and different processing resources.
Different customers may have different routes through the network and make
different demands at a given service center. Customers may change from one

class to another when changing service centers. Such a model can represent



several levels of detail in the operation of computer systems, from the
job submissions or user logons, through the requests of jobs for

individual I/O transfers or computing bursts, to the requests of processors

for cycles of a shared memory. We present one example at the middle level
of detail.

Several special cases of the model we consider have been studied in —
the literature. A good survey of the analysis of queueing networks in

general and queueing models of computer systems in particular is given by
Buzen [3]. Jackson [11] and Gordon and Newell [10] develop the equilibrium
distribution of states of a class of general networks. In particular,

Gordon and Newell make clear the product form of the solution of the

balance equations describing the steady state of the model. Our solution
has this product form. In these models the service centers can be -
connected in any arbitrary fashion. A customer leaving a service center

simply chooses the next service center according to a fixed set of branching
probabilities for the center being left. Jackson's model also allows for
the arrival and departure of customers from outside the system. These
networks suffer from two principal limitations as models of computer —
systems: (1) all the customers are identical; they all follow the same

rules of behavior, and (2) all the service time distributions are exponential.

These limitations have been attacked by a number of authors. We summarize

their results in the remainder of this introduction. The body of the paper

presents the general model for which the models discussed below are special

cases.




Ferdinand [9] analyzed a particular system which allowed different
classes of customers. The system was a cyclic model with two service
centers. The model is frequently called the finite source model or the
machine repairman model. One service center consists of a sufficient
number of servers so that no queueing occurs. The other service center is
a single server. There is a fixed number of customers, each of which is
characterized by its own pair of exponentially distributed service times,
one for each service center. The single server is characterized by
processor sharing scheduling in which all waiting customers are processing
simultaneously, but at a rate reduced by a factor of 1/n if n customers are
requiring service. His solution for the equilibrium distribution of states
has the product form. His model is a special case of our model having two
service centers, one of a processor sharing type and one of a no queueing
type and exponentially distributed service times for the different classes
of customers.

Posner and Bernholtz [14] consider the more general network model of
Cordon and Newell in which each customer has its own set of branching
probabilities, its own set of exponentially distributed service times, and
its own generally distributed travel time to a particular service center
for each service center in the network. When different customers have
different service time distributions at a service center with queueing,
processor sharing scheduling is used at that service center. Their model
is a special case of our model in that only FCFS and processor sharing
types of centers are allowed, the network is closed, and only exponentially
distributed service times for the different classes of customers are allowed.

Processor sharing scheduling has been investigated in models of

computer systems as the limit of overhead free round-robin scheduling.

- 3 -



The mathematical form of the equations solved by Ferdinand and by Posner

and Bernholtz is the form obtained for processor sharing scheduling although
neither of the papers clearly identifies the type of processor scheduling
being used. Sakata, Noguchi, and Oizumi [15] discovered that when

processor sharing scheduling was applied to the classical infinite source
queueing model (denoted M/G/l), the equilibrium distribution of queue sizes
for the model was the same as that for a similar model with exponentially
distributed service times (denoted M/M/l) with the same mean as the original
general distribution. Their model is not a special case of the model studied
here but can be obtained from it by a limiting argument. Baskett [1] derived
a similar result for a finite source model in which the service time
distributions at both service centers have rational Laplace transforms and Baskett
and Palacios [2] extended that result to another network model which Buzen [3]
has studied and called the central server model. The equilibrium solutions
have the product form. The models include FCFS, processor sharing, and no
queueing types of service centers and service time distributions with rational

transforms but only limited closed structure and only a single class of customers.

Whittle [16,17] showed that the balance equations describing inter-
connected birth and death processes could be replaced by sets of "independent"
balance equations and that solutions for these independent sets are solutions
for the original equations. Chandy [4,5] showed that this technique could be
applied to more complex models and with it he easily extended and generalized
earlier results on models with rational service times. Chandy calls these
independent sets of equations the equations of local balance and we follow
his terminology, The equations of local balance can be written down directly
for such models and they are much easier to manipulate and to solve for those

models to which they apply. Using this technique, Chandy greatly extended
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the range of networks for which product form solutions can be found. In the
terminology of this paper, Chandy developed the solution for networks in
which the service center is of FCFS, processor sharing, or LCFS type and

in which all customers are the same. The results in this paper generalize
his results to include service centers of no queueing type and different
classes of customers. Palacios [13] independently developed solutions for

a particular network with "types" of customers. Chandy, Keller, and Browne
[6] then extended the concept of customer "type" and added the concept of
customer "mode" for general networks. These concepts can be shown to be

equivalent to our classes of customers where customers may change classes.

The next section describes the model and the four types of service
centers. Then we discuss distributions with rational Laplace transforms.
Next is the notation used to indicate the state of the model, a discussion
of local balance, and the derivation of the relative frequency with which
each class of customers visits each service center. We then give the
functional form of the equilibrium state probabilities for the model. This
gives a steady state description of the model in more detail than we
normally need. The next section develops equilibrium probabilities for
composite states of the model. For open models, we obtain a closed form
expression for the normalizing constant in the solution and some especially
simple formulas for the marginal distribution of customers at each service
center. We present numerical results from a closed model with two classes
of customers to indicate the significance of different classes of customers.
Finally we present an equivalent model in which all classes of customers
have the same service time distribution at each service center and all these

distributions are exponential.




The Model

The class of systems under consideration contain an arbitrary but

finite number N, of service centers. There is an arbitrary but finite
number R, of different classes of customers. Customers travel through the
network and change class according to transition probabilities. Thus a

customer of class r which completes service at service center i will next
require service at center j in class s with a certain probability denoted

Pi,r;3,s’ Both open and closed networks will be treated. The transition
I TrJdo

matrix P = [pi r:j s] defines a Markov chain where the states are labeled
I rdy

by the pairs (i,r). This Markov chain is assumed to be decomposable into

irreducible ergodic subchains. Let E . .,Em be the sets of states in

1280 -

each of these subchains. Let nir be the number of customers of class r at

service center i. Let Zi (n

) = M(E_). Then in a closed system
(ir)€E J
J

i,r

j < m

IA
[

M(Ej) = constant 1

In an open system customers may arrive to the network from an external
source. Two general types of state dependent arrival processes are
considered. In the first case the total arrival rate to the network is
Poisson with mean rate dependent on the total number of customers in the
network. Thus for a state S of the model let M(S) be the total number of
customers in the network and K(M(S)) be the instantaneous mean arrival
rate. An arrival enters service station i in class r with a fixed
probability (not state dependent) given by 45

In the second type of arrival process there are m Poisson arrival
streams corresponding to the m subchains defined above. The instantaneous
mean arrival rate for the jth stream is assumed to be a function of M(Ej),

Kj(M(Ej)). An arrival in the jth stream has probability 4%, of entering



service station i in class r and qir =0 if (i,r) £ EU' In an open network,
a customer of type r which completes service at center i may leave the

system. This occurs with probability

- 2

1<j<N
1<s<R

P. .
i,r;J,s

A service center will be referred to as type 1, 2, 3or 4 according to

which condition it satisfies.

Condition 1: There is a single server at a service center, the
service discipline is FCFS, all customers have the same service
time distribution at this service center, and the service time
distribution is a negative exponential with parameter p(n), a
function of the instantaneous queue size, n, at the server.

Condition 2: There is a single server at a service center, the
service discipline is processor sharing (i.e. when there are n
customers in the service center each is receiving service at a
rate of 1/n sec./sec.), and each class of customer may have a
distinct service time distribution. The service time
distributions have rational Laplace Transforms.

Condition 3: The number of servers in the service center is greater
than or equal to the maximum number of customers that can be
queued at this center in a feasible state and each class of
customer may have a distinct service time distribution. The
service time distributions have rational Laplace Transforms.

Condition 4: There is a single server at a service station, the
queueing discipline is preemptive-resume LCFS, and each class of
customer may have a distinct service time distribution. The

service time distributions have rational Laplace Transforms.

_7_



A type one service center with more than one server is equivalent to a type
one service center with one server and suitably chosen service rates
depending on the number of customers at the server. We denote the service
rate at service center i as pi(j) when the center is type one and j

customers are awaiting or receiving service at that center.

wad



o

—

r— - v r— 1

. r_—“

r— r 1

Representation of Service Time Distributions

with Rational Laplace Transforms

The requirement that a service time distribution have a rational
Laplace Transform is not very restrictive. Exponential, hyperexponential
and hypoexponential distributions all have rational Laplace Transforms.
Cox [12] has shown that any such distribution can be represented by a
network of exponential stages of the form illustrated in Fig. 1. For

convenience, we have eliminated the case in which there is a non-zero

probability of a zero length service time.

Fig. 1

In this figure, bi is the probability that the customer leaves after
the ith stage and a, (=1—bi) is the probability that the customer goes to
the next stage. Given that a customer reaches the ith stage the service
time in this stage has a negative exponential distribution with mean 1/“1'
Since the service time distribution for a stage is exponential, when
describing the state of the network of service stations it is not necessary
to know the exact amount of service a customer has received at a service

center; the stage of service is sufficient.



The States of the Model

The state of the model is represented by a vector (Xl’x2""’xN) where
X, represents the conditions prevailing at service center i. The inter-
pretation of Xy depends on the type of service center 1i.

If service center i is of type 1 then

xi = (Xil, ){2) o e xini)

where n, is the number of customers at center i and %U.(l < g < ny»
th .
1 < x,. £R) is the class of customer who is j in FCFS order. The first

ij
customer is served while the remainder are waiting for service.

If service center i is of type 2 or 3 then
= v ceoyg V.
%y = (V31sV50000 5 V5p)
where v is a vector (m m ce.,m ). The {Fh component of v, is the
ir 1r’ 2r’ 7Tu, r 1ir
LX th .
number of customers of class r in center i and in the 4 stage of service.
u, is the number of stages for a class r customer at service center 1i.

If service center i is of type 4 then

xi = ((rl,ml):(rg:mg)”"’(rn.’mn.))

where ny is the number of customers at center i and (?j’qj) is a pair
describing the jth customer in LCFS order. rj is the class of this
customer and mU is the stage of service this customer is in.

For any network of reasonable size, the expression for a state of the
network is long and tedious to write. Writing expressions for the balance
equations to find the equilibrium state probabilities is an arduous task.

Even to check that a given solution is correct is time consuming.

The solution for the class of networks described here was arrived at by
using the technique of local balance. This technique is briefly described

helow.
- 10 -
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A solution for the equilibrium state probabilities must satisfy the

balance equations for the system. That is
¥V states, S.. 25 P(s,)Lrate of flow from Sj to Si] =
all states
Sj P(Si)[rate of flow out of Si]

In [4], Chandy terms these the global balance equations. He defines

another type of balance equation which he calls the local balance equations

Informally, a local balance equation equates the rate of flow into a state
by a customer entering a stage of service to the flow out of that state

due to a customer leaving that stage of service. We associate a customer
with a stage of service in the following ways. 1f the customer is in
service at a service center, then he is in one of the stages of his service
time distribution at that service center. If the customer is queued at a
service center, then he is in the stage of his service time distribution he
will enter when next given service. For FCFS this will be stage 1 and for
LCFS this will be the stage the customer was in when last preempted.

The local balance equations are sufficient conditions for global
balance, but they are not necessary. Local balance requires that each term
on the right-hand side of a global balance equation be equal to d particular
subset of terms on the left-hand side of that global balance equation.

To illustrate the concept of local balance we consider the relatively
simple network model in Fig. 2.

This 1is a closed network with two classes of customers (which we refer

to as class 1 and class 2). There are N, class 1 customers and N, class 2

1 2
customers in the networks. All service times are exponentially distributed
and-—l— (i =1,2, r = 1,2) is the mean service time for a class r customer

ir
at service center 1i.

- 11 =~



Moy < Type 2
P service center 2
Hop  J=%
p Po1:1,1 p
2,2;1,2 r 1,2;2,2
P1,1;2,1 —
ull ' Type 3
service center 1
Mo -
p
1,1;1,1
Fig. 2 —_
In this example = p =D =1, p »
P pl,eﬁ,,g 25 T 211,10 T 7 it
P1,1;2,1 = b
Let ni r be the number of class r customers at service center 1i. For -

2

convenience we write the global and local balance equations only for the
states in which n, >0, 1 = 1,2, r = 1,2,

Global Balance Equation: —

21

n__+1
P(n, . -1,n,,,0,.+1,n )| ————=lp
11 12°721 22 n21+n22+1 21

+ P(n . +1,n

11710000171 000) (9y9#1) by Py1;2,1

P(ny1sy0s0o1s0o0) By Hyy Py iy o

+ P(nll,n12+l,n21,n22—1) (n12+1) Hyo

n_ +1
22
+ P(n,.,n . ~1,n__,n +1)—-u
117712 21’ 22 n21+n22+1 22

- 12 -



— -y ¢4
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= “n11’n12’n21’n2g)Ln11 Hip * Mo By

" L 22
T _— I"z‘f\ —
n21+n22 21 22

Local Balance Equations:

n,_+1
n

1,10 P(n,.-1,n n
T 11771 e 2 H
p2 \i P 1) He1
+ P ) = P(
(Ry1o0yp0mpy5mo0) By by P1,151,1 = POypoBypsPoprion)ngy by
n22+1
1.2) P! - __ce _
y (8150 5-1,0,,,0,,+1) n a1 ee = P(ny 15010, 05050,,)00 5 4y,
(2,1) P(x - ( T =
vee by Pl 4lsny oo moy=1onon ) (myy #1Jigy Py qip =
n
21
P(n, ,n_,,n__,n )(——————;)
11) 2 2 8
1277217 22 n21+n22/ 21
n
’2.2\ P N - - { .__Eg_
\2.2) (nyysmy ot dngy yny=1)(ny 4+ 1)u, = P(y,m, 5,0, ,0,,) Ry, ez

Since all the service time distributions in this example are
exponential the current stage of service of a customer is uniquely defined
by the customer's class and the current service center. 1ocal balance
equation (i.r) for i =1,2, r = 1,2 equates the rate of flow out of state
(nll’n12’n21’n22> due to a class r customer leaving service center i with

the rate of flow into state (n ) due to a class r customer

110 M2 P10 M2
entering service center i.

As in this example it is generally true that each global balance
equation is the sum of a subset of the local balance equations. Tpug a
solution for the local balance equations is automatically a solution to the

global balance equations. In many cases the local balance equations are

inconsistent and therefore have no solution. For example if there is FCFS

- 13 -



scheduling at a service center and different classes of customer have
different service time distributions the local balance equations are
inconsistent.

The value of the local balance concept is that (1) it leads to a
simpler and more organized search for solutions for equilibrium state
probabilities and (2) it works for a large number of cases (in fact for
virtually all of the closed form solutions known for general classes of
networks of queues—-—although not many interesting cases have known solutions).

Before presenting the solution to the class of networks described, we
define a set of terms that appear in the solution.

For a customer of class r, let {eir’ 1 £1 £N) be a solution to the

following set of equations.

S e. P, . +d. = e. 1l < 3 <«
1si<y Ir "i,rij,s  TUs Js )

The value of djs is determined by the arrival process of customers of class

s to service center j. If there are no such arrivals from outside the
system, then d. = 0. If there are such arrivals then d. = gq. . 1In a
Js Js js
closed system there are no arrivals to any center and all the d.J are zero.
S

In this case e, is the relative frequency of visits to service center i by
customers of class r.

Note that a system may be "open' w.th respect to some classes of
customers and "closed' with respect to other classes of customers. Our
solution applies to this class of system.

C e . . . th .
One further definition is required. If at the 1 service center the
h
r class of customers has a service time distribution that is represented

as a network of stages then this is represented as illustrated in Figure 3.

_114__
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N

Liru,
., ir
Fig. 3
The first subscript on a, b and p denotes the service center. The

second subscript denotes the class of customer and the third subscript

denotes the stage.
L
Let Air? = II air'
M, j:l J

Theorem:
Given a network of service stations which is open, closed or mixed in
which each service center is of type 1, 2, 3 or 4. Then the equilibrium

state probabilities are given by
P(s = xl,xg,...,xN) = cd(8) fl(xl)fg(xz)...fN(xN)

where C is a normalizing constant chosen to make the equilibrium state
probabilities sum to 1, d(S) is a function of the total number of customers
in system and each fi is a function that depends on the type of service
center 1i.
If service center 1 is of type 1 then
Dy
£ () = 31;[1 [ﬂllﬂ Cix. . ]

1]

- 15 -



If service center 1 is of type 2 then

[SIN A. /& mir’f/
£ (x;) = n, H ﬂ [i_l_r_] 1

* i r=1 {=1 Hirg Mkd

If service center i1 is of type 3 then

) 4';1 Miph, mop

If service center i is of type 4 then

i
1
(%) = H [eirj Airj m, 1

j=1

If the arrivals to the system depend on the total number of customers in

the system, M(S), and the arrivals are of class r and for center i

according to fixed probabilities P, then

M(S)-1

a(s) = [ A1)

i=0

If we have the second type of state dependent arrival process then

M(E.
F x.(i>

da(s 3

u =

If the network is closed then d(S) = 1.
The theorem is proved by checking that the local balance equations are
satisfied. In every case for which these results apply the local balance

equations reduce to the defining equations for the {eir}.

- 16 -



Simplification of Results

The solution presented for the equilibrium state probabilities deals
with system states that are more detailed than is usually required. The
more detailed states are necessary to derive the equilibrium state
probabilities. Now we define the system state as the number of each class
of customer in each service center. More formally state S of the system
is given by (yl,yz,...,yN) where y; = (nil’niQ""’niR) and nir is the
number of customers of class r in service center i. Let n, be the total
number of customers at service center i and let —i— be the mean service

Hip
time of a class r customer at service center i. Then the equilibrium

state probabilities are given by

P(S = (¥y,¥55e005vy)) = Cd(S) g1(y;)e,(v5)e e gy (vy)
where

if service center i is of type 1 then

n 0y
| e, 1% Hl 1
|' ir j=1 Hiz\j)

R

- 1
gl(yl) - ni' H I,
r=1 ir

-

if service center i is of type 2 or 4 then

/o ]IL
1 ir ir
n, ! .
r=1 "ir' [Mir

if service center i is of type 3 then

=

R
_T[I lre' ir Yap
— 1Ll 1

g, (v,) —
S B I

In each case the expression for gi(yi) is derived by summing fi(xi)

over all x; with DisBipsee,ny, fixed. That this is the correct

definition of the g follows from the product form of the solution given

- 17 -



in the theorem. If the mean service rate at centers of type 2, 3, or 4 is

the same for each class of jobs but depends on the number of customers at

R
n,

1 ir |
the center, then the factor II( ) is replaced by the product of the
: r=1 Mir
-——rrj in gi(yi) as for type one centers. If the service rates are not the
M. yd
i

same for each class of customers but depend on the number of customers at a

center, then it should be possible to develop the proper form of the

solution using the equivalent network presented in the last section of the

paper.

A further simplification is possible if the network is open and
the arrival process does not depend on the state of the model, The

following paragraph and section develop this simplification,

If a state of the system is to be simply the total number of customers

in each service station, i.e. S = (nqysR.,. . .y0 ). Then P(S) = Cd(S) h,(n )
1’72 N 1Vl

h2<n2>"'hN<nN)° Let Ri = (r: class r customers may require service

center 1).

If service station i is of type 1 then

n,
n i
i 1
h.(n.) = (z e.> I =
ivii rGRi ir =1 “iiji
If service station i is of type 2 or 4 then
é; Cir\i
rér, Mir
i
If service station i is of type 3 then

b, (n,) i( 2 —)

i" Vr€Rr, Hip
i

- 18 ~



The evaluation of the normalizing constant requires summing the given
expression for the equilibrium state probabilities over all feasible states.
In the next section we show a closed form solution for C for an open network

in which piOn)= by for all m if service center i1 is of type one.

Open Systems

For open systems it is possible to obtain a closed form solution for
the normalization constant when the arrival process is of the first type
and A(M(S)) = A = constant. Since the system is open any number of

customers 1s feasible at a service center.

Therefore

(=] ] © N n

ot - z S‘: z (TI » hi(ni))
n1=O n bdj nN=O i=1
® n < n > n

-1 1 N, "2 N

or ¢ = ( vS;* by (my )(néig hz(ne))”'(;g hN(nN)>

e o7 N~

Also,

g
=2
—~
o}
[
p—
Il
N
(=
L}
>
I o
I
=
1
[

i m if service center i is
n, =0 r€R; i type 1 and pi(ni) = Hy
eir -1
= <1 - X-———) if service center i is
rERi Hir type 2 or 4
S‘ e,
A ir
LN —
rér, Mir
i . . .
= e if service center i is
type 3
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Marginal Distribution at a Service Cernier in an Open Svstem

Let Pi\ni} be the equilibriwa probability that there are n, customers

at service center 1.

N

[+
n, . n,
P(‘n.\:C?\llL’\'n.) H (,\/KJh‘(n.)>
1Ll ittil " 3]
J:l njrb'
J#1

Using the expression for C, we reduce this to

1n

A h, (n,)
Pi(ni) = i7d

g‘.’l

m
2 A" (n)
m=C *

Let Di = 2: g if service center i is type 1
rer, Mi
i
\§ ®ir
p. = - A — if service center i is type 2, 3 or &4
1 — e
T€R, ir
M
Then Pi(nl) = (1 - pi)p1 if service center i is type 1, 2 or 4
r,
1
~P; Pi
= e — if service center i is type 3
i
These results provide a convenient way of examining the equilibrium
distribution at a service center. For type 1, 2 or L service stations the

marginal distribution is the same as the distribution of the number of
customers in an M/M/1 queue with a suitably chosen utilization, Py- For
the equilibrium solution to exist each ey is required to be less than 1.

The marginal distribution for a type 3 service center is the same as
the equilibrium distribution for the number of customers for an M/G/® system

with pi = %. This certainly appears to be reasonable since for an open



~— r

r

-

system there must be an infinite number of servers at center i if it is to
be of type 3.

This type of service station may be used in a model to represent a
delay as customers travel between two other service centers. Posner and
Bernholtz [lh] use a different approach to represent more general delays in

a less general network.
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Example

In this section we give a simple example that illustrates some of the

results of the paper. Consider the system shown in Figure 4,

Plofole

-
Py 252 0.0
P11;4,1=-35
P1,2;42-00
P1,1;31=-35
P1'2;3'2 = 0.0
P11;21 = 00
P1,2;2,2=10

SERVICE CENTER

\
5

f FCFS

1 PROCESSOR
SHARING

Figure 4., Example Network Model.

This is a closed system with two classes of customers. geryice centers

2, 3, 4 and 5 are type 1 centers and service center 1 is type 2. This is a

model of a multiprogrammed computer system in which service center 1

represents the CPU and the other service centers represent I/0 devices.

Figure 5(a) gives the utilizations of the service centers with a varying

number of class 1 customers and with one class 2 customer in the system. In

Figure 5(b) the utilizations of the service centers are given for the same

network of service centers but with the two classes of customers replaced

- 20 -
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by one class of "equivalent?' customers. The parameters for these
"equivalent" customers are calculated by first solving for the equilibrium
state probabilities of the two customer class model. From these one can
solve for

r rate at which class 1 customers leave service center 1.

1

T rate at which class 2 customers leave service center 1.

2

Now the equivalent customers have parameters given by

1 1, e 1
Hy o Tt Mgy TtTo MEyp
r r
2 .
1 + < i=2,3,4,5

pl;i = r1+r2 p1,1;1,1 r1+r2 p1,2;i,2

The rationale for these definitions is quite simple. If measurements
were taken on the system without distinguishing between classes of customers
these would be the parameters measured.

Figure 6 shows the results of Fig. 5 graphically. The service center
utilizations for the model with different customers are indicated by a line
through the values with the service center number above the line. For the
model with "equivalent" customers, the service center number is primed and
below the line. The utilizations predicted by the model with equivalent
customers are always smaller than those of the model with distinct customers.
In fact the utilization of service center one (the CPU) goes down initially
as the number of "equivalent" customers increases from one to two and the
difference for this server is substantial (between 4.5 and 9percent). The
structure of the model with different customers is such that the class 2
customer never has to queue for any I/0 server. In the model with
equivalent customers, all customers suffer queueing delays at I/O servers

for two or more customers.
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Figure 6(a) and (b). Utitization of Service Centers versus Number of
Customers for Different Customers and
Equivalent Customers.



The customer class change concept can also be used to capture some
complex structural properties of the system being modeled. For example,
in one of Moore's [12] models of a timesharing system one drum service
time is used in the model to represent two drum service times in the
system. One of the service times is incurred by the transfer of a Jjob
from terminal wprocessing to CPU and file processing and the other
corresponds to the reverse transfer, A more accurate representation of

contention on a swapping drum can be obtained by using two classes for

jobs. One class would model terminal I/O processing and the other would
model CPU and file processing. A job would change class after drum
processing.
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Properties of Network Models that Satisfy Local Balance

This section is directed to those readers interested in the theoretical
foundations of the analysis of networks of queues rather than those
interested in the application of the results.

All of the network models that we have treated in this paper can be
shown to be equivalent to models in which all classes of customers have the
same exponential service time distribution at a given service center. Thus
an exponential service time distribution with mean 2 may be associated

th 1
with the 1 service center and all classes of customers have this service
time distribution at the ith service center. This fact suggests the
conjecture that a necessary condition for local balance to be satisfied for
a given model is that there exist an equivalent model in which different
classes of customers may have different transition probabilities but all
classes of customers have the same exponential service time distribution at
a given service center.

The transformation of a given model to an equivalent model of the form
described is accomplished in two steps. First we show that the effect of a
customer moving from one stage to another in the stages representation of a
general service time distribution can be represented by introducing new
customer classes. Thus we model a transition from one stage to the next as
a transition to a new customer class and to the same service center. After
this transformation of the original model we have a model in which all
service times are exponentially distributed but different classes of
customers may have different mean service times at a given service center.
The second step is to show that by appropriately modifying transition

probabilities we may further transform the model into an equivalent model
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in which all classes of customers have the same mean service time at a given
service center.

The method of making these transformations to the model is straight-
forward and will be illustrated by example rather than a formal description
of the general case.

Consider a general service time distribution represented by a network
of stages as in Figure 1. Let this represent the service time distribution
for a cuscomer in class r in service center i. We introduce n new customer
classes denoted by T1sTpseees Ty which correspond to the stages in this
network and delete customer class r.

The service time of a class ;ﬁ customer will be exponential with mean —

= (1 <% <n), The transition probabilities for a class {ﬁ customer are

ny _

defined as:

-k . )
pi,r,P/;j;s 1z plyr;Jys

P . = a 1<{<n
1,rp5i,7p 29 —

To take care of the transitions into class r in the original model we
require that all transitions into state r be redefined as transitions into
state r These transition probabilities are defined as:

1|

J,s;i,r J,s;i,r , J,s
With this transformation of the model a customer will have the same
distribution of total time at a service center and will have the same -

transition probabilities from service center to service center.
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After performing this transformation for each customer class with a

general service time distribution we have a model in which all service

time distributions are exponential. Suppose that is the mean service
i,r
time of a class r customer at service center i. Let
i = max [M, t}

We redefine the mean service time for each class of customers at service

. 1 . . Co s
center 1 to be —. Now we redefine the transition probabilities out of
i
service center 1i.

'&;r

ll,-i

Let pr =1 -

Then define

' . = 1-
P i,r;i,r Pp + ( pr) Pi,r;i,r

P 1

i, r;3,s <1-pr)pi,r;j,s

The effect of these new transition probabilities is to cause a class r
customer to be fed back (or to revisit) service center i1 a random number of
times. Each time the class r customer enters service center i his service
time is exponentially distributed with mean —l. The number of visits the

i
class r customer makes to service center 1 (between transitions in the

original model) is geometrically distributed with mean i ; . It is easily
r
shown that the total service time of the class r customer at service center
oo . . . . 1 1 1
i is exponentially distributed with mean ( ) — = [8]. Therefore
1_pr Hy My ,T

we have not changed the total service time distribution for this customer
at service center 1i.
After completing these transformations throughout the model we have an

equivalent model with the desired characteristics.
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The transformations that we have made to the original model preserved
the original distributions of service time that a customer requires at a
service center. However a customer does not spend that time on the server
in one contiguous interval. We required a customer to make extra
transitions in which he leaves and reenters the service center. It is
clear that with type 2, 3 or 4 service centers this does not affect a
customers service. For type 1 service centers the transformed model would
not be equivalent to the original model since a customer who leaves the
service center and reenters will now be at the end of the queue. Of course
we have from the beginning required that at type 1 service centers all
customers have the same exponential service time distribution so that such

a service center does not require any modification.



Conclusions

We have derived the equilibrium distribution of states of a model
containing four different types of service centers and R different classes
of customers. From this steady state distribution one can compute the
moments of the queue sizes for different classes of customers at different
service centers, the utilizations of the service centers, the "cycle time"
or response time for different classes of customers, the "throughput" of
different classes of customers, and other measures of system performance.

These results unify and extend a number of separate results on
networks of queues. The general model can have four types of service
centers. Three of those types allow different service time distributions
with rational Laplace transforms for different classes of customers. The
model allows different classes of customers to have different arrival rates
and different routing probabilities. For open networks some very simple
formulas give the marginal distribution of customers at the service centers
of the network.

The analysis is motivated by the desire to model computer systems.
Type one service centers (FCFS scheduling) seem appropriate models of
secondary storage input/output devices. Type two service centers (processor
sharing scheduling) can be an appropriate model for central processing units.
Type three service centers (no queueing) are appropriate models for
terminals and for routing delays in the network. Allowing different classes
of customers should answer one of the principal objections to queueing
models as models of computer systems. The example given indicates how
significant different classes of customers can be in the utilization levels

predicted by model analysis.

- 31 -



There are many additional complications yet to be analyzed but the
general model presented here represents a substantial increase in the

ability to build and solve analytical models of complex computer systems.
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