
A REVIEW OF “STRUCTURED PROGRAMMING”

by

Donald E. Knuth

STAN-CS-73-371

June 1973

COMPUTER SC | ENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UN IVERS ITY

| J SITE ry

js/ poiy er

by

A Review of "Structured Programming"

by

\
Donald E. Knuth

—

| Abstract
The recent book Structured Programming by 0. J. Dahl,

E. W. Dijkstra, and C. A. R. Hoare promises to have a significant
C-

impact on computer science. This report contains a detailed review

L of the topics treated in that book, 1n the form of three informal

"open letters" to the three authors. It is hoped that circulation
¢

= of these letters to a wider audience at this time will help to promote

useful discussion of the important issues.
-

L

)!

¢

— This research was supported in part by the National Science Foundation
under grant number GJ-36473X, IBM, and Norges Almenvitenskapelige
Forskningsr8d. Reproduction in whole or 1n part is permitted for any

— purpose of the United States Government.

-

1

$
—

STANFORD UNIVERSITY

STANFORD, CALIFORNIA 94305

 _ -OiMPUTER SCIENCE DEPARTMENT Telephone:

« 415-321-2300

December /, 1972

“

-— Prof. Dr. E. W. Dijkstra
Mathematics Department

Technological University
Eindhoven, The Netherlands

\
Dear Edsger:

= Ole-Johan Dahl has just given me a copy of the new book
Structured Programming, and I want to congratulate you on an especially

fine job. It 1s delightful to see these important ideas in print at

“— last, and the book will no doubt prove to be extremely influential.
Your unique style of writing holds the reader spellbound; it's the kind

of book you can't put down until you reach the end, and once you have

L read 1t your life 1s not the same thereafter.

Of course, I don't agree 100 percent with everything you said —--

4 this is inevitable whenever artistic or aesthetic judgments are
— involved -- so I'd like to jot down some of my current feelings on

these issues in hopes of further clarifying and perhaps strengthening

i the ideas. In other words, I am now writing a letter to myself basedon your letters to yourself. And I hope you will have time to read

mine as I have read yours.

¢

- Here then are specific comments prompted by your Notes on Structured
Programming, cross-referenced by the page number where they appear in the
book.

L The first time I felt like raising amild protest was on page 7,
4 where I didn't realize that dd and r were intended to be integer

variables. (This is of course explained nicely on page 15, but I
— didn't know 1t at the time.) The program makes an instructive example

with respect to floating-point computations also. In the first place,
when floating-point operations are properly rounded, the program does

i in fact leave (1) invariant; but if truncation arithmetic (IBM's style)
4 is used, it fails. For example, in decimal notation, if dd = 2 .0000001

and r = 2.0000000 , the program first sets dd := 1.0000000 . On nearly

| all computers which do rounded arithmetic, your proof of the invariance
of (1) 1s apparently correct; nevertheless, after the program is repeated
100 times the result will be to set d to zero while r remains

[positive! The reason 1s the preposterous convention, almost universal,
|. of replacing 'exponent underflow' by a zero result with no interruption

of the program. Perhaps examples like this will finally be able to

convince hardware designers that it 1s absurd to destroy all the

L significant figures without warning.

a

Prof. Dr. E. W. Dijkstra - 2 - December 7, 1972

ba -
-

However, you probably aren't interested in such things, so I shall

I move on. The "primes" program has come out very nicely, since I last
saw 1t; I'm glad the rather uninformative digression about "throdd"

$ numbers has been suppressed, and the instructive mult table is a welcome

| addition because 1t sheds light on redundant data structures where the
invariant need not completely characterize the redundancy. 1 only wish
to comment on two things regarding this program: First, on page 37, where

. you begin to assume that remainders cannot be computed conveniently, the
Lo reader who has been following carefully will recall that an efficient and

< elegant algorithm for computing remainders has been presented on page 13
(the computation on gq may be suppressed). So this is the obvious thing
to do in 2bk(k)d , and it is very instructive to observe thatit 1s

bs much worse than the mult table since the latter requires comparatively
little space. The moral of the story 1s clearly to avoid using cperations

| blindly without considering the context, as you point out briefly later
¢- in Section 11.

My second comment has to do with this question of context. Of

I course the nomenclature "2bL(4)d" is not pretty, but the real problem
as we get to the end of the primes program 1s conceptual, not notational.

The steps of program construction have unfolded very nicely and naturally

€ but at the end we can't really fold them together again —-- we seem to be
- almost looking at the entire program as a whole, with it all in our head

at once. Thus when the reader gets to page 38, with the final 'patches'
on level 2b5(k4) , it becomes suddenly much harder to understand what is

L going on.

¢ Perhaps 1t 1s 1nevitable that a programmer must in fact have reached

- a conception of the whole program at once (in an appropriately structured
form of course) by the time he has finished. But this seems to imply that
the difficulty of programming increases greatly with the size of the

i : program, while ideally we would like the level of difficulty to remain
workable. The same phenomenon occurs in the picture-drawing program; by

& the time the reader/programmer gets to the end of LINER at the bottom
of page 56, he needs to be flipping pages back and forth and essentially

L keeping the status of the whole program in his head. The latter may almost

be necessary; I have always had a feeling that a talent for programming
consists largely of the ability to shift quickly from macroscopic to

I microscopic views of processes.
&

Some evidence that you yourself are in fact keeping the entire
context of the program in mind appears on the top of page 54, where you

L say fifty blank lines would be output, while we are at this point only
looking at the 'build' procedure which purports to be independent of

the output. I don't criticize you for this (although this particular

— instance 1s unnecessary context); I merely want to illustrate what seems
to be a part of programming psychology. You say rightly on page 50 that
we must tie loose ends together again.

L

L
jy-

i

Prof. Dr. E. W. Dijkstra -3 - December 7, 1972
~

(-

Herein lies the dilemma, and the conflict. A notation which

expresses the separation of tasks nicely eventually gets into difficulties

when there are many loose threads running through a single pearl. Yet

N the pearls are valuable as a means of coordinating the individual design
decisions.

Perhaps the new display terminals will provide the answer, as a

notation for programs that will provide an appropriate reflection of the

structure as we might have it 1n our minds. You have perhaps had a

~ dream much like mine: Wouldn't 1t be nice to have a glorious system
of complete maps of the world, whereby one could (by turning dials)
increase or decrease the scale at will? A similar thing can be achieved

for programs, rather easily, when we give the programs a hierarchic
structure like those constructed step-wise. It 1s not hard to imagine
a computing system which displays a program in such a way that, by

- pressing an-appropriate button, one can replace the name of a routine
by 1ts expansion on the next level, or conversely.

The independent design decisions (i1.e., the pearls) could be
identified in such a system by marginal classification codes, saying

which pearl each line belongs to. An example appears below. This seems

~__ to me to be a reasonable way to bring the appropriate context into each
pearl, yet retaining the pearl's identity. (We need another word for

pearl, though; what should it be'?)

The viewpoint about a sequence of machines and operation codes,

which you have nicely expressed in Section1), has often proved useful
\ to me also 1n a more explicit form where the data itself gets transformed
— into instructions for a pseudo machine. An example of this appears 1n

the appendix to my paper on computer-drawn flow charts, Comm. ACM 6 (1963),
555-563. Atwo-pass algorithm is described, wherein the first pass

_ encodes the data into a pseudo machine language and the second pass
executes that program. If you have the time, I hope you can read this

~ old paper of mine, even though I was of course much more naive at the
time; 1t seems to me that a number of important principles are involved,

= and that a closer study of such an algorithm may lead to increased
understanding of program construction (and proofs).

— I am not part of your audience who were "deeply troubled" by the
“ time the top of page 56 was reached. But I must admit to being deeply

troubled at the top of page 57, and not only by the fragmentation

_ referred to above. Suddenly you had jumped to a choice of data structure
very different from what I had expected. Namely, why was the possibility

of representing the data as a list of 1000 pairs, sorted into lexicographic

- order (decreasing y , then increasing x) never considered?

After thinking about this a little, I'm convinced that it 1s a

question of density. Consider the identical problem, but with the
fx(i),fy(i) only to be printed for 0 < i < 10 instead of 1000 .

~ Prof. Dr. E. W. Dijkstra - 4 - December 7, 1972

I believe you would have reached a different solution, and it ig
— interesting (to me) to locate the point where the solutions begin to

differ, and the reasons for the difference. Tt seems that an

L appropriate way to apply your principles would be to further expand
_ print, before going into a consideration of image, possibly thus:

PRINTER

, begin type loc;
- - print: Pmitialize loc; repeat {advance to next position; printsymbol]
6 until final loc reached];

| instr initialize loc (loc), advance to next position (image, loc),
3 printsymbol (image, loc), final loc reached (loc)

end

| This seems to be a useful, 1f not necessary, step in the development,
[—~ because 1t expresses what properties of image the print routine needs.

Now we are forced to think about the order in which the marks must be

| printed, and "such a question about order is usually very illuminating"as you say on page 7/5. Here is where we consider whether to go to
something like LINER or a data structure that would be more appropriate

J when the marks are very sparse. If the printer has another operation
L 'new page' where there are 10 lines to a page, or 1f it has tabulator

stops at particular points of a line, etc., all can be decided when we face

‘advance to next position’ since this is the primary place where we

| consider the number of operations required (and where we decide what
"next position" means). Perhaps the two instructions advance .. . and
printsymbol in the above ought to be one since they can't be meaningfully
used 1n another order.

This seems to be further confirmation of your remarks on pages 62
and 63. Decisions about data representation should probably always be

) deferred until the necessary uses of the data by the algorithm are
" established.

: On pages 63-66 you discuss Wirth's prcblem of the sequence without
repeating blocks. Here I was unable to answer the question "What should
the program be like if there 1s possibly no solution?" I see no good way

to do this without go to statements; every way I think of would be better
with a go to. This is the difficulty I have in subscribing wholeheartedly
to your ideas and perhaps you can show me my error in this example.

On the top of page 07, it seemed to me a better first sketch would be

integer s,,t;

s :=1 (and further initialization);
repeat t :=8;

s,w="sum of smallest unconsidered decomposition > t"

until s =1;

Prof. Dr. E. W. Dijkstra - 5 - December 7, 1972

liowever, both of these "first sketches" fail to indicate all the

thinking that goes on. I find it significant that the student spent
twenty minutes getting somewhat familiar with the problem, and I

venture to say that this was not all wasted; one does not come to the

right first sketch until after several other hidden concepts have been
discovered.

In fact, let's consider this problem a little. It 1s desired to
n,.n

find the first repeated element of the multiset {a +b | 0 <a <b} .
~ A general way to find duplicates is to sort; and especially since we are

looking for the first duplicate, this suggests generating the elements
of the set in order. Now the obvious way to generate this set 1s by a

pair of nested loops,

for a :=0 step 1 until =» do

for b :=a step 1 until «do . . .

but this doesn't lead to increasing order. We perhaps think of parallel
processes at this point, one for each value of a (since the values for

fixed a are increasing; this 1s the key fact which must be discovered
somehow) . We imagine a collection of processes generating the values

“

process[0] : or +0", ot+ 1", ot +2, LL.

process[1l] : JR SR R=Se Lo ce

process[2] : oy of oy 3 of 4 4 coe.
\

and we must merge the outputs of these processes into ascending order.
We see that at any given time we need not consider process{k+l] until
process(k]has gotten its first value used. This sequence of observations

] seems (to me) to be what underlies the first sketch which magically
appears on page 67. But now the first sketch looks rather like this:

integer array sum,b[0 : =]; comment sum[a] is the next value to be

output by process([a], and it corresponds

to a" +bla]’;
C initiate first process;

repeat find smallest sum among the active processes;

- if it was the first value for that process then initiate the

next new process;

CC advance the process which had smallest sum;
until this sum equals the previously examined sum.

I don't believe you get the stated first draft until you have mentally

drafted something equivalent to this. By the first declaration in this

| program I do not mean to commit myself to any particular data structures.

Prof. Dr. E. W. Dijkstra - 6 - December /, 1972
“

It is interesting to pursue this somewhat further, to the point

_ where we choose appropriate data structures. We soon realize that
the (sum,a,b) triples are essentially linked, not independently

YS sum{a],bla] ; and the proper data structure is a priority queue consisting
of these triples ranked on their sum fields. Now we look at Knuth, volume 3

— and see which of four or five known methods for priority queues 1s most
appropriate in this instance (probably a sorted list, since the number of

processes stays small).

C The above program illustrates something else, which I think 1is
important. Whenever I'm trying towite a program without go tostatements,
I waste an inordinate amount of time in deciding what type of iterative

clause to use (while or repeat, etc.). The reason is that our notations
aren't really complete. I know in my head what I want to do, but I have

to translate it painstakingly into a notation that often isn't well-suited

C to the mental concept. I know I want to repeat something over and over,
and it's easy for me to give a step-by-step description; "first do & ,
then B , then if y were done, otherwise do ® and we're in the same
situation we started." Now this 1s not suited to present

languages since I have to test ¥ either first or last, writing

« a; B; while non 7 do {&;a; B};
Co or 1

8 “5 repeat 8; Qa; Bf until 7;

where I invent some trick inverse of 8 . (Witness " k :=4+1"on page 71.)

Surely you must face the same dilemma. What I really want to say is

C something like:
loop (5 B5 if 7 then exit; 8} end loop

Since this 1s a frequent mental construct, in my experience, I believe
) it deserves a suitable syntax. Otherwise we also find ourselves testing

the same condition twice as on page 71 (x = pnt tested three times and
C one of these is unnecessary).

— On page 68 you invite the reader to try writing that silly program
himself. I know you haven't time to grade all the readers' solutions,

but here 1s mine anyway. (Unfortunately I did not time myself, I was

_ in bed with a pad of paper, and Jill sleeping beside me, at about 1:00 a.m.;
C I expect I finished about 15 or 20 minutes later. About 2 minutes were

wasted trying to think of a suitable iteration statement.)

“

BE

Prof. Dr. E. W. Dijkstra
I December 7, 1972

A begin comment Dijkstrats odd inversion problem:

< A charxj comment th,cter most recently input;
C integer k; char array word[1:20]; comment word[1:k] contains the
C first k characters of the next word to be printed;
E integer nj the number of words printed so far;

“ En :=0;

Ck :=0;

A repeat x :=RNC;

A absorb x:

u B if X=sp Or X=pnt then

| B print a nonempty word:
¢ begin if k > 0 then

| C begin print word:
. 1f n> 0 then py :

o toa en C(sp);
~ : print word backwards:

: begin integer 1; 1 :=k;

: repeat INC (word[i]);
: 1 minus 1;
] bred)
: end
£ else print word forwards:
G begin integer 1; 1 :=1;

) G repeat FNC(word[i]);
° 1 plus 1;

G end;
E Nn :=n+l;
¢ k :=0;

- end
- end

B else add x to word:

D if k=20 then

D word too long error: . . .

D else begin k:=k+1; word[k] :=x end;
A until x=pnt;

A PNC(x)

A end.

“

Prof. Dr. E W. Dijkstra - 8 - December 7, 1972

\..

This program has been strung together from the individual pearls

AB,.. .,G which are identified in the left margin. These letters

indicate the order in which the decisions were made. I never completed

’ the next step of the development, which would have been pearl H (for
~ the "word too long error"), since I was hurrylng and error recoverv

1s usually not an easy thing. (Perhaps a good solution for that error

would be '" word[l] :=word[20] :=asterisk ".) When I wrote this program
. I wasn't sure whether or not the first character was required to be a

if letter, so I allowed for it to be a space.

~ This program illustrates one thing I wish you would adopt, namely
always to give a suitable comment (an 'invariant' essentially) for each

declared variable. Programming languages ought to be defined so that

such comments are convenient if not mandatory (it's a bother to write
the word comment, and a label isn't allowed or appropriate).

~ Comparing this program to the one devised by your class 1s
interesting, because 1t 1s so different. The stated reason for
rejecting my form of the outermost loop (bottom of page 63, "the

= amount of output varies wildly"), 1s not really to the point; the reason
probably was either that (a) they wanted to get started with the meat

of the program without stalling around, or (b) it isn't clear what to
™ er do with just one character, what does it mean to " absorb x "? The

latter problem didn't affect me since I have written so many scanning
routines, but admittedly to a novice it will be unclear that a simple

_ finite-state automaton for this input exists. If asked to say what I
mean by " absorb x " at level A , however, I would not be able to give

o a precise definition, other than to say that the program should do what
1t can to record the fact that it has just read x ; and if a word has

— just been delimited, 1t should be output as soon as possible in order

to clear out the memory. A precise definition of the absorbtion process

is being deferred, for later decisions.
—

« The program found by your students 1s much more efficient than mine
if there are multiple spaces. It isn't easy to patch my program for

- this, and 1f I had noticed it I would have had to restructure my program.
Curously my main concern while writing that program was not how to

pass over spaces quickly, it was when to print a space. I originally
had two Boolean variables 'first' and 'even', which I later reduced to

the single variable n because odd(n) 1s a primitive 1n ALGOLW, and
first = (n=0) .

Finally there is the 8 queens problem. On page 76, the remark that
'the only sensible order . . . 1s the alphabetical order' bothered me a
little. For example, Golomb (who discusses precisely this problem in the

- ACM Journal, 1965,pp. 516 ff.) suggests possibly choosing at each stage
the position of x[i] , where i 1s 1n the set of unspecified rows, and
where x[i] has the least remaining possibilities. (Thus, the position
of one queen might already be forced.) Also, Naur suggests starting in

— the middle since these moves block more later moves.

L

ee

Prof. Dr. E. W. Dijkstra - 9 - December /, 1972

My main concern though was on page 77 where you give two reasons
why a program of the stated structure 1s less attractive. Your reasons
are not convincing, since they would apply with equal force to the

program on pages 63-66!

This raises the further question, what would you do if you were

asked to produce only one solution (say the alphabetically first one),

as in the strings program. Would you reject the recursive program

co structure just to avoid a "go ta"?

N Whoops, I'm afraid I answered my last question; I looked at Wirth's
procedure again, and found that he avoids go to by a rather complicated
and forced method. Surely a "go to exit" once a solution has been found

is conceptually simpler. Please, not all go to's are bad; but it 1s okay
for you to adopt a radical stance on this question in order to help swing

the prevailing balance of opinion the right way.

On page 80, your argument about 28 squares is overstated. Only the
squares 1n unexplored rows need to be updated, so the maximum number of

squares to update is 1k, 13, 12, 11, 9, 6, 3, 0 for i = 0,1,2,...,7 ;
most of the time is spent for i > U4 , so the average number of updates

C is less than 10 . This is still-greater than 3 , so the "col, up, down"
idea is definitely superior, but the number 28 is much too high.

Finally I suggest a slight improvement in the labeling of the upward
a diagonals, interchanging wup{-i] with up[i] so that the square [n,h]

is free if and only if col[h] and up[h-n] and down[n+h] . On many
C computers this can be tested rapidly for various h by "shift left h, extract"

assuming a 38-bit word. Of course, as Golomb remarked, one can find all
- solutions to the eight queens problem by hand in about an hour, pushing

pawns on a chessboard, so there 1s no need to worry much about efficiency.
- (After reading Golomb's article I took his suggestion and tried the

— backtracking method by hand. As I recall, it took me two hours; I missed
C 5 of the solutions and found one non-solution by mistake. But it is

clear that the task requires fairly little computation.)

Cordially,

- "7 - J

5 . pe
Donald E. Knuth

Professor

cc: 0.-J. Dahl

R. Floyd
“— T. Hoare

P. Naur

R. Sites

Co K. Wirth

DEK/pw
§

’ STANFORD UNIVERSITY
= STANFORD, CALI FORN 1A 94305

1 CGMPUT ER SCIENCE DEPARTMENT Telephone:
| 415-321-2300

~

| January 15, 1975

} Prof. C. A. R. Hoare

fag Dept. of Computer Science
The Queen's University of Belfast
Belfast, Northern Ireland

Dear Tony:

‘ You should have recently received a copy of a longish letter I
wrote to Dijkstra, about Structured Programming. This is another one,

— inspired by your chapter. I hope that such discussions of these
fundamental issues will prove useful; at least it's good therapy for

| me, since I like to get my own feelings down on paper.

- On the whole, of course, I feel your chapter is magnificent. But

i there are several points worth debating a little.
1. First, on page 86, lines 15+2, you say "the choice of representation

+o drut be made as part of the design of the program." Well, the
! tendency for business data processing these days is to avoid making
(. this decision, by striving for rather abstract programs in which

the data representation 1s self-defining. In other words, large

data bases tend to have accumulated over a period of years on

| various equipment, and the desirable solution is to make each tape
(say) begin with a coded description of its own format; the programs

' should dynamically accommodate each format. We may someday therefore

| see computers which run abstract programs. (The G-20 and B6700
are already something like this.)

| - 2. Your discussion of the concept of type seems to omit the idea of
~ subtypes (something like SIMULA subclasses). For example, if

p andg are prime numbers, they are also integers so they inherit
all the axioms of integers. (I don't understand your remark about

_ "distinctions of an arbitrary kind" on page 91, line 26; furthermore,
mathematicians most frequently use the letters p and gq ,
sometimes ! , for primes.)

This reminds me of the very interesting language AUTOMATH, invented

by Dijkstra's colleague (and next-door neighbor) N. G. de Bruijn.
AUTOMATH 1s not a programming language, 1t 1s a language for

expressing proofs of mathematical theorems. The interesting thing
1s that AUTOMATH works entirely by type declarations, without any

need for traditional logic! I urge you to spend a couple of days
looking at AUTOMATH, since it 1s the epitome of the concept of

type.

_

Prof. C. A. R. Hoare - 2 - January 15, 1973

y When I last looked at AUTOMATHit did not contain the conceptof
subtypes, and my impression was that many proofs in AUTOMATH would
be shorter by an order of magnitude 1f subtypes were allowed;

however, 1t would complicate the language (and the compiler/proof-
checker) to an indeterminate extent. Perhaps you and I can' look
into this further next year at Stanford.

3. On page 95, you state that "Arbitrary real numbers . . . can be

represented by . .. program structures." Of course you mean only
the computable real numbers!

" 4, At the bottom of page 94, and again on page 99, paragraph (4), you
make a statement that sounds reasonable at first and which many

language designers have been following . . . but on further examination

1t appears to be wrong. The statement is, more or less, that some

types ought to be unordered since their relative order 1s meaningless

| to a programmer.
I recently came upon an interesting example which seems to refute

this postulate; or at any rate there was no way in SIMULA that I

| could write an efficient program, the language forced me to be
inefficient! Here was the application: I had a data type

type reflist = sparse powerset of ref (object)

~ and I wanted to represent it as a list of references. Given two

such reflists , of sizes m and n, my algorithm needed to test
whether they had any common elements. Obviously this would take

about mtn steps if I could keep the reflists ordered, but
SIMULA allows only equal-unequal comparison of references. Therefore

I was forced to use an algorithm which required mn steps!

Here 1s a case where the ordering of reference variables has no

semantic meaning, yet my program would work meaningfully (and much
] faster) 1f I allowed the machine to order the reference variables

in any arbitrary but consistent way. Traditional garbage collection
and compaction algorithms, at least the in-core versions, preserve
this arbitrary relative order even when they reallocate memory.

5. My impression on page 100 is that you are hanging too much on the

concept of ordered type. By your definitions, an unordered type must
have arbitrary sequencing while an ordered type must have min-to-max

sequencing. It seems better to me to separate the concepts of order
and sequencing, by having various sequencing operations; an ordered

type could still be scanned in arbitrary order in an abstract program

1f the programmer says so, because he will prove the correctness for

an arbitrary order (and he will therefore know that he has additional

freedom 1n his later choice of concrete representations).

To

“ N

Prof.C. A. R. Hoare - 3 - January 15, 1973

C

— 0. On the top of page 103, the two procedures called "deal with single
character" cannot both be the same, because "buffer" is the

character to be dealt with only in the second case. You might
_ change the first line to "else deal with single colon character".

C IE Your program on page 107 allows the invalid date Feb 29, 1900.

(Perhaps you could simply restrict type year to 1901...1969.)

Incidentally, I wonder what EWD would do about the goto's in this
program?

CL 8. When we get to "discriminated unions" I begin to wonder about your
C choice of notations, since you seem on the one hand to be trying to

minimize the character set (the comma and semicolon and colon are

used in several different senses, and "in"is used for e€ , etc.),

while on the other hand you make use of » and v and even ~,
which are very rare in computer hardware. The notation for

discriminated union seems especially wrong to me; that comma isn't

C a weak enough delimiter. Conventionally in English, comma is a
shorter break (i.e., stronger in precedence) than semicolon, and

semicolon is a shorter break than a colon. This order has already
— been violated (inverting : and ;), but that isn't really bad;

the trouble 1s that the comma has already got a precedence stronger

than either of these and your language should be self-consistent.

C For example, wouldn't it be natural for a programmer to abbreviate
your example on page 111 to

type patience card = (red,blue:cardface)

— before realizing this means something else? I would recommend using
another symbol for discriminated union, preferably the "|" from BNF.

C Note that this would look especially nice 1n your parsing example.

9. On page 11k, are those tag fields andcompile-time case discriminations
advisable even when the program has been proved correct?

-

10 On page 116, lines 10 and 11, I'm amazed at your curiously restrictive

{ use of the word "table". What about a table of prime numbers less
than 100 , etc.?

11 I was also surprised on page 125 that you didn't discuss the

| similarities and differences of

CC type T = powerset T'
and type T = array T' of Boolean

12. Page 125, top, I find these notations unfortunate, especially x :-y

which conflicts with SIMULA conventions. By analogy, wouldn't

- X t=y now have to mean that x 1s replaced by X=y (say when
X and y are Boolean variables)? The colon 1s being overused
again.

- i

; Prof.C. A. R. Hoare - b= January15, 1973

Of course I must think of a better alternative. Dijkstra's paper
| : used " i plus 1 " on pp. 54-60, but 1 :=i+l elsewhere. AIGOL 68

has 1i:+=1. None of these really satisfies. What we seem to

need 1s some "reflexive" symbol (like the German "sich" referring
to the subject). Denoting this unknown symbol by OO , we want to

A have x [J op y be equivalent to x .~x op y , for all variables x
_ and all operators op . MaybeJ could be ¥= , read "self-replaced"?

13 page 129, "if next.w > W then exit primefinder": Yes, yes, bravo!

an 14 Page 132. Actually cars are verboten as examples ever since LISP
LC was invented.

L 15 Page 1L6, bottom. I don't understand what you mean, "the axiom of
exclusion". Is it von Neumann's "axiom of regularity"?

| 16. Your example of examination timetables is beautiful, but I wish it
had been carried off with a bit more finesse.

First in the definition of "suitable" on page 160, there 1s no need

I to say "-trial" in the assignment to untried , since trial = {e} and
e has already been removed. (This 1s fortunate, because you later
decide to represent trial as a sequence and the other operands as

bitstrings.) But the big awkwardness occurs 1n gensupersets the
introduction of save 1 and save 2 1s not clever nor is it art!

In the first place there 1s no need to say that gensupersets preserves
"untried", since the value of the latter is never used after

gensupersets. This eliminates save 1 . Secondly, the purpose of
save 2 1s to restore untried at another place, and there is no

need for the trickery you pulled; instead, " save 2 :=untried;
untried :- incompat(e) " and later " untried :=save 2 " would be
shorter (and faster in your eventual representation). But in fact

1t somehow 1s clear that untried shouldn't be a global variable

that 1s explicitly saved and restored, it 1s a natural parameter to

gensupersets. Thus, the entire program on page 161 becomes much
simpler and cleaner:

procedure gensupersets(untried: powerset exam);
begin e: exam;

record;

if size(trial)< k then
while untried £# {7do

begin e from untried;
trial: vie};
if sessioncount(trial) < hallsize then

gensupersets(untried- incompat(e));
trial:- {e}

end gensupersets.-

LA

Prof. C. A. R. Hoare - 5 - January15, 1973

“

It would perhaps be interesting t@ analyze what made you go wrong
here, and to "abstract" the source of the error, since presumably

1t 1s something students need to be taught to avoid.

Another point 1s that you haven't declared the procedure "sessioncount”.

« Since 1t appears 1n the innermost loop it 1s clear that actually the
sessions should be redeclared as

type session = {exams: powerset exam; sessioncount, size: integer].

This 1s a very important consideration 1n this algorithm, so I was

sorry to see 1t neglected.

hb Still another point is the representation of timetable on page 16k;
this is evidently an output variable (as you define on page 135),
except that you consider there only the case of sequences not

powersets. The best representation for timetable 1n your example

1s to print it as you go.

q And there 1s yet another point to make. The first representation
of exam that comes to mind 1s not necessarily the integer

subrange 0...500 , really a "sparse powerset sequence character"
1s more natural at least 1n the external real world representation.

Expecting 500 courses to be assigned a unique integer code number
between 0 and 500 1s quite impossible in the real world. So

§ here we have another interesting (and typical) situation: the same

o type (exam) wants two different representations in different parts of
the algorithm, and we must convert between them at the interface.

_ Please excuse my gloating over all these improvements. It 1s much
easier for me to improve your program than for you to have composed
it in the first place; I'm just a Monday-morning quarterback. The

point is that this timetable example 1s a vehicle for 1llustrating
— even more things than you expected.

; If. Since you are editor of this outstanding series of books for Academic

— Press, I think you ought to give some thought to the standards for

C typesetting, especially of ALGOL programs. About 40-50 years ago,
G. H. Hardy made a study of mathematical composition, for Oxford

_ University Press, and the resulting standards have been widely
adopted. (A short and fascinating booklet explaining them has been
published: The Printing of Mathematics,by Chaundry et al., OxfordU. Press 195k.
I recommend 1t!) One of these sacred rules 1s to insert small spaces

- around every equals sign; and unfortunately Academic Press hasn't
been told not to do this in ALGOL! A proper letter from you will

cause them to set " x := y " instead of " x: = y ". (My spacing
— here 1s exaggerated, but I know they can do better than they have

done on the spacing.) The same should apply to your x :V y and

so on, 1f you still want to stick to these. The second thing you

(— ought to consider carefully is the use of italics. At present
they are setting one-character variable names 1n italic type,

AN
—

=

x Prof. C. A. R. Hoare - 6 - January 15, 1973

— multi-character names in Roman type, This doesn't look so pleasing
to me; see especially pages 112 " cardl.normael.r", and page 128
at the top. The ACM conventions for ALGOL (which I think have been

written down by Myrtle Kellington, you could write to her) are more

to my taste. Have you noticed that, ever since the ALGOL report was

. originally published in 1960, there is an interesting typographical
distinction between italics and Roman letters (besides the obvious

— distinction with boldface letters)? Perhaps Peter Naur originally

suggested this. In the syntax for basic symbols, all the letters

] are 1talics; and all identifiers are consistently printed in italics,
- whether they are one-character or multi-character. On the other

4 hand, ALGOL 60 allows any set of characters (including summation
signs, etc.) to appear in comments and strings; and as 1f to prove

i this, they traditionally use Roman letters in comments and strings,
except when an identifier of the program 1s mentioned.

| 18. This letter is long enough. Thank you again for teaching me a lot
by writing your monograph.

Sincerely,
8! . : Vs

- PAUS. 5 Ppt
Donald E. Knuth re
Professor

ce: 0.4. Dahl

E. W. Dijkstra
R. W. Floyd
P. Naur

R.L. Sites

N. Wirth

P.S. Here are some comments on your paper "Proof of Correctness of Data

Representation" in Acta Informatica (December 1972).

On page 273,I suspect the original form of the procedure"has" was

called "contains" because it doesn't end has ! In this example, the
second for loop in "remove" can be replaced by simply " A[j] := Alm] ".
Did you consciously avoid this for some reason?

On page 277,I don't see why the proof of "has" says merely " j <m"

while the proof of "insert" says" 0 < j <m". Surely the lower bound
on J 1s needed in both places since A[j+1] 1s used. But the most
curious thing 1s that the condition m< 100 1s a necessary premise,

but it is not shown. Thus the lemmafor "has" should begin
"m < 100 & O <J<m% Jj<mg. . .".

Finally, I enjoyed the closing acknowledgment since you yourself are
the author of two of the referenced works!

|

| Prof. C. A. R. Hoare - 7 - January 15, 1973

P.P.S. Typos and minor corrections:

p. 86, line 11, coefficients

p- 91, line 20, "Let S be a family of sets of integers"

p. 110, lines 28-29, local: local car
= foreign: visitor car

p. 113, lines 3-7, change S.,s,, * & to 5155, RUPE
a p. 132, line 33, type deck = sequence cardface;

. p. 156, line 26, (sl As2 = {}) or (sl=s2)
p. 160, line 11, e from remaining;

I p. 162, lines 15-16, "remainder" ghould be "remaining"p. 162, line -4, untried « - save 2 5

p. 164, line 21, operations on a session

_ p. 166, line -2, theorems (9?)
p. 171, line 15, in

p- 172, x :-y is not defined

p. 173, line -3, dyy-eyd for Xqs ee esX

DEK/pw

:| STANFORD UNIVERSITY
STANFORD, CALIFORNIA 94305

CUMPUTER SCIENCE DEPARTMENT Telephone:
415-321-2300

April 12, 1972

Prof. Ole-Johan Dahl

Matematisk Institutt

Universitetet 1 Oslo

Blindern, Oslo 3, Norway

Dear O-J:

. This 1s the third and last 1n the series of letters to myself
based on the book Structured Programming. Your chapter is certainly
a masterful conclusion to this important book. It sets forth the key
virtues of SIMULA in an especially clear and compelling fashion.

My comments aren't deep but you may be interested in a few
reflections I had as I read the chapter.

1. Page 183. The histogram example does not completely remove the
artificial separation of the operational and data storage aspects,

because the array limits used to initialize the histogram must be

retained (and never changed) during the program execution. The

“— programmer must be aware of this connection, he must treat

"real array A[1l:7], B{1l:12]; . . . initialise A,B..." at a
conceptual level next to the histogram class and not at the

L conceptual level of the rest of the program. He must be warned

that the use of A extends after the use of "new histogram (4,7) ",
| assuming that he hasn't read the code for the histogram class.

| This may seem a minor point, but somehow I don't think it is
completely negligible; it demonstrates a conceptual need for
read-only variables.

~ 2. The word "detach" had always seemed to me machine-oriented instead
of problem-oriented, and it sounded quite mysterious. Your
explanation here has cleared it up for me, for the first time.

- It is like the word "return" except at a more global level.
| I suppose a concept of superdetaching and supercalling might

exist, at a still more global level, though I don't see any

important applications.

3. Page 193. Itried the suggested permutation procedure "based on
the same swapping strategy, which returns with the numbers in

reverse order", and it didn't work; at least, the swapping strategy
has to be changed. Otherwise we have

Prof. Ole-Johan Dahl - 2 - April 12, 197%

original state: 12 3 4 5

| after swap(p[l],p(5]): 5 3 2 1 Lafter swap(p(2],p[5]): 1 45 5 2

C after swap(p(3],p[5]): 5 3 2 1 U4

I can't see anything better than e.q. swapping with p{l], plk-1],
p(3], plk-3], ., ... , and ending with a different transformation
depending on whether k is even or odd.

L. This permuter class does not rely on the fact that the numbers
permuted are the integers 1 to n nor that they are initially
in order. Therefore it seems slightly better to have p 1s a
parameter:

| class permuter (p,n); integer array p; integer nj;(Unfortunately Algol makes us commit ourselves to integer arrays.)
An amusing and quite natural way to write the declaration,

| using coroutines instead of procedures, now presents itself-

” begin Boolean more;
more := true;

if n = 1 then detach

else begin ref (permuter) r; integer i,q;

for i :=1 step 1 until n do

beginr :- new permuter (p,n-1);

while r.more do

begin detach; call (r) end;

1f 1 < n then oo

begin:= pli]; pli] := pln]; pln] .- qa;
detach;

end

end;

q :=pll]; for 1 := 1 step 1 until n-1 do pli] := pli+1];
pln] := q;

end;

more := false;

end of per-muter.

Prof. Ole-Johan Dahl - 5 - April 12, 1973

5. Another permuter algorithm can be bated on Trotter's algorithm.

This 1s interesting because (a) it's faster [n-1 times out
of n the operation is quite simple’; (b) 1t uses a class
defined within another class; (c) the program in these terms

displays the idea behind Trotter's method while there is no way

to do this using Algol's recursive procedure control.

class Tpermuter(p,n); integer n; comment assume n > 2;

begin Boolean more; more := true;

integer t; comment the current "offset";

bedlinas s permute(k); integer Kk;

begin if k = 2 then

. i begin detach; swap(plt],plt+l]);
detach; swap(p(t],plt+l]);

more := false; detach

BN end else

begin ref(permute) r; integer 1;

r :- new permute(k-1l); detach;

while more do

— begin for 1 := 1 step 1 until k-1 do

. begin swap(p[itt-11,p[i+t]); detach end;
call(r); detach;

for 1 := k-1 step -1 until 1 do

begin swap(p{itt-1],plitt]); detach end;

Co t := t+l; call(r); detach;
end while more;

- end k > 2 case

end of permute;

a ref (permute) r; integer t;

r :- new permute (n);

- while more do

begin t := 1; call(r); detach end;

C— end

end of Tpermuter

\

nm

1 Prof. Ole~Johan Dahl - 4 - April 12, 1973

= The idea is to swap(p[l],p[2]); swap(pl2],p[3]);.. . ; swap(pln-1],p[n]);
then do the next step for sequence n-1; then

’ swap(pln-1],p[n)); . . . ; swap(p[l],p[2]); then do the next step
- for n-1 but shifted right one; then start over again.

| » The syntax example you give 1s very beautiful, of course; I think

_ you should credit it to Bob Floyd, who was the first to publish it
(IEEE Trans. on Elect. Computers 1964, the same issue as my
article on SOL). He presented it in terms of men in a corporation
(almost like Chaplin's officers!), and at this time Bob and I

oT corresponded about how to express the algorithm properly using
L "recursive coroutines" since it was clear that recursive subroutines

were 1nsufficient. This example is what first taught me about the
“ limitations of ALGOL's recursion.

As I recall, Bob and I expressed the algorithm somewhat less

elegantly at that time; we had one "class" declaration for every
V syntactic type, and the programs were complicated by using only

resume/ resume sequencing, so that every object had to know the name

I of 1ts superior. We wanted a symmetrical way to pass informationbetween coroutines, and I think we used local variables instead of

global variables for this purpose. So you can see why I was so
pleased to see SIMULA when you first sent me its description in 1965!

B ’. I don't understand why you call the shortest-path algorithm the
Lee algorithm, when it is generally credited to Dijkstra [Numerische
Mathematik 1 (1959), 269-271]. I don't know what Lee you refer to;
but if he came after Dijkstra, the correct reference should appear
in a book co-authored by Dijkstra!

8. Your discussion of programming levels by means of prefixed blocks
1s very thought-provoking. (This 1s partly why I missed the 1dea
of subtypes in Chapter 2.) As I was reading Section 7 it finally

dawned on me that this may be the way to string together the "pearls"
which Dijkstra described in Chapter 1, making each independent
design decision correspond to a prefix. Therefore I went back to

the program 1n my letter to Dijkstra, for that word-reversal

problem, where the pearls were identified by letters 1n the left

margin. I wrote the following code top-down almost exactly as it
appears here (therefore writing " B class A " before having any
idea what B would involve, only knowing that it represents a
lower level which will be specified later!):

|

Prof. Ole-Johan Dahl -5
“ B April 12, 1973

| B class A; begin comment Dijkstra's odd inversion problem;
charx; comment the character most recently 1lnput;

e repeat X := RNC;

_ absorb(x) ;

until x = pnt;

BNC (x)

u end A;
C class B; begin comment explain what "absorbing" means;

L procedure absorb (x); char x;

| if x = sp OLX = pnt then print a nonempty wordelse add to word (x);

end B;

_ E class C; begin comment facilities for word MEemoLry™

integer k; char array word[1:20]; comment word[1:k] contains

the first k characters of the next word to be printed;
—

procedure nt 4 nonempty word;
if k > 0 then kegin print wgyd; k := 0 d

- TT 3

procedure add o word(x); char x;

if k = 20 then word too long error

else begin k .= k+1; word[k] := x end;
k i= 0;

end C;

F class E; begin comment handle the even-odd requirement and spacing;

integer n; comment the number of words printed so far;

Procedure print word;

begin 1f > 0 gh
begin 11 I en PNC(sp);

1f 0dd(n) then print word backwards else print word forwards;
no o:= n+l

end;

n := 0;

end Ej;

—————,

|
If class F; begin comment the way to print a word;

virtual integer k; virtual char array word{1:20]; comment, word|l:¥

\ contains the first k characters of the next word to be printed;

integer 1;

procedure print word backwards;

begin 1 := k;

1 repeat PNC(word[i]); i minus 1;

until 1 = 0;

end;

procedure print word forwards;

© begin 1 := 1;

repeat PNC(word[i]); i plus 1;

] until 1 >k;
end;

L end F;

§ The next lower level, H , will define the 'word too long error’
procedure (curiously this seems to be a high level operation but

it appears lower), and the next level will-perhaps define PNC and
RNC, etc.

Comparing this program with the earlier one leads to the following
observations:

(a) All the "pearls" now do appear in one place. (I combined C
and D , also F and G, as being essentially on the same
level.) Furthermore each class does seem to make sense as a
fairly isolated conceptual unit.

(b) This program, 1f executed, would involve considerable procedure-

call overhead. A smart compiler will remove it. Some languages
have a way to specify that a procedure 1s 'in-line', meaning

that 1t 1s to be explicitly expanded wherever 1t 1s called.

(c) In level¥ , I needed some virtual declarations. When writing
programs in this top-down style I suspect that programmers will

often slip up and forget to include the necessary virtual

declarations. An alternative would be to pass (k, word) as
parameters through the various levels; but that doesn't seem

natural to me somehow, perhaps it should.

Prof. Ole-Johan Dahl -7 - April 12, 1973

(d) I just noticed that my comment explaining k and word is
not sufficient to prove that the program works; somehow it

must be stated that k 1s large enough to contain as much

. of the word as has been absorbed so far. This points out
y a common difficulty with program proving: We can prove the

validity of algorithms that solve familiar mathematical

problems, but when 1t comes to real software problems 1t 1s

often hard to state the invariants because they involve

_ concepts for which no standard notation exists.

.

9. Finally, a minor point on page 219. You wouldn't want to have the
first order generate a reporter object as stated; for it would mean

inserting the " dt " specification at an extremely awkward place in
the input (within the first order's description). Better would be
to have reporter generate the first order, just before its

AS "while true“, and to change line 25 of the program to
simulate(new reporter(inreal), lim)

B To sum up all these letters of mine, I can't remember ever having
read a computer science book that was so thoroughly stimulating from
cover to cover, andI want to thank all three authors again for the

considerable effort that has gone into it. This book will certainly
have a profound impact on the future of computer science.

-— Sincerely,

\ " Dryatd $: py J
Donald E. Knuth

Professor

\

— P.S. Now that I've written all these letters, I wonder 1f it might

not be useful to circulate them to a wider audience by 1ssuilng
them as a Stanford C.S. report. (Not to be published in a

_ journal, but to go out to say 400 readers in typewritten form.)
. Please tell me if you think this is a bad idea. I think it might

contribute to the discussion of your book in various circles,

since structured programming 1s "making so many waves" these days.

“C—

FEE

-
BE Prof. Ole~Johan Dahl - 3 - April 12, 1975

| ~ P.P.S. Here also are some typographical errors I noticed; many of
them are technically nontrivial, so you should check me:

LY

L page 176, line 11, "As the . .."
) page 182, class histogram + 5, should say Y > X[i+1]

. page 182, line -5, "called by reference.++
‘ page 187, illustration, "detach" not "detatch"
| page 193, lines -5 and -6, change "tree" to "binary tree"

| page 197, syntax rule (5), mult sign not "X"

page 202, line before section6, delete " . " after "so on"

4 page 203, line -11, delete "1" after "part"

i page 206, line -3, delete "should"
page 207, line 8, add " ; " after "list"

page 207, line 9, change "should be" to "are"

page 207, line -11, change "linkage-list" to "list"

| page 207, line -2," y" is wrong font

L page 208, line 1," L" is wrong font
page 213, line 1, put " ; " at end of line

_ page 216, line -10, quotes around "no ...limit"

page 217, line -13, and four places on the next two pages,

"mgroup" should not be partly italics!

" page 220, reference (8), "Action".

page 220, reference (10), "pp. 401-L1k."

page 219, line 9, delete "v"

Since I foresee this book being reprinted often, I imagine

this list of misprints will be useful.

DEK/pw

cc: Prof. Dr. E. W. Dijkstra
Prof. R. W. Floyd .
Prof. C. A. R. Hoare

Prof. P. Naur

Prof. N. Wirth

