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Summary

This paper develops some ideas expounded in [1]. It distinguishes a

number of ways of using parallelism, jncluding disjoint processes, competition,

cooperation, communication and "colluding". In each case an axiomatic proof

rule is given. Some light is thrown on traps or ON conditions. Warning:
the program str{icturing methods described here are not suitable for the

construction of operating systems.
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i 1. Introduction

A previous paper [1] summarizes the objectives and criteria for the
| design of a parallel programming feature for a high level programming
language. It gives an axiomatic proof rule which is suitable for
disjoint and competing processes, but seems to be inadequate for
cooperating processes. Its proposal of the "conditional critical
region™ also seems to be inferior to the more structured concept of
the class [2] or monitor [ 3]. This paper introduces a slightly stronger
proof rule, suitable for cooperating and even communicating processes.
It suggests— that the declaration is a better way of dealing with

competition than the resource. It then defines a slightly different

form of parallelism more suitable for non-deterministic algorithms,

and finally adapts it to deal with the vexed problem of machine traps.

-—

2. Concepts and Notations

~ We shall use the notation [1]
G /9,
to denote a parallel program consisting of two processes Ql and Q2

. which are intended to be executed "in parallel?. The program Ql'yqe
is defined to terminate only if and when both Ql and Q2 have
terminated.

The notation

P{Q]IR

asserts that if a propositional formula P is true of the program

variables before starting execution of the program statement Q , then
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the propositional formula R will be true on termination of Q ,
if it ever terminates. If not, P{QJR is vacuously true.

The notation

UWEL

asserts that the program statements Ql and Q2 have identical effects
under all circumstances on all program variables, provided that Ql
t inates. i = = i
erminates The notation Ql Q2 means Ql = Q2 & Q2 E;Ql s i1.e.,
they terminate together, and have identical effects when they do. The
theory and logic of the € relation are taken from Scott [4].

The notation

denotes a proof rule which permits the deduction of C whenever theorems
of the form A and B have been deduced.

The notations for assignment (x :=e) and composition of statements
(Ql;Qg) have the same meaning as in AIGOL 60, but side-effects of function
evaluation are excluded.

As examples of proof rules whose validity follows fairly directly

from these definitions we give:

Pla;}s sfegr

Rule of Composition

Pla,5Q, IR
P{Ql}R Rule of Containment

We will use the word "process" to denote a part of a program

intended to be executed in parallel with some other part; and use the
phrase "parallel program" to denote a program which contains or consists

of two or more processes. In this paper we will talk in terms of only



two processes; however all results generalize readily to more than

two.

3. Disjoint Processes

Our initial method of investigation will be to enquire under what
circumstances the execution of the parallel program QlA/Q2 can be
guaranteed to be equivalent to the sequential program Ql;Q2 .
Preferably these circumstances should be checkable by a purely

syntactic method, so that the checks can be carried out by a compiler

for a high level language.
The most obvious case where parallel and serial execution are
equivalent is when two processes operate on disjoint data spaces, in

the same way as jobs submitted by separate users to a multiprogramming

system. Within a single program, it is permissible to allow each process

to access values of common data, provided none of them update it. In

order to ensure that this can be checked at compile time, it is necessary

to design a language with the decent property that the set of variables
subject to change in any part of the program is determinable merely by
scanning that part. Of course, assignment to a component of a
structured variable must be regarded as changing the whole variable,
and variables assigned in conditionals are regarded as changed, whether
that branch of the conditional is executed or not.

Given a suitable syntactic definition of disjointness, we can
formulate the proof rule for parallel programs in the same way as that

for sequential ones:



Pla }s  sfa,lr
PR, /Q,lR

Asymmetric Parallel Rule

provided that Ql and Q2 are d;sjoint.
The proof of this (if proof it needs) may be based on the

commitivity of the basic units of action performed in the execution

of Ql and Q2 . Consider an arbitrary assignment X i=e) contained
in Ql and an arbitrary assignment %, i=e, contained in Q2 . Since
Ql and Q2 are disjoint, e, does not contain Xy and ey does not

contain x, . Thevalues of expressions are independent of the
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values of the variables they do not contain, and consequently they are
unaffected by assignment to those variables. 1t follows that:
(}Cl::el;x2 :=e2) = (x2 i=e, X :=el) ,
i.e., these units of actions commute.
Consider now any interleaving of units of action of Ql and Q2 .
If any action of QQ precedes any action of Ql , the commutivity
principle (together with substitution of equivalents) may be used to
change their order, without changing the total effect. Provided both
Ql and. QQ terminate, this interchange may be repeated until all
actions of Ql precede all actions of Q2 . But this extreme case
is just the effect of executing the whole of Ql followed by the
whole of Q, . If one or both of Q, and Qs fails to terminate,
then both Ql;Q2 and Ql//Q2 equally fail to terminate.
Thus we have proved that
Q /@, = Q33Q,

and consequently their correctness may be proved by the same proof rule.




Of course, this justification is still very informal, since it is
based on the assumption that parallel execution is equivalent to an
arbitrary interleaving of "units of action". It assumes, for example,
that two "simultaneous" accesses of the same variable will not interfere
with each other, as they might if one access got hold of half the
variable and the other got hold of the other half. Such ridiculous
effects are in practice excluded by the hardware of the computer or
store. On a multiprocessor installation the design of the store
module ensures that two accesses to the same (in practice, even
neighboring) variables will exclude each other in time, so that even
if requests arrive "simultaneously", one of them will be completed
before the other starts. This concept of exclusion together with
commutivity will assume greater importance in what follows.

In [1] the proof rule for disjoint processes was given in the more

symmetric form:

Py {0 1R, P,{Q51R,
P 2P, 1Q,//Q, IRy &R,

Symmetric Parallel Rule

provided that Pl’ Ql’ Rl are disjoint from PE’QQ’ R2 . This proof
rule may be simpler to use for systematic or automatic program construction
than the asymmetric rule given above, in cases where the desired result

of a program is of the form Rl&:R2 » and the program is not intended to

change any variable common to R, and R

1 The symmetric form of the

5 ¢
rule can be derived from the asymmetric form, by showing that every proof

using one could also have used the other. Assume Pl{Ql}Rl and P?_{QE}R2

have been proved. The disjointness of R, and Qe and the disjointness

1

of P, and Q, ensure the truth of Ib{Ql}P2 and Rl{QE}Rl ; hence



P, %P, {Ql}Rl & P,

and R, &P, {Qg}Rl &R,
One application of the asymmetric parallel rule gives:
P, & Py{Q //Q )R &R,
which is the same conclusion as the symmetric rule.

In [1] it was shown that disjoint parallelism permits the
programmer to specify an overlap between input/output operations and
computation, which is probably the main benefit which parallelism can
offer the applications programmer. 1In contrast to other language

proposals, it does so in a secure way, giving the user absolute

compile-time protection against time-dependent errors.

L. Competing Processes

We shall now explore a number of reasons why the rule of disjointness
may be found unacceptably restrictive, and show in each case how the
restriction can be safely overcome.

One important reason may be that two processes each require occasional
access to some limited resource such as a line-printer or an on-line
device for communication with the programmer or user. In fact,' even
mainstore for temporary working variables may be a limited resource:
certainly an individual word of mainstore can be allocated as local
workspace to only one process at a time, but may be reallocated (when
that process has finished with it) to some other process that needs it.

The normal mechanism in a sequential programming language for making

a temporary claim on storage during execution of a block of program is



the declaration. One of the great advantages of the declaration is

that the scope of use of a variable is made manifest to the reader
and writer; and furthermore, the compiler can make a compile--time
check that the variable is never used at a time when it is not allocated.
This suggests that the declaration would be a very suitable notation
by which a parallel process may express the acquisition and relinquish-
ment of other resources, such as lineprinters. After all, a lineprinter
may be regarded as a data structure (largely implemented in hardware) on
which certain operations (e.g., print a line) are defined to be available
to the programmer. More accurately, the concept of a line printer may
be regarded as a type or class of variable, new instances of which can
be "created" (i.e., claimed) and named by means of declaration, e.g.,
using the notation of PASCAL [1k]:
begin managementreport: lineprinter;
The individual operations on this variable may be denoted by the
notations of [2]:
managementreport .output (itemline) ;

which is called from within the block in which the managementreport is
declared, and which has the effect of outputing the value of "itemline"
to the lineprinter allocated to managementreport.

This proposal has a number of related advantages:
(1) The normal scope rules ensure that no programmer will use a resource

without claiming it, —-
(2) Or forget to release it when he has finished with it.
(3) The same proof rule for declarations (given in [7]) may be used

for parallel processes..
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(4) The programmer may abstract from the number of items of resource

actually available.

(5) If the implementer has available several disjoint items of a resource

(e.g. two line printers), they may be allocated simultaneously to
several processes within the same program.
These last three advantages are not achieved by the proposal in [1].

There are also two disadvantages:

(1) Resource constraints may cause deadlock, which an implementation

should try to avoid by compile-time and/or run-time techniques [1,5].

The proposal here gives no means by which a programmer can assist
in this.
(2) The scope rules for blocks ensure that resources are released in

exactly the reverse order to that in which they are acquired. It

is sometimes possible to secure greater efficiency by relaxing this

constraint.

Both these disadvantages nay reduce the amount of parallelism

achievable in circumstances where the demand on resources is close to
‘ the limit of their availability. But of course they can never affect
the logical correctness of the programs.

It is worthy of note that the validity of sharing a resource
between two processes, provided that they are not using it at the same
time, also depends on the principle of commutivity of units of action.
In this case, the entire block within which a resource is claimed and

used must be regarded as a single unit of action, and must not be

interleaved with execution of any other block to which the same resource

is allocated. The programmer presumably does not mind which of these

10



two blocks is executed first; for example, he does not mind which of
the two files is output first on the lineprinter, because he is
interested in them only after they have been separated by the operator.
Thus as far as he is concerned, the two blocks commute as units of
action; of course he could not tolerate arbitrary interleaving of

lines from the two files.

5. Cooperating Processes

Hitherto, parallel programming has been confined co disjoint and
competing processes, which can be guaranteed by a compile-time check to
operate on disjoint data spaces. The reason for insisting on disjoint-
ness is that this is an easy way for the compiler to check that the
units of action of each process will commute. In the next two sections
we shall investigate the effects of relaxing this restriction, at the
cost of placing upon the programmer the responsibility of proving that
the units of action commute. Processes which update one or more
common variables by commutative operations are said to cooperate.

One consequence of the commutivity requirement is that neither
process can access the value of the shared variable, because this value
will in general be different whether it is taken before or after
updating by the other process. Furthermore, the updating of a shared
variable must be regarded as a single unit of action, which occurs
either wholly before or wholly after another such updating. For these
reasons, the use of normal assignment for updating a variable seems a

bit misleading, and it seems better to introduce the kind of notation

11
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used in [6], for example:

n:+1 in place of n :=nt+l

One useful commutative operation which may be invoked on a shared
set is that which adds members to that set, i.e., .t upion:
s Ut (s :=sUt) ,

since evidently s :Ut 3s:Ut* = s :Utt ;s :Ut

for all values of t
and t' . A similar commutative operation is set subtraction:

s:~t

As an example of the use of this, consider the primefinding algorithm

known as the sieve of Eratosthenes.

An abstract parallel version of
this algorithm may be written using traditional set notations:

sieve := [:'LIQS:’LSN};
Pl :=2; p2 :=3;

while p12_§N do

begin {remove multiples of (pl) //remove multiples of (p2)};
. 2
if p2° <N then pl :=min{i|i>p2&ic sieve}

else pl:=p2;

. 2
if pl” <N then p2 :=min{i‘j_ >plé&i e sieve]
end;

The validity of the parallelism can be assured if the only operation on

"

the sieve performed by the procedure "remove multiples of (p) is set
subtraction:

procedure remove multiples of (p: 2..N);
begin i: 2..N;

for i::pe step p until N do sieve :- {i}

end;

12



Of course, when a variable is a large data structure, as in the
example given above, the apparently atomic operations upon it may in
practice require many actual atomic machine operations. In this case
an implementation must ensure tha£ these machine operations are not
interleaved with some other operation on that same variable. a part of
a program which must not be interleaved with itself or with some other
part is known as a critical region [5]. The notational structure
suggested in [2] seems to be a good one for specifying updating operations
on variables, whether they are shared or not; and the proof rules in the
two cases are identical. The need to set up an exclusion mechanism for
a shared variable supports the suggestion of Brinch Hansen [9] that the
possibility of sharing should be mentioned when the variable is declared.

It is worthy of note that the validity of a parallel algorithm
depends only on the fact that the abstract operations on the structured
variable commute. The actual effects on the concrete representation of
that variable may possibly depend on the order of execution, and therefore
be non-deterministic. In some sense, the operation of separating two
files of line printer paper is an abstraction function, i.e., a many-one
function mapping an ordered pair onto a set. Abstraction may prove to be a
very important method of controlling the complexity of parallel algorithms.

In [1] it was suggested that operations on a shared variable s
should be expressed by the notation

with s do Q ,
where Q was to be implemented as a critical region, so that its
execution would exclude in time the execution of any other critical
region with the same variable s . But the present proposal is
distinctly superior:

15



(1) It uses the same notations and proof rules as sequential programs;

(2) It recognizes the important role of abstraction.

(3) The intended effect of the operation as a unit of action is made

more explicit by the notation.

(4) The scope rules make deadlock logically impossible.

Finally, the proof rule given in [1] is quite inadequate to prove

cooperation inachieving any goal (other than preservation of an invariant).

A useful special case of cooperation between parallel processes
which satisfies the commutivity principle is the use of the "memo
function" suggested by Michie [10]. Suppose there are certain values
which may or may not be needed by either or both processes, and each
value requires some lengthy calculation to determine. It would be
wasteful to compute all the values in advance, because it is not known
in advance which of them will be needed. However, if the calculation
is invoked from one of the cooperating processes, it would be wasteful
to throw the result away, because it might well be needed by the other
process. Consequently, it may pay to allocate a variable (e.g. an
array A ) in advance to hold the values in question, and set it
initially to some null value. The function which computes the desired
result is now adapted to first look at the relevant element of A . If

this is not null, the function immediately returns its value without

further computation. If not, the function computes the result and stores

it in the variable. The proof of the correctness of such a technique

is based on the invariance of some such assertion as:
Vi(Ali] £ null o A[i] = £(1)) ,

where A is the array (possibly sparse) in which the results are stored,

1k
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and f is the desired function. The updating of the array A must be

a single unit of action; the calculation of the function f may, of

course, be reentrant. This technique of memo functions may also be used

to convey results of processes which terminate at an arbitrary point (see

Section 7).

6. Communicating Programs

The commutivity principle, which lies at the basis of the treatment
of the preceding sections, effectively precludes all possibility of
communication between processes, for the following reason. The method
that was used in Section 3 to prove

A/, = Q59
can also be used to prove

Wy = /ey
It follows that a legitimate implementation of "parallelism" would be to
execute the whole of Ql and then the whole of Q2 , or to do exactly
the reverse. But if there were any communication between Ql and Q2 '

this would not be possible, since it would violate the principle that a

communication cannot be received before it has been sent.

In order to permit communication between Ql and Q2 it is
necessary to relax the principle of commutivity in such a way that
complete execution of Q2 before starting Ql is no longer possible.
Consider an arbitrary unit of action ql of Ql , and an arbitrary unit
of action q, of Q, .We say that g; and q, semicommute if:

15
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If all g; and g, semicommute, we say that Q. and Q, are

communicating processes, and that Ql is the producer process, and QZ

is the consumer [5].

The effect of semicommutiviﬁy is that some interleavings of units
of action may be undefined; but moving actions of Q2 after actions of
Ql will never give a different result or make the interleaving less well
defined; consequently the execution of the whole of Ql before starting
Q2 is still a feasible implementation, in fact the one that is most
defined:

9 /Q, © Q3@ -
Thus it is still justified to use the same proof rule for parallel as
for sequential programs.

If assertional proof methods are used to define a programming language
feature, it is reasonable to place upon an implementor the injunction to
bring a program to a successful conclusion whenever it is logically
feasible to do so (or there is a good engineering reason not to, e.g.,
integer overflow; and it is not logically possible to terminate a program
of which "false" is provably true on termination). In the case of
communicating programs, termination can be achieved by simply delaying an
action of Q2 where necessary until Ql has performed such actions as
make it defined, which will always occur provided Ql;Q2 terminates.

The paradigm case of semicommutative operations are input and output

of items to a sequence. Output of an item x to sequence s will be

denoted:
s.output(x);

it is equivalent to

16
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s:=85 N (x);

where N1 is the symbol of concatenation, and (x) is the sequence whose
only item is X . This operation appends the item x to the end of the
sequence and is always defined. 1Input of the first item from a sequence
s to the variable y will be denoted:

s.input(y)
which is equivalent to a unit of action consisting of two operations:

y := first (s); :=rest(s);

where first maps a sequence onto its first item and rest maps a sequence

onto a shorter sequence, namely the sequence with its first item removed.
The removal of an item from an empty sequence is obviously undefined;
on a non-empty sequence it is always defined. A sequence to which an
item has just been output is never empty. Hence

s.input (y) ; s.output(x) C s.output(x) ; s.input (y)
i.e., these operations semicommute. Consequently a sequence may be used
to communicate between two processes, provided that the first only
performs output and the second only performs input. If the second process
tries to input too much, their parallel execution does not terminate; but
neither would their sequential execution. Processes communicating by
means of a sequence were called coroutines by Conway [11l], who pointed
out the equivalence between sequential and parallel execution.

In practice, for reasons of economy, the potentially infinite
sequence used for communication is often replaced by a bounded buffer,
with sufficient space to accommodate only a few items. In this case, the
operation of output will have to be delayed when the buffer is full,

until input has created space for a new item. Furthermore the program

17



may fail to terminate if the number of items output exceeds the number

of items input by more than the size of the buffer. And finally, since
either process may have to wait for the other, purely sequential execution
is in general no longer possible, ‘because it would not terminate if the
total length of the output sequence is larger than the buffer (which it
usually is). Thus the parallel program is actually more defined than

the corresponding sequential one, which may seem to invalidate our proof
methods.

The solution to this problem is to consider the relationship between
the abstract program using an unbounded sequence and the concrete program
using a bounded buffer representation for the sequence. In this case,
the concrete program is the same as the abstract one in all respects
except that it contains an operation of cancrete output (to the buffer)
whenever the abstract program contains abstract output (to the sequence),
and similarly for input. Concrete output always has the same effect as
abstract output when it is defined, but is sometimes undefined (when the
buffer is full), i.e.:

concrete output = abstract output
The replacement of an operation by a less well defined one can never
change the result of a program (by the principle of continuity [4]), so
the concrete program is still contained in the abstract one

concrete C abstract
This justifies the use of the same proof rule for the concrete as for
the abstract program. The abstract sequence plays the role of the
"mythical"™ variables used by Clint [12]; here again, abstraction proves

to be a vital programming tool.
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In order to implement a concrete data representation for a variable
which is being used to communicate between processes, it is necessary
to have some facility for causing.a process to "wait" when it is about
to perform an operation which is undefined on the abstract data or
impossible on its current representation. Fyrthermore, there must be
some method for "signalling" to wake up a waiting process. One method
of achieving this is the condition variable described in [3]. Of course,
if either process of the concrete program can wait for the other, it is
possible for the program to reach deadlock, when both processes are
waiting. IniFhis case it is not reasonable to ask the implementor to
find a way out of the deadlock, since it would involve a combinatorial
investigation, where each trial could involve backtracking the program
to an earlier point in its execution. It is therefore the programmer's
responsibility to avoid deadlock. The assertional proof methods given
here cannot be used to prove absence of deadlock, which is a form of
non-termination peculiar to parallel programs.

A natural generalization of one-way communication is two-way
communication, whereby one process Ql uses a variable N to
communicate to Q2 , and Q2 uses a variable S to communicate with
Ql . Communication is achieved, as before, by semicommutative operations.
" It is now impossible to execute Ql and Q2 sequentially in either
order; and it is plain that the proof rule should be symmetric.
Furthermore, the correctness of Ql may depend on some property 32
of 82 which Q2 must make true, and similarly, Q2 may need to assume

some property Sl of Sl which Ql must make true. Hence we derive

the rule:

19



P, &8, {Ql }sl & Ry PQ&Sl{QQ}SE&RE

Rule of two-way
Py & PQ{QJ_ / Q }Rl&%‘e Communication

where Pl’ Ql, Rl ’Sl are disjoint from Pg, QQ’ RE’ 82 except for
variables S1» Sou which are subject only to semicommutative operations

in Ql and Q2 » as explained above; and Pl’ Sl’ R2 may contain Sy

(but not 82) and P, , 8, , Ry may contain s, (but not Sl). The

2

informal proof of this is complex, and is included in an appendix.

7. Colluding Processes

In certain combinatorial and heuristic applications, it can be
difficult for the programmer to know which of two strategies is going
to be successful; and an unsuccessful strategy could run forever, or at
least take an uncontrollable or unacceptable length of time. For
example, a theorem-checker might attempt to find a proof and a counter-
example in parallel, knowing that if one attempt succeeds, the other
may not terminate. 1In such cases, Floyd [13] has suggested the use of
"non-deterministic" algorithms: Dboth strategies are executed in parallel,
until one of them succeeds; the other is then discontinued. 1In principle,
this can be very wasteful, since all effort expended on the unsuccessful
strategy is wasted, unless it has cooperated in some way with the
successful one. Processes which implement alternative strategies we will
call colluding.

Colluding processes require a completely new notation and proof

rule, representing the fact that only one of them has to terminate.

20



These will be taken from Lauer [8], who uses the form

9 oz Qp
to denote a program involving execution of either Ql or Q2 , where
the programmer either does not kgow or care which one is selected. The

proof rule is adapted from the symmetric rule for disjoint processes:

P, {a; IR, P, {Q,1R,

Py Py{Q) or Q )Ry VR,

where Pl 3 Ql B Rl are disjoint from P2 3 Q2 > R2°

Note the continued insistence on disjointness, which was not made
in [8]. This has the advantage of permitting a genuine parallel
implementation. It has the even greater advantage that it does not
require an implementation to undo (backtrack) the effects of the
unsuccessful process. For suppose Ql was successful, and therefore
R, 1is true on completion of the program. R, does not mention any
variable changed by Qe , 5o the programmer cannot know anything of the
values or properties of these variables at this point; and so the fact
that Q2 has changed these values does not matter. However the values
are not formally undefined —-- for example, they can still be printed
out. Furthermore, if Q2 has used something like the memo function
technique described in Section 5, it is possible to use the results of
its calculations, even after it has been terminated at an arbitrary
point in its execution.

However, 1t must not be a wholly arbitrary point; a process must not
be stopped in the middle of one of its "units of action", i.e., in the
middle of updating a structured variable non-local to the process. If

it were so stopped, the invariant of the data structure might no longer

21



be true, and any subsequent attempt to access that variable would be

disastrous. The need to inhibit termination during certain periods was
recognized by Ashcroft and Manna [15].

Sometimes a colluding process can detect that it will never succeed,
and might as well give up immediately, releasing its resources, and
using no more processor time. To do this, Floyd suggested a basic
operation

failure;
the proof rule for this may be simply modelled on that for the jump:
true [failure') false
which permits failure to be invoked in any circumstances (true), and
which states that failure always fails to terminate. If a1l processes
fail, the program fails, and no property of that program will hold after
the failure. The situation is the same as that of a sequential program,
artificially interrupted by expiry of some time limit.

In order to ensure that time is not excessively wasted on an
unsuccessful process, the programmer should exert every endeavor to ensure
that a process usually detects whether it is going to fail as early as
possible. However, it may be that a process sometimes discovers that
although failure is quite likely, it is not yet certain, and it may take
a longer time to decide than was originally hoped. In this case, it would
be wise to delay continuation of the current process but without
precluding the possibility of later continuation. To achieve this, I
suggest a primitive scheduling statement:

wait;

this is intended to cause immediate suspension of the calling process,

22



allowing the processor to concentrate attention on the other processes,
until either
(1) one of them succeeds: the waiting process is then abandoned in
the normal way;
(2) all of them fail: the waiting process is then resumed in the normal
way as the last remaining hope;
(3) all non-failed processes have themselves invoked a wait: then the
longest waiting process is resumed.
(If several processors are available, the above remarks require adaptation.)
If greater sophistication in scheduling is desired, a process which
is exceptiondily unpromising should indicate this fact by passing a
parameter to the wait:
wait (t)
where t is an indication of how many times the calling process is willing
to be overtaken by more promising processes. The implementation of this
is accomplished most easily by maintaining a pseudo-parallel time queue,
as in SIMULA. For wise scheduling, t should be proportionalto an
estimate of the expense required by the current process before it comes
to a decision on its own success or failure. Of course, a process should
try to avoid waiting while it is in possession of expensive resources.
Since every process retains some allocation of storage and overhead during
a wait, waiting should be used sparingly. Nevertheless, it gives the
programmer a useful degree of control in specifying a "breadth first"
or "depth first" search of a tree of alternatives.
It hardly seems worthwhile to seek more sophisticated scheduling

methods for colluding processes. One great advantage of the wait is
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that each process can schedule itself at a time when its resource

occupation is low; furthermore it can do so successfully without

knowing anything about the purpose, logic, progress, or even the name

of any other process. This is the secret of successful structuring of

a large program, and suggests that self-scheduling by a wait is a good
programming language feature, and surely preferable to any feature which
permits one process to preempt or otherwise schedule another at an
arbitrary péint in its progress.

But perhaps the strongest argument in favor of a wait is that the
insertion of a wait has no effect whatsoever on the logic of a process,
and in a prog} of correctness it may be ignored. It is equivalent to an
empty statement, and has the delightful proof rule:

R {wait(t)}R
for any assertion R

On completion of the program Q; or Q, » it can be quite difficult
to find out which of them has in fact succeeded. Suppose, for example,
the purpose of the program is to find a z satisfying R(z) . Suppose
processes Ql and Q2 satisfy

Pl{Ql]R(yl)

P{a, IR(y,) .

'It is now possible to prove

31&Pb{(Ql or Qg); if R(yl)'then z 1=y, else z :=y2}R(z)

But R(yl) may be expensive or impossible to compute, and something better

is required. A possible solution is based on the "protected tail"
described in [15]. 1In this, a colluding process has two parts

Q £hen Q'

2k



where Q is the part that may fail to terminate, and Q' is initiated

only when Q has terminated. However all parallel colluding processes
are stopped before Q' starts. .That is why Q' has the name "protected
tail". Since a protected tail is never executed in parallel, the rule of
disjointness may be somewhat relaxed, permitting the protected tails to
update the same variables, e.g.:

Ql then z 1=y, o Qg then z =Y,
The appropriate proof rule is:

P, {q, IRy R, {Q 1R

Fy{a, 1R, R, (9 IR

Pl& Pe{Ql then Q) or Q, then Qé}R

\

where Pl 3 Ql 3 Rl » are disjoint from P R

27 QZ' 2 .

The construction Ql or Q is something like the least upper bound

2

(4] of two functions fl U f2 . However fi u f2 is inconsistent if

f and f, Dboth terminate and have different results; and it is not

1 2
possible to guarantee against this inconsistency either by a compile
time or a run time check (which could go on forever if the functions
are consistent). The or construction is still well-defined (at least

axiomatically), in spite of the fact that the effects of Ql and. Q2

are nearly always different.

8. Machine Traps

Dijkstra has expressed the view [16] that one of the main values of
parallel programming ideas is the light that they shed on sequential

programming. This section suggests that the idea and proof method for

25



errersre

colluding programs may be used to deal with the problem of machine
traps that arise when a machine cannot perform a required operation due
to overflow or underflow, and either stops the program or jumps to some
trap routine specified by the programmer. At first sight such a jump
seems to be even more undisciplined than a go to statement invoked by
the program, since even the source of the jump is not explicit. But
the main feature of such a jump is that it signals failure of the
machine to complete the operations specified by the program Ql ; 1f the
programmer is willing to supply some alternative "easier" but less
satisfactory program Q2 , the machine will execute this one instead,
just as in the case of colluding processes.
However, there are two great differences between this case and the
previous one.
(1) The programmer would very much rather complete Ql than Q2 .
(2) Parallel execution of Ql and Qe is not called for. Q2 is
invoked only when Ql explicitly fails.
For these reasons it would be better to introduce a different notation,
to express the asymmetry:

Ql otherwise Q2

Also, because parallelism is avoided, the rule of disjointness can be

* relaxed considerably:

P {Q 1R, P,{Q, 1R,

Pl& P2{Ql otherwise Qe}RlVR2

where Ql is disjoint from P2 5 this states that Q2 may not assume

anything about the variables changed by Ql . However Q2 is still
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allowed to print out these variables, or take advantage of any memo
functions computed.

It is necessary to emphasize again the impermissibility of stopping
in the middle of an operation on a variable non-local to a process.

If failure occurs or is invoked in the middle of such an operation, it
is the smallest process lexicographically enclosing the variable that
must fail. This can be assured by the normal scope rules, provided that
the critical regions are declared local to the variable, as in monitors
and data representations, rather than being scattered through the program
which uses them, as in [1].

This proposal provides the programmer with much of the useful part
of the complex PL/I[ 17] ON-condition and prefix mechanisms. The other
intended use of the ON-condition is to extend machine arithmetic by
supplying programmer-defined results for overflowing operations. For
this I would prefer completely different notations and methods.

This proposal also provides the programmer with a method for
dealing with transient or localized failure of hardware at run time, or
even (dare I mention it?) with programming error. The need for a means

to control such failures has been expressed by d'Agapeyeff [18].

9. Conclusion

In conclusion it is worth while to point out that the parallel
composition of programs has pleasant formal properties, namely ﬂ and
or are associative and commutative, with fixed point "do nothing" and
"failure" respectively; and otherwise 1is associative with fixed point

"failure". These facts are expressed by the equivalences:

4



/ey = Rl
Q) or Qy = Qy or Qg

Q1 (Qp/Rs)

n

(@y//Q,) /g
(@ or Q) or @5 = Q; or (4, or Q)

otherwise Q5 =Q otherwise (Q2 otherwise Q5)

(Ql otherwise QE)

1)

(Q//do-nothing) Q

Q or failure = Q

= Q otherwise failure = Q .

failure otherwise @
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Appendix: Proof of rule of two-way communication.

The informal proof of this depends on a mythical reordering of units
of action, where a unit of action is defined as an assignment of a

constant to a variable, or the performance of an operation with constant
parameters to a variable. Thus for example, an operation in Q

s, -input(y) ;
would appear every time in a computation of Ql as

y :=17;

82 .—truncate;

where 17 happens to be the value of the first item of S, at the time,
and the "truncate" operator removes the first item from a sequence.
Consider a particular interleaved execution of Ql//Q2 . Sort the

computation into the order

o1 3By 58y
where EQl is the sequence of all operations of Q2 on S,
El is the sequence of all operations of Ql ’

E22 is the sequence of all other operations of Q2 .

This is feasible, because operations on one variable commute with
operations on all other variables, and operations of Q2 on Sg

semicommute with operations of Ql on so the rearranged sequence

Sy s
can only be more defined than the original interleaving.
Define

P2 as the result of replacing all occurrences of 5,

in P2 by the initial value of Sy
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and Sg as the result of replacing in

82 all occurrences of

variables changed by Q2 by their final values, i.e,,

after executing E22 .

We will assume that the premises of the rule are valid, and hence we

assert informally (i.e., not by showing it to be deducible):

P &8,{E 1S &R) (1)
Pg&Sl{Ezl;E22}SQ&R2 (2)

We will prove three lemmas.
(1) P, & F, {Eel}Pl & 1'32 & §2
(I1) P, &P,& §2{El}Sl &R, &P,
(III) 8, &Ry & ?E{EEE}R:L & R,

The conclusion of the rule follows directly by the rule of composition.

Lemma T

The only variable free in 52 is s2 , which is not changed by g
Its truth after E22 implies its truth before. Hence from (2) we get
P, & Sl{Egl}SE

The only variable mentioned in E

o1 32 r which is not mentioned in §

Provided that there exist values satisfying Sl , it follows that

is

Py {By 15,

(If Sl were unsatisfiable,

Ql would not terminate under any circum-

stances; and neither would Qyﬂ% , which would make any conclusion

about QrﬂQg vacuously true). Since s, is not mentioned in P

32
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P, &P, {Egl}s2 & Pl

The truth of §2 after Eoq follows from the truth of P, before.

Lemma IT

In (1), 32 is the only part containing variables subject to
updating by Q, . By instantiating these variables, we can get:

P &8 {El}sl & Ry

Since ﬁé contains no variable subject to change in El , the lemma

follows immediately.

Lemma III

Since S, and P, do not mention s,

1 o) they are true after E

22

if and only if they are true before. pence from (2)
B, &5;{B;0lR,

Since Rl does not mention any variable subject to change in E22,

Lemma III is immediate.
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