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“

Summary "

This paper develops some ideas expounded in {1]. It distinguishes a

LC
number of ways of using parallelism, jncluding disjoint processes, competition,

cooperation, communication and "colluding". In each case an axiomatic proof

rule is given. Some light is thrown on traps or ON conditions. Warning:

\ the program structuring methods described here are not suitable for the

construction of operating systems.

»
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] . 1. Introduction

A previous paper [1] summarizes the objectives and criteria for the
| design of a parallel programming feature for a high level programming
o language. It gives an axiomatic proof rule which is suitable for

disjoint and competing processes, but seems to be inadequate for

cooperating processes. Its proposal of the "conditional critical

C region“ also seems to be inferior to the more structured concept of

the class [2] or monitor [ 3]. This paper introduces a slightly stronger

proof rule, suitable for cooperating and even communicating processes.

.. It suggests—- that the declaration 1s a better way of dealing with

competition than the resource. It then defines a slightly different

- form of parallelism more suitable for non-deterministic algorithms,

. and finally adapts 1t to deal with the vexed problem of machine traps.

i
2. Concepts and Notations

~ We shall use the notation [1]

U1 8

to denote a parallel program consisting of two processes Qy and A

. which are intended to be executed "in parallel?. The program Qq //Q,

is defined to terminate only 1f and when both Qq and A have

terminated.

The notation

P{Q}R

asserts that 1f a propositional formula P is true of the program

variables before starting execution of the program statement Q , then
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the propositional formula R will be true on termination of Q ,

if it ever terminates. If not, P{QJR is vacuously true.

B The notation

“Ep

asserts that the program statements Qy and a have identical effects

y under all circumstances on all program variables, provided that Qp
terminates. The notation Qq = Qn means Q; EQ, & Qo CQ , 1.e.,

C they terminate together, and have identical effects when they do. The
theory and logic of the © relation are taken from Scott [4].

The notation

A B

. ~C

denotes a proof rule which permits the deduction of C whenever theorems

of the form A and B have been deduced.

. The notations for assignment (xXx :=e) and composition of statements

(Q13Q,) have the same meaning as in AIGOL 60, but side-effects of function
evaluation are excluded.

As examples of proof rules whose validity follows fairly directly

from these definitions we give:

Pla;}8  sfalr
plo, BR Rule of Composition

| Q EQ, P{Q JR |
: ECR Rule of Containment

We will use the word "process" to denote a part of a program

intended to be executed in parallel with some other part; and use the

i phrase "parallel program" to denote a program which contains or consists
| of two or more processes. In this paper we will talk in terms of only
-
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two processes; however all results generalize readily to more than

two.

. 5. Disjoint Processes
Our initial method of investigation will be to enquire under what

circumstances the execution of the parallel program Q/Q, can be

L guaranteed to be equivalent to the sequential program Qp3Q, -
Preferably these circumstances should be checkable by a purely

syntactic method, so that the checks can be carried out by a compiler

"\ for a high level language.

1 The most obvious case where parallel and serial execution are
equivalent is when two processes operate on disjoint data spaces, in

the same way as jobs submitted by separate users to a multiprogramming

system. Within asingle program, it is permissible to allow each process

to access values of common data, provided none of them update it. In

order to ensure that this can be checked at compile time, it 1s necessary

| to design a language with the decent property that the set of variables

subject to change in any part of the program 1s determinable merely by

scanning that part. Of course, assignment to a component of a

—-structured variable must be regarded as changing the whole variable,

and variables assigned in conditionals are regarded as changed, whether

that branch of the conditional 1s executed or not.

Given a suitable syntactic definition of disjointness, we can

formulate the proof rule for parallel programs in the same way as that

for sequential ones: j
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| P{Q, 1S ${Q, JR |

: EOYER Asymmetric Parallel Rule
| provided that Qy and Q2 are disjoint.

The proof of this (if proof 1t needs) may be based on the

commutivity of the basic units of action performed in the execution

of Qq and Q, . Consider an arbitrary assignment X)i=eq contained

in Qq and an arbitrary assignment X, i=e, contained in Qs . Since

L Qq and Qn are disjoint, €, does not contain xq and 4 does not
contain X, The values of expressions are independent of the

values of the variables they do not contain, and consequently they are

- unaffected by assignment to those variables. Tt follows that:

(xq 1=e] 5 x, =e) = (%, =e, 5X) =e.) ,

i.e., these units of actions commute.

1 Consider now any interleaving of units of action of Qq and Qn .

I If any action of Q, precedes any action of Q, + the commutivity
principle (together with substitution of equivalents) may be used to

| change their order, without changing the total effect. Provided both
. Qq and. Qo terminate, this interchange may be repeated until all

- actions of Q precede all actions of Qy . But this extreme case

1s just the effect of executing the whole of Qq followed by the

~ whole of Q, . If one or both of Q, and Qs fails to terminate,

then both Q;;Q, and Q1//Q5 equally fail to terminate.

Thus we have proved that

Qi//Q = Qp3Q,

and consequently their correctness may be proved by the same proof rule.
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Of course, this justification 1s still very informal, since it 1s

C. based on the assumption that parallel execution 1s equivalent to an

arbitrary interleaving of "units of action". It assumes, for example,

that two "simultaneous" accesses Qf the same variable will not interfere

C with each other, as they might if one access got hold of half the

variable and the other got hold of the other half. Such ridiculous

: effects are in practice excluded by the hardware of the computer or

\ store. On a multiprocessor installation the design of the store
module ensures that two accesses to the same (in practice, even

neighboring) variables will exclude each other in time, so that even

1f requests arrive "simultaneously", one of them will be completed

before the other starts. This concept of exclusion together with

commutivity will assume greater importance in what follows.

| In [1] the proof rule for disjoint processes was given in the more

symmetric form:

P,Q, 1, Py {Qs 1R,
— Pp PF la./e. JR. &R, Symmetric Parallel Rule1-72 “12 71 Te

provided that Py, Qi; 0 By are disjoint from Pry Qyo R, . This proof

rule may be simpler to use for systematic or automatic program construction

than the asymmetric rule given above, in cases where the desired result

of a program 1s of the form R&R, » and the program 1s not intended to

change any variable common to Ry and R, . The symmetric form of the

C rule can be derived from the asymmetric form, by showing that every proof

using one could also have used the other. Assume P.{Q IR, and. P,{Q,)R,

have been proved. The disjointness of Ry and Qs and the disjointness

C of P, and Q, ensure the truth of P,{Q,}P, and R,{Q, IR; ; hence

: {
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P, $B, {Q; IR &P,

- and R, &P,{Q,}R; &R, .

One application of the asymmetric parallel rule gives:

P, & P,{Q//QJR  &R,

which 1s the same conclusion as the symmetric rule.

In [1] it was shown that disjoint parallelism permits the

C programmer to specify an overlap between input/output operations and

computation, which is probably the main benefit which parallelism can

offer the applications programmer. In contrast to other language

& proposals, 1t does so 1n a secure way, giving the user absolute

compile-time protection against time-dependent errors.

- L, Competing Processes

I We shall now explore a number of reasons why the rule of disjointness
may be found unacceptably restrictive, and show in each case how the

i restriction can be safely overcome.
One important reason may be that two processes each require occasional

i access to some limited resource such as a line-printer or an on-line
device for communication with the programmer or user. In fact,' even

} mainstore for temporary working variables may be a limited resource:

_ certainly an individual word of mainstore can be allocated as local

workspace to only one process at a time, but may be reallocated (when

- that process has finished with 1t) to some other process that needs it.

The normal mechanism in a sequential programming language for making

a temporary claim on storage during execution of a block of program is
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the declaration. One of the great advantages of the declaration is

i that the scope of use of a variable is made manifest to the reader

| and writer; and furthermore, the compiler can make a compile--time
check that the variable 1s never used at a time when 1t 1s not allocated.

\- This suggests that the declaration would be a very suitable notation

by which a parallel process may express the acquisition and relinquish-

ment of other resources, such as lineprinters. After all, a lineprinter

> may be regarded as a data structure (largely implemented in hardware) on

which certain operations (e.g., print a line) are defined to be available

to the programmer. More accurately, the concept of a line printer may

. be regarded as a type or class of variable, new instances of which can

| be "created" (i.e., claimed) and named by means of declaration, e.qg.,
using the notation of PASCAL [1k]:

~ beginmanagementreport: lineprinter; . . .

The individual operations on this variable may be denoted by the

notations of [2]:

managementreport.output (itemline);

which 1s called from within the block in which the managementreport is

declared, and which has the effect of outputing the value of "itemline"

to the lineprinter allocated to managementreport.

This proposal has a number of related advantages:

(1) The normal scope rules ensure that no programmer will use a resource

without claiming it, —--

(2) Or forget to release it when he has finished with it.

(3) The same proof rule for declarations (given in [7]) may be used

for parallel processes..

9



(4) The programmermay abstract from the number of items of resource

actually available.

| (5) If the implementer has available several disjoint items of a resource

. | (e.g. two line printers), they may be allocated simultaneously to
several processes within the same program.

These last three advantages are not achieved by the proposal in [1].

There are also two disadvantages:
.

(1) Resource constraints may cause deadlock, which an implementation

should try to avoid by compile-time and/or run-time techniques [1,5].

4 The proposal here gives no means by which a programmer can assist

in this.

| (2) The scope rules for blocks ensure that resources are released in
exactly the reverse order to that in which they are acquired. It

” 1s sometimes possible to secure greater efficiency by relaxing this

constraint.

Both these disadvantages nay reduce the amount of parallelism

achievable in circumstances where the demand on resources 1s close to

‘ the limit of their availability. But of course they can never affect

the logical correctness of the programs.

It 1s worthy of note that the validity of sharing a resource

between two processes, provided that they are not using it at the same

time, also depends on the principle of commutivity of units of action.

In this case, the entire block within which a resource is claimed and

used must be regarded as a single unit of action, and must not be

interleaved with execution of any other block to which the same resource

1s allocated. The programmer presumably does not mind which of these
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two blocks 1s executed first; for example, he does not mind which of

~ the two files 1s output first on the lineprinter, because he 1s

interested 1n them only after they have been separated by the operator.

Thus as far as he 1s concerned, the two blocks commute as units of

action; of course he could not tolerate arbitrary interleaving of

lines from the two files.

5. Cooperating Processes

Hitherto, parallel programming has been confined co disjoint and

competing processes, which can be guaranteed by a compile-time check to

operate on disjoint data spaces. The reason for insisting on disjoint-

ness 1s that this 1s an easy way for the compiler to check that the

units of action of each process will commute. In the next two sections

we shall investigate the effects of relaxing this restriction, at the

cost of placing upon the programmer the responsibility of proving that

the units of action commute. Processes which update one or more

J common variables by commutative operations are sald to cooperate.

One consequence of the commutivity requirement is that neither

process can access the value of the shared variable, because this value

will in general be different whether it 1s taken before or after

updating by the other process. Furthermore, the updating of a shared

variable must be regarded as a single unit of action, which occurs

either wholly before or wholly after another such updating. For these

reasons, the use of normal assignment for updating a variable seems a

bit misleading, and 1t seems better to introduce the kind of notation
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| used in [6], for example:
n+1 in place of n :=n+l .

| One useful commutative operation which may be invoked on a shared

| set 1s that which adds members to that set, i.e., .t union:- s :Ut (s :=s Ut) ,

since evidently s :Ut 3s :Ut' = s :Ut' 5s :Ut +, 511 values of t

and t' . A similar commutative operation is set subtraction:

s:~t

As an example of the use of this, consider the primefinding algorithm

known as the sieve of Eratosthenes. pap sbstract parallel version of

3 this algorithm may be written using traditional set notations:

L sieve :={i|2<i <N};
pl :=2; p2 :=3;

- while pl” <N do

begin {remove multiples of (pl) //remove multiples of (p2)};

if pe” <N then pl :=min{i|i>p2&ic sieve)

else pl :=p2;

if pl” <N then p2 :=min{ili>pl&i ¢ sieve]
end;

The validity of the parallelism can be assured 1f the only operation on

the sieve performed by the procedure "remove multiples of (p) " is set
subtraction:

procedure remove multiples of (p: 2..N);

begin 1: 2..N;

for i:i=p° stepp untilN do sieve :~ {i}
end;

12
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Of course, when a variable 1s a large data structure, as in the

example given above, the apparently atomic operations upon it may in

practice require many actual atomic machine operations. In this case

an 1lmplementation must ensure that these machine operations are not

‘ interleaved with some other operation on that same variable. a part of

a program which must not be interleaved with itself or with some other

part is known as a critical region [5]. The notational structure

{ suggested in [2] seems to be a good one for specifying updating operations

on variables, whether they are sharedor not; and the proof rules in the

two cases are identical. The need to set up an exclusion mechanism for

4 a shared variable supports the suggestion of Brinch Hansen [9] that the

possibility of sharing should be mentioned when the variable 1s declared.

It 1s worthy of note that the validity of a parallel algorithm

. depends only on the fact that the abstract operations on the structured

variable commute. The actual effects on the concrete representation of

that variable may possibly depend on the order of execution, and therefore

be non-deterministic. In some sense, the operation of separating two

files of line printer paper 1s an abstraction function, i.e., a many-one

| ) function mapping an ordered pair onto a set. Abstraction may prove to be a
very important method of controlling the complexity of parallel algorithms.

\ In [1] 1t was suggested that operations on a shared variable s
should be expressed by the notation

} with s do Q ,

where Q was to be implemented as a critical region, so that its

execution would exclude in time the execution of any other critical

region with the same variable s . But the present proposal is

distinctly superior:
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| (1) It uses the same notations and proof rules as sequential programs;

| (2) It recognizes the important role of abstraction.
(3) The intended effect of the operation as a unit of action 1s made

| more explicit by the notation.
(4) The scope rules make deadlock logically impossible.

Finally, the proof rule given in[1]is quite inadequate to prove

L cooperation inachieving any goal (other than preservation of an invariant).

A useful special case of cooperation between parallel processes

which satisfies the commutivity principle 1s the use of the "memo

function" suggestedby Michie [10]. Suppose there are certain values

which may or may not be needed by either or both processes, and each

1 value requires some lengthy calculation to determine. Tt would be

| wasteful to compute all the values in advance, because it 1s not known
in advance which of them will be needed. However, if the calculation

1s invoked from one of the cooperating processes, 1t would be wasteful

to throw the result away, because it might well be needed by the other

process. Consequently, it may pay to allocate a variable (e.g. an

: array A ) 1n advance to hold the values in question, and set it

initially to some null value. The function which computes the desired

result 1s now adapted to first look at the relevant element of A . If

this 1s not null, the function immediately returns its value without

further computation. If not, the function computes the result and stores

it in the variable. The proof of the correctness of such a technique

1s based on the invariance of some such assertion as:

Vi(A[i] # null o Ali] = £(i)) ,

where A 1s the array (possibly sparse) 1n which the results are stored,

1h
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|

and f 1s the desired function. The updating of the array A must be

a single unit of action; the calculation of the function f may, of

course, be reentrant. This technique of memo functions may also be used

to convey results of processes which terminate at an arbitrary point (see

Section T).

C

6. Communicating Programs

The commutivity principle, which lies at the basis of the treatment

q of the preceding sections, effectively precludes all possibility of

communication between processes, for the following reason. The method

that was used in Section 3 to prove

Whey = 939

can also be used to prove

Wp = Rey

t It follows that a legitimate implementation of "parallelism" would be to

execute the whole of qq and then the whole of Qs , or to do exactly

| ) the reverse. But if there were any communication between Qy and QU ,
| this would not be possible, since it would violate the principle that a
~ . communication cannot be received before 1t has been sent.

In order to permit communication between Q and ah it 1s

| necessary to relax the principle of commutivity in such a way that

. complete execution of Qs before starting Q, is no longer possible.

Consider an arbitrary unit of action qq of A , and an arbitrary unit

of action qs of Q, .We say that qq and 95 semicommute if:

A597 = 4739,
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[ | If all gq; and q, semicommute, we say that Q; and Q, are
communicating processes, and that Q, is the producer process, and Q,

| is the consumer [5].
| The effect of semicommutivity 1s that some interleavings of units

| of action may be undefined; but moving actions of Qs after actions of) qq will never give a different result or make the interleaving less well
defined; consequently the execution of the whole of Qy before starting

C Qs 1s still a feasible implementation, in fact the one that is most
defined:

Qe, = Q38,

Thus it is still justified to use the same proof rule for parallel as

for sequential programs.

- If assertional proof methods are used to define a programming language

| feature, 1t 1s reasonable to place upon an implementor the injunction to
bring a program to a successful conclusion whenever 1t 1s logically

- feasible to do so (or there 1s a good engineering reason not to, e.g.,

integer overflow; and it 1s not logically possible to terminate a program

of which "false" 1s provably true on termination). In the case of

communicating programs, termination can be achieved by simply delaying an

action of QU where necessary until Qy has performed such actions as

make it defined, which will always occur provided QQ, terminates.
The paradigm case of semicommutative operations are input and output

of items to a sequence. Output of an item x to sequence s will be

denoted:

s .output(x) ;

1t 1s equivalent to
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s:=8 NN (X);

where | 1s the symbol of concatenation, and (x) is the sequence whose

only item 1s x . This operation appends the item x to the end of the

sequence and 1s always defined. Input of the first item from a sequence

s to the variable y will be denoted:

s.input(y)

C which 1s equivalent to a unit of action consisting of two operations:
y := first (s); s :=rest(s);

where first maps a sequence onto its first item and rest maps a sequence

. onto a shorter sequence, namely the sequence with its first item removed. |

The removal of an item from an empty sequence 1s obviously undefined;

L on a non-empty sequence it 1s always defined. A sequence to which an

1 item has just been output 1s never empty. Hence
s.input(y) ; s.output(x) = s.output(x) ; s.input(y)

il.e., these operations semicommute. Consequently a sequence may be used

to communicate between two processes, provided that the first only

. performs output and the second only performs input. If the second process

. tries to input too much, their parallel execution does not terminate; but

neither would their sequential execution. Processes communicating by

means of a sequence were called coroutines by Conway [11], who pointed

out the equivalence between sequential and parallel execution.

In practice, for reasons of economy, the potentially infinite

sequence used for communication 1s often replaced by a bounded buffer,

with sufficient space to accommodate only a few items. Ip this case, the

operation of output will have to be delayed when the buffer 1s full,

until input has created space for a new item. Furthermore the program

17
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C.

may fail to terminate if the number of items output exceeds the number

of items input by more than the size of the buffer. And finally, since

either process may have to wait for the other, purely sequential execution

1s 1n general no longer possible, ‘because 1t would not terminate if the

L total length of the output sequence is larger than the buffer (which it

usually 1s). Thus the parallel program is actually more defined than

the corresponding sequential one, which may seem to invalidate our proof

C methods.

The solution to this problem is to consider the relationship between

the abstract program using an unbounded sequence and the concrete program

using a bounded buffer representation for the sequence. In this case,

the concrete program is the same as the abstract one in all respects

except that it contains an operation of concrete output (to the buffer)

whenever the abstract program contains abstract output (to the sequence),

and similarly for input. Concrete output always has the same effect as

abstract output when it 1s defined, but 1s sometimes undefined (when the

buffer is full), 1i.e.:

concrete output= abstract output .

The replacement of an operation by a less well defined one can never

L change the result of a program (by the principle of continuity [4]), so

the concrete program is still contained in the abstract one

concreteCT abstract .

L This justifies the use of the same proof rule for the concrete as for

the abstract program. The abstract sequence plays the role of the

"mythical" variables used by Clint [12]; here again, abstraction proves

L to be a vital programming tool.

18
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|
: In order to implement a concrete data representation for a variable

a which 1s being used to communicate between processes, 1t 1s necessary
to have some facility for causing.a process to "wait" when 1t 1s about

to perform an operation which 1s undefined on the abstract data or

impossible on 1ts current representation. Furthermore, there must be

some method for "signalling" to wake up a waiting process. One method

of achieving this is the condition variable described in [3].Of course,

: 1f either process of the concrete program can wait for the other, it 1s
possible for the program to reach deadlock, when both processes are

waiting. In this case 1t 1s not reasonable to ask the implementor to

find a way out of the deadlock, since it would involve a combinatorial

investigation, where each trial could involve backtracking the program

to an earlier point in its execution. It is therefore the programmer's

E responsibility to avoid deadlock. The assertional proof methods given
here cannot be used to prove absence of deadlock, which 1s a form of

non-termination peculiar to parallel programs.

| A natural generalization of one-way communication 1s two-way

I communication, whereby one process Qy uses a variable N to
communicate to Qs , and Qs uses a varlable $5 to communicate with

Qq . Communication 1s achieved, as before, by semicommutative operations.

) - It is now impossible to execute Qq and Qs sequentially in either
_ order; and it is plain that the proof rule should be symmetric.

Furthermore, the correctness of Qq may depend on some property S,

of S, which QU must make true, and similarly, Qs may need to assume

some property Sy of Sq which Qq must make true. Hence we derive

the rule: ]

19



- Pas 5 8 Pye5,00,]8, eR,
-_ Rule of two-way

| P,& P,Q, // Q, JR; &R, Communication
where Py 5 A ) Ry » Sy are disjoint from F, ’ Ub ; R, p So except for

\ variables S15 So which are subject only to semicommutative operations

in Qq and Qs » as explained above; and IZ 510 R, may contain Sq

(but not Ss, ) and P, 5 8,» Ry may contain s, (but not $1 )- The
informal proof of this 1s complex, and 1s included in an appendix.

+ ‘f. Colluding Processes

| In certain combinatorial and heuristic applications, it can be
difficult for the programmer to know which of two strategies 1s going

- to be successful; and an unsuccessful strategy could run forever, or at

least take an uncontrollable or unacceptable length of time. For

example, a theorem-checker might attempt to find a proof and a counter-

example 1n parallel, knowing that 1f one attempt succeeds, the other

may not terminate. In such cases, Floyd [13] has suggested the use of

"non-deterministic" algorithms: both strategies are executed in parallel,

until one of them succeeds; the other is then discontinued. 1p principle,

this can be very wasteful, since all effort expended on the unsuccessful

strategy 1s wasted, unless it has cooperated in some way with the

successful one. Processes which implement alternative strategies we will

call colluding.

Colluding processes require a completely new notation and proof

rule, representing the fact that only one of them has to terminate.

20



These will be taken from Lauer [8], who uses the form

‘ 9 2 9

to denote a program involving execution of either Qq or Qs , Where

the programmer either does not know or care which one 1s selected. The

- proof rule is adapted from the symmetric rule for disjoint processes:

Py 19, JR, Po 918
P) £Py{Q; or Q, IR; VR,

L

where Py , Q , Ry are disjoint from Py , Qp ’ R,.

Note the continued insistence on disjointness, which was not made

C in [8]. This has the advantage of permitting a genuine parallel
implementation. It has the even greater advantage that it does not

require an implementation to undo (backtrack) the effects of the

unsuccessful process. For suppose Q; was successful, and therefore

R; 1s true on completion of the program. R, does not mention any

variable changed py Qs , SO the programmer cannot know anything of the

C values or properties of these variables at this point; and so the fact

that Q has changed these values does not matter. However the values

. are not formally undefined -- for example, they can still be printed

C out. Furthermore, if Qs has used something like the memo function
technique described in Section 5, 1t 1s possible to use the results of

its calculations, even after 1t has been terminated at an arbitrary

C point in its execution.

However, 1t must not be a wholly arbitrary point; a process must not

be stopped in the middle of one of its "units of action", i.e., in the

« middle of updating a structured variable non-local to the process. If

it were so stopped, the invariant of the data structure might no longer

21
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| be true, and any subsequent attempt to access that variable would be
disastrous. The need to inhibit termination during certain periods was

| recognized by Ashcroft and Manna [15].

| Sometimes a colluding process can detect that it will never succeed,
\ and might as well give up immediately, releasing 1ts resources, and

using no more processor time. To do this, Floyd suggested a basic

; operation

L failure;

the proof rule for this may be simply modelled on that for the jump:

true [failure') false

a which permits failure to be invoked in any circumstances (true), and

| which states that failure always fails to terminate. If 311 processes
fail, the program fails, and no property of that program will hold after

- the failure. The situation is the same as that of a sequential program,

artificially interrupted by expiry of some time limit.

- In order to ensure that time 1s not excessively wasted on an

unsuccessful process, the programmer should exert every endeavor to ensure
)

that a process usually detects whether it 1s going to fail as early as

possible. However, it may be that a process sometimes discovers that

although failure 1s quite likely, 1t 1s not yet certain, and it may take

a longer time to decide than was originally hoped. In this case, it would

be wise to delay continuation of the current process but without

precluding the possibility of later continuation. To achieve this, I

suggest a primitive scheduling statement:

walt;

this 1s intended to cause immediate suspension of the calling process,
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allowing the processor to concentrate attention on the other processes,

~ until either

(1) one of them succeeds: the waiting process is then abandoned in

the normal way;

L (2) all of them fail: the waiting process is then resumed in the normal

way as the last remaining hope;

(3) all non-failed processes have themselves invokeda wait: then the

LC longest waiting process is resumed.

(If several processors are available, the above remarks require adaptation.)

If greater sophistication 1n scheduling 1s desired, a process which

. 1s exceptionally unpromising should indicate this fact by passing a

parameter to the wait:

i wait (t)

where © 1s an indication of how many times the calling process 1s willing

| to be overtaken by more promising processes. The implementation of this

L 1s accomplished most easily by maintaining a pseudo-parallel time queue,

| as in SIMULA. For wise scheduling, +t should be proportionalto an
estimate of the expense required by the current process before 1t comes

I to a decision on its own success or failure. Of course, a process should
try to avoid waiting while 1t 1s 1n possession of expensive resources.

= Since every process retains some allocation of storage and overhead during

a walt, waiting should be used sparingly. Nevertheless, 1t gives the

j programmer a useful degree of control in specifying a "breadth first"

or "depth first" search of a tree of alternatives.

It hardly seems worthwhile to seek more sophisticated scheduling

methods for colluding processes. One great advantage of the wait is
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that each process can schedule itself at a time when 1ts resource

ge occupation 1s low; furthermore it can do so successfully without
knowing anything about the purpose, logic, progress, or even the name

of any other process. This is the secret of successful structuring of

L a large program, and suggests that self-scheduling by a wait is a good

programming language feature, and surely preferable to any feature which

permits one process to preempt or otherwise schedule another at an

L arbitrary point in 1ts progress.

But perhaps the strongest argument in favor of a wait 1s that the

insertion of a wait has no effect whatsoever on the logic of a process,

a and 1n a proof of correctness it may be ignored. Tt ig equivalent to an

| empty statement, and has the delightful proof rule:
) R {wait(t)}R
| for any assertion R .

On completion of the program Q, or Qs » 1t can be quite difficult
= to find out which of them has in fact succeeded. Suppose, for example,

the purpose of the program 1s to find a z satisfying R(z) . Suppose

processes Qqy and Qs satisfy

P,{a, JR(y,)

Pola, IR(y,).

It 1S now possible to prove

P, 2 P,{(Q; or Qy); if R(y;) thenz :=y; else z :=y,JR(2)

But R(y,) may be expensive or impossible to compute, and something better

1s required. A possible solution is based on the "protected tail"

described in [15]. In this, a colluding process has two parts

Q then Q'
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SE where Q is the part that may fail to terminate, and Q' is initiated

— only when Q has terminated. However all parallel colluding processes

are stopped before Q' starts. That is why Q' has the name "protected

tail". Since a protected tail is never executed in parallel, the rule of

“« disjointness may be somewhat relaxed, permitting the protected tails to

update the same variables, e.g.:

QA then z P=Y¥q or QW then z =Y,

- The appropriate proof rule 1is:

Pep 1Ry Ry {Qi IR

- Poa, IR, R, {0} IR

| P, %£P,{q, thenQ] or Q, then QL IR
\

where Py ’ Qq ’ Ry » are disjoint from P, FQ R,

N The construction Qy or Qs 1s something like the least upper bound

[4] of two functions fy LJ £5 . However fy u £5 1s inconsistent if

fy and £5 both terminate and have different results; and it 1s not

possible to guarantee against this 1nconsistency either by a compile

. time or a run time check (which could go on forever if the functions

are consistent). The or construction is still well-defined (at least

axiomatically), in spite of the fact that the effects of Qq and Qs
are nearly always different.

8. Machine Traps

Dijkstra has expressed the view [16] that one of the main values of

parallel programming ideas 1s the light that they shed on sequential

programming. This section suggests that the idea and proof method for
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a colluding programs may be used to deal with the problem of machine

“ traps that arise when a machine cannot perform a required operation due

to overflow or underflow, and either stops the program or jumps to some

trap routine specified by the programmer. At first sight such a jump

\ seems to be even more undisciplined than a go to statement invoked by

the program, since even the source of the jump 1s not explicit. But

the main feature of such a jump 1s that it signals failure of the

C machine to complete the operations specified by the program Ap ; 1f the
programmer 1s willing to supply some alternative "easier" but less

satisfactory program QW , the machine will execute this one instead,

L- just as 1n the case of colluding processes.

However, there are two great differences between this case and the

} previous one.

- (1) The programmer would very much rather complete 4p than Qo .

(2) Parallel execution of Qq and Qs is not called for. Qs is

invoked only when Qq explicitly fails.

For these reasons 1t would be better to introduce a different notation,

to express the asymmetry:

| Qq otherwise Q

| Also, because parallelism 1s avoided, the rule of disjointness can be
- relaxed considerably:

. P,{Q IR; P,{Q, IR,

P, % P,{Q, otherwise Q, JR) VR,

where Qq 1s disjoint from P, ; this states that Q may not assume

anything about the variables changed by Qp . However Qs 1s still
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allowed to print out these variables, or take advantage of any memo

~ functions computed.

It 1s necessary to emphasize again the impermissibility of stopping

in the middle of an operation on a variable non-local to a process.

\. If failure occurs or 1s invoked in the middle of such an operation, it

1s the smallest process lexicographically enclosing the variable that

must fail. This can be assured by the normal scope rules, provided that

~~ the critical regions are declared local to the variable, as in monitors

and data representations, rather than being scattered through the program

which uses them, as in [1].

This proposal provides the programmer with much of the useful part

of the complex PL/I[ 17] ON-condition and prefix mechanisms. The other

intended use of the ON-condition 1s to extend machine arithmetic by

supplying programmer-defined results for overflowing operations. For

this I would prefer completely different notations and methods.

This proposal also provides the programmer with a method for

dealing with transient or localized failure of hardware at run time, or

even (dare I mention 1t?) with programming error. The need for a means

to control such failures has been expressed by d'Agapeyeff [18].

9. Conclusion

In conclusion it 1s worth while to point out that the parallel

: composition of programs has pleasant formal properties, namely // and
or are assoclative and commutative, with fixed point "do nothing" and

"failure" respectively; and otherwise 1s associative with fixed point

- "failure". These facts are expressed by the equivalences:
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Qf) fs = ff (@ulas)

C (Q or Q,) or @; =Q; or (4, or Qs)

(Q otherwise Q) otherwise Q5 = Q, otherwise (Q, otherwise Qs)

(Q//do-nothing) = Q

i

Q or failure = @Q

failure otherwise @ = Q otherwise failure = Q .

C

L

C

C
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o Appendix: Proof of rule of two-way communication.

| The informal proof of this depends on a mythical reordering of unitsof action, where a unit of action 1s defined as an assignment of a

C constant to a variable, or the performance of an operation with constant

parameters to a variable. Thus for example, an operation in Q,

S, -input(y) ;

b would appear every time in a computationof Q, as
y :=17;

5 .—truncate;

where 17 happens to be the value of the first item of S, at the time,

| and the "truncate" operator removes the first item from a sequence.
Consider a particular interleaved execution of Qe, _ Sort the

- computation into the order

Boy 3B 3B

where Bry 1s the sequence of all operations of A on S, 5

Ey 1s the sequence of all operations of Qy ,

Bop 1s the sequence of all other operations of A .

This 1s feasible, because operations on one variable commute with

operations on all other variables, and operations of oh on 5,

semicommute with operations of Ay on S, 5 SO the rearranged sequence
can only be more defined than the original interleaving.

Define

Pp, as the result of replacing all occurrences of s

in P, by the initial value of Sp 1
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: and 5S, as the result of replacing in 5, all occurrences of
variables changed by Q, by their final values, i.e,

| after executing Eno
We will assume that the premises of the rule are valid, and hence we

assert informally (i.e., not by showing it to be deducible):

P, &5,{E 1S, aR, (1)

: P.&S.{E Rp% S11 3B, 18,8 Ry (2)

We will prove three lemmas.

(1) P&P,(E, }P, 85 a8,

i II) P&P. &S F(11) 1% Py &S,{E, 15, &R  & B,

_ (II1) 8, &R, & PE, IR) & R, :

The conclusion of the rule follows directly by the rule of composition.

| Lemma IT

The only variable free in 5, is S, , which 1s not changed by E,
Its truth after Eos implies its truth before. Hence from (2) we get

Fy &S1{E,; 18,

The only variable mentioned in Eng 1s 85 + which is not mentioned in S11

Provided that there exist values satisfying Sy , 1t follows that

Py {Bpy1S,

(If Sq were unsatisfiable, Qq would not terminate under any circum-

stances; and neither would Q1//%, , which would make any conclusion

about Q//Q vacuously true). Since 5, 1s not mentioned in Pq
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P)&P, {Ey }5 &F

The truth of P, after E,; follows from the truth of P, before.

Lemma IT

In (1), Sy is the only part containing variables subject to

updating by Q, . By instantiating these variables, we can get:

FB 5, {E18 & Ry
(

Since P, contains no variable subject to change in E, the lemma
follows immediately.

L Lemma III

Since Sq and P, do not mention 5, they are true after Epp
if and only if they are true before. pence from (2)

P, &5,{E;JR,

Since R; does not mention any variable subject to change in Epp ov
Lemma III 1s immediate.
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