A REVIEW OF “STRUCTURED PROGRAMMING”

by

Donald E. Knuth

STAN-CS-73-371
June 1973

COMPUTER SC | ENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UN IVERS ITY

2Uef

r—

r

A Review of "Structured Programming"

by

Donald E. Knuth

Abstract

The recent book Structured Programming by 0. J. Dahl,

E. W. Dijkstra, and C. A. R. Hoare promises to have a significant
impact on computer science. This report contains a detailed review
of the topics treated in that book, in the form of three informal
"open letters" to the three authors. It is hoped that circulation

of these letters to a wider audience at this time will help to promote

useful discussion of the important issues.

This research was supported in part by the National Science Foundation
under grant number GJ-36473X, IBM, and Norges Almenvitenskapelige
Forskningsréd. Reproduction in whole or in part is permitted for any
purpose of the United States Government.

STANFORD UNIVERSITY
STANFORD, CALIFORNIA 94305

 _ -OiPUTER SCIENCE DEPARTMENT Telephone:
- 415-321-2300
~
December 7, 1972
<
- Prof. Dr. E. W. Dijkstra
Mathematics Department
Technological University
- Eindhoven, The Netherlands
o
Dear Edsger:
- Ole-Johan Dahl has Jjust given me a copy of the new book

Structured Programming, and I want to congratulate you on an especially
fine job. It is delightful to see these important ideas in print at
.- last, and the book will no doubt prove to be extremely influential.
Your unique style of writing holds the reader spellbound; it's the kind
of book you can't put down until you reach the end, and once you have
. read it your life is not the same thereafter.

—
Of course, I don't agree 100 percent with everything you said —-
¢ this is inevitable whenever artistic or aesthetic judgments are
— involved -- so I'd like to Jjot down some of my current feelings on
these issues in hopes of further clarifying and perhaps strengthening
L_ the ideas. In other words, I am now writing a letter to myself based
on your letters to yourself. And I hope you will have time to read
mine as I have read yours.
¢
- Here then are specific comments prompted by your Notes on Structured
Programming, cross—referenced by the page number where they appear in the
book.
L The first time I felt like raising amild protest was on page 7,
¢ where I didn't realize that dd and r were intended to be integer
variables. (This is of course explained nicely on page 15, but I
— didn't know it at the time.) The program makes an instructive example

with respect to floating-point computations also. In the first place,
when floating-point operations are properly rounded, the program does
L_ in fact leave (1) invariant; but if truncation arithmetic (IBM's style)
(4 is used, it fails. For example, in decimal notation, if dd = 2 .0000001
and r = 2.0000000 , the program first sets dd := 1.0000000 . On nearly
L. all computers which do rounded arithmetic, your proof of the invariance
of (1) 1is apparently correct; nevertheless, after the program is repeated
100 times the result will be to set d to zero while r remains
[positive! The reason is the preposterous convention, almost universal,
| . of replacing 'exponent underflow' by a zero result with no interruption
of the program. Perhaps examples like this will finally be able to
convince hardware designers that it is absurd to destroy all the
significant figures without warning.

Prof. Dr. E. W. Dijkstra -2 - December 7, 1972

However, you probably aren't interested in such things, so I shall
move on. The "primes" program has come out very nicely, since I last
saw it; I'm glad the rather uninformative digression about "throdd"
numbers has been suppressed, and the instructive mult table is a welcome
addition because it sheds light on redundant data structures where the
invariant need not completely characterize the redundancy. 1T only wish
to comment on two things regarding this program: First, on page 37, where
you begin to assume that remainders cannot be computed conveniently, the
reader who has been following carefully will recall that an efficient and
elegant algorithm for computing remainders has been presented on page 13
(the computation on g may be suppressed). So this is the obvious thing
to do in 2bk(Lk)d , and it is very instructive to observe that it is
much worse than the mult table since the latter requires comparatively
little space. The moral of the story is clearly to avoid using cperations
blindly without considering the context, as you point out briefly later
in Section 11.

My second comment has to do with this question of context. Of
course the nomenclature "2bhk(4)d"™ is not pretty, but the real problem
as we get to the end of the primes program is conceptual, not notational.
The steps of program construction have unfolded very nicely and naturally
but at the end we can't really fold them together again -- we seem to be
almost looking at the entire program as a whole, with it all in our head
at once. Thus when the reader gets to page 38, with the final 'patches'
on level 2b5(4) , it becomes suddenly much harder to understand what is
going on.

Perhaps it is inevitable that a programmer must in fact have reached
a conception of the whole program at once (in an appropriately structured
form of course) by the time he has finished. But this seems to imply that
the difficulty of programming increases greatly with the size of the
program, while ideally we would like the level of difficulty to remain
workable. The same phenomenon occurs in the picture-drawing program; by
the time the reader/programmer gets to the end of LINER at the bottom
of page 56, he needs to be flipping pages back and forth and essentially
keeping the status of the whole program in his head. The latter may almost
be necessary; I have always had a feeling that a talent for programming
consists largely of the ability to shift quickly from macroscopic to
microscopic views of processes.

Some evidence that you yourself are in fact keeping the entire
context of the program in mind appears on the top of page 54, where you
say fifty blank lines would be output, while we are at this point only
looking at the 'build' procedure which purports to be independent of
the output. I don't criticize you for this (although this particular
instance 1is unnecessary context); I merely want to illustrate what seems
to be a part of programming psychology. You say rightly on page 50 that
we must tie loose ends together again.

Prof. Dr. E. W. Dijkstra -3 - December 7, 1972

Herein lies the dilemma, and the conflict. A notation which
expresses the separation of tasks nicely eventually gets into difficulties
when there are many loose threads running through a single pearl. Yet
the pearls are valuable as a means of coordinating the individual design
decisions.

Perhaps the new display terminals will provide the answer, as a
notation for programs that will provide an appropriate reflection of the
structure as we might have it in our minds. You have perhaps had a
dream much like mine: Wouldn't it be nice to have a glorious system
of complete maps of the world, whereby one could (by turning dials)
increase or decrease the scale at will? A similar thing can be achieved
for programs, rather easily, when we give the programs a hierarchic
structure like those constructed step-wise. It is not hard to imagine
a computing system which displays a program in such a way that, by
pressing an-appropriate button, one can replace the name of a routine
by its expansion on the next level, or conversely.

The independent design decisions (i.e., the pearls) could be
identified in such a system by marginal classification codes, saying
which pearl each line belongs to. An example appears below. This seems
to me to be a reasonable way to bring the appropriate context into each
pearl, yet retaining the pearl's identity. (We need another word for
pearl, though; what should it be'?)

The viewpoint about a sequence of machines and operation codes,
which you have nicely expressed in Section 13, has often proved useful
to me also in a more explicit form where the data itself gets transformed
into instructions for a pseudo machine. An example of this appears in
the appendix to my paper on computer-drawn flow charts, Comm. ACM 6 (1963),
555-563 . A two-pass algorithm is described, wherein the first pass
encodes the data into a pseudo machine language and the second pass
executes that program. If you have the time, I hope you can read this
old paper of mine, even though I was of course much more naive at the
time; it seems to me that a number of important principles are involved,
and that a closer study of such an algorithm may lead to increased
understanding of program construction (and proofs).

I am not part of your audience who were "deeply troubled" by the
time the top of page 56 was reached. But I must admit to being deeply
troubled at the top of page 57, and not only by the fragmentation
referred to above. Suddenly you had jumped to a choice of data structure
very different from what I had expected. Namely, why was the possibility
of representing the data as a list of 1000 pairs, sorted into lexicographic
order (decreasing y , then increasing x) never considered?

After thinking about this a little, I'm convinced that it is a
question of density. Consider the identical problem, but with the
fx(i),fy(i) only to be printed for 0 < i < 10 instead of 1000

* —

Prof. Dr. E. W. Dijkstra -4 - December 7, 1972

I believe you would have reached a different solution, and it is
interesting (to me) to locate the point where the solutions begin to
differ, and the reasons for the difference. It seems that an
appropriate way to apply your principles would be to further expand
print, before going into a consideration of image, possibly thus:

PRINTER
begin type loc;
print: {imitialize loc; repeat{advance to next position; printsymbol]
until final loc reached];
instr initialize loc (loc), advance to next position (image, loc),
printsymbol (image, loe), final loec reached (loc)
end

This seems to be a useful, if not necessary, step in the development,
because it expresses what properties of image the print routine needs.
Now we are forced to think about the order in which the marks must be
printed, and "such a question about order is usually very illuminating"
as you say on page 75. Here is where we consider whether to go to
something like LINER or a data structure that would be more appropriate
when the marks are very sparse. If the printer has another operation
'new page' where there are 10 lines to a page, or if it has tabulator
stops at particular points of a line, etc., all can be decided when we face
'advance to next position' since this is the primary place where we
consider the number of operations required (and where we decide what
"next position" means). Perhaps the two instructions advance .. . and
printsymbol in the above ought to be one since they can't be meaningfully
used in another order.

This seems to be further confirmation of your remarks on pages 62
and 63. Decisions about data representation should probably always be
deferred until the necessary uses of the data by the algorithm are
established.

On pages 63-66 you discuss Wirth's problem of the sequence without
repeating blocks. Here I was unable to answer the question "What should
the program be like if there is possibly no solution?" I see no good way
to do this without go to statements; ever§fway I think of would be better
with a go to. This is the difficulty I have in subscribing wholeheartedly
to your ideas and perhaps you can show me my error in this example.

On the top of page 67, it seemed to me a better first sketch would be

integer s,,t;
s :=1 (and further initialization);
repeat t :=s;
s, v="sum of smallest unconsidered decomposition > t"
until s =t1;

Prof. Dr. E. W. Dijkstra -5 - December 7, 1972

liowever, both of these "first sketches" fail to indicate all the
thinking that goes on. I find it significant that the student spent
twenty minutes getting somewhat familiar with the problem, and I
venture to say that this was not all wasted; one does not come to the
right first sketch until after several other hidden concepts have been
discovered.

In fact, let's consider this problem a little. It is desired to

find the first repeated element of the multiset {a" +b" |0 <a < Db} .

A general way to find duplicates is to sort; and especially since we are
looking for the first duplicate, this suggests generating the elements
of the set in order. Now the obvious way to generate this set is by a
pair of nested loops,

for a :=0 step 1 until « do
for b :=a step 1 until » do .

but this doesn't lead to increasing order. We perhaps think of parallel
processes at this point, one for each value of a (since the values for
fixed a are increasing; this is the key fact which must be discovered
sanehow) . We imagine a collection of processes generating the values

process[0] : 00 +0%, o+ 1%, 0%+ 2", .

process[1] : 1%+17%, 17+ 2", 17+ 57,

process[2] : oy o oy 3 PR L
and we must merge the outputs of these processes into ascending order.
We see that at any given time we need not consider process[k+l] until
process(k] has gotten its first value used. This sequence of observations
seems (to me) to be what underlies the first sketch which magically

appears on page 67. But now the first sketch looks rather like this:

integer array sum,b[0 : »]; comment sup[a] is the next value to be

output by process[a], and it corresponds
to an+b[af%
initiate first process;
repeat find smallest sum among the active processes;
if it was the first value for that process then initiate the
next new process;
advance the process which had smallest sum;

until this sum equals the previously examined sum.

I don't believe you get the stated first draft until you have mentally
drafted something equivalent to this. By the first declaration in this
program I do not mean to commit myself to any particular data structures.

Prof. Dr. E. W. Dijkstra -6 - December 7, 1972

It is interesting to pursue this somewhat further, to the point
where we choose appropriate data structures. We soon realize that
the (sum,a,b) triples are essentially linked, not independently
sum{a],b[a] ; and the proper data structure is a priority queue consisting
of these triples ranked on their sum fields. Now we look at Kmuthk, volume 3
and see which of four or five known methods for priority queues is most
appropriate in this instance (probably a sorted list, since the number of
processes stays small).

The above program illustrates something else, which I think is
important. Whenever I'm trying towite a program without go to statements,
I waste an inordinate amount of time in deciding what type of iterative
clause to use (while or repeat, etc.). The reason is that our notations
aren't really complete. I know in my head what I want to do, but I have
to translate it painstakingly into a notation that often isn't well-suited
to the mental concept. I know I want to repeat something over and over,
and it's easy for me to give a step-by-step description; "first do @ ,
then B , then if y were done, otherwise do ® and we're in the same
situation we started." Now this is not suited to present
languages since I have to test 7 either first or last, writing

a; B3 while non 7 do {8;a;pB};

or -1
& 73 repeat 8; @3B until 7;

where I invent some trick inverse of 8 . (Witness " k :=£+1 " on page 71.)
Surely you must face the same dilemma. What I really want to say is
something like:

loop fo; B; if 7 then exit; 8} end loop

Since this is a frequent mental construct, in my experience, I believe
it deserves a suitable syntax. Otherwise we also find ourselves testing
the same condition twice as on page 71 (X = pnt tested three times and
one of these is unnecessary).

On page 68 you invite the reader to try writing that silly program
himself. I know you haven't time to grade all the readers' solutions,
but here is mine anyway. (Unfortunately I did not time myself, I was
in bed with a pad of paper, and Jill sleeping beside me, at about 1:00 a.m.;
I expect I finished about 15 or 20 minutes later. About 2 minutes were
wasted trying to think of a suitable iteration statement.)

ﬁ—~

Prof. Dr. E. W. Dijkstra v 7
) December 7/, 1972

A begin comment Dijkstratg odd inversion problem:

A CEEE—X; comment the character most recently input;
integer k; char array word[l;go]; comment word[1:k] contains the

C
first k characters of the next word to be printed;

integer nj the number of words printed so far;
n:=0;

k:=0;

repeat x :=RNC;

absorb x:

if X=sp or x=pnt then
print a nonempty word:
begin if k > 0 then
begin print word:
1fn >0 then pg(sp);

if odd(n) then
print word backwards:

begin integer i; i :=k;

repeat PNC(word[i])5

intdy

end

else print word forwards:

begin integer i; 1 :=1;

repeat FNC(word[i]);
i plus 1;

until i > k;

end;
n:=n+l;
k :=0;
end

———

end

else add x to word:
if k=20 then
word too long error:

else begin k:=k+1; word[k] :=x end;

——

C
E
E
C
A
A
B
B
C
C
E
E
E
F
F
F
i minus 1;

F b
F
E
G
G
G
G
G
E
C
C
C
B
D
D

(w)

A PNC(x)
A end.

Prof. Dr. E W. Dijkstra -8 - December 7, 1972

This program has been strung together from the individual pearls
AB,. . .,G which are identified in the left margin. These letters
indicate the order in which the decisions were made. I never completed
the next step of the development, which would have been pearl H (for
the "word too long error"), since I was hurrying and error recoverv
is usually not an easy thing. (Perhaps a good solution for that error
would be " word[l] :=word[20] :=asterisk ".) When I wrote this program
I wasn't sure whether or not the first character was required to be a
letter, so I allowed for it to be a space.

This program illustrates one thing I wish you would adopt, namely
always to give a suitable comment (an 'invariant' essentially) for each
declared variable. Programming languages ought to be defined so that
such comments are convenient if not mandatory (it's a bother to write
the word comment, and a label isn't allowed or appropriate).

Comparing this program to the one devised by your class is
interesting, because it is so different. The stated reason for
rejecting my form of the outermost loop (bottom of page 68, "the
amount of output varies wildly"), is not really to the point; the reason
probably was either that (a) they wanted to get started with the meat
of the program without stalling around, or (b) it isn't clear what to
do with Jjust one character, what does it mean to " absorb x "? The
latter problem didn't affect me since I have written so many scanning
routines, but admittedly to a novice it will be unclear that a simple
finite-state automaton for this input exists. If asked to say what I
mean by " absorb x " at level A , however, I would not be able to give
a precise definition, other than to say that the program should do what
it can to record the fact that it has just read x ; and if a word has
just been delimited, it should be output as soon as possible in order
to clear out the memory. A precise definition of the absorbtion process
is being deferred, for later decisions.

The program found by your students is much more efficient than mine
if there are multiple spaces. It isn't easy to patch my program for
this, and if I had noticed it I would have had to restructure my program.
Curously my main concern while writing that program was not how to
pass over spaces quickly, it was when to print a space. I originally
had two Boolean variables 'first' and 'even', which I later reduced to
the single variable n because odd(n) is a primitive in ALGOL W, and
first = (n=0)

Finally there is the 8 queens problem. On page 76, the remark that
'the only sensible order . . . is the alphabetical order' bothered me a
little. For example, Golomb (who discusses precisely this problem in the
ACM Journal, 1965, pp. 516 ff.) suggests possibly choosing at each stage
the position of x[i] , where i 1is in the set of unspecified rows, and
where x[i] has the least remaining possibilities. (Thus, the position
of one queen might already be forced.) Also, Naur suggests starting in
the middle since these moves block more later moves.

Prof. Dr. E. W. Dijkstra -9 - December 7, 1972

My main concern though was on page 77 where you give two reasons
why a program of the stated structure 1is less attractive. Your reasons
are not convincing, since they would apply with equal force to the
program on pages 63 -66!

This raises the further question, what would you do if you were
asked to produce only one solution (say the alphabetically first one),
as in the strings program. Would you reject the recursive program
structure just to avoid a "go to" ?

Whoops, I'm afraid I answered my last question; I looked at Wirth's
procedure again, and found that he avoids go to by a rather complicated
and forced method. Surely a "go to exit" once a solution has been found
is conceptually simpler. Please, not all go to's are bad; but it is okay
for you to adopt a radical stance on this question in order to heip swing
the prevailing balance of opinion the right way.

On page 80, your argument about 28 squares is overstated. Only the
squares in unexplored rows need to be updated, so the maximum number of
squares to update is 14, 13, 12, 11, 9, 6, 3, 0 for i = 0,1,2,...,7 ;
most of the time is spent for i1 >4 , so the average number of updates
is less than 10 . This is still-greater than 3 , so the "col, up, down"
idea is definitely superior, but the number 28 is much too high.

Finally I suggest a slight improvement in the labeling of the upward
diagonals, interchanging wup(-i] with up[i] so that the square [n,h]
is free if and only if col[h] and up[h-n] and down[nth] . On many
computers this can be tested rapidly for various h by "shift left h, extract"
assuming a 38-bit word. Of course, as Golomb remarked, one can find all
solutions to the eight queens problem by hand in about an hour, pushing
pawns on a chessboard, so there is no need to worry much about efficiency.
(After reading Golomb's article I took his suggestion and tried the
backtracking method by hand. As I recall, it took me two hours; I missed
> of the solutions and found one non-solution by mistake. But it 1is
clear that the task requires fairly little computation.)

Cordially,
- o e .
A"Md,(c(C(’ /5%«,1-[/
’ /:’M)
Donald E. Knuth
Professor
cc: 0.-J. Dahl
R. Floyd
T. Hoare
P. Naur
R. Sites
K. Wirth
DEK/pw

— T

—

—

STANFORD UNIVERSITY
STANFORD, CALI FORN 1A 94305

CGMPUT ER SCIENCE DEPARTMENT Telephone:

415-321-2300

January 15, 1973

Prof. C. A. R. Hoare

Dept. of Computer Science

The Queen's University of Belfast
Belfast, Northern Ireland

Dear Tony:

You should have recently received a copy of a longish letter I
wrote to Dijkstra, about Structured Programming. This is another one,
inspired by your chapter. I hope that such discussions of these
fundamental issues will prove useful; at least it's good therapy for
me, since I like to get my own feelings down on paper.

On the whole, of course, I feel your chapter is magnificent. But
there are several points worth debating a little.

1. First, on page 86, lines 13+2, you say "the choice of representation
. aqut be made as part of the design of the program." iell, the

tendency for business data processing these days is to avoid making
this decision, by striving for rather abstract programs in which
the data representation is self-defining. In other words, large
data bases tend to have accumulated over a period of years on
various equipment, and the desirable solution is to make each tape
(say) begin with a coded description of its own format; the programs
should dynamically accommodate each format. We may someday therefore
see computers which run abstract programs. (The G-20 and B6700
are already something like this.)

2. Your discussion of the concept of type seems to omit the idea of
subtypes (something like SIMULA subclasses). For example, if
p and g are prime numbers, they are also integers so they inherit
all the axioms of integers. (I don't understand your remark about
"distinctions of an arbitrary kind" on page 91, line 26; furthermore,
mathematicians most frequently use the letters p and g ,
sometimes ¢t , for primes.)

This reminds me of the very interesting language AUTOMATH, invented
by Dijkstra's colleague (and next-door neighbor) N. G. de Bruiijn.
AUTOMATH is not a programming language, it is a language for
expressing proofs of mathematical theorems. The interesting thing
is that AUTOMATH works entirely by type declarations, without any
need for traditional logic! I urge you to spend a couple of days
looking at AUTOMATH, since it is the epitome of the concept of

type.

4——_—_

Prof. C. A. R. Hoare -2 - January 15, 1973

When I last looked at AUTOMATH it did not contain the concept of
subtypes, and my impression was that many proofs in AUTOMATH would
be shorter by an order of magnitude if subtypes were allowed;
however, it would complicate the language (and the compiler/groof—
checker) to an indeterminate extent. Perhaps you and I can' look
into this further next year at Stanford.

3. On page 93, you state that "Arbitrary real numbers . . . can be
represented by . . . program structures." Of course you mean only
the computable real numbers!

4. At the bottom of page 9%, and again on page 99, paragraph (4), you
make a statement that sounds reasonable at first and which many
language designers have been following . . . but on further examination
it appears to be wrong. The statement is, more or less, that some
types ought to be unordered since their relative order is meaningless
to a programmer.

I recently came upon an interesting example which seems to refute
this postulate; or at any rate there was no way in SIMULA that I
could write an efficient program, the language forced me to be
inefficient! Here was the application: I had a data type

type reflist = sparse powerset of ref(object)

and I wanted to represent it as a list of references. Given two
such reflists , of sizes m and n, my algorithm needed to test
whether they had any common elements. Obviously this would take
about mtn steps if I could keep the reflists ordered, but

SIMULA allows only equal-unequal comparison of references. Therefore
I was forced to use an algorithm which required mn steps!

Here is a case where the ordering of reference variables has no
semantic meaning, yet my program would work meaningfully (and much
faster) if I allowed the machine to order the reference variables

in any arbitrary but consistent way. Traditional garbage collection
and compaction algorithms, at least the in-core versions, preserve
this arbitrary relative order even when they reallocate memory.

5. My impression on page 100 is that you are hanging too much on the
concept of ordered type. By your definitions, an unordered type must
have arbitrary sequencing while an ordered type must have min-to-max
sequencing. It seems better to me to separate the concepts of order
and sequencing, by having various sequencing operations; an ordered
type could still be scanned in arbitrary order in an abstract program
if the programmer says so, because he will prove the correctness for
an arbitrary order (and he will therefore know that he has additional
freedom in his later choice of concrete representations).

Prof. C. A. R. Hoare -3 - January 15, 1973

10

11

12.

On the top of page 103, the two procedures called "deal with single
character" cannot both be the same, because "buffer" is the
character to be dealt with only in the second case. You might
change the first line to "else deal with single colon character".

Your program on page 107 allows the invalid date Feb 29, 1900.
(Perhaps you could simply restrict type year to 1901...1969.)
Incidentally, I wonder what EWD would do about the gggg's in this
program?

When we get to "discriminated unions" I begin to wonder about your
choice of notations, since you seem on the one hand to be trying to
minimize the character set (the comma and semicolon and colon are
used in several different senses, and "in"is used for ¢ , etc.),
while on the other hand you make use of 2 and v and even A~ ,
which are very rare in computer hardware. The notation for
discriminated union seems especially wrong to me; that comma isn't
a weak enough delimiter. Conventionally in English, comma is a
shorter break (i.e., stronger in precedence) than semicolon, and
semicolon is a shorter break than a colon. This order has already
been violated (inverting : and ;), but that isn't really bad;
the trouble is that the comma has already got a precedence stronger
than either of these and your language should be self-consistent.
For example, wouldn't it be natural for a programmer to abbreviate
your example on page 111 to

type patience card = (red,blue:cardface)

before realizing this means something else? I would recommend using
another symbol for discriminated union, preferably the " |" from BNF.
Note that this would look especially nice in your parsing example.

On page 114, are those tag fields and compile-time case discriminations
advisable even when the program has been proved correct?

On page 116, lines 10 and 11, I'm amazed at your curiously restrictive
use of the word "table". What about a table of prime numbers less
than 100 , etc.?

I was also surprised on page 123 that you didn't discuss the
similarities and differences of

type T = powerset T'

and type T = array T' of Boolean

Page 125, top, I find these notations unfortunate, especially x :-y
which conflicts with SIMULA conventions. By analogy, wouldn't

X :=y now have to mean that x is replaced by X=y (say when

x and y are Boolean variables)? The colon is being overused
again.

r— T

Prof. C. A. R. Hoare - a4 - Januvary 15, 1973

13
14

15

16.

Of course I must think of a better alternative. Dijkstra's paper
used " i plus 1 " on pp. 54-60, but i :=i+l elsewhere. AILGOL 68
has 1:+=1 . ©None of these really satisfies. What we seem to
need is some "reflexive" symbol (like the German "sich" referring
to the subject). Denoting this unknown symbol by 0, we want to
have x J op y be equivalent to x .~x op y , for all variables x

and all operators op . Maybe J could be *= , read "self-replaced"?
Page 129, "if next.w > W then exit primefinder": Yes, yes, bravo!

Page 132. Actually cars are verboten as examples ever since LISP
was invented.

Page 146, bottom. I don't understand what you mean, "the axiom of
exclusion". Is it von Neumann's "axiom of regularity"?

Your example of examination timetables is beautiful, but I wish it
had been carried off with a bit more finesse.

First in the definition of "suitable" on page 160, there is no need
to say "-trial" in the assignment to untried , since trial = {e} and
e has already been removed. (This is fortunate, because you later
decide to represent trial as a sequence and the other operands as
bitstrings.) But the big awkwardness occurs in gensupersets$ the
introduction of save 1 and save 2 is not clever nor is it art!

In the first place there is no need to say that gensupersets preserves
"untried", since the value of the latter is never used after
gensupersets. This eliminates save 1 . Secondly, the purpose of
save 2 1s to restore untried at another place, and there is no
need for the trickery you pulled; instead, " save 2 :=untried;

untried :- incompat(e) " and later " untried :=save 2 " would be
shorter (and faster in your eventual representation). But in fact

it somehow is clear that untried shouldn't be a global variable

that is explicitly saved and restored, it is a natural parameter to
gensupersets. Thus, the entire program on page 161 becomes much
simpler and cleaner:

procedure gensupersets(untried: powerset exam);
begin e: exam;
record;
if size(trial) < k then
while untried 4 {] do
begin e from untried;
trial: vie};
if sessioncount(trial) < hallsize then
gensupersets(untried - incompat(e));
trial:- {e}
end;.
end gensupersets. -

Prof. C. A. R. Hoare - 5= January 15, 19753

It would perhaps be interesting t@ analyze what made you go wrong
here, and to "abstract" the source of the error, since presumably
it is something students need to be taught to avoid.

Another point is that you haven't declared the procedure "sessioncount".
Since it appears in the innermost loop it is clear that actually the
sessions should be redeclared as

type session = {exams: powerset exam; sessioncount, size: integer].

This is a very important consideration in this algorithm, so I was
sorry to see it neglected.

Still another point is the representation of timetable on page 16k4;
this is evidently an output variable (as you define on page 135),
except that you consider there only the case of sequences not
powersets. The best representation for timetable in your example
is to print it as you go.

And there is yet another point to make. The first representation

of exam that comes to mind is not necessarily the integer

subrange 0...500 , really a "sparse powerset sequence character"

is more natural at least in the external real world representation.
Expecting 500 courses to be assigned a unique integer code number
between 0 and 500 1is quite impossible in the real world. So

here we have another interesting (and typical) situation: the same
type (exam) wants two different representations in different parts of
the algorithm, and we must convert between them at the interface.

Please excuse my gloating over all these improvements. It is much
easier for me to improve your program than for you to have composed
it in the first place; I'm just a Monday-morning quarterback. The
point is that this timetable example is a vehicle for illustrating
even more things than you expected.

17. Since you are editor of this outstanding series of books for Academic
Press, I think you ought to give some thought to the standards for
typesetting, especially of ALGOL programs. About 40-50 years ago,
G. H. Hardy made a study of mathematical composition, for Oxford
University Press, and the resulting standards have been widely
adopted. (A short and fascinating booklet explaining them has been
published: The Printing of Mathematics,by Chaundry et al. OxfordU. Press 1954,
I recommend it!) One of these sacred rules is to insert small spaces
around every equals sign; and unfortunately Academic Press hasn't
been told not to do this in ALGOL! A proper letter from you will

cause them to set " x := y " instead of " x: =y ". (My spacing
here is exaggerated, but I know they can do better than they have
done on the spacing.) The same should apply to your x :V y and

so on, if you still want to stick to these. The second thing you
ought to consider carefully is the use of italics. At present
they are setting one-character variable names in italic type,

Prof. C. A. R. Hoare -6 - January 15, 1973

18.

cec:

multi-character names in Roman type, This doesn't look so pleasing
to me; see especially pages 112 " cardl.normal.r ", and page 128

at the top. The ACM conventions for ALGOL (which I think have been
written down by Myrtle Kellington, you could write to her) are more
to my taste. Have you noticed that, ever since the AIGOL report was
originally published in 1960, there is an interesting typographical
distinction between italics and Roman letters (besides the obvious
distinction with boldface letters)? Perhaps Peter Naur originally
suggested this. In the syntax for basic symbols, all the letters
are italics; and all identifiers are consistently printed in italics,
whether they are one-character or multi-character. oOn the other
hand, ALGOL 60 allows any set of characters (including summation
signs, etc.) to appear in comments and strings; and as if to prove
this, they traditionally use Roman letters in comments and strings,
except when an identifier of the program is mentioned.

This letter is long enough. Thank you again for teaching me a lot
by writing your monograph.

Sincerely,

Mewold £ /}yw z{

Donald E. Knuth
Professor

.4. Dahl

. W. Dijkstra

. W. Floyd

. Naur

. L. Sites

. Wirth

Z g o

. Here are some comments on your paper "Proof of Correctness of Data

Representation" in Acta Informatica (December 1972).

On page 273, I suspect the original form of the procedure "has" was

called "contains" because it doesn't end has ! In this example, the
second for loop in "remove" can be replaced by simply " A[j] := A[m] ".
Did you consciously avoid this for some reason?

On page 277, I don't see why the proof of "has" says merely " j <m "
while the proof of "insert" says " 0 < j <m ". Surely the lower bound
on j 1is needed in both places since A[J+l] is used. But the most
curious thing is that the condition m < 100 is a necessary premise,
but it is not shown. Thus the lemma for "has" should begin

"mM<100 8§ 0 < j<m%&Jj<mg . . .".

Finally, I enjoyed the closing acknowledgment since you yourself are
the author of two of the referenced works!

Prof. C. A. R. Hoare -7 - January 15, 1973

P.P.S. Typos and minor corrections:
p. 86, line 11, coefficients
p. 91, line 20, "Let S be a family of sets of integers"

p. 110, lines 28-29, local: local car
foreign: visitor car

p. 113, lines 3-7, change Sl’se’ . .,an to 31,82, . "Sn)
p. 132, line 33, type deck = sequence cardface;

p. 156, line 26, (s1 As2 = { }) or (sl= s2)

p- 160, line 11, e from remaining;

p. 162, lines 15-16, "remainder" ghould be "remaining”
p. 162, line -4, untried « - save 2,

p. 164, line 21, operations on a session

p- 166, line -2, theorems (?)

p. 171, line 15, in

p- 172, x :-y is not defined

p. 173, line -3, dl""’dn for Xl”"’xn.

DEK/ pw

STANFORD UNIVERSITY
STANFORD, CALIFORNIA 94305

CUMPUTER SCIENCE DEPARTMENT Telephone:

415-321-2300

April 12, 1973

Prof. Ole-Johan Dahl
Matematisk Institutt
Universitetet i Oslo
Blindern, Oslo 3, Norway

Dear O-J:

This is the third and last in the series of letters to myself
based on the book Structured Programming. Your chapter is certainly
a masterful conclusion to this important book. It sets forth the key
virtues of SIMULA in an especially clear and compelling fashion.

My coamments aren't deep but you may be interested in a few
reflections I had as I read the chapter.

1. Page 183. The histogram example does not completely remove the
artificial separation of the operational and data storage aspects,
because the array limits used to initialize the histogram must be
retained (and never changed) during the program execution. The
programmer must be aware of this connection, he must treat
"real array A[l:7], B{1:12]; . . . initialise A,B..." at a
conceptual level next to the histogram class and not at the
conceptual level of the rest of the program. He must be warned
that the use of A extends after the use of "new histogram (4,7) ",
assuming that he hasn't read the code for the histogram class.
This may seem a minor point, but somehow I don't think it is
completely negligible; it demonstrates a conceptual need for
read-only variables.

2. The word "detach" had always seemed to me machine-oriented instead
of problem-oriented, and it sounded quite mysterious. Your
explanation here has cleared it up for me, for the first time.

It is like the word "return" except at a more global level.

I suppose a concept of superdetaching and supercalling might
exist, at a still more global level, though I don't see any
important applications.

3. Page 193. Itried the suggested permutation procedure "based on
the same swapping strategy, which returns with the numbers in
reverse order", and it didn't work; at least, the swapping strategy
has to be changed. Otherwise we have

Prof. Ole-Johan Dahl -2 - April 12, 1973
original state: 12 3 4 5§
after swap(p[l],p(5]): 5 3 2 1 bk
after swap(p(2],p(5]): 1455
after swap(p(3],p[5]): 5 3 2 1 b

I can't see anything better than e.g. swapping with p[l], plk-1] ,
p(3], plk-3], ., ... , and ending with a different transformation

depending on whether k is even or odd.

L. This permuter class does not rely on the fact that the numbers
permuted are the integers 1 to n nor that they are initially
in order. Therefore it seems slightly better to have p as a

parameter:
class permuter (p,n); integer array p; integer n;

(Unfortuﬁately Algol makes us commit ourselves to integer arrays.)

An amusing and quite natural way to write the declaration,
using coroutines instead of procedures, now presents itself-

begin Boolean more;

more := true;

if n = 1 then detach

else begin ref (permuter) r; integer i,q;

for 1 := 1 step 1 until n do

begin r :- new permuter (p,n-1);
while r.more do

begin detach; call (r) end;

if i < n then
begin:= p[i]; p[i] := pln]; pln] .= g;

detach;
end
end;
g :=pll]; for i := 1 step 1 until n-1 do pli] := pli+1];
p[n] := q;
end;
more := false;

end of per-muter.

Prof. Ole-Johan Dahl -3 - April 12, 1973

5. Another permuter algorithm can be bated on Trotter's algorithm.

This is interesting because (a) it's faster [n-1 times out
of n the operation is quite simple'; (b) it uses a class
defined within another class; (c) the program in these terms

displays the idea behind Trotter's method while there is no way
to do this using Algol's recursive procedure control.

class Tpermuter(p,n); integer n; comment assume n > 2;

begin Boolean more; more := true;

integer t; comment the current "offset";

bedina_s s permute(k); integer k;
begin if k = 2 then
begin detach; swap(plt],p[t+1]);
detach; swap(p[t],p(t+1]);
more := false; detach
end else
begin ref (permute) r; integer i;
r :- new permute(k-1); detach;
while more do

begin for i := 1 step 1 until k-1 do

begin swap(p[i+t-1],pli+t]); detach end;
call(r); detach;
for 1 := k-1 step -1 until 1 do

begin swap(p(itt-1],p[i+t]); detach end;
t := t+l; call(r); detach;
end while more;

end k > 2 case
end of permute;
ref (permute) r; integer t;
r :- new permute (n);
while more do

begin t := 1; call(r); detach end;

end

end of Tpermuter

Prof. Ole-Johan Dahl -4 - April 12, 1973

The idea is to swap(p[l],p[2]); swap(p[2],p[3]);.. . ; swap(pln-1],p[n]);
then do the next step for sequence n-1 ; then

swap(p(n-1],p(n]); . . . ; swap(p(l],p[2]); then do the next step

for n-1 but shifted right one; then start over again.

6. The syntax example you give is very beautiful, of course; I think
you should credit it to Bob Floyd, who was the first to publish it
(IEEE Trans. on Elect. Computers 1964, the same issue as my
article on SOL). He presented it in terms of men in a corporation
(almost like Chaplin's officers!), and at this time Bob and I
corresponded about how to express the algorithm properly using
"recursive coroutines" since it was clear that recursive subroutines
were insufficient. This example is what first taught me about the
limitations of AIGOL's recursion.

As I recall, Bob and I expressed the algorithm somewhat less
elegantly at that time; we had one "class" declaration for every
syntactic type, and the programs were complicated by using only
resume/resume sequencing, so that every object had to know the name
of its superior. We wanted a symmetrical way to pass information
between coroutines, and I think we used local variables instead of
global variables for this purpose. So you can see why I was so
pleased to see SIMULA when you first sent me its description in 19€5!

T, I don't understand why you call the shortest-path algorithm the
Lee algorithm, when it is generally credited to Dijkstra [Numerische
Mathematik 1 (1959), 269-271]. I don't know what Lee you refer to;
but if he came after Dijkstra, the correct reference should appear
in a book co-authored by Dijkstra!

8. Your discussion of programming levels by means of prefixed blocks
is very thought-provoking. (This is partly why I missed the idea
of subtypes in Chapter 2.) As I was reading Section 7 it finally
dawned on me that this may be the way to string together the "pearls"
which Dijkstra described in Chapter 1, making each independent
design decision correspond to a prefix. Therefore I went back to
the program in my letter to Dijkstra, for that word-reversal
problem, where the pearls were identified by letters in the left
margin. I wrote the following code top-down almost exactly as it
appears here (therefore writing " B class A " before having any
idea what B would involve, only knowing that it represents a
lower level which will be specified later!):

v

r— —

Prof. Ole-Johan Dahl -5 - '
April 12, 1973
B class A; begin comment Dijkstrats odd inversion problem;
char x; comment the character most recently input;
repeat x := RNC;
absorb (x) ;
until x = pnt;
e (x)
end A;
C class B; begin comment explain what "absorbing" means;

procedure absorb(x); char x;

if X = SP Or X _ pnt then print a nonempty word
else add to word(x);

end B;
E class C; begin comment facilities for word memong,

integer k; char array word[l;eo]; comment word[1l:k] contains

the first k characters of the next word to be'printedf

procedute Nt 4 nonempty word;

if k > 0 then Regin print waoyd; k := 0 4

3
grocedure add word (x); char x;

if k = 20 then word too long error

else begin k .- k+l; word[k] := x end;
k;:o; _—

end C;
F class E; begin comment handle the even-odd requirement and spacing;
integer n; comment the number of words printed so far;

Procedure print word;

begin if n > 0 §x PNC(sp)-
—— b

if odd(n) then print word backwards else print word forwards;
noo:= ntl
end;
n =O;

Prof. Ole-Johan Dahl -6 - April 12, 1977

If class F; begin comment the way to print a word;

virtual integer k; virtual char array word[1:20]; comment, word|l:r

contains the first k characters of the next word to be printed;
integer 1i;
procedure print word backwards;
begin i := k;
repeat PNC(word[i]); i minus 1;

until 1 = 0;

end;
procedure print word forwards;
“ begin 1 := 1;
repeat PNC(word[i]); i plus 1;

until i >k;

end;

end F;

The next lower level, H , will define the 'word too long error'
procedure (curiously this seems to be a high level operation but

it appears lower), and the next level will-perhaps define PNC and

RNC, etc.

Comparing this program with the earlier one leads to the following
observations:

(a) All the "pearls" now do appear in one place. (I combined C

and D , also F and G, as being essentially on the same
level.) Furthermore each class does seem to make sense as a
fairly isolated conceptual unit.

(b) This program, if executed, would involve considerable procedure-
call overhead. A smart compiler will remove it. gSome languages
have a way to specify that a procedure is 'in-line', meaning
that it is to be explicitly expanded wherever it is called.

(c) In level F , I needed some virtual declarations. When writing
programs in this top-down style I suspect that programmers will
often slip up and forget to include the necessary virtual
declarations. An alternative would be to pass (k, word) as
parameters through the various levels; but that doesn't seem
natural to me somehow, perhaps it should.

Prof. Ole-Johan Dahl -7 - April 12, 1973

(d) I just noticed that my comment explaining k and word is
not sufficient to prove that the program works; somehow it
must be stated that k is large enough to contain as much
of the word as has been absorbed so far. This points out
a common difficulty with program proving: We can prove the
validity of algorithms that solve familiar mathematical
problems, but when it comes to real software problems it is
often hard to state the invariants because they involve
concepts for which no standard notation exists.

Finally, a minor point on page 219. You wouldn't want to have the
first order generate a reporter object as stated; for it would mean
inserting the " dt " specification at an extremely awkward place in
the input (within the first order's description). Better would be
to have reporter generate the first order, just before its

"while true“, and to change line 25 of the program to

simulate(new reporter(inreal), lim)

To sum up all these letters of mine, I can't remember ever having

read a computer science book that was so thoroughly stimulating from
cover to cover, and I want to thank all three authors again for the
considerable effort that has gone into it. This book will certainly
have a profound impact on the future of computer science.

P.S.

Sincerely,

" Dratd € W/r‘

Donald E. Knuth
Professor

Now that I've written all these letters, I wonder if it might

not be useful to circulate them to a wider audience by issuing
them as a Stanford C.S. report. (Not to be published in a
journal, but to go out to say 400 readers in typewritten form.)
Please tell me if you think this is a bad idea. I think it might
contribute to the discussion of your book in various circles,
since structured programming is "making so many waves" these days.

Prof.

P.P.S.

Ole-Johan Dahl -8 - April 12, 1973

Here also are some typographical errors I noticed; many of
them are technically nontrivial, so you should check me:

page 176, line 11, "As the . .."

page 182, class histogram + 5, should say Y > X[i+1]

page 182, line -5, "called by reference.++

page 187, illustration, "detach" not "detatch"

page 193, lines -5 and -6, change "tree" to "binary tree"

page 197, syntax rule (5), mult sign not "X"

page 202, line before section 6, delete " . " after "so on"

page 203, line -11, delete " 1" after "part"

page 206, line -3, delete "should"

page 207, line 8, add " ; " after "list"

page 207, line 9, change "should be" to "are"

page 207, line -11, change "linkage-list" to "list"

page 207, line -2, " y" is wrong font

page 208, line 1, " L" is wrong font

page 213, line 1, put " ; " at end of line

page 216, line -10, quotes around "no ...limit"

page 217, line -13, and four places on the next two pages,
"mgroup" should not be partly italics!

page 220, reference (8), "Action".

page 220, reference (10), "pp. 4Ol-k1L. "

page 219, line 9, delete "v"

Since I foresee this book being reprinted often, I imagine
this list of misprints will be useful.

DEK/pw

cc ¢

Prof. Dr. E. W. Dijkstra
Prof. R. W. Floyd .
Prof. C. A. R. Hoare
Prof. P. Naur

Prof. N. Wirth

