SEL-73-039

Partially Self-Checking Circuits and Their
Use in Performing Logical Operations

by
John F Wakerly

August 1973

Technical R%%ort No.50; ISSUED IN JULY 1974AS
COMPUTER SCIENCE DEPARTMENT TECHNICAL REPORT NO. 420.

This research was performed while
Mr. Wakerly was a Fannie and John
Hertz Foundation Fellow; it was

a lso pa rtially supported by Na tional

" Science Foundation Grant GJ-27527,

DIGITAL SYSTEMS LABORATORY
ITANFORD ELEITRONIIS 1RBORATORIES

JTANFIRY HNYERSITY - STANFORD, (ALIFARNIA

SEL 73-039

PARTIALLY SELF-CHECKING CIRCUITS

AND THEIR USE IN PERFORMING LOGICAL OPERATIONS

by

John F. Wakerly

August 1973

Technical Report no. 50

DIGITAL SYSTEMS LABORATORY
Dept. of Electrical Engineering Dept. of Computer Science
Stanford University

Stanford, California

This research was performed while Mr. Wakerly was a Fannie and John
Hertz Foundation Fellow; it was also partially supported by National
Science Foundation Grant GJ-27527.

r— r—

— r

r—

r—

ABSTRACT

A new class of circuits called partially self-checking
circuits is described. These circuits have one mode of opera-
tion called secure mode in which they have the properties of
totally self-checking circuits; that 1is, every fault is tested
during normal operation and no fault can cause an undetected
error. They also have an insecure mode of operation with the
property that any fault which affects a result in insecure mode
is tested by some input in secure mode; however, undetected errors
may occur in insecure mode. One application of these circuits is
in the arithmetic and logic unit of a computer with data encoded
in an error-detecting code. While there is no code simpler than
duplication which detects single errors in logical operations
such as AND and OR, it is shown that there exist partially self-
checking networks to perform these operations. A commercially
available MSI chip, the 74181 4-bit ALU, can be used in a par-
tially self-checking network to perform arithmetic and logical

operations.

ii

TABLE OF CONTENTS

INTRODUCTION 1
SELF-CHECKING CIRCUITS

TOTALLY SELF-CHECKING NETWORKS
PARTIALLY SELF-CHECKING NETWORKS

4.1 Type 1 Networks

4.2 Type 2 Network$

4.3 Type 3 Networks

VERIFICATION OF SELF-CHECKING PROPERTIES
5.1 Fault-secureness

5.2 Self-testing

A PARTIALLY SELF-CHECKING NETWORK FOR ARITHMETIC
AND LOGICAL OPERATIONS

OTHER APPLICATIONS
CONCLUSIONS

REFERENCES.

Page

10
13
14
19
22
27
27

28

31
38
39

40

r r

r—

iii

LIST OF FIGURES

Figure

1.1 Self-checking circuit . . ,

2.1 Self-testing circuit

2.2 Fault-secure circuit

2.3 Examples of self-testing and fault-secureness
3.1 Totally self-checking bus driver

3.2 Totally self-checking network

4.1 Totally self-checking bus switch

4.2 Type 1 partially self-checking network

4.3 Partially self-checking parity-checked bus driver.
4.4 Totally self-checking checker for separate codes
4.5 Type 2 partially self-checking network

4.6 Type 3 partially self-checking network

6.1 Bit slice to perform any logic function of two
variables

6.2 Partially self-checking ALU using 74181 4-bit
ALU chips . .

Page

11
11
13
15
18
19
21

23

32

37

r— r— r—

r— r r— r— r— r

r—

Table

6.1

6.2

iv

LIST OF TABLES

Functions performed by the circuit of Fig.

Fault tests for the circuit of Fig. 6.1

6.

1

Page
33

34

ACKNOWLEDGMENT

The author expresses appreciation for the helpful suggestions
and advice of Professor Edward J. McCluskey during the course of
this work, and for the support of the Fannie and John Hertz

Foundation.

r r— F

r—— r— r

r—

. r— — r—

r

-

1. INTRODUCTION

One approach to error detection in fault-tolerant computers is
through the use of self-checking circuits, explored by Carter and
Schneider [1] and also by Anderson [2]. As suggested by Fig. 1.1, the
output of a self-checking circuit is encoded in some error-detecting code
so that faults may be detected by a checker which monitors the output
and signals the appearance of a non-code word. p self-checking circuit
has properties of "self-testing" and "fault-secureness" introduced in [1]

and formally defined by Anderson [2].

Definition Al: A circuit is self-testing if, for every fault from a

prescribed set, the circuit produces a non-code space

output for at least one code space input.

Definition A2: A circuit is fault-secure if, for every fault from a

prescribed set, the circuit never produces an incorrect

code space output for code space inputs.

Anderson's definitions imply the existence of a "code space"

from
which normal inputs are drawn, and for which the circuit is both self-
testing and fault-secure. This facilitates his definition of a "totally
self-checking circuit," a circuit which is both self-testing and fault-
secure. Actually, a circuit may be self-testing for the set of normal
code space inputs, but fault-secure for only a subset. In this report

we formulate a theory of self-checking circuits that are self-testing for

an input set N and fault-secure for a subset I of N. ¢ 1 equals N, the

———
) ° self-checking ® coded
inputs circuit H outputs
—_ > F
e o0
checker

——p= signal upon appearance
of non-code word

Fig. 1.1 Self-checking circuit

circuit is totally self-checking as described in [2]. If I is the null
set, we have a circuit which is only self-testing and not at all fault-
secure, such as the self-testing decoder described by Carter et. al. [3].
If I is a non-null proper subset of N, then we have a "partially self-
checking circuit," as described in this report.

Due to the fact that no code short of duplication can be used to
check the logical operations AND and OR [4], any totally self-checking
circuit for these operations must use a form of duplication. For example,
" the JPL STAR computer uses duplicate logic units [5], while a processor
designed by Monteiro and Rao duplicates the AND operation and uses a combi-
nation of AND and arithmetic operations to perform the other logical
operations in a self-checking manner [6]. However, we will show how
partially self-checking circuits using inexpensive codes may be used to
perform logical operations. These circuits have one mode of operation in
which they are fault-secure, and another mode, performing logical opera-

tions, in which they are not.

2. SELF-CHECKING CIRCUITS

Throughout this paper we will consider a combinational circuit to
produce an output vector Z(i,f) which is a function of an input vector

i and a fault f in the circuit. For our purposes a fault is a malfunc-

tion which is manifested as one or more lines in a circuit stuck at a

logic value of 0 or 1. For example, we have the single fault <b/0> ("line

b stuck-at-o") and the multiple fault <h/1, b/l, d/0>. The absence of
a malfunction is called the null fault and denoted by A. an error
occurs when an incorrect value appears at the output of a circuit because

of a fault. Associated with a circuit is an output code space S; a

checker may monitor the output of the circuit and produce an indication

when an output not in S appears. There is a set of normal inputs N,

those inputs which occur periodically during fault-free operations of
the system. The fault-free output function Z(i,A) is a mapping from N
into S. We will also associate with a circuit two fault sets, Ft and

Fs’ which are used in the definitions below.

Definition: A circuit is self-testing for a fault set Ft if for every
f in Ft there is an input i in N such that Z(i,f) is not

in S.

The definition of self-testing is illustrated in Fig. 2.1. In this

definition, an input i for which Z(i,f) is not in S is called a test

for £f. The set Ft of faults which are tested during normal operation is

called the tested fault set.

Definition: A circuit is fault-secure for an input set I and a fault

set Fs if for any i in I and for any f in Fs either

Z(i,f) = Z(i,A) € S or Z(i,f) £ S.

Fig. 2.2 illustrates the above definition. The set I is called the

secure input set. We will always assume that I is a subset of the normal

input set N. Although the circuit may be fault-secure for some inputs
outside of N, these inputs are not of interest since they do do occur
in normal operation.

The set Fs above is called the secure fault set. We will always assume

for convenience that Fs is a subset of the tested fault set Ft' For sup-
pose there is a fault f in FS which is not in Ft' Then there is no input
among all the normal inputs for which an erroneous output is produced in
the presence of f, and the fault is not an interesting one to consider.
(However, multiple faults including f as a component may be of interest.)
The properties of self-testing and fault-secureness are illustrated
in Fig. 2.3. This figure shows the set of all faults and its subsets Ft
and Fs’ the set of all input vectors and its subsets N and I, and the set
of all output vectors and its subset S. In the absence of faults, inputs
from N produce outputs in S, as shown by the behavior in il’ 12’ and i3,
Self-testing is shown by noting that for each of the faults fl,fz, and f3
in Ft there is a test in N (il' 13, and i1 respectively). Fault-secureness
is illustrated by the behavior of Z(iz,f) for various f. In the presence
of a fault from Fs’ the output is either correct (Z(iz,fz)) or it 1is a
non-code word (Z(iz,fl)). However, faults outside of Fs may produce
erroneous code word outputs (Z(iz,fs)), Circuits which are self-testing

and fault-secure for some sets of inputs and faults are self-checking.

> —

—————
. °
any i € N e fault-free o Z(i,\) € s
° o
———
i
——
° °
some 1 €N o any fault in Fy o Z@,f) £S
. °
——————) e

Fig. 2.1 Self-testing circuit

[] °
any i1 € I e fault-free . Z(i,\) € s
° °
r————— h—————
o]
any i €1 e any fault in F‘] Z(i,f) = Z(i,\) € s
* ° or Z(i,f) £ s
e —— .

Fig. 2.2 Fault-secure circuit

{all faults]

[all input vectors) (all output vectors]

\
\\ Z(i,,f
—~— 2Up73
ozl '
1
3
Z(i3.f2) B

Fig. 2.3 Examples of self-testing and fault-secureness

Definition: A combinational circuit with normal input set N and output

code space S is self-checking if it is self-testing for a

fault set Ft and fault-secure for an input set I and fault

set F .
s

For a self-checking circuit to be of any value, Ft and Fs should be
reasonable fault sets, containing say all the single stuck-at faults.

During normal operation of a self-checking circuit, all reasonable
faults are detected because of the self-testing property. In addition,
fault-secureness guarantees there is no undetected erroneous output when

inputs are from I. If T is equal to N, then the circuit is "totally

self-checking.”

Definition; A totally self-checking circuit is a self-checking circuit

for which the set I of secure inputs equals the set N of

normal inputs.

In a totally self-checking circuit, no fault in Fs can cause an
undetected error for any normal input to the circuit. At the other
extreme are circuits for which there is no non-null choice of I for

which the circuit is fault-secure.

Definition: A self-testing circuit is a self-checking circuit for which

*
the set I of secure inputs is the null set.

An example of a self-testing circuit is the self-testing decoder of

Carter et. al. [3]. For any input to this circuit there is a single

*Obviously self-testing circuits may also be defined without reference
to self-checking circuits. However, this definition is included for
consistency and completeness.

stuck-at fault which will cause an erroneous code word output, and thus
I must be the null set.
Between the two extremes of self-testing and totally self-checking

circuits are partially self-checking circuits.

Definition: A partially self-checking circuit is a self-checking circuit

for which the set I of secure inputs is a non-null proper

subset of the set N of normal inputs.

When inputs to a self-checking circuit are from I, the circuit 1is
said to operate in secure mode. A totally self-checking circuit always
operates in secure mode. When inputs are from the set I' = N - I, the

circuit operates in insecure mode. A self-testing circuit always oper-

ates in insecure mode. A partially self-checking circuit operates
sometimes in one mode, sometimes in the other.

The effectiveness of totally and of partially self-checking circuits
may now be compared. With a totally self-checking circuit, any output
which is in the code space is correct if no faults outside of FS occur,
and any fault in Fs is detected by the first error it produces. If
only faults from Fs occur, no erroneous results may be transmitted.

In secure mode, a partially self-checking circuit has these same desirable
properties. But in insecure mode, erroneous results may be transmitted.

The likelihood of an undetected error in insecure mode is propor-
tional to the frequency of operation in this mode. If this mode is
infrequent, chances are that a fault will be detected in secure mode
before any result in insecure mode is affected. Even when a solid fault

produces an undetected error in insecure mode, it will soon be detected

in secure mode. At this point a software rollback scheme might be used
to erase the effect of possible undetected errors.

Unfortunately, there is still..a chance in insecure mode of trans-
mitting errors caused by short transient faults that are never detected.
Although this possibility is very small, it may be sufficient to rule
out the use of partially self-checking circuits in highly critical
applications where ultra-reliability is required and the chance of tran-
sients is high. But for less critical applications, partially self-
checking circuits can provide a good deal of low-cost error detection in
areas where corresponding totally self-checking circuits are much more
expensive. In particular, we will show networks for logical operations
which are partially self-checking, but first we introduce a model of

totally self-checking networks.

- 10 -

3. TOTALLY SELF-CHECKING CIRCUITS AND NETWORKS

In dealing with totally self-checking circuits we will mention
only the set N of normal inputs because the set I of secure inputs is
the same. A trivial example of a totally self-checking circuit is a
bus driver for n-bit parity-encoded operands, illustrated in Fig. 3.1.
The circuit consists simply of n identical bus driver gates (one-input
AND gates), one for each output bit. The output code space S and the
normal input set N both equal the set of all even-parity n-bit vectors.
The circuit is fault-secure for all single faults, since a single fault
causes either no error for a particular input, or a distance-one change
in the output producing an odd-parity vector. The circuit is also self-
testing for all stuck-at faults which affect less than n bits, since for
any such fault there is an even-parity input vector which produces an
odd-parity output in the presence of the fault. A checker which produces
a signal when an odd-parity vector appears may be used to monitor the
output of the circuit, as suggested by Fig. 1.1. Actually, we would
like the checker also to be totally self-checking so that a fault in the
checker also produces an error indication. This leads us to the concept
of totally self-checking networks.

Anderson gives the model of Fig. 3.2 of a totally self-checking net-

work consisting of a functional circuit and a checker which are both
totally self-checking [2]. In terms of the notation presented here, the
functional circuit has a fault-free output function which is a surjection

onto an output code space S while the checker

from a normal input set N £

f

L

rr—

r—

r

ll

Fig. 3.1 Totally self-checking bus driver

inputs

€N

error
indicator

Fig. 3.2 Totally self-checking network

F—————————————- - - — - = - ———— --A
t |
R . |
: o totally . :
se1f-cnedking

Io functional | e outputs € Sf 1
f e circuit re £ I
t |
I inputs

|
I ENc I
I o 00
I |
! totally :_
| self-checking
| checker :
I
I |
! I

outputs € s

T U tr-1 (N -

- 12 =

has a normal input set Nc = Sf and an output code space Sc = {<01>,<10>}.

The fault-free output function of the checker is a code disjoint mapping,

that is, it always maps non-code inputs _into non-code outputs. With
these constraints it is easy to show that the network itself is totally
self-checking (for example, see Thm. 3.2 of [2]). The normal input set
of the network is va while its output code space is Sc. The secure and
tested fault sets of the network are the unions of the corresponding
fault sets of the functional circuit and the checker.

A simple example of a totally self-checking network employs the
totally self-checking n-bit bus driver of Fig. 3.1 and an n-1l-bit odd
parity generator. The odd parity over n—l1 bits together with a wire

connected to the remaining bit comprise the required two-output totally

self-checking parity checker.

*The checker must have two lines encoded in this manner, for a fault
sticking a single error indicator line at the "good" wvalue would never
be detected.

r

r— r- rr— r— rmm rm r—— r~& ™+

r—

r r

r—

r—

- 13 -

4, PARTIALLY SELF-CHECKING NETWORKS

The use of and motivation for.partially self-checking circuits is
best given by an example. Suppose we have a machine with buses A, B,
and T that carry data encoded in a single error detecting code S. Fig.
4.1 shows one bit slice of a bus switch which can transfer either A or
B to T. This circuit is replicated once for each bit to be switched.
The lines <slso> are set to <OI> to transfer A to T and to <10> to
transfer B. A checker may then monitor the T bus with the appearance of
a non-code word signaling an error. The reader can easily verify that
the circuit is fault-secure for all stuck-at faults which affect only a
single bit slice, and self-testing for all stuck-at faults which affect
fewer than all the bit slices. Thus the circuit is totally self-checking
when used as a bus switch in this manner.

Looking at the circuit of Fig. 4.1 we notice that it may also be
used to compute the logical OR of A and B by setting <Blso> to <11>.

Unfortunately, the result in general will not be valid because the encod-

ing of the logical OR of two operands does not in general equal the

—~_

Fig. 4.1 Totally self-checking bus switch

- 14 -

logical OR of their encodings unless the encoding is at least complete
duplication [4]. Suppose however that the encoding is a separate code,
that is, a code with a separate data part and check symbol. Then the OR
of the data parts will be correct; only the check symbol output will be
wrong. We can then calculate a new check symbol based on the data out-
put of the circuit and utilize the re-encoded output. This is a practical
scheme only if it can be implemented in a self-checking manner at low
cost. In the remainder of this section we show models of partially self-

checking networks which fulfill that requirement.

4.1 Type 1 Networks

The simplest partially self-checking network is the type 1 model,
shown in Fig. 4.2. It consists of a totally self-checking functional

circuit with a fault-free output function which is a mapping from a

normal input set N_ onto an output code space § a totally self-checking

£ £/

checker with normal input set N, = Sf and output code space Sc =
{<Dl>,<10>}; and two control gates and the control leads cl and cO'
The vector <blco> may be set to <01> to enable the output of the checker,
or to <10> to force the error indicator output to <10> ("good").

The output code space of the network is just Sc. However, the
normal input set of the network consists of vectors of the form <b1poi>
where cl and c, are the control gate inputs and i is the functional

circuit input. When functional circuit inputs from Nf are expected,

- 15 =

totally

self-checking ¢ touts € 8
functional ¢ outputs f

) . . o
circuit

inputs
€N

inputs

€N
(&

o 00

totally
self-checking
checker

outputs
E S
c

error indicator

Fig. 4.2 Type 1 partially self-checking network

- 16 -

<blco> is set to 01> and the network is logically equivalent to the

totally self-checking network of Fig. 3.2. However, when inputs not in

N_ are expected <c

¢ > may be set to <10> to disable the checker.

1%

It is straightforward to show that the network of Fig. 4.2 is
partially self-checking when used in the manner described above. Let
Fa be the set of all single stuck-at faults on the control gates. That
is,

F, = ta/0, a/1, /0, b/1, c/0, ¢/1, d/0, d/1, e/0, e/1, £/0, £/1}

Then the secure and tested fault sets of the network contain F 35 well
a

as the corresponding fault sets of the functional circuit and checker.

The secure input set of the network is In’ where

_ . , _ A (4
I {<b1001> |(<blco> <01>) (1€Nf)}.

In insecure mode, the network has inputs from the set Ih, where

t : —
1! = {<cci> [< e> = <105},

Thus the normal input set of the network is Nn = InUI£°

Theorem 4.1: A type 1 network, described above and illustrated in

Fig. 4.2, 1is partially self-checking.

Proof: In secure mode, that is, with inputs from In, the network is
clearly self-testing and fault-secure for faults from the
appropriate fault sets of the functional circuit and checker.
It follows that the network is also self-testing with inputs
from Nn since Nh:Hn. Thus we need only show self-testing and

fault-secureness for faults from Fa.

rr— r— r— r

r—- o r r— r

—

:<b10

- 17 -

(a) (self-testing) All faults except <h/1> and <ﬂ/0> are
tested by some input from In’ since a and d have the
values 1 and 0 respectively during such operation, and
both 0's and 1's must be transmitted through the paths
<bc> and <ef>. This is true because each checker output
takes on both values 0 and 1. The faults <3/1> and <ﬂ/0>
are each detected by some input from Ih, since one of these
faults changes the correct error indicator output of <10>
to a non-code word. Thus all faults in Fa are tested by
some input in Nrl = In U I;.

(b) (fault-secureness) It is clear that a single fault from
Fa causes at most a distance one change in the error indi-
cator output, producing either the correct output or a

non-code word.]

An example of a type 1 partially self-checking network is the n-bit
parity checked bus driver shown in Fig. 4.3. The totally self-checking
functional circuit here is the n-bit bus driver of Fig. 3.1, while the
totally self-checking checker consists of an n-l-bit even-parity generator
and an inverter eonmected to the remaining data bit. The control vector
0> is set to <01> when even-parity operands are to be transmitted,
and to «0> for vectors of unknown parity.

The usefulness of type 1 networks is limited since in insecure mode
they do not re-encode the functional circuit output. We notice in the
example of Fig. 4.3 that the correct parity output is always available

from the parity generator at line p, and could be utilized at essentially

zero cost. Type 2 networks are a formalization of this idea.

- 18 =

functional
circuit

L
L
)

|

r————————==-=-—-=--"
U |

checker

error indicator

Fig. 4.3 Partially self-checking parity-checked bus driver

ey

19

4.2 Type 2 Networks

If the output code space of algelf—checking circuit is a separate
code, a checker can consist of an equality checker which compares the
check symbol output of the circuit with a new check symbol generated
on the basis of the data output of the circuit, as suggested by Fig. 4.4.
The following lemma shows that such a checker is totally self-checking

if the equality checker is.

Lemma: Let the code words <cd> in a separate error-detecting code S
consist of a data part d and a check symbol c¢ such that ¢ = C(d).
Then a network consisting of a check generator G which computes
C(d) and a totally self-checking equality checker which compares
the output of G and check symbols ¢ is a totally self-checking

checker for code words <cd> in S.

check symbol data part
eeo o0 ® o @ 0 o0 o
,_________} |
< 7
\\ check symbol //

\\\\ generator ////

e 0o
u totally 4
self-checking
equality
» checker

error indicator

Fig. 4.4 Totally self-checking checker for separate codes

- 20 -

Proof: The normal input set of the network is S, while the output code
space of the network is the output code space of the equality
checker. Let Fg be the set of all check generator faults which
produce an incorrect generator output for at least one network
input in S. Clearly faults outside of Eéhave no effect on the
network. The reader can easily verify that the network is
self-testing and fault-secure for faults in Fg’ as well as for
faults in the tested and secure fault sets of the equality
checker. The tested and secure fault sets of the network are

the appropriate unions of the above sets. o

The proof of the above lemma depends primarily on the existence of
.a totally self-checking equality checker for_k-bit check symbols c. If
the k-bit vectors do not take on all 2k possible values then a checker
might not exist. However, if the k-bit vectors do take on all values
then we are assured of the existence of a totally self-checking equality
checker regardless of the value of k [2].

A type 2 network, shown in Fig. 4.5, is a type 1 partially self-
'checking network which uses the totally self-checking checker for separate
codes described above, and which has a re-encoded functional circuit out-
put-derived from the check generator. The input sets, fault sets, and
output code space of a type 2 network are the same as those of the
corresponding type 1 network. Thus ignoring the re-encoded functional
circuit output, a type 2 network is merely a type 1 network with more

detail specified, and hence is partially self-checking. However, it

does have a re-encoded functional circuit output available, and the

r rm rm

- r— r

r—

o

r—

r—- r)

r—-

e

- 21 -
r---—-—+f7-~~"—"™""~"""™"""""~>T"7™7"=>"7"7"7"7777 7
| |
| |
' I
. e data | data
s totally e part | part
inputs | e self-checking ‘
€ Nf | o functional
I o circuit e check
| e symbol
(function
: PREPEP | ogtput
S
| f
| check |
| symbol
| generator
! A : |
! -] |
| totally i
| hd self-checking | check
| 4 equality | symbol
! — checker !
) [
| |
[|
' |
1 |
[|
| |
| 1
| |
| |
| |
| |
b e - ——- —— e -
error indicator
Fig. 4.5 Type 2 partially self-checking network

- 22 -

appearance of a non-code word here is reflected by the checker output,
since the checker function is a code disjoint mapping. These results

are summarized in the following theorem...

Theorem 4.2: A type 2 network, described above and illustrated in
Fig. 4.5, 1is partially self-checking. Furthermore, in
the absence of faults, the re-encoded functional circuit
output is always a code word; the appearance of a non-
code word because of a fault is reflected by a non-code

output of the checker.

4.3 Type 3 Networks

A noticeable disadvantage of type 2 networks is that the functional
circuit output is delayed by the re-encoding process using the check
generator. In a totally self-checking or type 1 partially self-checking
network the total delay is that of the functional circuit alone, while
in a type 2 network it is the sum of the functional circuit and check
generator delays. In insecure mode the re-encoding process will always
introduce some delay, but a type 3 network reduces the delay in secure
mode to two gate delays.

A type 3 network, illustrated in Fig. 4.6, consists of a totally
self-checking functional circuit and equality checker, a check generator,
and control gates to switch either the functional circuit check symbol
output or check generator output to the network output. The equality

checker compares the network check symbol output with the generated

I03eDTPUT JOIID

JyIOM3SU buTyosyDd-JT9s ArTeTraaed ¢ odAI 9°w

“bta

R I ety

I2309YD
AatTenbs °

butyooyo-3198 °
A11e303

q I
! 1-9 _
_ e i
| ! R i
v @
) _ _ |
N | , |
I H on. _ I03eIDUDD |
_ N— . ToquiAs I
| e ¥o8yo I
| i
! .
| e o o _
| |
_ -3, .
t
; ToquiAs ° -— “
\ yooyd ° 3TNOITO o | .

0, | TeuoT3iouny . N>

e i putyoeyo-ITOS I sandurt
jxed ° AT1TR202 i "

eaep ° —
- |
|
H |
e o e J

iiod o d 4 J 4 o4 e d 4 w 4 4 i

- 24 -

check symbol. When <blco> equals <V1> (secure mode), the network is

logically equivalent to a totally self-checking network; when <b1c0>
equals <10> (insecure mode), the functional circuit is re-encoded
and the equality checker compares the generated check symbol with itself,
producing a "good" output.

The normal input set, secure input set, and output code space of
a type 3 network are similar to those of type 1 and 2 partially self-
checking networks. If Fa is the set of all single faults on the control
gates, except the faults <hi/1>, then the secure and tested fault sets

of the network are the union of Fa and the appropriate fault sets of

the functional circuit and checker.

-Theorem 4.3: A type 3 network, described above and illustrated in Fig.

4.6, 1is partially self-checking.

Proof: The problem is similar to Thm 4.1, and reduces to showing that
the network is self-testing and fault-secure for faults in Fa.
As in Thm 4.1, self-testing is proved by showing that there is
a test for every fault in Fa in either secure or insecure mode.
Fault-secureness follows from the observation that a fault in
Fa either has no effect on the check symbol output, or changes
the check symbol output causing an error indication by the equal-

ity checker.]

*Here the "'checker" is the combination of the check generator and totally
self-checking equality checker, as in type 2 networks.

L
(-

I rr— r 1

r-

- 25 =

Although type 3 networks avoid the delay of re-encoding the func-
tional circuit output in secure mode, they have some disadvantages.

First, they require more control gates than a type 2 network, with a
corresponding increase in cost. Second, they have a set of single stuck-
at faults for which the network is not generally self-testing or fault-
secure, namely the faults <ai/r>. If the network is not self-testing

for faults <hi/1>, then these faults must be tested periodically by some
manual, software, or firmware method.

In a specific implementation of a type 3 network, self-testing and
fault-secureness for <ai/1> will depend on timing in the network and in the
circuits following it. For example, suppose the type 3 network performs
an operation which sets lines bb! dj’ and ej to 1. Suppose that the
next operation sets line dj to 0. Depending on the timing and control
sequence used, line bj may become 0 some time after line d.J does. Thus
line ej is erroneously held at logic value 1 until the check generator
"catches up." To the circuit receiving the output of the type 3 network,
the effect is similar to that of intermittent stuck-at-1 fault on line eb.

On the other hand, if the output of the check generator always has the

value 0 between operations, then the problem outlined above does not occur.

A simple example of a partially self-checking network uses the bus
switch circuit of Fig. 4.1 in a type 2 or type 3 configuration modeled
after Fig. 4.2 or Fig. 4.6. This network could be used in a CPU as a
bus switch and also to perform the logical OR operation. In a machine

in which data was encoded in an arithmetic code, the other logical

- 26 -

operations could be performed using a combination of the OR operation
and totally self-checking arithmetic operations [6]. However, we will
later show a totally self-checking functional circuit which can be used
in a partially self-checking network to perform all logical operations.
But first we must indicate how to verify the self-checking properties

of non-trivial circuits.

mr r

r rm— r r—

r

- 27 -

5. VERIFICATION OF SELF-CHECKING PROPERTIES

In this section we will show how to verify the self-checking

properties of a class of circuits defined below.

Definition: A bit-sliced circuit is a multiple-output combinational

circuit in which each output bit is computed by an indepen-

dent subcircuit, called a bit slice.

The bus switch discussed earlier is a bit-sliced circuit, with a
bit slice shown-in Fig. 4.1.
To show that a circuit is self-checking, we must show that it is

self-testing for a fault set Ft and fault-secure for a set Fs'

5.1 Fault-secureness

Fault-secureness of bit-sliced circuits is particularly easy to

show, as is evidenced by the following theorem.

Theorem 5.1: Let S be an error-detecting code of distance two or more.
Let a bit-sliced circuit have a fault-free output function
Z(i,\) which is a mapping from an input set I into S. Let
Fs be the set of all faults that affect only a single bit
slice. Then the circuit is fault-secure for inputs in I

and faults in FS.

Proof: Any fault f in % affects only a single bit slice, and therefore

only a single output bit. For a particular input vector i if

- 28 -

the fault does not change this output bit then Z(i,f) =
Z(i,\) € S; if it does change it then the output is distance
one away from a code word in S and Z(i,f) is not in S because

S is a distance-two code. |

In practice, the normal input set N of a totally self-checking
functional circuit may be chosen as the largest set for which the out-
put function is a mapping from N onto a distance-two code S; due to
Thm. 5.1 the circuit will be fault-secure for these inputs. If there
are inputs outside of N which will be used in normal operation, but
which produce outputs outside of S, these are the inputs for which the

checker is disabled in a partially self-checking network.

5.2 Self-testing

While fault-secureness 1is easy to show, self-testing for all single
stuck-at faults is not a general property of bit-sliced circuits and
depends on the design of the circuit and the exact composition of N.
However, we shall see in the following development that we can deter-

mine self-testing for an entire circuit by considering only individual

bit slices.

Definition: The set of active input combinations to a bit slice Bi in

a bit-sliced circuit is the set Ci = {cl c is the input

of Bi for some circuit input in N}.

- 29 -

Definition: Let a bit slice Bi realize the single output function

Zi(c,f). Then the set of testable faults of the bit

slice is the set
Fo= (f | (f affects only B,)

A @Hcec, s.t. Z, (c,f) = Z.(c,\))}.
1 1 1

Theorem 5.2: A bit-sliced circuit with distance-two output code S is

self-testing for the fault set Ft =U Ei'

Proof: For any fault f in any Fi’ there is an input c in Ci and a
corresponding circuit input i' in N such that Zi(c,f)==3§?ETT$.
Furthermore, no other ouput bit is affected by f. Thus the
circuit output Z(i',f) is distance one from Z(i',\) € S and
therefore not in S. So the circuit is self-testing for any

fault in any Fi' and hence it is self-testing for any fault in

F =UF,. a

Due to Thm 5.2 we may prove self-testing of a bit-sliced circuit by
considering each bit slice separately. The problem is further reduced
in many cases because the bit slices Bi are identical, as are the sets
of active input combinations Ci' The problem is then that of showing
- that the set FB of testable faults for the standard bit slice contains
all reasonable faults. The standard set CB of active input combinations
is determined by inspection of N. In the remainder of this section we
suggest how to determine FB for a bit slice, given a structural specifi-
cation of the circuit and C_.

B

The problem of determining F_ can be attacked using any method of

B

- 30 -

finding which faults in a circuit are detected by a particular test.

Such a method would be used to find the set of faults detected by each
active input combination to a bit slice, and the union of these sets

would be the tested fault set for the bit slice. Examples of existing
methods of finding faults detected by a test are Roth's "test-detect" (7]
and Armstrong's deductive method [8]. Another method, described in [9],
employs Reese's gate equivalent model (GEM) [10]. In this method, the

GEM of a bit slice is derived, and tested faults are determined by assign-
ing input literals the values they receive in active input combinations.
This method was used to generate Table 6.2 in the next section.

An alternative approach to verifying the self-testing property is
to fix FB as some known fault set and then prove that all faults in that
set are tested by some active input combination. This could be done
using conventional test generation techniques, generating tests for each
fault until a test which is also an active input combination is found;
such a procedure would be rather inefficient. However, Wakerly and
McCluskey [11] give a Karnaugh map method which can be used to verify
that any particular test set detects all single stuck-at faults in a
general single-output network. The method requires deriving the GEM of
the network, mapping the PI-sets or SI-sets [10], marking the active
input combinations, and visually checking for "growth" and "existence"
tests. The method can also be used to determine which faults are
detected by a particular test and was used by the author to verify the

correctness of Table 6.2 in the next section.

o —

r— r-

re

- 31 -

6. A PARTIALLY SELF-CHECKING NETWORK FOR ARITHMETIC AND LOGICAL
OPERATIONS

The circuit of Fig. 6.1 can be used to perform all 16 Boolean
functions of two input variables Ai and Bi by appropriately setting
the control input vector <SssZSISd>. The circuit may be replicated
to form a bit-sliced functional circuit to perform any of these opera-
tions on two input vectors A and B. For each value of j = <33828180>,
Table 6.1 gives fj(A,B).

If input vectors A and B are encoded in a distance-two error
detecting codg's, and if a function ﬁj(A,B) preserves* this encoding,
then according to Thm 5.1 the functional circuit is fault-secure.

The secure fault set of the circuit contains all faults which affect
only a single bit slice, and the secure input set is

= = j A B S .
I {<ssszslsoAB> | (<8,8,8,8,> =) A (4,B €)}

If the encoding is preserved by fJ(A,B) for a number of j, say J€ 71,
then the secure input set of the circuit is I = U Ij'
J€ed

Due to Thm 5.2, the functional circuit is also self-testing for
certain faults when the function fJ(A,B) preserves the encoding of
A and B. Assuming that input bits Ai and Bi take on all four possible
combinations and that the function fj(A,B) is code-preserving, Table
6.2 shows which single stuck-at faults in a bit slice are tested by

selected functions. (The table includes only one member from each

class of structurally equivalent faults.)

*A function fT(A,B) preserves S if A,B € S implies f,(A,B) € S.

J

- 32 -

B3
__\ P4
J
Q
2
A3
A
_\ P3
o
6

Fig.

6.1 Bit slice to perform any logic function of two variables

- 33 -

TABLE 6.1
J = 88,88, £ (A,B) J = 848,88, £ (A,B)
0000 A 1000 A+B
0001 A+B 1001 A®B
0010 A-B 1010 B
0011 0 1011 A*B
0100 A'B 1100 1
0101 B 1101 A+B
0110 A®B 1110 A+B
0111 A.B 1111 A
Table 6.1: Functions performed by the circuit
of Fig. 6.1

For example, suppose A and B are vectors from an error-detecting
code S consisting of all even parity n-bit vectors where n is even.
The code S is preserved by the operations A & B,'z_érg, A, B, Z, E, 0,
and 1. Inspection of Table 6.2 reveals that all single stuck-at
faults in a bit slice are detected by A ® B and X_@_E or by A, B, K,
and B. If the normal input set of the functional circuit contains any
such set of code-preserving operations which tests all faults in each
bit slice, then the circuit is self-testing. The circuit is also
fault-secure for code-preserving operations and hence it is totally

self-checking.

- 34 -

TABLE 6.2
stuck-at-0
fj(A,B) A Al B B4 S0 S1 Sz“ S3 P1 P2 P3 P4
0 X X X X
1 b4 b4 X X
A®B X X X X X X X X
A®B X X X X X X X
A X X X b 4 b 4 X X X X
B X X X X X X
A X X
B X X X X X X
stuck-at-1
ﬁj(A,B) A A2 A3 B B1 B3 B4 B5 B6 S0 S1 82 S3
0 X X
1 X X
A®B X X X X X X X X
A®B X X X X X X X
A X X X
B X X X X X X
A X X X X X
B b 4 b 4 X X X X

Table 6.2: Fault tests for the circuit of Fig. 6.1

- 35 -

Since the bit-sliced functional circuit of Fig. 6.1 is totally
self-checking when used in the manner described above, it can be
employed in a partially self-checking network which re-encodes the
output for those functions which are not code-preserving. For example,
we can use the circuit in a partially self-checking two-input univer-
sal logic unit in a machine whose data is parity-encoded as described
above. The function selection vector <S_S_S.S > and the checker

3210

enable control <blco> could be. supplied by a microprogrammed control
unit. (Checking the control is discussed in [12].) The logic unit

would operate in secure mode for the code-preserving operations and
in insecure mode for the non-code-preserving operations such as AND

and OR.

Four copies of the bit slice of Fig. 6.1 are used along with
some carry logic in an existing MSI chip, the 74181 4-bit arithmetic
and logic unit [13,14]. In this chip, the logic functions of Table
6.1 are performed when a control lead M is set to 1 to disable inter-
nal carries. When M is set to 0, internal carries are enabled and the
unit performs arithmetic operations.

Because of its carry logic the 74181 is not a bit-sliced circuit.
However, 1f the input operands A and B are encoded in a distance-two
arithmetic error-detecting code, then the output is a code word for
the addition and subtraction operations. A single stuck-at fault
causes an error with arithmetic weight at most one, producing a non-
code word. Thus it is possible to show that for code-preserving

operations the circuit is fault-secure for all single faults.

*Except faults on control leads S_, S,, S,, S., .and M which occur before
these leads fan out to the indivi dual bit slices.

- 36 -

When used to perform addition and subtraction on data in an
arithmetic code the 74181 is self-testing for faults which affect the
carry logic. Faults in the logic unit bit slices (Fig. 6.1) are
also tested. With carries disabled (M=1l), logic unit operations are
performed and faults are tested by code-preserving operations accord-
ing to Table 6.2. Code-preserving operations are A and B for any
arithmetic code, and also X,E, 0, and 1 for the low-cost codes [15].
With carries enabled (M=0), arithmetic operations are performed.
During addition and subtraction the A ®B and A ® B functions of the
logic unit are used, and the corresponding faults indicated in Table
6.2 are tested. Thus the 74181 is self-testing for all single faults.
provided that the following occur in normal operation: (a) either
addition or subtraction to test the carry logic; (b) any combination
of addition, subtraction, and code-preserving logic unit operations
which tests all logic unit faults; and (c) at least one arithmetic
and one logic unit operation to test the carry-enabling circuitry.

Under the conditions outlined above, the 74181 4-bit ALU is
self-testing and fault-secure when used to perform code-preserving
operations on data in an arithmetic code; hence it is totally self-
checking. Fig. 6.2 shows an implementation using 74181's in a
totally self-checking arithmetic and logic unit for 16-bit operands
with 4-bit check symbols in a low-cost residue code [15]. Addition
here is in the 1's-complement system; addition in the 2's-complement
system requires additional circuitry to correct the check symbol when

a carry out of the high order data bit position occurs [15]. The

- 37 =

functional circuit can be employed in a partially self-checking network

which performs non-code-preserving operations in insecure mode.

15-12 11-8 T-4 3-0

c 74181 c. c 74181 c. c 74181 c
o i o i (o] i
L
A B A B A B
d15—12 QI5—12 d11—8 d11-8 d7—4 d7-4
Tc
3-0

c 74181 c
o i

M83328150

Fig. 6.2 Partially self-checking ALU using 74181 4-bit ALU chips

- 38 -

7. OTHER APPLICATIONS

An existing use of the partially se%f—checking concept is in
arithmetic processors for addition, subtraction, and iterative
algorithms such as multiplication and division. If data is encoded
in an arithmetic code, then the adder circuit is self-testing and
fault-secure for the addition and subtraction operations. However,
during iterative operations the checker may be disabled until the

end to increase speed, and undetected errors due to repeated use

faults [15] can occur. Thus the arithmetic processor is partially
self-checking, operating in secure mode for addition and subtraction
and in insecure mode for the iterative algorithms.

Any totally self-checking functional circuit may be incorpora-
ted in a partially self-checking network. Such a network is useful

if in addition to secure mode the functional circuit has a useful mode

of operation in which the output is not a code word.

- 39 -

8. CONCLUSION

Several techniques are available for providing fault-detection
in fault-tolerant computers. In simple systems duplication and
matching might be the most inexpensive method because it requires the
least control circuitry and the least design effort. However, in
systems with a large number of fast registers which must be checked,
or in systems which are to be made as small as possible for LSI
implementation, the use of error-detecting codes is the most inexpen-
sive means of fault-detection. Unfortunately, there is no simple code
for checking logical operations such as AND and OR, and previous sys-—
tems using coding have resorted to duplication for these operations.
In this report we have developed a theory of partially self-checking
circuits, and shown how partially self-checking networks may be used
to perform logical operations. The use of partially self-checking
networks is a low-cost method of performing these operations in
systems employing error-detecting codes for checking arithmetic and

data transfer operations.

9.

(1]

[2]

[3]

(4]

(5]

(6]

L-71

(8]

[9]

[10]

[11]

[12]

- 40 -

REFERENCES

Carter, W. C., and P. R. Schneider, "Design of dynamically
checked computers," IFIP 68;' vol. 2. Edinburg, Scotland,
pp. 878-883, Aug. 1968.

Anderson, D. A., "Design of self-checking digital networks
using coding techniques," Coordinated Sci. Lab., Univ.
Illinois, Urbana, Rep. R-527, Sept. 1971.

Carter, W. C., K. A. Duke, and D. C. Jessep, "A simple self-
testing decoder checking circuit," IEEE Trans. Comput.,
vol. c-20, pp. 1413-1414, Nov. 1971.

Peterson, W. W., and M. 0. Rabin, "On codes for checking
logical operations,”™ IBM Journal, vol. 3, pp. 163-168, Apr.
1959.

Avizienis, A., et. al., "The STAR (self-testing and repairing)
computer: An investigation of the theory and practice of fault-
tolerant computer design," IEEE Trans. Comput., vol. C-20,

pp. 1312-1321, Nov. 1971.

Rao, T. R. N., and P. Monteiro, "A residue checker for arith-
metic and logical operations,”™ Dig. 1972 Int'l. Symp. Fault-
Tolerant Computing, pp. 8-13, June 1972.

Roth, J. P. et. al., "Programmed algorithms to compute tests
to detect and distinguish between failures in logic circuits,"
IEEE Trans. Electron. Comput., vol. EC-16, pp. 567-580, Oct.
1967.

Armstrong, D. B., "A deductive method for simulating faults in
logic networks," IEEE Trans. Comput., vol. C-21, pp. 464-471,
May 1972.

Wakerly, J. F., "A method of finding faults detected by tests
using the GEM," Dig. Syst. Lab., Stanford,Calif., Tech. Note 31,
August 1973.

Reese, R. D., and E. J. McCluskey, "A gate equivalent model for
combinational logic network analysis,"™ Dig. 1973 Int'l. Symp.
Fault-Tolerant Computing, June 1973.

Wakerly, J. F., and E. J. McCluskey, "A graphical method of
identifying fault tests in combinational logic networks," Dig.
Syst. Lab., Stanford,Calif., Tech. Rep. 66, August 1973.

Wakerly, J. F. "Low-cost error detection techniques for small
computers," Dig. Syst. Lab., Stanford,Calif., Tech. Rep. 51,
Sept. 1973.

- 41 -

[13] Fairchild 9341/54181, 74181 data sheet.
[14] signetics S54181/N74181 data sheet.
[15] Avizienis, A., "Arithmetic codes: Cost and effectiveness

studies for applications in digitai' systems design," IEEE Trans.
Comput., vol. C-20, pp. 1322-1331, Nov. 1971.

