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- ABSTRACT

We derive the joint equilibrium distribution of queue sizes 1n a

| network of queues containing N service centers and R classes of customers.

L The equilibrium state probabilities have the general form:

|

where S 1s the state of the system, Xo is the configuration of customers at

the 1th service center, d(S) is a function of the state of the model, £ 1s

| a function that depends on the type of the ith service center, and C 1s a

normalizing constant. We consider four types of service centers to model central

— processors, data channels, terminals, and routing delays. The queueing disci-

plines assoclated with these service centers include first-come-first-served,

= processor sharing, no queueing, and last-come-first-served. Each customer

| belongs to a single class of customers while awaiting or receiving service

at a service center but may change classes and service centers according to

a fixed probabilities at the completion of a service request. For open networks

we consider state dependent arrival processes. Closed networks are those with

— no arrivals. A network may be closed with respect to some classes of

customers and open with respect to other classes of customers. At three of
—
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the four types of service centers, the service times of customers are

governed by probability distributions having rational Laplace transforms,

different classes of customers having different distributions. At first-

come-first-served type service centers the service time distribution must

be identical and exponential for all classes of customers. Many of the

network results of Jackson on arrival and service rate dependencies, of

Posner and Bernholtz on different classes of customers, and of Chandy on

different types of service centers are combined and extended in this paper.

The results become special cases of the model presented here. An example

shows how different classes of customers can affect models of computer

systems.

Finally, we show that an equivalent model encompassing all of the

results involves only classes of customers with identical exponentially

distributed service times. All of the other structure of the first model

can be absorbed into the fixed probabilities governing the change of class

and change of service center of each class of customers.
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3 Introduction

| Networks of queues are important models of multiprogrammed and time-

shared computer systems. Work on this application in the last several

: years has produced a variety of models meant to capture important aspects
BN of computer systems. The results of this paper unify and extend a number

_ of those separate results 1n a single model. The principal contribution of

| the paper 1s to combine recent results on networks of queues of several

- different service disciplines and a broad class of service time distributions

| with earlier results on networks of queues containing different classes of

- customers. We derive the equilibrium state probabilities for the general

a model. The technique of analysis uses Whittle's concept of independent

balance [16,17]. From the complete equilibrium distribution of states of

— the model, we derive several less complex descriptions of the steady state

performance of the model. In the case of certain open networks, we obtain

- some particularly simple formulas giving the marginal distribution of cus-—

3 tomers at a service center of the network.
The model 1s motivated by the conception of a computer system as a

_ network of processors (CPU's, I/O processors, terminals) and a collection of

| customers (jobs, tasks). The processors are grouped 1n equivalence classes
2

called service centers and the customers may enter the system from the

| outside, pass from service center to service center competing for the

processing resources of a service center with the other customers at that
;

— center, and eventually leave the system. Different service centers may

| have different scheduling capabilities and different processing resources.

. Different customers may have different routes through the network and make

different demands at a given service center. Customers may change from one

N class to another when changing service centers. Such a model can represent

- 1 -
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several levels of detail in the operation of computer systems, from the

job submissions or user logons, through the requests of jobs for

individual I/O transfers or computing bursts, to the requests of processors -

for cycles of a shared memory. We present one example at the middle level

of detail.

Several special cases of the model we consider have been studied in —

the literature. A good survey of the analysis of queueing networks in

general and queueing models of computer systems 1n particular is given by

Buzen [3]. Jackson [11] and Gordon and Newell [10] develop the equilibrium

distribution of states of a class of general networks. In particular,

Gordon and Newell make clear the product form of the solution of the 3

balance equations describing the steady state of the model. Our solution

has this product form. In these models the service centers can be —

connected 1n any arbitrary fashion. A customer leaving a service center

simply chooses the next service center according to a fixed set of branching -

probabilities for the center being left. Jackson's model also allows for BB

the arrival and departure of customers from outside the system. These

networks suffer from two principal limitations as models of computer — 3

systems: (1) all the customers are identical; they all follow the same

rules of behavior, and (2) all the service time distributions are exponential. -

These limitations have been attacked by a number of authors. We summarize

their results in the remainder of this introduction. The body of the paper

presents the general model for which the models discussed below are special

cases.

- DO



Ferdinand [9] analyzed a particular system which allowed different

classes of customers. The system was a cyclic model with two service

centers. The model 1s frequently called the finite source model or the

machine repairman model. One service center consists of a sufficient

number of servers so that no queueing occurs. The other service center 1s

a single server. There 1s a fixed number of customers, each of which is

characterized by its own pair of exponentially distributed service times,

one for each service center. The single server 1s characterized by

processor sharing scheduling in which all waiting customers are processing

simultaneously, but at a rate reduced by a factor of 1/n if n customers are

requiring service. His solution for the equilibrium distribution of states

has the product form. His model is a special case of our model having two

service centers, one of a processor sharing type and one of a no queueing

type and exponentially distributed service times for the different classes

of customers.

Posner and Bernholtz [14] consider the more general network model of

Cordon and Newell in which each customer has its own set of branching

probabilities, its own set of exponentially distributed service times, and

its own generally distributed travel time to a particular service center

for each service center in the network. When different customers have

different service time distributions at a service center with queueing,

processor sharing scheduling is used at that service center. Their model

1s a special case of our model in that only FCFS and processor sharing

types of centers are allowed, the network 1s closed, and only exponentially

distributed service times for the different classes of customers are allowed.

Processor sharing scheduling has been investigated in models of

computer systems as the limit of overhead free round-robin scheduling.

- 3 -
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The mathematical form of the equations solved by Ferdinand and by Posner

and Bernholtz is the form obtained for processor sharing scheduling although

neither of the papers clearly identifies the type of processor scheduling

being used. Sakata, Noguchi, and Oizumi [15] discovered that when

processor sharing scheduling was applied to the classical infinite source

queueing model (denoted M/G/1l), the equilibrium distribution of queue sizes

for the model was the same as that for a similar model with exponentially

distributed service times (denoted M/M/1) with the same mean as the original —

general distribution. Their model 1s not a special case of the model studied

here but can be obtained from it by a limiting argument. Baskett [1] derived }

a similar result for a finite source model 1n which the service time

distributions at both service centers have rational Laplace transforms and Baskett

and Palacios L2] extended that result to another network model which Buzen [3] —

has studied and called the central server model. The equilibrium solutions

have the product form. The models include FCFS, processor sharing, and no

queueing types of service centers and service time distributions with rational

transforms but only limited closed structure and only a single class of customers. N

Whittle [16,17] showed that the balance equations describing inter- -4

connected birth and death processes could be replaced by sets of "independent" |

balance equations and that solutions for these independent sets are solutions —

for the original equations. Chandy [4,5] showed that this technique could be

applied to more complex models and with it he easily extended and generalized

earlier results on models with rational service times. Chandy calls these

independent sets of equations the equations of local balance and we follow

his terminology, The equations of local balance can be written down directly = ro

for such models and they are much easier to manipulate and to solve for those

models to which they apply. Using this technique, Chandy greatly extended

oy
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; the range of networks for which product form solutions can be found. In the
— terminology of this paper, Chandy developed the solution for networks in

which the service center is of FCFS, processor sharing, or LCFS type and

oo in which all customers are the same. The results in this paper generalize

his results to include service centers of no queueing type and different

classes of customers. Palacios [13] independently developed solutions for

— a particular network with "types" of customers. Chandy, Keller, and Browne

| 6] then extended the concept of customer "type" and added the concept of

L
customer "mode" for general networks. These concepts can be shown to be

i equivalent to our classes of customers where customers may change classes.
The next section describes the model and the four types of service

i centers. Then we discuss distributions with rational Laplace transforms.
Next 1s the notation used to indicate the state of the model, a discussion

L of local balance, and the derivation of the relative frequency with which

| each class of customers visits each service center. We then give the
functional form of the equilibrium state probabilities for the model. This

| gives a steady state description of the model in more detail than we
| normally need. The next section develops equilibrium probabilities for

L composite states of the model. For open models, we obtain a closed form
- expression for the normalizing constant in the solution and some especially

simple formulas for the marginal distribution of customers at each service

center. We present numerical results from a closed model with two classes

of customers to indicate the significance of different classes of customers.

| Finally we present an equivalent model in which all classes of customers

| have the same service time distribution at each service center and all these
distributions are exponential.

-5-
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The Model

The class of systems under consideration contain an arbitrary but

finite number N, of service centers. There 1s an arbitrary but finite

number R, of different classes of customers. Customers travel through the

network and change class according to transition probabilities. Thus a

customer of class r which completes service at service center 1 will next

require service at center Jj in class s with a certain probability denoted

Pirij,s” Both open and closed networks will be treated. The transition

matrix P = [Py v5, s defines a Markov chain where the states are labeled
by the pairs (i,r). This Markov chain is assumed to be decomposable into ”

irreducible ergodic subchains. Let E Es, : EB be the sets of states in

each of these subchains. Let n. be the number of customers of class r at

service center i. Let > (n, ) = ME; ). Then in a closed system ~
(ir )€E, ¢

M(E,) = constant l1<j=<m B

In an open system customers may arrive to the network from an external

source. Two general types of state dependent arrival processes are

considered. In the first case the total arrival rate to the network is

Poisson with mean rate dependent on the total number of customers 1n the

network. Thus for a state S of the model let M(S) be the total number of

customers in the network and A(M(S)) be the instantaneous mean arrival

rate. An arrival enters service station 1 in class r with a fixed

probability (not state dependent) given by CP

In the second type of arrival process there are m Poisson arrival B

streams corresponding to the msubchains defined above. The instantaneous _

mean arrival rate for the 5th stream 1s assumed to be a function of M(E, ), "B
A (M(ES)). An arrival in the 5 th stream has probability gq, of entering -

- 6 -



service station 1 in class r and q.. = 0 if (i,r) £ B.. In an open network,
a customer of type r which completes service at center 1 may leave the

- system. This occurs with probability

t= 2 Pir;j,s
1<j<N Im)
1<s<R

A service center will be referred to as type 1, 2, 3or 4 according to

_ which condition it satisfies.

Condition 1: There 1s a single server at a service center, the

= service discipline is FCFS, all customers have the same service

time distribution at this service center, and the service time

BN distribution 1s a negative exponential with parameter win), a

_ function of the instantaneous queue size, n, at the server.

Condition 2: There 1s a single server at a service center, the

—- service discipline 1s processor sharing (i.e. when there are n

customers 1n the service center each 1s receiving service at a

- rate of 1/n sec./sec.), and each class of customer may have a

distinct service time distribution. The service time

distributions have rational Laplace Transforms.

— Condition 3: The number of servers in the service center 1s greater

than or equal to the maximum number of customers that can be

= queued at this center 1n a feasible state and each class of

customer may have a distinct service time distribution. The

service time distributions have rational Laplace Transforms.

— Condition 4: There is a single server at a service station, the

queueing discipline 1s preemptive-resume LCFS, and each class of

TT customer may have a distinct service time distribution. The

service time distributions have rational Laplace Transforms.

- 7 -
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A type one service center with more than one server 1s equivalent to a type

one service center with one server and suitably chosen service rates

depending on the number of customers at the server. We denote the service |

rate at service center 1 as py (3) when the center 1s type one and

customers are awaiting or receiving service at that center.



B
Representation of Service Time Distributions

B with Rational Laplace Transforms
-

I

- The requirement that a service time distribution have a rational

| Laplace Transform is not very restrictive. Exponential, hyperexponential

and hypoexponential distributions all have rational Laplace Transforms.

| Cox [12] has shown that any such distribution can be represented by a
—

network of exponential stages of the form illustrated in Fig. 1. For

- convenience, we have eliminated the case in which there is a non-zero

3 probability of a zero length service time.
; a a a

b =

_ Fig. 1

|

| In this figure, b, 1s the probability that the customer leaves after

the ; th stage and a, (=1-b,) 1s the probability that the customer goes to
L | th |

the next stage. Given that a customer reaches the 1 stage the service

| time in this stage has a negative exponential distribution with mean Vu,
—

Since the service time distribution for a stage 1s exponential, when

i describing the state of the network of service stations 1t 1s not necessary
to know the exact amount of service a customer has received at a service

|

a center; the stage of service 1s sufficient.

_

N
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The States of the Model

The state of the model 1s represented by a vector (5X05 eee yxy) where i

Xs represents the conditions prevailing at service center i. The inter-

pretation of Xs depends on the type of service center 1. ”

If service center 1 1s of type 1 then

x; = (Xs Xo o Ie “in )
where n, is the number of customers at center 1 and x.y <j =< nyo -

1 < X55 < R) is the class of customer who is 5 in FCFS order. The first
customer 1s served while the remainder are waiting for service.

If service center 1 1s of type 2 or 3 then -

x; = (VigsV00000sVyp) _
th

where Vip is a vector (my my ,.ve,my ). The 4 component of Vv... 1s the
= th

number of customers of class r in center i and in the 4 stage of service. oT

uw. is the number of stages for a class r customer at service center 1.

If service center i is of type 4 then

Xj = ((ryomy )s (mpomp)s eens (my omy J)

where ng is the number of customers at center 1 and (r;,m;) 1s a pair |
describing the 5 th customer in LCFS order. ¥ 1s the class of this

customer and m. is the stage of service this customer is in.
For any network of reasonable size, the expression for a state of the

network is long and tedious to write. Writing expressions for the balance -

equations to find the equilibrium state probabilities 1s an arduous task.

Even to check that a given solution 1s correct 1s time consuming. :

The solution for the class of networks described here was arrived at by

using the technique of local balance. This technique 1s briefly described

he low.

- 10 -



i A solution for the equilibrium state probabilities must satisfy the

balance equations for the system. That 1s

8

Y states, S. > P(S_ )Lrate of flow from S. to 8,1] =
| * all states J J
— 3 p(s, )lrate of flow out of S, |

| In [4], Chandy terms these the global balance equations. He defines

| another type of balance equation which he calls the local balance equations.

— Informally, a local balance equation equates the rate of flow into a state

by a customer entering a stage of service to the flow out of that state

= due to a customer leaving that stage of service. We associate a customer

Lo with a stage of service in the following ways. If the customer is in

- service at a service center, then he 1s in one of the stages of his service

3 time distribution at that service center. If the customer is queued at a

| service center, then he is 1n the stage of his service time distribution he

~ will enter when next given service. For FCFS this will be stage 1 and for

LCFS this will be the stage the customer was in when last preempted.

NB The local balance equations are sufficient conditions for global

. balance, but they are not necessary. Local balance requires that each term
on the right-hand side of a global balance equation be equal to d particular

- subset of terms on the left-hand side of that global balance equation.

To illustrate the concept of local balance we consider the relatively

- simple network model in Fig. 2.

| This 1s a closed network with two classes of customers (which we refer

to as class 1 and class 2). There are Ny class 1 customers and N, class 2

— customers in the networks. All service times are exponentially distributed

and —— (i = 1,2, r = 1,2) is the mean service time for a class r customer
om Bir

at service center 1.

- 11 -
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Type 2
service center 2

p Poi1:1,1 p
2,2;1,2 ? 1,2;2,2

P1101 »

Type 3
service center 1

P1,1;1,1 |

Fig. 2 _—

In this example - Pp =p = 1, p i»
"1,005 2) pp | T25151,1 7 7 Praga

P1,1;2,1 _ Lb

Let n, be the number of class r customers at service center i. For -
2

convenience we write the global and local balance equations only for the

states in which n.,_ >0, i = 1,2, r = 1,2,ir ?

Global Balance Equation:
+1

P(n .-1,n. .,0..+1l,n..) 21 Tl—4 ’ ’ Th+n+1

11 127 21 22 nN, +n, 21

+ Pop +lyng on, -1,ms5) (ng0+1) pg P11;2,1

» P(ppmyostoysmo0) yy yy Py ggg

—~ ++ P(ny on+l,n,0,0,, 1) (nyo 1) Myo oo
n, +1 - bs
22 Loo

+ P(n,,,n ~1,n__,n_  +1)[———}pu EB
117 12 21’ 22 ny tnyotl 22

- 12 -
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Tol oo
- * N,, +N Hoy + n, +n Hoo21 02 © 21" ee

_ Local Balance Equations:

| n. +1

| ‘1.1 P(n, _-1,n n..+l,n (meatTr 11 712’ er een + H
_ 2 \l21 n,,+1 21

+ P(n 20,0, ) n IL p | = P(n PR oi n n In11771227217 "22/ T11 M11 fa1,151,1 11°12? ert e2/ 11 Maa

n+l1.2) Pin, ,n. -1 TY _
ee) B10 5m snp Hg Hep = P(Byy50y0,00,,0,000 Ho

| 21 22

2.1) P(x - Y, _

i VE. (33150ps Boy = 1s non)(0+Jy P1,1;0,1 ©
n

21
p(n, ,n n,n )f—ot11° 71277217 5 n \"| 227\ ny hy,) on

Yop2.2, P(n,,,n_ +1 - = P{ —cs

| \e 2) (ny 1omyptomy nom) (nytuo = Png gym pm,50,0) ae
| Since all the service time distributions in this example are

exponential the current stage of service of a customer 1s uniquely defined

| by the customer's class and the current service center. Local balance
equation (i.r) for i = 1,2,r = 1,2 equates the rate of flow out of state

1 (Dy 15010,050,05,) due to a class r customer leaving service center 1 with
the rate of flow into state

(no PIR due to a class r customer

entering service center 1.

| As in this example it 1s generally true that each global balance
equation 1s the sum of a subset of the local balance equations. Thus a

solution for the local balance equations 1s automatically a solution to the

global balance equations. In many cases the local balance equations are

inconsistent and therefore have no solution. For example if there is FCFS

- 13 -
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scheduling at a service center and different classes of customer have

different service time distributions the local balance equations are

inconsistent.

The value of the local balance concept is that (1) it leads to a

simpler and more organized search for solutions for equilibrium state

probabilities and (2) it works for a large number of cases (in fact for

virtually all of the closed form solutions known for general classes of

networks of queues -——although not many interesting cases have known solutions).

Before presenting the solution to the class of networks described, we

define a set of terms that appear in the solution.

For a customer of class r, let le; 1 £1 <£N) be a solution to the

following set of equations.

ey “ir Pi, r;j,s tag B is ? L=3 =»
The value of dig 1s determined by the arrival process of customers of class

s to service center Jj. If there are no such arrivals from outside the

system, then d. = 0. If there are such arrivals then d. = gq. . In a
Js js js

closed system there are no arrivals to any center and all the d- are zero.

In this case e.. 1s the relative frequency of visits to service center 1 by

customers of class r.

Note that a system may be "open' w.th respect to some classes of

customers and ''closed'with respect to other classes of customers. Our

solution applies to this class of system.

One further definition 1s required. If at the ; Bh service center the

rth class of customers has a service time distribution that is represented

as a network of stages then this 1s represented as illustrated in Figure 3.

- 1h -
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— nC Ne ar | a
|

Fig. 3

The first subscript on a, b and pu denotes the service center. The

L second subscript denotes the class of customer and the third subscript
denotes the stage.

= 1

Let Asp = 1] Br]
vo j=1

-

Theorem:

— Given a network of service stations which 1s open, closed or mixed in

which each service center is of type 1, 2, 3 or 4. Then the equilibrium

~ state probabilities are given by

— P(s = X13 Xny ees Xy) = Cd(8S) f(x E(x). cE (x)

where C 1s a normalizing constant chosen to make the equilibrium state

- probabilities sum to 1, d(S) 1s a function of the total number of customers

_ in system and each £, is a function that depends on the type of service

center 1.

If service center 1 1s of type 1 then

_ wa ]F055) = 1 Be ix, | J
—

- 15 -



If service center 1 1s of type 2 then

R “ir A A mp

f(x.) ho 11 I] ir ut | 1cA = . — rare

11 SE | Hing Mk

If service center 1 1s of type 3 then

u,

R ir m,

TT ir App | IPLf(x) = | I — m1

If service center i is of type 4 then

n, —
1

f(x) — i es A; nm |j=1 j ] ir m,

J J J J ij _

If the arrivals to the system depend on the total number of customers in

the system, M(S), and the arrivals are of class r and for center 1 mt

according to fixed probabilities P;.. then

M(S)-1

as) = [1 a)
i=0

If we have the second type of state dependent arrival process then

m M(E,)-1

IRIE NEd(s) = L h(1)
j=1 1=0 —_

If the network 1s closed then d(S) = 1.

The theorem 1s proved by checking that the local balance equations are

satisfied. In every case for which these results apply the local balance

equations reduce to the defining equations for the le, J.

- 16 -
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_ Simplification of Results

| The solution presented for the equilibrium state probabilities deals

with system states that are more detailed than is usually required. The

| more detailed states are necessary to derive the equilibrium state

probabilities. Now we define the system state as the number of each class

- of customer 1n each service center. More formally state S of the system

is given by (Y15¥05 00 e5¥y) where yg = (015055000500) and nir 1s the

— number of customers of class r 1n service center i. Let n, be the total

| number of customers at service center 1 and let 2 be the mean service

time of a class r customer at service center 1. Then the equilibrium

| state probabilities are given by

P S = PREP = Cd S CI I)(8 = (¥15555 00093) (8) 8,(v)es(v5) 0 my (yy)
where

if service center 1 is of type 1 then

R n n,

e (v.) =n] ON  ——oA r=1 "ir! a j=1 Mi J
L od

if service center i is of type 2 or 4 then

R fa
/ n.

g.(v.) =n 1] 1 | irCo Ay.) =n, —_— |
ot te rol Tip Mir

if service center 1 1s of type 3 then

R r{, n,
g (vy) =| == 2X-— s . '

PRora iro Bae

— In each case the expression for g; (vy) is derived by summing £,(x;)

over all x, with RysBip5see.,n,, fixed. That this is the correct

definition of the 9 follows from the product form of the solution given

- 17 -
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in the theorem. If the mean service rate at centers of type 2,3, or 4 is

the same for each class of jobs but depends on the number of customers at

- 1 Mir
the center, then the factor p= is replaced by the product of the

RED] in g,(¥,) as for type one centers. If the service rates are not theSRW
i

same for each class of customers but depend on the number of customers at a

center, then it should be possible to develop the proper form of the

solution using the equivalent network presented 1n the last section of the

paper.

A further simplification is possible if the network 1s open and

the arrival process does not depend on the state of the model, The

following paragraph and section develop this simplification,

If a state of the system 1s to be simply the total number of customers

in each service station, i.e. S = (nysDs55 Lon). Then P(S) = Cd(S) h, (n,)

Io} . = - class r customers may require serviceh,(n,)...h(n.). Let R; = (r y req

center 1).

If service station 1 1s of type 1 then

n Ny
i 1

h,(n,) = (2 e. ) 11i 1 r€R, YY) 5a u; (3)

If service station 1 is of type 2 or 4 then

N Cir Nyop= (32)r€r, Mir
i

If service station i is of type 3 then

e, \n.

i* \rér, Mir
i

- 18 =~



— The evaluation of the normalizing constant requires summing the given

f expression for the equilibrium state probabilities over all feasible states.

In the next section we show a closed form solution for C for an open network

| in which p, (m) =p, for all m if service center 1 1s of type one.

Open Systems

For open systems 1t 1s possible to obtain a closed form solution for

u the normalization constant when the arrival process 1s of the first type

and A(M(S)) = A = constant. Since the system is open any number of

— customers 1s feasible at a service center.

Therefore

co co loo) N
n,

- i

i =0 n 0 n _=0 i=1 ia +
= =v ht N

ae] ce Qo
n n n

— -1 1 N., 2 > Nh “os h(norC = PA no) ( 2 (n,) ( 2 n{Py
17° 2” N~

— Also,

= 1— e. \-

S h.(n,) = (1 - Dy Sar if service center i is
ae tod rér, Mi type 1 and pu. (n,) = pu
i i ivi i

—

e. \-1

= g - 2x) if service center i isr&R. Hip type 2 or U4

dasA ir
— Cd

rér, Mir
i CL

= 1f service center 1 1s

type 3
-

hm

- 19 -
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Marginal Distribution at a Service Certiter 1n an Open Svstem

Let Pin, be the eguilibriuwa probability that there are n, customers

at service center 1.

N wel
n, on,
i . :

Pin,) =C\  h.in,) Il (> AJ n(n)1° if iti, — J]

j#i

Using the expression for C, we reduce this to

n.
;

{ \

it i —_—

N m

J, Ah, (m)
m=0 +

N “ir
Let 0. = A e— if service center 1 is type 1

rer, Mi
1

N “ir
0. = A — if service center i is type 2, 3 or 4
i — Ul

r&R, Mir

Ny
Then Pp. {n,) = (1 - p, Jos if service center i is type 1, 2 or 4

Ir,

1

“Py; Pi
= e — if service center 1 1s type 3

i

These results provide a convenient way of examining the equilibrium

distribution at a service center. For type 1, 2 or 4 service stations the

marginal distribution 1s the same as the distribution of the number of —

customers in an M/M/1 queue with a suitably chosen utilization, Oy» For

the equilibrium solution to exist each p, is required to be less than 1.

The marginal distribution for a type 3 service center 1s the same as .

the equilibrium distribution for the number of customers for an M/G/® system £

A

with Ps = 0 This certainly appears to be reasonable since for an open

- 20 =
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L system there must be an infinite number of servers at center 1 1f 1t 1s to
be of type 3.

-

This type of service station may be used in a model to represent a

i delay as customers travel between two other service centers. Posner and
Bernholtz [14] use a different approach to represent more general delays 1n

— a less general network.

Lo

|
-

—
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Example

In this section we give a simple example that illustrates some of the

results of the paper. Consider the system shown in Figure 1.

SERVICE CENTER

iii -, Psa =30P4,2;5,2=00

| P1,2;4,2-00
FCFS

| P12:32:200

Pyi.0q4 = 0.0

i < 1,1;2,1 = 2| P1,2;2,2=10

Hey =9.0Y | , | PROCESSOR

Figure Ly, Example Network Model.

This 1s a closed system with two classes of customers. gervice centers

2, 3, 4 and 5 are type 1 centers and service center 1 is type 2. This is a

model of a multiprogrammed computer system in which service center 1

represents the CPU and the other service centers represent I/0 devices.

Figure 5(a) gives the utilizations of the service centers with a varying

number of class 1 customers and with one class 2 customer in the system. In

Figure 5(b) the utilizations of the service centers are given for the same 0

network of service centers but with the two classes of customers replaced

—- 22 =
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— by one class of "equivalent?' customers. The parameters for these

"equivalent" customers are calculated by first solving for the equilibrium

-

state probabilities of the two customer class model. From these one can

C solve for

ry = rate at which class 1 customers leave service center 1.

L Iy = rate at which class 2 customers leave service center 1.

g Now the equivalent customers have parameters given by

A SS SN BI
— Hp TptTp gp TtTo MHgp

r r

Py. 7 Fo Py,1;i,1 7 5 P1,2;1,2 122,354;

_ The rationale for these definitions 1s quite simple. If measurements
were taken on the system without distinguishing between classes of customers

= these would be the parameters measured.

i Figure 6 shows the results of Fig. 5 graphically. The service center

| utilizations for the model with different customers are indicated by a line

i through the values with the service center number above the line. For the

model with "equivalent" customers, the service center number is primed and

— below the line. The utilizations predicted by the model with equivalent

customers are always smaller than those of the model with distinct customers.
-

In fact the utilization of service center one (the CPU) goes down initially

a as the number of "equivalent" customers increases from one to two and the

difference for this server is substantial (between 4.5 and 9percent). The

L structure of the model with different customers 1s such that the class 2
customer never has to queue for any I/O server. In the model with

| equivalent customers, all customers suffer queueing delays at I/O servers

L_ for two or more customers.

- 23
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Figure 6(a) and (b). Utitization of Service Centers versus Number of
Customers for Different Customers and

~ Equivalent Customers.
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The customer class change concept can also be used to capture some

complex structural properties of the system being modeled. For example,

in one of Moore's [12] models of a timesharing system one drum service

time 1s used 1n the model to represent two drum service times 1n the

system. One of the service times 1s incurred by the transfer of a job

from terminal mwprocessing to CPU and file processing and the other

corresponds to the reverse transfer, A more accurate representation of

contention on a swapping drum can be obtained by using two classes for —

jobs. One class would model terminal I/O processing and the other would

model CPU and file processing. A job would change class after drum

processing.

~-06-
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= Properties of Network Models that Satisfy Local Balance

. This section 1s directed to those readers interested in the theoretical

| foundations of the analysis of networks of queues rather than those
—

interested 1n the application of the results.

| All of the network models that we have treated in this paper can be
|

shown to be equivalent to models in which all classes of customers have the

- same exponential service time distribution at a given service center. Thus

1

| an exponential service time distribution with mean -— may be assoclated
- th "i

with the 1 service center and all classes of customers have this service

. th
o time distribution at the 1 service center. This fact suggests the

[—

conjecture that a necessary condition for local balance to be satisfied for

- a given model 1s that there exist an equivalent model in which different

i classes of customers may have different transition probabilities but all
|
— : :

classes of customers have the same exponential service time distribution at

| a glven service center.
-

The transformation of a given model to an equivalent model of the form

L described 1s accomplished in two steps. First we show that the effect of a

: customer moving from one stage to another in the stages representation of a
i

= general service time distribution can be represented by introducing new

customer classes. Thus we model a transition from one stage to the next as
-

a transition to a new customer class and to the same service center. After

this transformation of the original model we have a model in which all

: service times are exponentially distributed but different classes of

— customers may have different mean service times at a given service center.

g The second step 1s to show that by appropriately modifying transition
’ probabilities we may further transform the model into an equivalent model

- 27 -
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in which all classes of customers have the same mean service time at a given

service center.

The method of making these transformations to the model 1s straight-

forward and will be illustrated by example rather than a formal description

of the general case.

Consider a general service time distribution represented by a network

of stages as in Figure 1. Let this represent the service time distribution

for a customer in class r in service center i. We introduce n new customer

classes denoted by TysTps eee, which correspond to the stages in this

network and delete customer class r.

The service time of a class J customer will be exponential with mean —

2 (1 <2 <n). The transition probabilities for a class Tp customer are
Hp
defined as:

p. : =5 DP.

1,7p;3,s L “i,r;j,s

P.. . = a 1 <4 <n
i,rp5i,Tp 4 £,

To take care of the transitions into class r in the original model we

require that all transitions into state r be redefined as transitions into

state To These transition probabilities are defined as:

P. =P, 7. -
J,S;1,Try J,S;1,r , J,S

With this transformation of the model a customer will have the same

distribution of total time at a service center and will have the same —

transition probabilities from service center to service center. |

- 28- |
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After performing this transformation for each customer class with a

L general service time distribution we have a model in which all service
1

time distributions are exponential. Suppose that =——— is the mean service

| Hi, r
— time of a class r customer at service center 1. Let

| ML: = max |

L We redefine the mean service time for each class of customers at service

: 1 Co Ca
center 1 to be —. Now we redefine the transition probabilities out of

L Hi
service center 1.

| Hr
— let p = 1 - —2X=

r Ls
1

Then define

ro. . = 1-

P's ri,r = Pr + (17D) Puy rii,r
= 1' _— -

| P i,r;73,8 ( PJP; 1s

— The effect of these new transition probabilities 1s to cause a class r

| customer to be fed back (or to revisit) service center 1 a random number of
_

times. Each time the class r customer enters service center 1 his service

time 1s exponentially distributed with mean =. The number of visits thei

, class r customer makes to service center 1 (between transitions in the

| 1
- original model) 1s geometrically distributed with mean Ip It 1s easily

r

shown that the total service time of the class r customer at service center

— Co. 1 1 1
i is exponentially distributed with mean (-=——) — = —— [8]. Therefore

1-p ML. Mg| i i,r

| we have not changed the total service time distribution for this customer

: at service center 1.

- After completing these transformations throughout the model we have an

equivalent model with the desired characteristics.

o



The transformations that we have made to the original model preserved

the original distributions of service time that a customer requires at a

service center. However a customer does not spend that time on the server

in one contiguous interval. We required a customer to make extra

transitions in which he leaves and reenters the service center. It 1s

clear that with type 2, 3 or 4 service centers this does not affect a

customers service. For type 1 service centers the transformed model would

not be equivalent to the original model since a customer who leaves the -

service center and reenters will now be at the end of the queue. Of course

we have from the beginning required that at type 1 service centers all

customers have the same exponential service time distribution so that such

a service center does not require any modification.
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Conclusions

We have derived the equilibrium distribution of states of a model

containing four different types of service centers and R different classes

Lo of customers. From this steady state distribution one can compute the

moments of the queue sizes for different classes of customers at different

— service centers, the utilizations of the service centers, the "cycle time"

or response time for different classes of customers, the "throughput" of

different classes of customers, and other measures of system performance.

These results unify and extend a number of separate results on

networks of queues. The general model can have four types of service

L centers. Three of those types allow different service time distributions
with rational Laplace transforms for different classes of customers. The

model allows different classes of customers to have different arrival rates

and different routing probabilities. For open networks some very simple

formulas give the marginal distribution of customers at the service centers

of the network.

The analysis 1s motivated by the desire to model computer systems.

Type one service centers (FCFS scheduling) seem appropriate models of

secondary storage input/output devices. Type two service centers (processor

sharing scheduling) can be an appropriate model for central processing units.

Type three service centers (no queueing) are appropriate models for

terminals and for routing delays in the network. Allowing different classes

of customers should answer one of the principal objections to queueing

models as models of computer systems. The example given 1ndicates how

significant different classes of customers can be in the utilization levels

- predicted by model analysis.
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There are many additional complications yet to be analyzed but the

general model presented here represents a substantial increase in the

ability to build and solve analytical models of complex computer systems.
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