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ABSTRACT

Several methods are being considered for storing arrays in a parallel
memory system so that various useful partitions of an array can be fetched
from the memory with a single access. Some of these methods fetch vectors
in an order scrambled from that required for a computation. This paper
considers the problem of unscrambling such vectors when the vectors belong
to a class called p-ordered vectors and the memory system consists of a
prime number of modules.

Pairs of interconnections are described that can unscramble p-ordered
vectors in a number of steps that grows as the square root of the number
of memories. Lower and upper bounds are given for the number of steps to
unscramble the worst case vector. The upper bound calculation that is
derived also provides an upper bound on the minimum diameter of a star
polygon with a fixed number of nodes and two interconnections. An algorithm
is given that has produced optimal pairs of interconnections for all sizes
of memory that have been tried. The algorithm appears to find optimal pairs

for all memory sizes, but no proof has yet been found.
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I. INTRODUCI'ION

Many of the large computers that are being used and designed today
have a parallel memory system that consists of several memory modules.
Each memory module operates independently so that accesses to different
modules can be overlapped to improve the overall performance of the computer.
One example of a computer that uses such a memory system is the ILLIAC IV
[Barnes et al., 1968; Kuck,1968]. Much work has been done on how data
should be stored in this kind of memory so that algorithms for ILLIAC IV
can be executed efficiently. Some of the proposed storage schemes provide
efficient access to the data, but when data is fetched from the memory,
it is not in the order required by the algorithm. Thys, there must be
some means to unscramble the data so that it is in the correct order.

This paper considers a computer architecture that is modeled after
that of the ILLIAC IV and studies the problem of unscrambling the vectors
of data that can be fetched from the memory with a single memory access.
Storage structures that have been proposed are shown to give rise to a
class of scrambled vectors called p-ordered vectors. Tnpterconnections
are presented that can unscramble all vectors in this class. ¢[pege inter-
connections are studied in detail to determine the best ones to use for
a given number of memory modules.

Section II gives a brief description of the computer model under
consideration and presents several ways to store two dimensional arrays
in the parallel memory. The examples show the appearance of p-ordered
vectors in typical situations. Section III discusses the problem of

unscrambling p-ordered vectors and introduces the k-apart interconnection.



We show that a single k-apart interconnection is sufficient to unscramble
all p-ordered vectors as long as k is chosen appropriately. Each time

a vector 1is routed along the interconnection, all elements of the vector
are transferred in parallel. A numberof such routings take place in
sequence in order to unscramble a particular p-ordered vector. In Section IV
we consider using two different k-apart interconnections to speed up the
unscrambling process. We are interested in minimizing the number of
routings required by a vector in the worst case. We give lower and upper
bounds on this number of routings and show that both bounds are of the
order of ¢Gi-where N is the number of memory modules. The upper bound

is shown to be close to the optimal number of routings known for certain
values of N. Finally, in Section V an algorithm is derived that gives an
optimal pair of interconnections for many values of N. We conjecture

-that the algorithm provides an optimal pair for any value of N.



II. &ORDERED VECTORS

We first briefly describe the computer model treated here and then
show how two dimensional arrays might be stored in such an architecture.
We see that p-ordered vectors arise naturally from these storage structures.
In order to define p-ordered vectors for all values of p, we find that we
must restrict the number of memory modules to be a prime number.

The computer model used throughout this paper is shown in Figure 2.1.

.This is the same architecture as the ILLIAC IV with the addition of the

interconnection network between the -processing elements and their memories.
The single instruction stream is read and decoded by the control unit.
Instructions meant for the control unit are executed there. Processing
element instructions are sent on to the processing elements,, and all
processing elements execute the same instruction simultaneously. Each
processing element has an index register and can add the contents of this
register to the address in the instruction to obtain the address of the
operand in its own memory. Thus, a single load instruction causes each
processing element to fetch:some word from its memory. The net result

is that a vector of data can be fetched in one memory access. The inter-
connection network consists of a register for each processing element.
Each register is connected to the memory buffer register of the correspon-
ding memory unit and to some set of registers in the processing element

so that values can be transferred between a processing element and its
memory through this register. We are interested in defining the inter-
connections between the registers themselves so that vectors fetched from
the memory can be unscrambled efficiently.

Several people have studied the problem of storing arrays in parallel
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memories [Kuck, 1968; Muraoka, 1969; Knowles et al., 1967; Stevens, 1970;

- Budnik and Kuck,1971]. The simplest way to store a two dimensional array
is to use straight storage allocation as illustrated in Figure 2.2. The
rows of the array are spread across the processing element memories, but
each column is contained entirely within a single memory. Clearly, any
row can be fetched from the memory with a single access as can the main
diagonal, but a column requires an access for each element in the column.

Skewed storage allocation can be used to overcome this problem and
is illustrated in Figure 2.3. This method of storage allocation also
spreads rows of the array across the processing element memories, but

the first element of each row is displaced one memory unit from the first

e
bt e v

- element of the previous row. We can still fetch any row with a single
memory access by setting the index registers appropriately. Note that
it is not possible to fetch the main diagonal with a single access.

These two methods of storage allocation waste space if the number
of columns in the array is not the same as the number, of processing
element memories. Figure 2.4(a) shows the same two dimensional array
packed into the memory with no wasted space. Each new row begins
immediately after the previous one. We can still fetch any row with a
single memory access by setting the index registers properly, and a study

of the figure also shows that any column can be fetched with a single

memory access. Figure 2.h(b)shows the contents of the memory buffer

-register of each processing element if the first column is fetched.
This is the first example of a vector which may not be in the correct
order. Suppose that we want the inner product of this column and a row

from another matrix that is stored in the same way. We must first align
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the fetched column so that corresponding elements of the row and column
are in the same processing element. Then all multiplications can be
done in parallel. Note that the second element in the desired order
of the column (a21) is five elements away from the first element (all).
Similarly, the third element (a31) is five elements from the second.
This is an example of a p-ordered vector with p = 5. These p-ordered
vectors are characterized quite simply in general. The mathematical
definition which follows the next example shows that elements that should
be adjacent after the vector has been-unscrambled are p elements apart
in the p-ordered vector.

Budnik and Kuck[1971] have looked at the problem of storing
arrays so that rows, columns, main diagonal, and square subarrays can
all be fetched with a single memory access. Their results place certain

restrictions on the number of modules in the memory system. One useful

memory size 1is 22L + 1 memories, and they give an example of storing

a 4xX4 array in five memories. This is shown in Figure 2.5. A study

of this example shows that any row or column, the main diagonal, and
all 2X2 subarrays can be fetched with one memory access by setting the
index registers correctly. Note that if a column is fetched, it is not
in the proper order. Elements that should be adjacent are two apart

in the fetched vector so it is a 2-ordered vector. Similarly, if the
main diagonal is fetched, a j-ordered vector results, since elements
that should be adjacent are three elements apart.

With these examples of p-ordered vectors in mind we proceed to give
the general definition. We can associate a control vector with any
vector fetched from the memory. This control vector specifies how the
fetched vector is to be ordered. If X is a vector fetched from a

memory with N modules (X has N elements and is called an N-vector),
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and A is the control vector, then A(l) = J, 0 € I, J £ N-1, means that
the value X (1) should be in position J after the vector has been reordered.

The vector X is p-ordered if its control vector is p-ordered as given in

the following definition.
Definition: An N-vector A is p-ordered, 1 € p € N-1, if its (contents
are described by
Alpi mod n] = 1 (2.1)
where 0 € 1 < N-1.
Since we are not interested in the actual values of the vector elements
fetched from the memory but in their relative positions, all vectors
mentioned in the rest of the paper are control vectors. 1f 3 control
vector can be brought into numerical order, then the same operations
applied to the fetched vector will bring it into the desired order.
Figure 2.6 shows a 2-ordered vector with N = T,
The definition in (2.1) requires one restriction. Spome value must
be assigned to each of the N elements of A. Thus, given any j, 0 < j <€ N-1,
we must be able to find some value of i, (0 s i € N-1, such that
pi mod N = j.
This can also be written as
pi = j (mod N).
Such a linear congruence has a solution for i only if gcd(p,N) divides
s, where gcd(p,N) is the greatest common divisor of p and N [Andrews,
1971, page 60]. If some io satisfies the congruence, then any multiple
of N added to or subtracted from i0 will also satisfy it. Therefore,
if the congruence has a solution, we know that we can find some solution,
i, that satisfies 0 £ i < N-1. e want a solution for any j, but the

only number that divides all integer values from 0 to N-1 is 1. Thus,
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gcd(p,N) = 1 so that p must be chosen relatively prime to N. Since
we want to unscramble all p-ordered vectors with 1 € p £ N-1, we must
restrict N to be prime. Therefore, in the remainder of the paper the

number of memory modules, N, is prime.
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III. UNSCRAMBLING P-ORDERED VECTORS

Having seen that p-ordered vectors occur naturally when certain
storage allocation schemes are used for two dimensional arrays in a
parallel memory, we proceed to study the problem of unscrambling these
efficiently. We propose an interconnection called a k-apart inter-
connection and show that a single k-apart interconnection is sufficient
to unscramble all p-ordered vectors if k is chosen appropriately.

The most obvious way to unscramble a p-ordered vector is to have
the registers containing the vector interconnected in such a way that
there is a direct connection from each vector element to the register
representing its final position. This idea is generalized in the following
definition of a k-apart interconnection.

Definition: N registers are interconnected with a k-apart inter-

connection, 1 <€ k £ N-1, if the contents of register (ki mod N)

can be transferred directly to register i, with 0 € i £ N-1. The

notation for such an interconnection is

reg [ki mod N] = reg [i].

As with the definition of p-ordered vectors, we must restrict
k to be relatively prime to N, but remember that N has already been
restricted to a prime number. When a vector contained in the registers
is to be routed along the interconnection path, all registers transfer
their contents simultaneously. If the registers contain a p-ordered
vector with p = k, then one transfer is sufficient to unscramble the vector
to a l-ordered vector. The relationship between a k-apart interconnection
and arbitrary p-ordered vectors is given in the next theorem, which
states that a single k-apart interconnection can be used to unscramble

all p-ordered vectors. Figure 3.1 illustrates this with seven registers
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interconnected with a j-apart interconnection. IRh€ contents of the

registers is a 2-ordered Vector, and the figure also shows that after

two routings along the interconnection path the vector is in the correct

order.

from

Since the proof of the theorem and later discussion use results

group theory, we first describe the notation that is used.

1. AN is the additive group of integers under addition modulo N.

The symbol +N is used to denote the group operator. This is a

cyclic, abelian group, and every element that is relatively prime

to N is a generator of the group. The order of the group is N.

2. The notation (ia)N with i any positive integer and agA denotes

a sum containing i occurrences of the element a. For example,
(3a)N =a -+, at a.

If i is a negative integer, then the notation represents a sum

containing |i| occurrences of the element -a, which is the inverse

of the element a. If i = 0, we define (ia)N to be 0.

3. MN is the multiplicative group of integers under multiplication

modulo N. The symbol ® N is used for the group operator. In order

for this structure to actually be a group, N must be prime. This

group is also cyclic and abelian, Since 0 is not in the group,

the order of the group is N-1.

Theorem 3.1: Given N registers, with N prime, which are interconnected

with a k-apart interconnection, if k is a generator of the group M
then any p-ordered vector contained in these registers can be
converted to a l-ordered vector by a finite number of routings
along the interconnection path.

Proof: Since N is prime, we can replace the mod notation in the
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previous definitions of p-ordered vectors and k-apart inter-
connections with multiplication in the group MN. Note that
register 0 always contains 0 and can be ignored in the proof.
It is straightforward to show that after j routings through the

interconnection network the contents of the registers are given by

rg [i] H p-1 O wki® ni), 1eMy. (3.3)
In order for the vector to become l-ordered after some number of
routings, Jj, it is necessary for register i to contain the value 1i
for all iEMN. From (3.3), j must-satisfy

i -1
Py 3 o 1) =1, 1eMN¢

Then the necessary number of routings, j, must satisfy

J
k” = p, (3.4)
_ Since k is a generator of MN, and p is an element of MN' such a 3
clearly exists in the range 0 £ j < N-2. 0.E.D.
- We have shown that if the registers of the interconnection network

are connected with a k-apart interconnection such that k is a generator
of the group MN' any p-ordered vector fetched from memory into these

registers can be unscrambled to produce a l-ordered vector. This vector

can then be used by the processing elements. If we let N =7,we find
- that k =3 is a generator of Mﬁ. If we want to unscramble a 2-ordered
vector with seven elements, according to (3.4) it will take j routings
where j is given by 3J = 2. Since 3.7 3 = 2, two routings are required.
This is precisely what was shown in Figure 3.1.
Since k is a generator of MN’ and the order of MN is N-1, each value

. of k3

is distinct for 0 £ j £ N-2. As a result, there must be some value
of p that requires a worst case of N-2 routings to unscramble the corre-

sponding p-ordered vector. We can use more interconnections between the



registers to decrease the number of routings in this worst case. Suppose
that we use two different k-apart interconnections described by inter-

connection distances k. and k.. An argument similar to that used in

1 2

deriving (34)shows that in order to unscramble a particular p-ordered

vector the problem is to find i and j such that

i J
kl 0 Nk2 = p. (3'5)

Then i routings along the % -apart interconnection followed by Jj routings

1

along the k. —apart interconnection will unscramble the p-ordered vector.

2

The interconnections are commutative, since MN is an abelian group.
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IV. USE OF TWO K-APART INTERCONNECI'IONS

The use of two interconnections instead of one creates many new
problems which are the subject of the rest of the paper. What conditions
must be placed on the values of kl and k2 to guarantee that all p-ordered
vectors can be unscrambled by using these two k-apart interconnections?
What lower and upper bounds can be derived for the total number of routings
required to unscramble any p-ordered vector in the worst case? HOw should
'kl and k2 be chosen to minimize the number of routings required to unscramble
the worst case p-ordered vector? The first two questions are considered
in detail in this section, and the third question is studied in the
following section.

Rather than looking for generator pairs for the multiplicative
group, MN, it is simpler to deal with the additive group Ay i If we
find a satisfactory pair, (a,b) in AN—l’ the interconnection distances that
correspond to this pair are given by

a

kl g »

b >
k2 =g,

where g is a generator of MN.
We can then state the three questions posed at the beginning of this
section in terms of the group AN—l' What conditions must be placed on
the pair (a,b) to guarantee that the pair is a generator pair for the
group AN-l? What lower and upper bounds can be derived for the number
of a's and b's required in any sum in the worst case? How should the

pair be chosen to minimize the number of terms required in any of the

sums?
Stone [1970] considers these problems in a somewhat different

form. He is interested in finding a star polygon with minimum diameter



for a specified number of nodes and connections. A star polygon is a
directed graph with n nodes, each node having d outward directed edges.
The edges of the graph are given by a connection set containing d
elements. If the nodes are numbered from 0 to n-1, then each node i
has an edge from itself to node (i + sj) mod n, where sj takes each value
in the connection set. Stone considers the case with the number of nodes
equal to a power of two and provides a lower bound on the diameter for
various numbers of connections. He also gives the actual minimum diameter
in certain cases, which he obtained by using an exhaustive search. The
work that is presented here provides both a lower and an upper bound on
the minimum diameter for star polygons with two connections and any
number of nodes, although their application to unscrambling p-ordered
vectors requires a prime number of nodes. A means of reducing the
diameter below this upper bound is discussed in the next section.

The next theorem gives the condition on (a,b) that must be met
in order for the pair to be a generator pair. In this and later proofs
we implicitly use gcd as a commutative and associative binary operator.
This leads to identities such as

gcd(a,b,N-1) = gcd(gcd(a,b),N-1) = gcd(gcd(a,N-1),b)

Theorem 4.1: The pair (a,b) is a generator pair for the group

AN-l if and only if gcd(a,b,N-1) = 1.
Proof:
(a) Given gcd(a,b,N-1) = 1. Let h = gcd(a,b). Then positive
integers m and n exist such that
a = mh,
b = nh, (k.1)

and gcd(m,n) = 1.
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From the hypothesis, h is relatively prime to N-1. Therefore, h
must be a generator of AN-l' Thus, for all xéAN_l, there exists
i, 0 £ 1 £ N-2, such that

X = (1h)N_l _ (ih) mod N-1.
Since m and n are relatively prime, integers j1 and j2 exist such
that

jlm + n=1.

Iim + 3,
Multiplying this by ih gives

ijlmh + ij2nh = ih.
Using (4.1) in the above and taking the result modulo N-1 gives

X = (ih) mod N-1

1]

(ij a + ij b) mod N-1
1 2

((131)a)g; +yoq ((135)0) ;.

Thus, any element of AN—l can be written as a sum of a's and b's.
(b) Given that (a,b) is a generator pair for' AN-l' Then for all
XGAN_l, there exist i,j 2 0 such that

X = (ia)N_1 N1 (jb)N_l.

Leth = gcd(a,b) so that (4.1) can be used in the above to give

X

(A(mh )y ey G(ER))yy

(imh + jnh) mod N-1

((im + jn)h) mod N-1

im + j .

((im + gndn) |

This last equation says that h is a generator of AN 1 so that h
must be relatively prime to N-1. Thus, gcd(a,b,N-1) = 1. Q.E.D.
A lower bound on the number of terms required in the worst case

to represent any element of A as a sum of a's and b's is given in the

N-1

following theorem.
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Theorem 4.2: Let a,bGAN 1 be a generator pair for AN 1. If each

element of AN—l is written as a sum of a's and b's with as few

terms as possible, then the number of terms, n, in those representa-

tions requiring the most terms is bounded as follows:

. VBN - 7 -3
—_—

n

Proof: This result is easily seen by considering Table 4.1. Row i
of the table shows which elements of AN 1 can be represented as
a sum of a's and b's containing i terms. Row n is the lowest

numbered row such that all elements of A 1 can be found in the table
in the rows corresponding to n or fewer terms. ©Note that each row
has one more entry than the previous row so that row i contains i + 1
entries, 0 < 1 < n. We can now see that the number of entries in

row O through row n must be at least N-1 (the number of elements

in AN—l)' This gives

n
T (1+ 1) 2N-1.
i=0

This can be written as

n+l

$ 1= (n + 1)gn + 2) > N-1
i=1

2

orn + 3n+ 2 22N - 2.

This quadratic inequality can be solved for n to give

. V8N_57'_3_,

Q.E.D.

In terms of unscrambling p-ordered vectors the last theorem says
that if we use any two k-apart interconnections that can unscramble all

p-ordered vectors, then some p-ordered vector will require a number of
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Numbeii gimTerms Elements of Ag , Represented
0 0
1 a b
2 a+teq12 3 N-1 b b TN-1 b
n (ma),,  ((m-Da)gy #y_y . . (),
>
Table 4.1
Representation of Elements of Ay., @s Sums of the Elements

a and b
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routings that is at least as great as the lower bound of the theorem,

In order to determine how much greater we now construct an upper bound

on the number of routings required to unscramble all p-ordered vectors.
We return to the group AN—l and consider generator pairs of the

form {1,b). Such pairs will clearly generate all elements of AN—l’ since

. Then x

1 itself is a generator of A_ 1. Let x be any element of AN—l

N

can be written in terms of (1,b) as

X

h

(ib)N-l +N—l (jl)N—l

(b g o 3 1= 0

We want to choose b so that i + j <the number of terms in the sum) is
minimized for all x. An obvious way to choose i and j for any x is
shown in Table 4.2.

The dotted lines partition the table into consecutive rows that
have the same value of i. Each partition (except possibly the last)
contains b rows. The maximum value of i + j in the table occurs in the
last row of the last full partition (a partition with b rows). The
number of full partitions i; kN—l)/?J, and so the value of i in the
last full partition is

i = kN—l)/bJ - 1.
The value of j in the last row of any full partition is clearly b-1.

Thus, the maximum value of i + j in the table is

/. . _ !/ - - -
(1+3) - [\N 1)/bJ 1+b-1
= |-(N—1)/bJ +b - 2. (4.2)
We want to choose b so that (i + j)max is minimized. If we minimize the

function f(b) = (N-l)/b + b -2, we find that b =/N-1 gives the minimum

value. Since b must be an integer, we choose b = l N-HJ orb= L/N—l]



X i J i+
0 0 0 0
1 0 1 1
b-1 0 b-1 b-1
___________________________ . I————————
b 1 0 1
(ep), , -1 1 b-1 b
2b
( )N_l 2 0 2
(3b)N 151t 2 b-1 b+1
N-2
Table 4.2

Representation of Elements of A , as x = (ib)N 1+

N

1

j

25



depending on which minimizes 1 + j)max' As long as N is not a perfect
square we can show that

—[_I;J%J—+'.‘/N——T|—2= TI%T+ [\/&-—1]—3

Since N has been restricted to a prime number, we see that it maxkes no

difference which of the two values of b is chosen, In summary, we have

constructed an upper bound on the number of terms required to form any

element of A as a sum of 1's and b's. We choose b = L/N—lJ {or L/N—l]

N-1

and then the upper bound is
UB - lm-l)/bJ + b -2, )

The second and third columns of Tablel.3 give the lower bound of
Theorem 4.2 and the upper bound of (4.9) for various values of N. The
fourth column of the table was obtained from a computer program that
considered all possible pairs of k-apart interconnections for a given
value of N, For each pair the program determined how many routings
would be required to unscramble the worst case p-ordered vectar. The
smallest value in this set of numbers is reported in coluxn four of the
table and corresponds to an optinal pair of interconnections., Note that
the constructed upper bound, which provides a pair (1,b) that meets this

bound, is very close to the optimal solution in all the cases shown.
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5 2 2 2

T 2 3 3
11 3 4 4
13 b 5 5
17 5 6 5
19 5 6 6
23 6 T T
31 T 9 8
61 10 13 12

257 22 30 27*
Table 4.3

Lower and Upper Bounds on Number of Routings to Unscramble
Worst-case p-ordered Vectors Compared to Optimal Number of

Routings in Worst Case

*
This value is not the result of an exhaustive search but is
the best value found in a partial search and appears to be

optimal.
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V. IMPROVING THE UPPER BOUND

In this section we again consider the problem of representing all
elements of AN-l as a sum of elements from a generator pair (a,b) and
construct an upper bound on the number of terms needed in any of these
sums. This upper bound is different from the one of the previous section
and not quite as good. It does, however, lead to an algorithm that will
produce an optimal generator pair for those values of N shown in Table 4.3.
We have been unable to prove that the algorithm will produce an optimal
generator pair for all N, but the empirical evidence suggests that that is
the case.

We begin the derivation by considering some element, a, of AN 1.

We denote by (a) the subgroup generated by a. The order of this subgroup
is n, the value of which is given in the following theorem. Since this
result is well known, the theorem is stated without proof.

Theorem 5.1: If a is any element of A

N-1" then the order of (a)

is given by
n = (N-1)/gcd (a,N-1). (5.1)
The number of distinct cosets of (a) in AN—l is given in Lang [1968, page 27].
This is denoted by m and is given by
m = (N-1)/n, (5.2)

Now we construct a table of the elements of AN—l in the following

manner. Row zero of the table starts with 0, and each of the other
elements of the row is formed by adding a to the previous element. Thus,
this row is just the subgroup (a). Choosing an element b from AN—l’ we

form additional rows by adding b to each element of the previous row.
Of course, all addition is done modulo N-1. The rows of the table are

just the cosets of (a) in A _ If b is chosen so that the first m

N-1°
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rows correspond to the m distinct cosets, then the table with m rows
and n columns contains precisely the elements of AN L Since (a,b)
must be a generator pair for the group AN—l, Theorem 4.1 says that b

must be chosen such that gcd(a,b,N-1) = 1. The following theorem
shows that this same restriction gives the m distinct cosets as the first
m rows of the table. The theorem uses the fact that two cosets are
either equal or have no elements in common.

Theorem 5.2: If gcd(a,b,N-1) =1, then for all i, 1 €1 € m-1,

(18)g.y £ (8) 4, (3b)_.

for all j, 0 5 j < 1.
Proof: By using (5.1) and (5.2) we see that gcd (a,N-1) = m. Then

we write the hypothesis as
gcd(m,b) = 1. (5.3)
Using proof by contradiction, we assume the contrary of the conclusion

of the theorem. Thus, there exists io, 1< io < m-1, such that
ib j
(1gP)yy € (8) 1y (3P)y
for some j, 0 £ j < io.

This statement says that integers k., 0 £ k. € n-1, and J

0 0 o 05 dg < i

exist such that
b +
1Py = Cp2)yoy ey (IgPly g
We can write this equation in terms of regular integer arithmetic as
ib _ - = - _
0 p(N-1) kya + Jgb - q(N-1)

for some p,q 2 0.

Rearranging the equation, we obtain

(1O - jo)b = kga + (p-q)(N-1).
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Since gcd(a,N-1) = m and N-1 = nm, m clearly divides the right-hand
side of this equation. Therefore, m must divide the left-hand side
as well, but since the hypothesis states that m:and b are relatively
prime, m must divide the ternl(io - jo). If we look at the ranges
in which i0 and jo must lie, we see that

1< (io - jo) <€ m-1.

It is impossible for m to divide (i ) so we have reached a

0~
contradiction, thus proving the theorem. Q.E.D.
Figure 5.1 presents such a table for the group A3O with a =3 and

b = 2. The order of the subgroup (a) is given by (5.1) as n = 10, and

the number of distinct cosets is given by (5.2) as m =3. Diagonal

lines have been drawn in Figure 5.1 so that those elements on the same

diagonal can be represented by a sum of a's and b's with the same number

of terms. For example, the elements 4,5, and 6 are all formed from sums

with two terms. If we count the diagonals, starting from 0, we find

that all the elements of A can be represented as sums with no more than

30
eleven terms. Note that this particular upper bound is not as good as
that given in Table 4.3, which shows an upper bound of 9 for N =31.

In the general case, the number of diagonals needed to cover a
table like that in Figure 5.1 provides an upper bound on the number of
terms needed in any sum if we want to write all elements of AN_l as a
sum of a's and b's. We count the diagonals starting with zero, since the
element 0 requires no terms in its sum, to obtain the general upper
bound of

UB=n+m- 2, (5.4)

Obviously, the choice of a determines the values of n and m so we want

to choose a to make this bound as small as possible.
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The results so far say that if we pick some element a and an element
b that satisfies (5.3), then all the elements of AN_1 can be put into a
table with m rows, each row containing a distinct coset of (a) in AN—l'
We can cover this table, except the 0 element, with a number of diagonals
given by (5.4). If we are careful in selecting b, however, the table
can in general be covered with fewer diagonals. If we generate additional
rows in the same manner and call each set of m consecutive rows a partition,
then each partition consists of the same cosets, but the elements in each
coset are cyclically shifted from their positions in partition zero.
This is easily seen by writing the element in row i, 0 £ i £ m-1, and
column j, 0 € j € n-1, as

0= (10)y gty (o)

Then an element in row i of partition g, g = 0, is given by

Xyrqn = (0 + @)y )+ (Ga)e )

(10)y g ey ((@m)P)y g ey (Gady -
If the element ((qm)b)N_l can be shown to be an element of (a), then
this last equation says that any element in row i + gm also occurs in row i.
In addition, each element of row i + gm is formed by adding a to the previous
element so that row i + gm is just a cyclic shift of row i. We show that
((qm)b)N_1 is an element of (a) by showing that m is an element of (a).
Since m is in Ag ,, we have that ((qm)b)N_1 = ((qb)m)N_i. Therefore,
if m is in (a), then ((qb)m)N_lis in (a). From (5.1) and (5.2) we see that
m = ged(a,mn).
If m is given, then the element a is given by
a = km (595)
where 1 £ k € n-1

and gcd (k,n) = 1.
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The set of positive integers less than n and relatively prime to n forms
a group under the operation of multiplication modulo n. Therefore,
k is in this group and has an inverse element, k_l, such that
(k-lk) mod n = 1.
Using a result from Knuth [1969, page 39], we can write the last equation
as
(k='km) mod mn = m.
Now we apply (5.5) and use mn = N-1 to obtain
(k-l'a)N_1 = m,
which gives the result that m is an element of (a).
Figure 5.2 shows additional rows added to the table of Figure 5.1
to give four partitions. Note that each partition consists of cosets
that are cyclically shifted two places left from their positions in
the previous partition. The diagonals have been extended to cover the
new partitions. It is clear from this example that no fewer than eleven
diagonals are sufficient, since the element 1 first occurs on the eleventh
diagonal.
Suppose we examine the table formed if we use b = 4 along with a = 3.
This is shown in Figure 5.3. Now only 'nine diagonals are needed to make
certain that every element of the group occurs on some diagonal. The
elements within the outlined boundary fall below the ninth diagonal in
partition zero, but in partition two, these same elements lie on or above
the ninth diagonal.
This procedure to reduce the upper bound can be generalized. We
assume that the element a is given so thatnand m are known. The element,
L, in the lower right-hand corner of partition zero has a value that

depends on which element is--ultimately chosen for b, Since L is in row



34

m-1 and column n-1, its value is
L = ((m—l)b)N_l +N_1 ((n_l)a)N_1}

or using the mod notation, we obtain
L = (mb -Db + na - a) mod N-1. (5.6)
Fronl(5.h) we know that the occurrence of L in partition zero lies on
diagonal mn + m - 2. Suppose we specify that in partition gq, g 2 1,
L is to lie on diagonal n + m - 2 - x, where x = 0. Then the occurrence
of L in partition g has moved up x diagonals from the occurrence of L
in partition zero. Therefore, the position of L in partition g is gm
rows down from and gm + x columns to the left of its position in partition
zero. As a result we can also write I, as
L= ((qgm + m - l)b)N_1 *N-1 ((n-1-qgm - x)a)N_l.
If we equate this with (56)and simplify, we find that b must satisfy
qub = (gm + x)a (mod N-1), g = 1. (5.7)
This last result tells how b must be chosen if x is known, but
how should x be chosen. We would like to choose x as large as possible
and still guarantee that all elements of the group lie on diagonals
0 through n + m - 2 - x. For any value of x the only elements that do
not satisfy this requirement are those in partition zero that lie below
diagonal n + m - 2 - x. In the last row of partition zero there are
exactly x elements below that diagonal. We know, however, that if b can
be chosen to satisfy (5.7), then L will lie on diagonal n + m - 2 = x
in partition q. If there is room for the other x-1 elements to the left
of L in partition g then all the elements of the last row will satisfy
the requirement. Note that since the relative positions of the elements

are the same in each partition, the elements which are below diagonal
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n+m-=2~ x in the other rows of partition zero will be above that
diagonal in partition g. Since column j, O & j € n-1, has precisely
j columns on its left, and since L is in column n - 1 - gm - x in partition
q, the requirement is satisfied if the following is true:
X~-1l<n-1-qgm-~- x,
This simplifies to
x < [(n - qm)/2J, qz1.
Remembering that we wanted to make x as large as possible, we take q=1
to obtain
x5 l(n - m)/2J_ (5.8)
If n = m, then the maximum value of x is zero. In that case the upper
bound cannot be improved by considering partitions other than partition
zero. Then we can choose any value of b that will form a generator pair
with the value of a given by (5.5), since we do not care where the
elements lie in the other partitions. A convenient choice is b = 1.
Now that we have restricted g and know how x should be chosen,
we look more carefully at (5.7), which is used to determine b. Setting
g = 1 and N-1 = nm and using (5.5) we obtain
mb 2 (m + x)km (mod nm),
where 1 € k < n-1, and gecd(k,n) = 1.
Since gcd(m,nm) = m, and m divides (m + x)km, we know that this congruence

has m mutually incongruent solutions for b [Andrews, 1971, page 60]. One

solution is obtained immediately by using Knuth [1969, page 39]. The
result is
bo = (m + xX)k mod n
where 1 < k € n-1 and gcd(k,n) = 1.

All the solutions are then given in terms of this one and are given by
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b, = ((m+ x)k) (mod n) + nt, (5.9)
where 1 € k € n-1

gced(k,n) =1

O0<t < ml,
Any of the m values of b that satisfy (5.9) can be used along with a = km
to form a table of the type that has been discussed. The element L will
lie on diagonal n + m - 2 - x in partition one, and all the elements that
occur in partition zero will be covered by diagonals 0 through n + m - 2 - x.

We require, however, that each partition contain all elements of the group

A that is that (a,b) be a generator pair of A

N-1" As a result, b is

N-1"
restricted by (5.3) to be relatively prime to m so that only certain
solutions of (5.9) can be used. The next theorem says that we need only
consider values of n, m, and x that have no common factor. For such values
of n, m, and x, the theorem says that we can use k = 1 in (5.9) and be
guaranteed that some value of b, exists that satisfies (5.9) and that is
relatively prime to m.

Before stating the theorem we show how (5.9) is simplified by letting
k=1. We want x to be non-negative, and we have already discussed the
case of x = 0. Using (5.8), we see that we can restrict m to be strictly
less than n. This result along with (5.8) leads to the following relation:

m+xs<m+ l(n-— m)/2J
Sm+ (n=-m)/2= (m + n)/2
< (n + n)/2= n.

Letting k = 1 and using this last relation in (5.9) gives

b, =m+ x +nt, 0 <t < ml. (5.10)
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Theorem 5.3 Given positive integers m, n, and x from which m

values are determined by

bt =m + X + nt, 0 €t € m1,
then a value of t exists such that gcd(ﬁt,m) =1 if and only
if ged (m,n,x) = 1.
Proof:
(a) Given a value of t such that gcd(bt,m) = 1. Assume the contrary

of the conclusion that n, m, and x have a common factor f > 1. Then

from the manner in which bt is defined, it is clear that f must
divide bt' This contradicts the hypothesis so that gcd(m,n,x) = 1.
(b) Given gcd(m,n,x) = 1. Let f = gcd(m,n), and let d = m/f. Then
gcd(f,x) = 1 from the hypothesis so that integers u and v exist such
that

uf + vx = 1. (5.11)
We first show that a solution to (5.11) exists such that v is

relatively prime to d. If u,v

9V is one solution to (5.11), then

all solutions are given by [Andrews, 1971, page 24]
U =u - tx (5.12)
V=V0+tf
where t takes on all integer values.
Note that wvalues for uo and vo can be found by using the Euclidean
algorithm to find gcd(f,x) [Niven and Zuckerman, 1972, page 7].
If vO is relatively prime to d, then we are finished. On the other
hand, suppose that vo and d are not relatively prime. Then the set

of all prime numbers that divide d can be partitioned into two disjoint

sets described by
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Y = {the set of all prime numbers
that divide both d and vO}
Z = (the set of all prime numbers

that divide d but not VO}.
Clearly Y is not empty. Set t equal to the product of all
of the elements of Z. If Z is empty, set t = 1. Let u', v'
be the result of using such a value for t in (5.12)., We now
show that v' 1s relatively prime to d. If we assume the contrary,
then any prime number that is common to both v' and d must be
an element of either Y or Z. Suppose that y € Y is common to
both v' and d. Then since y € Y, y divides VO, and from (5.12)
y divides tf. ©Now y and f are relatively prime, since if they
had a common factor greater than 1, it would divide vO as well,
but vy is a solution to (511) and must be relatively prime to f.
As a result y must divide t, but t is either 1 or a product of the
elements of 7. In either case y cannot divide t. If Z is not
empty, the only remaining possibility is that z € Z is common to
both v' and d. Since z € Z, we know that z divides t so from
(5.12) it is clear that z divides.vo' which again is a contradiction
since z € Z. Thus, we have shown the existence of a solution to
(5.11) in which v' is relatively prime to d.

Since f = ged(m,n), integers r and s exist such that

rm + sn = f.
Using this and the solution u',v' in (5.11) gives

u'rm + u'sn + v'x = 1.
This can be written as

u'rm+u'sn + v'x + vim~-v'm + v'in - v'in = 1
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with i some integer. Rearranging gives
vi(m+ x + in) + (U'r ~Vv')m + (u's - v'i)n = 1. (5.13)
We now show that i can be chosen so that u's = v'i is a multiple
of d. This requires that an integer Jj exists such that
u's - v'i = jd.
This can be written as
jd + iv' = u's,
which is a linear Diophantine equation in unknowns j and 1i.
We have shown that ged(v',d) = 1, so the equation clearly

has a solution. If i, and JO satisfy the equation then so do

where w takes on all integers values.
Since d divides m, it is clear that a value of i exists in the
inclusive range 0 to m-1. Let i' be such a value and let j' be
the corresponding value of j. Using these results along with
n = ef and m = df, we see that (5.13) becomes
vi(im + x + i'n) + (u'r - v')m + j'def =
viim + x ¥ i'n) + (u'r = v' + j'e)m = 1.
Now the second factor of the first term is just bi.so that
bi,is relatively prime to m. Q.E.D.
In the discussion so far we have assumed that we are given the value
of n, from which we can calculate m, x, and a generator pair (a,b). In
order to complete the procedure we must specify how n is chosen. Since

n represents the order of a subgroup of the group A only those values

N-1'
of n that divide N-1 (the order of the group AN—l) can be considered.

From (5.8) we see that in order to have x be non-negative, we must have



42

n<m. Thus, from (5.2), which defines m in terms of n, we finally conclude
that we must limit n to those integer values that are greater than or

equal to ,/ﬁjI and that also divide N-1. We then choose that value that
minimizes the upper bound of n + m - 2 - x and that also leads to a
generator pair (a,b).

An example should clarify the use of theé&procedure that has been
developed in the preceding discussion. We consider the group A3O’ which
was used in examples at the beginning of this section, to see if the upper
bound of nine depicted in Figure 5.3 can be improved. Figure 5.4 shows
the calculations that give the best value for n. The first column contains
those integers that are greater than or equal to\/§6 and that divide 30
The second column is given by (5.2), the third column is the maximum
value for x as given by (5.8), and the last column gives the upper bound.
The smallest value of the upper bound is 8 so we should use n = 10, m = 3,
and x =3. From (5.5) we find that a value for a is a =3. Now we use
(5.10) to obtain a wvalue for b, Substituting the known values of the
parameters, we obtain
b, =3+ 3+ 10t,

or bt = 6 + lot.
Noting that b must be relatively prime to m, we let t = 1 and obtain b = 16.
Figure 5.5 shows the coset table that results from the generator pair (3,16).
Note that eight diagonals do indeed cover all the elements of the group
and that eight was the optimal number of routings needed to unscramble the
worst case p-ordered vector when N = 31 (see Table 4.3).
We conclude this section by summarizing this algorithm, assuming

that the value of N is given and that we want an "optimal" generator pair

for the group AN-l'
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Figure 5.k

Values of n and Corresponding Values
for m, %, and Upper Bound for N-1 = 30
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Coset Table for the Group A
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1. For each value of n such that n 2 N-1 and n divides N-1,
calculate m = (N-1)/n and calculate all values of x such that
- 0<x< [(n -m)/2J.
2. For each of the triples in Step 1 calculate n + m -2-x,
Let n', m', and x' be the values that minimize n + m -2-x
such that n', m', and x' have no common factor or such that
x' = 0.
3. If x' = 0, use a = m' and b = 1 as the generator pair.
4. Otherwise, let a = m' and choose b to satisfy the equation
) bt=m'+x'+n't, O<sts<sm' -1,
such that ged(b,m') = 1.
Step L as stated might require generating several values of bt until
one that is relatively prime to m' is found. The proof of Theorem 5.3, .
however, does give an explicit procedure to find a value of t such that
. bt is relatively prime to m'. This algorithm has been applied to all of
the values of N given in Table L4.3. The generator pairs that are found can
generate all elements of the group Ay ; as sums containing no more terms

than the optimal value given in Table L4.3. Therefore, the algorithm appears

optimal, but as mentioned before, no proof has been found.
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VI. CONCLUSION

We began this discussion by giving examples of ways to store two
dimensional arrays in a parallel memory like that used in ILLIAC IV.
Certain of the structures give efficient access to the important partitions
of the arrays, but some partitions are not ordered correctly after they
have been fetched. The examples showed that these scrambled vectors
belong to the class of p-ordered vectors. In order to allow p-ordered
vectors for any value of p, it was necessary to restrict the number of
memory modules, N, to be a prime number. Then k-apart interconnections
were defined, and we showed that a single k-apart interconnection of the
interconnection registers was sufficient to unscramble all p-ordered
vectors as long as k was chosen as a generator of the group MN. Next we
considered the problem of choosing two different k-apart interconnections
in such a way that all p-ordered vectors can be unscrambled in as few a
number of routings as possible. This problem is isomorphic to the problem
of finding a generator pair (a,b) for the group AN—l such that all elements
of the group can be represented as a sum of a's and b's with a minimum
number of terms in the longest sum. If such a generator pair can be found,
then the best pair of interconnections is k1 = ga and k2 = gb, where g is
a generator of MN' Lower and upper bounds were derived for the number of
terms needed in the longest sum. Both of these bounds are of the order of
vﬁi: and the constructed upper bound, which gives a generator pair of the
form (1,b), gave results that were- very close to optimal for the values of
N that were studied. The final problem that was studied was the problem
of reducing the upper bound as much as possible to obtain an optimal

. generator pair. An algorithm was given that produces a generator pair
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that should actually be optimal. Although a proof of this has not been
found, the algorithm has produced optimal pairs in all the cases tried
so far. It should be pointed out that this algorithm is applicable for
any group AN—l’ regardless of the value of N. In order to apply the
results to unscrambling p-ordered vectors, however, it is necessary to
restrict N to be prime.

There are several problems that remain unanswered. The most striking
is to determine if the restriction of a prime number of memories can be
removed. Perhaps other data structures or other kinds of interconnections
can alleviate the problems that the methods presented here are intended
to solve. The question of whether the algorithm to find optimal generator
pairs always finds an optimal pair should be considered, since that problem
is an interesting mathematical problem in its own right, regardless of its
application to computer architecture. Finally, what can be said about the
problem of using more than two interconnections in the interconnection

network. Can the results here be extended, or must new tools be developed.
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