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i ABSTRACT: A method of analysis of transient waveforms isdiscussed. Its properties and limitations are
presented in the context of musical tones. The

| method is shown to be useful when the risetimes
L of the partials of the tone are not too short. An

extention to inharmonic partials and polyphonic
| musical sound is discussed.
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Figure 1 - Frequency response of a hetrodyne filter with center

. frequency of 400 Hz and summation period of 10 milliseconds.

i Figure 2 - Frequency response of a hetrodyne filter with center
; frequency of 100 Hz and summation period of 10 milliseconds.

| Figure 3 - Frequency response of a hetrodyne filter with center
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3 10 mi | | iseconds. The center frequencies are, top to bottom, 100, 200
and 300 Hz.

| ] Figure 5 - Same data as in figure 4, but the attacks are linear rather

— than exponential.

~ Figure 6 - The magnitude and phase of the output of the hetrodyne

| filter when applied to a 132 Hz guitar tone. The apparent modulation
” is the result of beating with an inharmonic partial at 186 Hz.

Figure 7 - Frequency response of a hetrodyne f i | ter when the center

L frequency is not exactly an integral multiple of the summation
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— INTRODUCTION

.
The analysis of the attack transients of vocal or musical

1 tones goes back as far as 1932 with Backhaus’ [1,2] tunable resonator
and drum recorder. Luce and Clark [3,4,5] used fi | tering methods to

. select partial tones for analysis and recording. More recently, with

the advent of computer music, analysis of musical instruments for the

L purpose of simulation of timbre has been done by what Wil | be called
a “hetrodyne f i | ter" for want of a better name, Beauchamp [6]

L analysed each partial of a complex waveform by first multiplying the

| waveform by a sin and cosine at the frequency of the partial in
question. The result was then low-pass filtered, then squared and

3 summed. Freedman [7,8,3], and later Keeler [18,11] used a discrete
finite summation over one period of the fundamental frequency in

. place of Beauchamp’s low-pass filter, an effect which as we shall
show later conveniently places a zero of transmission at all harmonic

| partials other than the one in question.
It is the purpose of this article to explore this method,’

L report its characteristics, its limitations, its uses and some simple

| extensions.
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THE METHOO

| Let us define the hetrodyne fi | ter as fol lows, We begin with |

| a discrete function Fi which represents a continuous function F(t) |
at discrete intervals t=ih, where h is the time between samples. h

I is cal led the “sampling interval.” The reciprocal of h is called the

il "samp! ing frequency” or the “sampling rate.” Let us define a and b
as fol lows:

i ortN-1| a = > Fi cos{woih + ©)
1=¢y

i HN-1 (1)
b = > Fi sin(woih + Oo)

(We willbe called the “center frequency”.

1 Without loss of generality, we may define

—

i ® = go + oh (2)

= and thus rewrite the sum as going from 0 to N-1.

N-1

= 1 : 3 NY

_ a )_Fi cos(woih + Yo)
i=0

N-1 (3)

a b = 5S Fi sin(woih + %o)
i=0

|

L
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- Thi s change of variables hides the time-position of the

filter in the phase. We must remember that as the filter is advanced
he

through time, the phase angle will increase, and that any results

| which depend on this phase angle will be functions of time.
Since the summation operation is linear, we may represent the

| input waveform Fi as a sum of sinusiods and may thus examine the
response of the fi | ter to a sinusiodal excitation, as is commonly

il done with | inear fil ters.
N-1

| a = J A cos(wih + %o)
i=0

| N-1 (4)i b = > A cos(wih + ©) sin(woih + ©o)
i=0

3
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With the he Ip of the summation calculus [12] and some trigonometric

L identities, we maycompute the summation in closed form without
error as fol lows:

—

A { sin] (wtwo)Nh/2] cos[ (wtwo) (N-1)h/240 + two]
| a = 75 sin[ (w-wo)h/2]

+ 8in[ w-@o)Nh 2] cos](g-qo)(N-1)h/2+®~ Oo]

i sin[ (w-wo)h/2] } (5)
p= A { sin] (wtwo)Nh/2] sin[ (wtwo)(N-1)n/2 + w+Oo

2N sin[ (wtwo)h/2]

i , sin]( w-wo)Nh/2]sin[ (w=wo) (N-1)h/2+©- 0
sin[ (w-wo) h/2 }

| Th s s not a very useful expression as it stands, but it may be
simpl fied somewhat by computing the sum of the squares of a and b.

2 , 2

| 2,.,2_ A” { sin wtwo )Nh/2] sin” tm=0 JNh/2a +b i. - +
LN sin<[ (two )h/2] sin®[ (mmo )h/2

sin] (gtwo)Nh/2]sin[ (w=wo )Nh/2]+ RA -| sin] (wtwo)h/2] sinl (w~wo)h/2]2) sin[ (w-wo)h/2] cos wo(N 1)h + 200] }
(6)

L
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Now if one chooses N to be such that

- ,
Nhwo = 27k, k = any integer # 0

Then some terms in equation 6 collapse to produce

L 2.2 A® 2 1 1
+b = — ia +b hNe Sin (uh/2){ sin [(ytwo )h/2] + Sinc| (wo h/2]

i + 2cos| yoh - 2%o] (7)sin[ (wtwo)h/2] sin] (w=wo)h/2] }

L

The square root of the above expression will be termed the

| "magnitude” of the output of the hetrodyne filter. The arctangent of
the ratio of a to b will be called the “phase” of the output of the

8 hetrodyne f i | ter.

| Thi s process is similar to the discrete Fouri er transform,
— except that only one frequency is processed instead of many. The

results of this analysis can easily be generalized to represent the

— output of the DFT by setting the period of the center frequency to a

) multiple of the sampling interval.

-
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If one further assumes that the frequency of the input

| sinusoid is close to the center frequency, then we see that
|.

2,,2 A° 2 2
i = = + + = 2A| rim a +b 2 {0 N 0 } >

— define Aw~ w-wo

L Lim E = sin{2qoh[ (N-1)/2+oHNsin{Ayh[ (N-1)/2+g]’
WO cos {2woh[ (N-1)/2+] HNcos {wh[ (N-1) /2+q] }

1 if N » 1 then
. b

| lim = 4 tan fAwh[(N-1)/2 + 41)

L

| Thus we see that in the limit, the magnitude of the output ofthe
f i | ter becomes independant of time and becomes a measure of the

3 amplitude of the input sinusoid, The phase of the output ©Of the
filter remains always a function of time, but is also a linear

L function of time, its slope being determined by the difference of the

| center frequency and the input frequency.
-

{
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~ This reveals a method of determining the amplitude of the

input sinusiod and getting a better estimate of its frequency. If the

~ center frequency of the summation is near the actual frequency of the

a input sinusoid, the phase will be very nearly a linear function of

| time, thus we may find the frequency deviation by fitting the phase

L with a straight line and observing its slope.

The consequences of choosing N as above are significant. If

— the center frequency is a multiple of some fundamental frequency,

then we may choose N to coincide with the period of the fundamental

L and thus cancel out all the harmonic partials except the center

| frequency. Figure 1 shows the log of the magnitude of the output
of the hetrodyne filter for a range of sinusoidal inputs. The

5 center frequency in this plot is 400 Hz and the summation period, Nh,
is 10 mi | | i seconds. Figure 2 shows the log of the magnitude versus

| frequency for a center frequency of 100 Hz and the same summation
period, Notice the zeros of transmission at al | multiples of the

| summation period except the center frequency.

i
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ERROR ANALYSIS

Freedman [3] and Keeler [11] both show that this method is

. sufficiently accurate for their purposes even when the input signal

is not a perfect sum of sinusoids. Keeler does not even bother

L computing the summation at each point, but at regular intervals only,

1 and presents us with an elegant proof that the error in doing so is
negl igable. The above work may well seduce one as it did the author

i into believing that this is a perfectly accurate method, universally
applicable. This is not so. T o persue the matter further, let us

f

| reformulate the equations somewhat. We shall compute not two
summations but one:

L otN-1 ,
c= Fe wOhToo (9)oY 1

] ] The result will be a complex quantity whose real and imaginary parts
correspond to the a and b discussed earlier. We will be interested

i in the magnitude and the phase of G. For the input waveform, Fi, we
: shall take a complex sinusoid with exponential decay.

N-1 NG cs

- oc = 5 (Fin) ihte jwoih+6o
« i=o

. | | NB[ + (hao
_ahlo+i(hyo) [+3 (eteo) en otilutwo)]

hlati(wtwo)] = 1 (18)

L



Again, we see the magnitude is related to the amplitude of

u the input sinusoid and the phase drift with time is related to the
frequency differece. The exponential decay of the input signal

L causes imperfect cancellation of other harmonic partials, and
depending on the speed of the attack, the deviation can be

L important.

{ A more reveal ing case would be to assume the signal begins
at zero amplitude, and rises exponentially to its steady-state value

| and that the signal begins somewhere during the summation, say at
i=0.

otN-1 : . Liha
| CorB = S (1-e21hy oJoihte oJwoih 00

i=gtg

o(N-8) jh(wtwo) _
(or+8) 3h ut) +3 (8480) Smrmmmmye—m

=e oJ (urtwo) - 1
(11)

| _ 2h(otp) (N-g)hlati(utuo)]
PESTO

] hlati(uteo) ] _

L This is equivalent to setting N to some smaller value. As the
| ; filter progresses through the attack, the effective width of the

window will approach N, and the response of the filter wil | become

| more representative.

L
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Here we see that even if N and the center frequency are

L careful ly chosen, the frequency response is not the same, Figure 3
shows the response for a cen ter frequency of 300 Hz, a summation

| interval of 10 mi | | i seconds, and B=N/2. We see that the neighboring
harmonics are not canceled out. This shows that if the signal begins

L anywhere within the sindou, the output should not be taken to be an
Ni accurate indication of the amplitude of the partial. It is exactly
iL analagous to taking N to be a non-multiple of the period of the

fundamental frequency. Figure 4 shows the output for an averaging

~— window of 10 mi | | iseconds and center frequencies of 100, 200, and

300 Hz. The input was a sum of sinusoids of unit amplitude and

= frequencies 109, 200, and 300 Hz with exponential attacks of time

i constants 30, 20, and 10 milliseconds respectively. The leakage
among the harmonics is apparent here.

i If the attack is not exponential, another form of distortion
can occur. Figure 5 shows the magnitude of the filter output for the

L same input and center frequencies as figure 4, but with linear
attacks rather than exponential.

_ The presence of inharmonic partials can cause an effect
] sinii lar to amp! i tude modulation. Figure 6 shows the magnitude and

- phase of the fundamental of a guitar note at 132 Hz. The apparent
modulation is caused by an inharmonic partial at 186 Hz, the

= frequency of a known box resonance.

_ Another source of error is that of frequency quantization. N
can not in general be chosen such that Nh is exactly the period of

1 the fundamental frequency and still have N be an integer. This can be
tolerated, but it also implies that the center frequency must be a

L multiple of Zr/Nh rather than a multiple of the fundamental

frequency. If we do not set the center frequency to exactly a

L

L



multiple of 2n/Nh, we get imperfect cancellation of a pole and a

E zero. Figure 7 shows the magnitude versus frequency of such a case.
Note the doublet around 400 Hz, the center frequency.

| Since Nh is not exactly the period of the fundamental
frequency, the harmonic partials are not exactly cancelled out.

| Fur thermore, most string instruments show a deviation from perfect
integral multiples of the fundamental frequency. This deviation also

_ contributes to leakage among the harmonics. Equation 10 may be used

| to determine exactly how much leakage is present.

-
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- A SIMPLE EXTENSION

Although there would seem to be no good solution to the

_ problem of the note beginning within the summation period, there is

| a technique for dealing with the inharmonic partials. if the attack
L time of the partial in question is not too swift, it can be filtered

out before analysis of the harmonic partials is done. The harmonic

L partials may then be filtered out to allow analysis of the

| inharmonic partials.
The filter advocated here is a comb filter. This is

| described simply by the recurrence relation:

|
n n nm

| With frequency response

_ Jo: > >
| |Hm(w)| = Vsin"(ymh) + [ cos(ymh)-1] (13)

. We see that the comb filter has a zero of transmission at all

| multiples of the base frequency 1/mh. The only hazards with the comb
h—

filter are those of transient response and preturbing the harmonic

L partials. The transient response of a comb filter is explicit. 1t is

: identical ly zero beyond mh seconds. If this canbe tolerated, then
u the f i lter may be useful,

If the frequencyy of some harmonic partial falls near one of

—
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= the zeros of transmission of the comb, it will be attenuated. We may

i prevent this by a method which appeared in Gold and Rader [13,14].
At those zeros of the comb that we wish to eliminate, a digital

L resonater is used to cancel out the zero. The details of the

configuration are described in ful | detail in the references and

L will not be repeated here.
For analysis of an inharmonic partial, the harmonic partials

i may all be eliminated with a single comb, subject to the limitation

| that the partials may not be exact multiples of the fundamental, and
that the frequency of the fundamental becomes quantized when the

i comb length, m, is chosen.
The comb wi | |, of course, attenuate the signal under

| analysis by some amount. We may predict the attenuation from
equation 13 and then multiply the results of the hetrodyne analysis

| by the reciprocal of the attenuation factor to obtain a better
estimate of the amplitudes of the partials.

i

i
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CURRENT USES

L
The technique of combing out unwanted signals and then

L analysing the remaining waveform is the basis for an automated
system for the analysis of polyphonic music currently being

L developed by the author. When two or more instruments are playing
n simultaneously, a Fourier analysis is used to get an estimate of the
‘L pitch and duration of each note. All notes but one are then

eliminated by combing, and the hetrodyne filter is applied to

~ determine the attack time of the note and to correct the estimated

pitch of the note. This is iterated for each of the notes in the

= piece. The result is subjected to a heuristic analysis and is

eventually displayed as a musical score of the piece under analysis.

~ Also under study by a colleague is how the physical

_ parameters of musical tones such as risetimes of the partials,

trenielo, and steady-state value contribute to the perceived timbre

— of the instrument. The hetrodyne method as outlined above ig used to

determine these parameters from digitized recordings of tones of

L actual musical instruments.

|

L
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CONCLUS ION

|_—

The hetrodyne filter has been shown to be a useful method

— for the analysis of the partials of musical tones as long as its

| limi tat ions are observed. It can fail if the attack times are tooquick, if the frequencies of the partials deviate too far from

L perfect integral multiples of the fundamental frequency, or if the
sampling rate is so low that frequency quantization effects become

| significant, It can also fail if substantial frequency modulation
(vi brato) i s present.

i An extention of the method to tones with inharmonic partials
and even to multiple simultaneous notes was shown to be possible by

| use of the comb filter as long as the effects of the transient
| response of the comb was judged to be tolerable.

L These methods are currently in use by the author and his
( colleagues in the analysis of digitized musical sound,
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