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| Abstract:
An information processing model of some important aspects of inductive

| reasoning is presented within the context of one scientific discipline,Given a collection of experimental (mass spectrometry) data from
several chemical molecules the computer program described here
separates the molecules into "wel I-behaved” subclasses and selects

_ from the space of all explanatory processes the characteristic"
processes for each subclass. The definitions of “well-behaved” and
“characteristic” embody several heuristics which are discussed. Some
results of the program are discussed which have been useful to chemists

= and which lend credibility to this approach.

*This research was supported hy the Advanced Research Projects
Agency (SD-1831 and the National Institutes of Health (RR=-612),



| INTRODUCTION

| Induction in science has been understood to encompass many different

levels of tasks, from theory construction as performed by Einstein to

. everyday non-deductive inferences as made by sclientistslooking for

explanations of routine data. For the most part, it is not well

defined however one understands it (a notable exception being

L statistical inference). Althoughgeneral statements can be made ahout

_ non-deductive inference, it is unlikely that there exists one general

"Inductive method” that auidessclientiflic inference at all levels.

¢ Nor does it seem likely that a method of scientific Inference at any

| one level can succeed without recourse to task-specific information,
- thatls, information specific to the particular science. Within

L these assumptions we are explorine an informationprocessing model of

scientific inference in one discipline,

{

1 A unifying theme in our explorations is that inductionis efficient’
selectfon from the domain of allpossihle answers. Previous papers

on the Heuristic NENDRAL Program (1) have advanced this theme with

respect to hypothesis formation in routfne scientific work. Recently,

" we have heenexploring this theme wtth respect to the hicher-order

: task of finding general rules to explain large collections of data (2).

] This paper extends the previous work to the task of finding rules for

| subclasses of objects, given empirical data for the objects but
without prior knowledge of the number of subclasses or the features

that characterize them.



- THE TASK AREA

For reasons discussed previously (2), the task area is mass spectromet ry,

a branch of organic chemistry. The rule formation task is to find

\ rules that characterize the behavior of classes of molecules in the
mass spectrometer, given the mass spectrometric data from several

known molecules,

;
The chemical structure of each molecule is known. The data for each

molecule are a) the masses of various molecular fragments produced from

the electron homhardment of the molecule in the instrument and bh) the

relative abundances 0f fragments at each mass. The data for each

— molecule are arranged in a fragment-mass table (FMT), or mass spectrum.

" Typically, there are SO-100 data points in one FMT. The task is to
: characterize the experimental hehavior of the whole class of molecules.

Rules which characterize the behavior of the molecules are represented

L as conditional sentences in our system. The antecedent of a simple

i conditional rule is a predicate which is true or false of a molecule
(or class of molecules); the consequent is a description of a mass

| spectrometric action (henceforth “process”) which IS thought to occur
when that molecule is in the experimental context. We have termed

| these rules "si tuat ion-act ton rules" (or "S-A rules?. The rule

| syntax has been descrihedpreviously(3) and is not critical to an
understanding of the present paper.



! An example of a rule, rewritten inEnglish,is: “IF the graph of the

5 molecule contains the estrogen skeleton, THEMhrealk the bonds between

: nodes labeled X3-17 and 14-15." This process (the consequent of thts

rule,) is named BRKINLIn Table |. The granh of the estrogen skeleton

| mentioned in the antecedent is shown with the conventional node

| numbering in Figure 3.

The rules will he used in the Heuristic DENDRAI. performance program

- to determine the structure of compounds, reasoning from the mass

spectrometric data of each. They are also of use to chemists

Interested in extending the theory of mass spectrometry.

¢

OVERVIEW OF METHOD
-

'

WL The rule formation programcontains three major sub=-programs,which

| are described below under the headings Data Interpretation, Process
Selection, and Molecule Selection, The control structure for the

overall program is described after the discussions of the three
V.

) major sub=-programs, A brief overview of the whole program will he

givenfirst, however, in order to set the context.

The purpose of the program is to find the charactertstic processes

which determine separable subclasses of molecules given the experimental

data and molecular structure of each molecule. The overall flow of

the program, as described below, is shown inFieure 1. The three

major steps are to reinterpret the experimental Rata as molecular

i 3



Processes, find the characteristic processes for the given molecules,

and select the set of molecules that are "well-behaved!" with regard

to the characteristic processes. The reinterpretation of the data is

done once for each molecule in the whole set, and the results are

C summarized once. The second and third sub-programs are called
successively until they isolate a well-behaved subclass of molecules

and determine the processes which characterize their hehavior. The

« monitor then subtracts the well-behaved subclass from the starting
class of molecules, and repeats the successive calls to the second and

third subprograms. The whole program stops when there are N or fewer

- molecules not yet in some well-behaved subclass. (For now, N=3,)

L The data interpretation program has been described previously with

‘ some aspects of the process selection program (3). The molecule
- sel‘ectfon program and class refinement loop in the control sequence

. are new additions,
4

L DATA INTERPRETATION

|
As mentioned above, the nurpnse of the Rata interpretation and summary

. program (INTSUM) is to reinterpret the experimentally determined data,
the FMT, for each molecule and summarize the results. Because the

he program has heendescribed previously (3), details will he omitted

here. It should he noted that the successful application of this

i program to a sub-class of estrogens has already been reported in the

x chemical 1 iterature (4), The INTSUM program is general in that it

X - 4



.

= will work on FMT's for any class of molecules with a common skeletal

| graph and ft is flexible in that the knowledge used by the program is
“.

easily changed and there are numerous options controlling the operation

of the program.

\

. The INTSUM program is called with the initial set of molecules and

their FMT's., It is also given the graph structure of the skeleton

a common to all molecules in the initial set. The first step is to
“.

search the space of all possible processes which could explain data

| points in the FMT of any molecule with the given skeleton, The space

of explanatory processes is camhtnatortal; simple processes that cut

the graph into two fragments are generated first, followed by pairs

= of simple processes, triples, and so on. The heuristics 1isted below

| constrafn the search:

o Simplicity (Occam's Razor)

- If two or more processes explain the same data polnt, prefer the

simpler one, 1.e., the process involving fewer simple steps.
ne.

" Chemical Constraints

~ (a)Break no more than NB bonds in any process, whether simple or
| multi-step (NB=5 in our current version); (b)Do not allow any process

to break two bonds to the same carbon atom; (c) Do not allow a fragment

" to contain fewer than NA atoms (NA=5 currently); (dA) Do not allow any

.



process to contain more than MPsimple processes (NP=2 currently); (e)

Break only single bonds (no double or triple bonds).

| The heuristic search produces a llst of plausible processes without

| reference to the data. The second step of the INTSUMprogram is to

determine for each process and each FMT whether there is evidence for

: the process in the FMT. If so, then that process can explain the data

| point and the strength of the evidence 1s saved. The final step is

! to summarize for each process and all molecules the frequency, total
| strength of evidence and number of alternative explanations. (Frequency
: for a given process is the percentage of all molecules that have evidence

| for the process.) These statistics are passed to the process
| select ion program,

| PROCESS SFLECTION

| The process selection program chooses the most characteristic processes

| for the glven class of molecules from the 11st of a prioriplausibhle

| processes that are output by the INTSUM program. [It assumes that the
molecules given to It are all in one well-behaved class. Thus, it can

merely filter the list of processes to find those which satisfy the

N criteria for characteristic processes.

< A process mentioned in a rule statement must satfsfy several criteria
| in order to be counted as a characteristic process for the molecules

| under consideration. The INTSUMprogramprovides a summary of

- - 6
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statistics for the plaus thle processes it has chosen from the space of

al 1 processes. The process selection program appl fesheuristic

criteria to sort out the most likely processes and to distinguish

among al ternat ive explanations, when alternatives remain. It uses

the information from the data for filtering, in contrast to the a

priori filtering in the INTSUM program. For example, an a priori

simplicitycriterionfilters out processes that break too many bonds.

The criteria for “most 11 kely processes” -- frequency, strength of

evidence, and degree of uniqueness -- are discussed below. To a large

extent the choice of these criteriaand particularly the choice of

parameter settings are arbitrary. However, the following discussion

provides some rationale for our choices.

Frequency

If nature presented clear and unamhiguous data to us we could expect

all and only characteristic processes for a class of molecules to

= occur 100% of the time. This is what we would like to mean by

‘characteristic’ process. Yowever, the data contain noise and, more
-—

Importantly, we are Forced to Tnterpret the data in terms of processes

- that we construct. Thus, in the literature one finds discussions of

exceptions to rules together with presentation of the rules. A low

~- frequency threshold (60%) is used as a criterion for plausible process
Instead of a high one because the marginal processes which are included

-

at one steo can be excluded at a later reffnement step if they prove

- to be uncharacteristic of a class of molecules.

bo i 7



Strength of Evidence

oo The program considers the strength of evidence found for each process,

besides the frequency of molecules that show the process. Associated

| with each fragment mass in the experfmental data is a measure of the

BE percent of total ions (or ion current) contributed by fragments of

that mass. (The evidence from mass spectrometry is not merely binary,

l.e., yes/no, although we have considered It that way in the past,)

~ The total ion current for any molecule can be visualized as the sum of

~ all y=values in a bar graph in which- the x-values represent fragment

| masses. The strength of evidence for a process, then, is the percent
¢ of the total of all ion currents (for all molecules) that can be

| explained by the process. The present value of this parameter is
0.005, i.e., 0.5% of the data must be explained by any process that

L will be said to be characteristic of the given molecules.

" There may be much information in the weaker data points, but until we

can interpret the strong signals, we do not want to start looking

critically at the weak ones. This is why we have a strensth of

evidence threshold (although in our trials we have kept it fairly low).

Negree of Un | queness

The program will discard processes that cannot uniquely explain at

least n data points for each molecule. The rationale behind this

criterion is that processes that are always (or often) redundant with

8



i | other processes have no explanatory power of their own.” In spite of

3 the intuitive appeal of thiscriterion, it was not used for the trials

Lo reported here in which molecule selection is coupled with process

| selection, For process selection alone, it is a useful filter.

- These three criteria filter the processes to provide the characteristic

processes for the molecules given to the program. However, the

processes may still overlap In the data points that they explain. If

3 two (or more!) processes are ambliesuous, i.e., they explain most of the

| same data points, the program tries .to resolve the ambiguity in favor

of a single explanation. This Is not easy, for the competing

explanations have al 1 passed the tests for “most 1 lkely processes”

| - just discussed. Thus, they al 1 appear good enough to be rules on their

| own.

| The resolution of ambiguities among processes is made according to

| relative values of the criteria used to judge them likely in the

Ce first place. That is, the values of frequency, strength of evidence

and degree of uniqueness are compared = in any order- to determine

which process Is preferred, if any.

MOLECULE SELECTION

Molecule selection, by itself, is a simple program whose purpose is to

| find a subclass of molecules that are '"wel I-behaved” with respect to
a set of processes. Its inputs are (a) a class of molecules and (bh)

) 9



a set of processes that are characteristic of those molecules (output

| of the process selection program just described),

; The processes that are chosen as roughly characteristic of a class of

molecules are used by the molecule selection program to refine the

| extension of the class. Several processes will each have a few

| except ions = the number permitted depending on the frequency threshold

used by the program. But if the same molecules appear as exceptions

over and over again (for several processes) then they probably do not

belong in the same subclass with the molecules whose behavior is

characterized hy those processes.

A molecule is said to he well-behaved with respect to a set of

processes (or well-behaved) if It shows evidence for at least MP of

the processes. The current value of MP is 85% of the number of

processes in the set. Currently this is the only criterion used to

identify members of the subclass, although other features of the

_ molecules could also be used for clustering. For example, the

structural features of chemical molecules could also help classify

-— molecules which “belong” together. The reason descriptive features

such as these are not used during molecule selection Is that they

= constitute a good check (by chemists) on the adequacy of the results

_ of the molecule separation procedure,
\.

ha CONTROL STRUCTURE OF THE RULE FORMATION MONITOR

~- The overall flow of control has been hriefly described and diagrammer

- B 10
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in Figure 1, and the three major components of the whole program have

: been discussed. The interaction between process selection and molecule

| selection Is the last important detail in the description of the
program. It is shown schematically in Figure 2 and selected portions

| of intermediate output are shown in Table II.

| After the INTSUM program interprets and summarizes the data for a set

| of molecules, the process selection program is asked to find a set of

processes that characterize those molecules. However, process

selection starts with the assumption that the molecules should be

| characterized al 1 together, i.e., that the molecules are homogeneous,
| or helongin one class with respect to mass spectrometry, The purpose

of the rule formation monitor, and the molecule selection program in

| particular, is to remove the necessity of working within this

assumption. Because a class of molecules has a common skeleton, there

| is reason to believe that they are homogeneous (with respect to mass

| spectrametry processes). Rut this is not necessarily true. Many of

the molecules whose structures contain the graph common to estrogens

(e.z., the equilenins discussed with Table 11in the Results section)

| fail to exhibit behavior that is characteristic of most estrogens in

the mass spectrometer.

The monitor begins with the Null Hypothesis that the initial set M

of molecules Is homogeneous with respect to all the relevant processes

given as input. With the process selection program it finds plausible

processes that roughly characterize the whole class of molecules. It

) ) 11



attempts to confirm the hypothesis by finding the subclass S of

molecules that are well-behaved for those processes. If this subclass

h S is the same as the initial set M, then the assumption of homogeneity

is taken to be true. In that case, there is no proper subset to be

separated.

When the subclass S is different from the starting class M, however,

the program loops back to process selection as shown in Figure 2.

) This figure shows the procedure for producing one homogeneous subclass

of molecules (and the characteristic processes for the subclass); this

procedure, rule formation, is itself used repeatedly in the main

i program as shown In Figure 1.

The inputs to the rule formation procedure are (a) the set RPP of

) relevant processes and statistics for them, viz., the output of INTSUM,

and (h) a class M' of molecules, where M' is initially the same as the

entire class of molecules, M, given to INTSUM. M'is used to keep

track of the best refinement of M so far.

" The process selection program selects a set of processes P from RP In

the manner described above. P characterizes the class M', insofar

as M' can be characterized at all. The criteria for characteristic

process can be made more restrictive if the class is known to be

| homogeneous (e.g., frequency >95%). In this case, however, the

- loose criteria listed above are used(e.g., frequency >60%) in

order to allow many exceptions to the "characteristic" processes.

) 12
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The molecule selection prorsram selects a subclass of molecules S,

from M', that are best characterized by the processes In P. The

subclass S includes molecules that show evidence for most (85% or more)

of the processes in P, and excludes molecules that are exceptions to

many. Thus S is at least as wel 1 behaved as M' with respect to P.

And since the two measures of selection are not perfectly complementary,

S is likely to be better behaved than M'! with respect to P, (If

N molecule selection uses less restrictive measures than process
selection, then S will be less wel1 behaved than M' and the procedure

| will fail except when the initial set of molecules is homogeneous.)

“

One Interest ing part of the procedure fs that after processes are

" selected, ALL of the molecules are reclassified with regard to the

. number of times they appear as exceptions to the processes. This

shown i n Figure 2 : at step 2 of each level all molecules In the

| initial set, M (not M' or S), are tested agalnst the processes. Thus,

. a molecule can be excluded at one level (because it is an exception

-- to too many 0€ the processes at that level), but be included again at

another level for a slightly different set of processes.

.

i The condition under which we want the program to stop is that the

subclass S of molecules after an iteration is the same as the class

M' from which the iteratton started (condition1 in Flgure2), In

other words, under this condition the program has found an S and a

P such that P characterizes S(S=M') and S is well-behaved with

respect to P, The subclass S is taken to he homogeneous, and the

i 13
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: processes in P can be taken to be mass spectrometry rules for

3 molecules in S.

The refinement level in Figure 2 is the number of times the procedure

| has been invoked in trying to find one homogeneous subclass of

| molectuil es. The second of the stopping conditions tests whether the

refinement level is equal to an arbitrary maximum, which is currently

3. This condition is necessary to avoid an infinite loop in the case

he where the program can find no subclass S that is homogeneous with

respect to P. The level 3 has been observed to produce falrly

acceptable results: after three iterations through this loop, the

L subclass S is about as refined as it will get. After more Iterations

_ the procedure appears to oscillate in that molecules added to S in

one iteration are subtracted from S in a later iteration. Our

y experience is very limited, Recause there Is no guarantee that the
procedure converges, however, some stopping condition like the

maximum refinement level Is necessary.

L
: The last stopping condition shown in Figure 2 tests whether there are

. enough molecules in the subclass to warrant further refinement. If

there are fewer than an arbitrary minimum number (=3) of molecules in

” S, then further refinements will be unrel fable. This minimum is not

completely arbitrary, since it depends to some extent on the frequency

measures used in process and molecule selection. Rut, intuitively,

when the number of molecules in SIs small there is little value in

breaking S up into subclasses anyway.

1b



As shown in the overall flow diagram, Figure 1, after the first major

subclass (S) has been defined, all molecules in S are removed from

~ any further consideration by subtracting them from M. T h eentire

procedure is then repeated with the new M. 1 t stops only when there

are so few molecules left In M (3 or fewer) that process selection is

~ unreliable and molecule selection appears pointless.

The output of the whole program now is merely the collected set of

~ outputs from all iterations, viz., the collected S,P pairs, as shown

in Figure 2. Future work will focus on automatically generalizing

the descriptions of the molecules. Thls is now done by hand, except

~ when the initial class M is homogeneous = then the generalized

description is the common graph structure.

~ RESULTS

The INTSUM program alone has already provided useful new results for

~ chemists, as reported in the chemical 1 iterature(l4), The process

selection program, working with output from INTSUM (but without

molecule selection), has successfully found sets of characteristic

processes for a well-understood class of molecules (estrogens,

Figure 3) and for classes whose behavior is still under investigation

(e.g., equilenins, progesterones, amino acids), For 47 estrogens,

which were assumed by both an expert and the program to be in one

i class, rules found by the program agree closely with rules formed by

the expert from the same data. (This result is not shown in a table,

15



: but the comparison with the expert's rules looks much like that shown

BN - in Table |.) Expert chemists have made suggestions for improvements,

| but were generally in agreement with the processes selected by the
program,

> The rule formation program with molecule selection has been tested on

several sets of molecules. The results of running the program on a

set of 15 estrogens (a subset of the 47 mentioned above) are shown

- In Table I. The program separated two of the 15 compounds into a

second class because they were not as well behaved as the rest - they

were exceptions to about 20% of the characteristic processes. However,

. the chemist thought the separation was reasonable. The processes

selected by the program are shown with indications of the discrepancies

between the program’s choices and the chemist’s, The discrepancies

tL mostly arose from the program’s applying different criteria to select

| one process from viable alternatives. Tahle Il shows the success of

: the molecule separation part of the program when rule formation was

| Rone on data from 19 non-homogeneous estrogenic steroids. The major
subclass of chemical interest is the set of 5 equilenins which are

| identified by common modifications to the skeleton shown in Figure 3.
The structural properties were not used by the program although the

N chemist did classify the compounds by such features. By selecting

well-behaved subclasses of molecules the program grouped four or five

"equiienins" (molecules #4, 8, 10,19) and all three “3-acetates”

. (#3, 11, 18) in the first subclass. The fifth equflenin (#2) w a s

removed from that subclass on the last refinement because it was an

) 16



exception to 3 of 9 characteristic processes used to determine the

subclass.

In the thirditeration shown In Table Il, the program grouped three

of the chemist's four "3-henzoates" together (molecules #12, 13, Ib).

L In the fourth lterationit grouped together the chemists two

"dlacetates'" and one "triacetate" (molecules #9, 15, 16), Two Iterations

produced subclasses with only two members = when put together they

L encompass two '"17-acetates'" (#1,17), one "17-bhenzoate", and one

"samma-lactone'" (#5), The two molecules remaining unclassified at

the end of the procedure were the last "equitlenin" (molecule #2) and

L the last "3-benzoate'" (#6).

CONCLUSIONS

"

Building an fnformatfon processing model of sclentificreasoningin

mass spectromet ry, although not completed, has al ready led to

| interesting and useful results. The model Incorporates heuristic
| search in process selection. The procedure for sel ect ing mol ecul es

| can he thought of as aplanning procedure Insofar asit reduces the
problem of formulating rules for a class of diverse molecules to a

~ number of smaller subproblems, viz.,, formulating rules for smaller

classes of well-behaved molecules. However, the molecule selection

procedure ishighly dependent on process selection, as described In

. detail,

17



! The incompleteness of the program as a model of the entire rule

B format lon procedure should be readily apparent. We have not

B described anything that approximates confrontation of rules with new

data, for example. But as the results section indicates, the program

can separate subclasses of wel I-behaved molecules and can find

L characteristic processes for the subclasses with enough accuracy (on

a fewexamples) to galnpreliminary acceptance hy an expert in the

field,

L
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oo Figure 1. OVERALL FLOW OF RULE FORMATION PROGRAM

EB INPUT: List of Molecule=~Data Pairs

PROGRAM: | NTSUM= Data Interpretation and Summary

|

& pd ll aL LL EE tars List of Molecules, M,
| Listof Relevant Processes, RP, with
| Summary Statistics for Each Process
| |
| |

L | PRONRAM: Rule Formation»
| |

:

| Set of Characteristic Processes, P (P(C RP),
Class of Well-Rehaved Molecules, S{(S<< M),

I | |
> | SUBTRACTION STEP: Remove all Molecules in S

| from M.

Lo! |
| STOPPING CONDITION: M contains 3 or Fewer

| No Molecules.

he AEE ES Eh aD a aE GD a a en |
Yes

|

g STOP
OUTPUT= All S-P pa? rs found.

* Details in Figure2.
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Figure 2.

DETAILS OF INTERACTION BETWEEN PROCESS SELECTION AND

MOLECULE SELECTION IN THE RULE FORMATION PROGRAM

L INITIALIZE: Refinement Level =0
M= Orlginal class of molecules.
M =M,

RP = Relevant processes (from INTSUM) including
evidence and statistics for the processes.

i |

C |
INPUT: M’, RP

|

| _

-==> SUUR-PROGRAM: Process Selection (using the null hvpothesis that
all molecules can he characterized by the same set

L of processes)
| |
|

Set of processes, P, that are characteristic of
” | M’ (PCRP)

|

| SUB=PROGRAM: Molecule Selection
| |
| |

_ | Subcl ass of Mol ecul es, S, selected from M such that
| every molecule in S is well-hehaved with respect to
| the processes in P
|

L |
| Increment Refinement Level

| | |

| |

| | Test for Stopping Cond! tions:
| 1. S = M', or

| | 2, Refinement level =3,0r YES STOP.
| 3. Fewer than 3 molecules in Seeeece===>0UTPUT=S,P
| |

A | | NO
|
|

---- SURCLASS QEF | NEMENT: Reset M! to S (M!'=138),
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Figure 3.

” GRAPH STRUCTURE OF THF FSTPOGEN SKELETON
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3 PROCESSES SELECTED FOR 15 ESTROGENS
! BELIEVED TO BE IN ONE WELL-BEHAVED CLASS

- £ OF ALL DATA
PROCESS LABEL® PICTORIAL DESCRIPTION POINTS EXPLAINED

“.

1. BRKO AGH 22%
2. BRK2L/19L 14%

(preferred over |
“

BRKTL and BRK2L/18L)

3. BRK6L or BRK2L/17L le 1%
4. BRK1OL 8%

> }

L 5. BRK1ML or BRK1SIL 6%

. )

b“ a
T. BRK2L/10L | 49

(preferred over
BRK18L)

| 8. BRKLL Sa 34
h 9. BRKSL or BRK13L |a of
~ >l.

10. BRK10L/15H or BRKSH/20L ofor BRKLH/19L

" e The underlined processes are those selected by an expert chemist on the basis of data from 47 well-behaved
estrogens, including these 15.
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or TABLE I, Page 2

4 OF ALL DATA

PROCESS LABEL* PICTORIAL DESCRIPTION POINTS EXPLAINED

.. 11. BRK11lL ~ .-

12. BRK2L/11L 2%
(preferred over “ad
BRK20L) 9

~ 13. BRKS5H/10L C1 4
JC

14. BRKSH/12L | S55 1%~~
’

15. BRK12L/15H or 1%
BRK12L/1LH -

“ —

TOTAL PERCENT OF DATA EXPLAINED 8L%

* The underlined processes are those selected by an expert chemist on the basis of data from U7 well-behaved
| estrogens, including these 15.
.
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§ TABLE | |

- SUMMARY OF STEPS INTHERULE FORMATION

PROCEDURE WITH 19 ESTROGENICSTEROIDS

: Mol ecules Processes

ITERATION #1

Initial Set: (1,2,3,...,19) -======> BRKO
: BRK10L

RRK11L

~ BRK20L

BRK2L/19L

BRKSUB3L/3L
| BRKSUB3L/12L

First Refinement: (2,%,4,5,8,10,11,19) --m-W-, RRKO
~ BRK1O0OL

BRPK11L

y ] BPK20L
RRKONC3»1L
BRKSUR3L/2L

| BRKSUB3L/23L« _ RRKSUB18L/11L
| Second Refinement: (2,3,4,8,10,11,18,19)===-===> RRKO
- BRK10L

RRK11L

BRK20L

‘< BRKOC3#1L/11L

_BRKOOC3#1LBRKSUR3L/2L
BRKSUB18L/11L

} RRKSUB3L/23L

t Third Refinement: (3,4,8,10,11,18,19) =======> same
. = Subclass 1

( ITERATION #2
Inftial Set (1,2,5,6,7,9,12,13, =======> BRKD

(- Subclass 1) 14,15,16,17) BRK16L
" BRK2L/19L
| BRKSUB3L/3L

! Th i rd Refinement (5,17) cee=e==)> BRKN
| = Subclass 2 BRK2L/19L

RRKNC3#1L/8L
RRKOC3=1L/17L

| BRKOOC17=1L

25

L



ITERATION #3

hird Refinement (11,12,13, 14) ~e=====> BRKO
! PS ig Te BRRKRT3#1H

| BRKBT3#*1L/3L
BRRKSUR3L/3L

ITERATION #4

\ . i : cmeame=> RRK(Refinement: (9,15,16)

Last Subclass 4 rere BRKOOC3=11L
BRKOOC3#1L/6L
BRKOOC3#1L/7L
BRKOOC3#1L/8L
BRKOOC3*1L/16LL BRKOOC3w1L/17L
BRKOOC17+11

ITERATION #5

L .

Last Refinement: (1,7) crecnas) BrKeL= bclass 5
i Sube BRK7L

BRKSL

g BRK10L
RRK11L

RRK14LL

BRK15L

BRK16L

BRK17L

BRK2L/17L| BRK2L/191L
BRKOOC17+1L
BRKSUB17L

] BRKSUB17L/1L

UNCLASSIFIED MOLECULES (2, 6)
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