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i ABSTRACT
A new class of circuits called partially self-checking

L circuits is described. These circuits have one mode of opera-

| tion called secure mode in which they have the properties of
totally self-checking circuits; that 1s, every fault 1s tested

| during normal operation and no fault can cause an undetected
| error. They also have an insecure mode of operation with the

| property that any fault which affects a result in insecure mode

1 1s tested by some input in secure mode; however, undetected errors
may occur in insecure mode. One application of these circuits 1s

| in the arithmetic and logic unit of a computer with data encoded
in an error-detecting code. While there 1s no code simpler than

i duplication which detects single errors in logical operations
’ such as AND and OR, it 1s shown that there exist partially self-

L checking networks to perform these operations. A commercially

L available MSI chip, the 74181 4-bit ALU, can be used in a par-
tially self-checking network to perform arithmetic and logical

L operations.
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i 1. INTRODUCTION

- One approach to error detection 1n fault-tolerant computers 1s
through the use of self-checking circuits, explored by Carter and

t Schneider [1] and also by Anderson [2].As suggested by Fig. 1.1, the
| output of a self-checking circuit 1s encoded in some error-detecting code

L so that faults may be detected by a checker which monitors the output

4 and signals the appearance of a non-code word. pa self-checking circuit
has properties of "self-testing" and "fault-secureness" introduced in [1]

{

| and formally defined by Anderson [2].

| Definition Al: A circuit is self-testing if, for every fault from a
prescribed set, the circuit produces a non-code space

|
Lo output for at least one code space input.

Definition AZ2: A circuit 1s fault-secure 1f, for every fault from a
L nbichetmindiid hein

prescribed set, the circuit never produces an incorrect

( code space output for code space inputs.

. ) Anderson's definitions imply the existence of a "code space’ from

which normal inputs are drawn, and for which the circuit is both self-

— —- testing and fault-secure. This facilitates his definition of a "totally

self-checking circuit," a circuit which is both self-testing and fault-

secure. Actually, a circuit may be self-testing for the set of normal

L code space inputs, but fault-secure for only a subset. In this report

we formulate a theory of self-checking circuits that are self-testing for

L an input set N and fault-secure for a subset I ofN. fr 1 equals N, the

-

-
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® self-checking ® coded

Inputs H circuit 4 outputs

signal upon appearance
of non-code word

Fig. 1.1 Self-checking circuit

circuit is totally self-checking as described in [2]. If I is the null

set, we have a circuit which is only self-testing and not at all fault-

secure, such as the self-testing decoder described by Carter et. al. [3].

If I is a non-null proper subset of N, then we have a "partially self-

checking circuit," as described in this report.

Due to the fact that no code short of duplication can be used to

check the logical operations AND and OR [4], any totally self-checking

circuit for these operations must use a form of duplication. For example,

" the JPL STAR computer uses duplicate logic units [5], while a processor

designed by Monteiro and Rao duplicates the AND operation and uses a combi-

nation of AND and arithmetic operations to perform the other logical

operations in a self-checking manner [6]. However, we will show how

partially self-checking circuits using i1nexpensive codes may be used to

perform logical operations. These circults have one mode of operation in

which they are fault-secure, and another mode, performing logical opera-

tions, 1n which they are not.



{

he

2. SELF-CHECKING CIRCUITS

—

Throughout this paper we will consider a combinational circult to

= produce an output vector Z(i,f) which is a function of an input vector

_ 1 and a fault f in the circuit. For our purposes a fault is a malfunc-

tion which 1s manifested as one or more lines in a circult stuck at a

logic value of 0 or 1. For example, we have the single fault <b/0> ("line

b stuck-at-o") and the multiple fault <a/1, b/1l, d/0>. The absence of

= a malfunction is called the null fault and denoted by A. ap error
OCCUrs when an incorrect value appears at the output of a circuit because

of a fault. Associated with a circuit 1s an output code space S; a

checker may monitor the output of the circuit and produce an indication

when an output not in S appears. There 1s a set of normal inputs N,

those inputs which occur periodically during fault-free operations of

the system. The fault-free output function Z(i,A) is a mapping from N

into S. We will also associate with a circuit two fault sets, F and

— Fos which are used in the definitions below.

_ ’ Definition: A circuit is self-testing for a fault set F if for every
f in F_ there is an input i in N such that Z(i,f) is not

— in S.

- The definition of self-testing is illustrated in Fig. 2.1. In this

definition, an input i for which Z(i,f) is not in S is called a test

= for £. The set F, of faults which are tested during normal operation 1s

called the tested fault set.
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Definition: A circult 1s fault-secure for an input set I and a fault

set Fe if for any 1 in I and for any f in Fs either

Z(i,f) = Z(i,A) € S or Z(i,f) £ S.

Fig. 2.2 illustrates the above definition. The set I is called the

secure input set. We will always assume that I 1s a subset of the normal

input set N. Although the circuit may be fault-secure for some 1nputs

outside of N, these 1nputs are not of interest since they do do occur

in normal operation.

The set F, above is called the secure fault set. We will always assume

for convenience that Fe 1s a subset of the tested fault set Eye For sup-

pose there 1s a faultf in F which 1s not in F.. Then there 1s no input

among all the normal inputs for which an erroneous output 1s produced in

the presence of f, and the fault 1s not an interesting one to consider.

(However, multiple faults including fas a component may be of interest.)

The properties of self-testing and fault-secureness are 1llustrated

in Fig. 2.3. This figure shows the set of all faults and its subsets F,

and Foo the set of all input vectors and its subsets N and I, and the set

"of all output vectors and its subset S. In the absence of faults, inputs

from N produce outputs in S, as shown by the behavior in 1 1g and 1g,

Self-testing 1s shown by noting that for each of the faults SERETY and tq

in F, there is a test in N (1, ia, and 1, respectively). Fault—-secureness

is illustrated by the behavior of 2(1,,f) for various f. In the presence

of a fault from Fo the output is either correct (z(i,,£,)) or it is a

non—code word (2(1,,£.)). However, faults outside of F may produce

erroneous code word outputs (Z(i5,£3)). Circuits which are self-testing

and fault-secure for some sets of inputs and faults are self-checking.
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Fig. 2.1 Self-testing circuit
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Fig. 2.3 Examples of self-testing and fault-secureness
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Definition: A combinational circuit with normal input set N and output

_ code space S 1s self-checking 1f it is self-testing for a

fault set F. and fault-secure for an input set I and fault

— set F .
S

For a self-checking circuit to be of any value, F, and F should be

reasonable fault sets, containing say all the single stuck-at faults.

— During normal operation of a self-checking circuit, all reasonable

faults are detected because of the self-testing property. In addition,
 S-.

fault-secureness guarantees there 1s no undetected erroneous output when

Co inputs are from I. If IT 1s equal to N, then the circuit is "totally

self-checking."

—

Definition; A totally self-checking circuit 1s a self-checking circuit

- for which the set I of secure inputs equals the set N of

normal inputs.

In a totally self-checking circuit, no fault in Fo can cause an

— undetected error for any normal input to the circuit. At the other

- extreme are circults for which there 1s no non-null choice of I for

which the circuit is fault-secure.

” Definition: A self-testing circuit 1s a self-checking circuit for which

*

the set I of secure 1nputs 1s the null set.

An example of a self-testing circuit 1s the self-testing decoder of

Carter et. al. [3]. For any input to this circuit there is a single

*Obviously self-testing circuits may also be defined without reference

= to self-checking circuits. However, this definition is included for

consistency and completeness.
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stuck-at fault which will cause an erroneous code word output, and thus

I must be the null set.

Between the two extremes of self-testing and totally self-checking

circults are partially self-checking circuits.

Definition: A partially self-checking circuit 1s a self-checking circuit

for which the set I of secure inputs is a non-null proper

subset of the set N of normal inputs.

When inputs to a self-checking circuit are from I, the circuit 1s

said to operate in secure mode. A totally self-checking circuit always

operates in secure mode. When inputs are from the set I' = N - I, the

circuit operates in insecure mode. A self-testing circuit always oper-

ates in insecure mode. A partially self-checking circuit operates

sometimes in one mode, sometimes in the other.

The effectiveness of totally and of partially self-checking circuits

may now be compared. With a totally self-checking circuit, any output

which 1s 1n the code space 1s correct if no faults outside of F occur,

_ and any fault in F 1s detected by the first error it produces. If

only faults from Fo occur, no erroneous results may be transmitted.

In secure mode, a partially self-checking circuit has these same desirable

properties. But 1n insecure mode, erroneous results may be transmitted.

The likelihood of an undetected error in insecure mode 1s pPropor-

tional to the frequency of operation in this mode. If this mode 1s

infrequent, chances are that a fault will be detected in secure mode

before any result in insecure mode is affected. Even when a solid fault

produces an undetected error 1n insecure mode, 1t will soon be detected
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in secure mode. At this point a software rollback scheme might be used

= to erase the effect of possible undetected errors.

Unfortunately, there is still..a chance in insecure mode of trans-
—

mitting errors caused by short transient faults that are never detected.

_ Although this possibility is very small, it may be sufficient to rule

out the use of partially self-checking circuits in highly critical

= applications where ultra-reliability is required and the chance of tran-

sients 1s high. But for less critical applications, partially self-

B checking circuits can provide a good deal of low-cost error detection in

_ areas where corresponding totally self-checking circuits are much more

expensive. In particular, we will show networks for logical operations

- which are partially self-checking, but first we introduce a model of

| totally self-checking networks.
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3. TOTALLY SELF-CHECKING CIRCUITS AND NETWORKS

In dealing with totally self-checking circuits we will mention

only the set N of normal inputs because the set I of secure inputs 1s

the same. A trivial example of a totally self-checking circuit is a

bus driver for n-bit parity-encoded operands, illustrated in Fig. 3.1.

The circuit consists simply of n identical bus driver gates (one-input

AND gates), one for each output bit. The output code space S and the

normal input set N both equal the set of all even-parity n-bit vectors.

The circuit 1s fault-secure for all single faults, since a single fault

causes either no error for a particular input, or a distance-one change

in the output producing an odd-parity vector. The circuit is also self-

testing for all stuck-at faults which affect less than n bits, since for

any such fault there is an even-parity input vector which produces an

odd-parity output in the presence of the fault. A checker which produces

a signal when an odd-parity vector appears may be used to monitor the

output of the circuit, as suggested by Fig. 1.1. Actually, we would

. like the checker also to be totally self-checking so that a fault in the

checker also produces an error indication. This leads us to the concept

of totally self-checking networks.

Anderson gives the model of Fig. 3.2 of a totally self-checking net-

work consisting of a functional circuit and a checker which are both

totally self-checking [2]. In terms of the notation presented here, the

functional circuit has a fault-free output function which is a surjection

from a normal input set N. onto an output code space Se while the checker
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*

has a normal input set N. = Se and an output code space S, = {<01>,<10>}.

The fault-free output function of the checker 1s a code disjoint mapping,

that is, it always maps non-code inputs into non-code outputs. With

these constraints it 1s easy to show that the network itself is totally

self-checking (for example, see Thm. 3.2 of [2]). The normal input set

of the network 1is Ne, while its output code space 1s S The secure and

tested fault sets of the network are the unions of the corresponding

fault sets of the functional circuit and the checker.

A simple example of a totally self-checking network employs the

totally self-checking n-bit bus driver of Fig. 3.1 and an n-1-bit odd

parity generator. The odd parity over n-—l bits together with a wire

connected to the remaining bit comprise the required two-output totally

self-checking parity checker.

*Thecheckermust have two lines encoded in this manner, for a fault
sticking a single error indicator line at the "good" value would never

be detected. ;
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4, PARTIALLY SELF-CHECKING NETWORKS

bh

L The use of and motivation for.partially self-checking circuits 1s

best given by an example. Suppose we have a machine with buses A, B,

- and T that carry data encoded in a single error detecting code S. Fig.

4.1 shows one bit slice of a bus switch which can transfer either A or

-
B to T. This circuit 1s replicated once for each bit to be switched.

L The lines <s,8,> are set to «D1» to transfer A to T and to <10> to
transfer B. A checker may then monitor the T bus with the appearance of

- a non-code word signaling an error. The reader can easily verify that

. the circuit 1s fault-secure for all stuck-at faults which affect only a
single bit slice, and self-testing for all stuck-at faults which affect

L fewer than all the bit slices. Thus the circuit 1s totally self-checking
when used as a bus switch in this manner.

LL Looking at the circuit of Fig. 4.1 we notice that it may also be

used to compute the logical OR of A and B by setting <8,5,> to <11>.
L

Unfortunately, the result in general will not be valid because the encod-

L ing of the logical OR of two operands does not in general equal the

| A
ho i

“0
_- i

B

. iS 1

|

Fig. 4.1 Totally self-checking bus switch

-
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logical OR of their encodings unless the encoding 1s at least complete

duplication [4]. Suppose however that the encoding is a separate code,

that is, a code with a separate data part and check symbol. Then the OR

of the data parts will be correct; only the check symbol output will be

wrong. We can then calculate a new check symbol based on the data out-

put of the circuit and utilize the re-encoded output. This is a practical

scheme only 1f 1t can be implemented 1n a self-checking manner at low

cost. In the remainder of this section we show models of partially self-

checking networks which fulfill that requirement.

4.1 Type 1 Networks

The simplest partially self-checking network 1s the type 1 model,

shown in Fig. 4.2. It consists ofa totally self-checking functional

circuit with a fault-free output function which is a mapping from a

normal input set N. onto an output code space Sei a totally self-checking

checker with normal input set N, = Se and output code space S. =

{<01>,<105}; and two control gates and the control leads cl and 5°

The vector <,¢y> may be set to <DVI1> to enable the output of the checker,

or to <10> to force the error indicator output to <10> ("good").

The output code space of the network 1s just Sc However, the

normal input set of the network consists of vectors of the form < cy 1>

where cl and Cy are the control gate inputs and 1 1s the functional

circult 1nput. When functional circuit inputs from No are expected,
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<,¢y> is set to «01> and the network is logically equivalent to the

totally self-checking network of Fig. 3.2. However, when inputs not in

No are expected <,cy> may be set to <10> to disable the checker.

It 1s straightforward to show that the network of Fig. 4.2 1is

partially self-checking when used in the manner described above. Let

F be the set of all single stuck-at faults on the control gates. That

1s,

r= la/0, a/1, b/0, 1/1, c/0, c¢/1, 4/0, d/1, e/0, e/1, £/0, £/1}

Then the secure and tested fault sets of the network contain F as well
a

as the corresponding fault sets of the functional circuit and checker.

The secure 1nput set of the network is I where

I = i = <01 N (ie ‘i, {<c cqi> | (cp >) NA NJ

In insecure mode, the network has inputs from the set I where

'o= i <c.cC = <10>:.1 {< c i> | <,¢0> >}

Thus the normal input set of the network is N =1Ul’.

Theorem 4.1: A type 1 network, described above and illustrated in

Fig. 4.2, 1s partially self-checking.

Proof: In secure mode, that is, with inputs from I. the network 1is

clearly self-testing and fault-secure for faults from the

appropriate fault sets of the functional circuit and checker.

It follows that the network 1s also self-testing with inputs

from N, since N-T Thus we need only show self-testing and

fault-secureness for faults from F.
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8

4 (a) (self-testing) All faults except <a/1> and <d/0> are
tested by some input from I , since a and d have the

8 values 1 and 0 respectively during such operation, and
both O's and 1's must be transmitted through the paths

| <bc> and <ef>. This is true because each checker output
takes on both values 0 and 1. The faults <a/1> and <d/0>

L are each detected by some input from Io since one of these
t faults changes the correct error indicator output of <10>

to a non-code word. Thus all faults in F are tested by

. some input in N = I U I.
(b) (fault-secureness) It is clear that a single fault from

L F causes at most a distance one change in the error indi-

8 | cator output, producing either the correct output or a
non—-code word. Bn

\ An example of a type 1 partially self-checking network 1s the n-bit
t parity checked bus driver shown in Fig. 4.3. The totally self-checking

functional circuit here 1s the n-bit bus driver of Fig. 3.1, while the

| totally self-checking checker consists of an n-l-bit even-parity generator
and an inverter eonmected to the remaining data bit. The control vector

L <C> 1s set to <01> when even-parity operands are to be transmitted,
and to «10> for vectors of unknown parity.

-

The usefulness of type 1 networks 1s limited since in insecure mode

_ they do not re-encode the functional circuit output. We notice in the
example of Fig. 4.3 that the correct parity output 1s always available

: from the parity generator at line p, and could be utilized at essentially
zero cost. Type 2 networks are a formalization of this idea.

-

_
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4.2 Type 2 Networks

|—-—

If the output code space of a self-checking circuit 1s a separate

] [] []

code, a checker can consist of an equality checker which compares the

| check symbol output of the circuit with a new check symbol generated
—_—

on the basis of the data output of the circuit, as suggested by Fig. 4.4.

- The following lemma shows that such a checker is totally self-checking

if the equality checker is.

_-

Lemma: Let the code words <cd> in a separate error-detecting code S

~~ consist of a data part d and a check symbol ¢ such that ¢ = C(d).

Then a network consisting of a check generator G which computes

[—

C(d) and a totally self-checking equality checker which compares

_ the output of G and check symbols c¢ is a totally self-checking

| checker for code words <cd> in S.

= check symbol data part

tt
_ \ check symbol /

| generator

— ® 0 0

totally —

self-checking

— equality
checker

error indicator

Fig. 4.4 Totally self-checking checker for separate codes
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Proof: The normal input set of the network is S, while the output code

space of the network 1s the output code space of the equality

checker. Let Fo be the set of all check generator faults which

produce an incorrect generator output for at least one network

input in S. Clearly faults outside of Fy have no effect on the

network. The reader can easily verify that the network 1is

self-testing and fault-secure for faults in Fo as well as for

faults in the tested and secure fault sets of the equality

checker. The tested and secure fault sets of the network are . |

the appropriate unions of the above sets.

The proof of the above lemma depends primarily on the existence of

.a totally self-checking equality checker for k-bit check symbols c. If

the k-bit vectors do not take on all ok possible values then a checker

might not exist. However, 1f the k-bit vectors do take on all values

then we are assured of the existence of a totally self-checking equality

checker regardless of the value of Kk [2].

A type 2 network, shown in Fig. 4.5, is a type 1 partially self-

checking network which uses the totally self-checking checker for separate

codes described above, and which has a re-encoded functional circuit out-

put-derived from the check generator. The input sets, fault sets, and

output code space of a type 2 network are the same as those of the

corresponding type 1 network. Thus ignoring the re-encoded functional

circuit output, a type 2 network 1s merely a type 1 network with more

detail specified, and hence is partially self-checking. However, it

does have a re-encoded functional circuit output available, and the
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appearance of a non-code word here is reflected by the checker output,

since the checker function is a code disjoint mapping. These results

are summarized in the following theorem...

Theorem 4.2: A type 2 network, described above and illustrated in

Fig. 4.5, is partially self-checking. Furthermore, in

the absence of faults, the re-encoded functional circuit

output 1s always a code word; the appearance of a non-

code word because of a fault 1s reflected by a non-code

output of the checker.

4.3 Type 3 Networks

A noticeable disadvantage of type 2 networks 1s that the functional

circult output is delayed by the re-encoding process using the check

generator. In a totally self-checking or type 1 partially self-checking

network the total delay is that of the functional circuit alone, while

in a type 2 network 1t 1s the sum of the functional circuit and check

generator delays. In insecure mode the re-encoding process will always

introduce some delay, but a type 3 network reduces the delay in secure

mode to two gate delays.

A type 3 network, illustrated in Fig. 4.6, consists of a totally

self-checking functional circuit and equality checker, a check generator,

and control gates to switch either the functional circuit check symbol

output or check generator output to the network output. The equality

checker compares the network check symbol output with the generated
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check symbol. When <C> equals <DV1> (secure mode), the network is

logically equivalent to a totally self-checking network; when <€,CH>

equals <10> (insecure mode), the functional circuit is re-encoded

and the equality checker compares the generated check symbol with itself,

producing a "good" output.

The normal input set, secure input set, and output code space of

a type 3 network are similar to those of type 1 and 2 partially self-

checking networks. If F 1s the set of all single faults on the control

gates, except the faults <a, /1>, then the secure and tested fault sets

of the network are the union of F_ and the appropriate fault sets of

the functional circuit and checker.

-Theorem 4.3: A type 3 network, described above and illustrated in Fig.

4.6, 1s partially self-checking.

Proof: The problem is similar to Thm 4.1, and reduces to showing that

the network is self-testing and fault-secure for faults 1n F.

As in Thm 4.1, self-testing 1s proved by showing that there 1is

a test for every fault in ¥ in either secure or insecure mode.

Fault-secureness follows from the observation that a fault in

F either has no effect on the check symbol output, or changes

the check symbol output causing an error indication by the equal-

ity checker. |]

*Herethe checker" is the combination of the check generator and totally
self-checking equality checker, as in type 2 networks.
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g
: Although type 3 networks avoid the delay of re—-encoding the func-

-
tional circuit output in secure mode, they have some disadvantages.

_ First, they require more control gates than a type 2 network, with a
corresponding increase 1n cost. Second, they have a set of single stuck-

L at faults for which the network is not generally self-testing or fault-

secure, namely the faults <a, /I>. If the network is not self-testing

- for faults <a, /1>, then these faults must be tested periodically by some
_ manual, software, or firmware method.
| In a specific implementation of a type 3 network, self-testing and

4 fault-secureness for <a, /1> will depend on timing 1n the network and in the
circuits following it. For example, suppose the type 3 network performs

. an operation which sets lines oi Ars and e to 1. Suppose that the
g | next operation sets line d to 0. Depending on the timing and control

sequence used, line by may become 0 some time after line d. does. Thus

- line J 1s erroneously held at logic value 1 until the check generator
"catches up." To the circuit receiving the output of the type 3 network,

- the effect is similar to that of intermittent stuck-at-1 fault on line °
. On the other hand, if the output of the check generator always has the

-

value 0 between operations, then the problem outlined above does not occur.

g

A simple example of a partially self-checking network uses the bus

- switch circuit of Fig. 4.1 in a type 2 or type 3 configuration modeled

| after Fig. 4.2 or Fig. 4.6. This network could be used in a CPU as a

~ bus switch and also to perform the logical OR operation. In a machine

L in which data was encoded in an arithmetic code, the other logical

L
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operations could be performed using a combination of the OR operation

and totally self-checking arithmetic operations [6]. However, we will

later show a totally self-checking functional circuit which can be used

in a partially self-checking network to perform all logical operations.

But first we must indicate how to verify the self-checking properties

of non-trivial circuits.
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8 5. VERIFICATION OF SELF-CHECKING PROPERTIES

8 In this section we will show how to verify the self-checking

4 properties of a class of circuits defined below.
Definition: A bit-sliced circuit 1s a multiple-output combinational

) circuit in which each output bit is computed by an indepen-

| dent subcircuit, called a bit slice.
-

. The bus switch discussed earlier 1s a bit-sliced circuit, with a

L bit slice shown-in Fig. 4.1.

_ To show that a circuit 1s self-checking, we must show that it is
self-testing for a fault set F, and fault-secure for a set Foe

.
| 5.1 Fault-secureness

Fault-secureness of bit-sliced circuits 1s particularly easy to

show, as 1s evidenced by the following theorem.

| .

= Theorem 5.1: let S be an error-detecting code of distance two or more.

Let a bit-sliced circuit have a fault-free output function

-

Z(i,\) which is a mapping from an input set I into S. Let

L Fo be the set of all faults that affect only a single bit

slice. Then the circuit is fault-secure for inputs in I

and faults in Fe.

Proof: Any fault fin E affects only a single bit slice, and therefore

only a single output bit. For a particular input vector i if

-

\
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the fault does not change this output bit then Z(i,f)=

Z(i,A)€ S; if it does change it then the output is distance

one away from a code word in S and Z(1i,f) 1s not in S because

S is a distance-two code. o

In practice, the normal input set N of a totally self-checking

functional circuit may be chosen as the largest set for which the out-

put function 1s a mapping from N onto a distance-two code S; due to

Thm. 5.1 the circuit will be fault-secure for these inputs. If there

are inputs outside of N which will be used in normal operation, but

which produce outputs outside of S, these are the inputs for which the

checker 1s disabled in a partially self-checking network.

5.2 Self-testing

While fault-secureness is easy to show, self-testing for all single

stuck-at faults 1s not a general property of bit-sliced circuits and

depends on the design of the circuit and the exact composition of N.

However, we shall see in the following development that we can deter-

mine self-testing for an entire circuit by considering only individual

bit slices.

Definition: The set of active 1nput combinations to a bit slice B, in

a bit-sliced circuit 1s the set Cs = {c| c 1s the input

of B, for some circuit input in N}.
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Definition: Let a bit slice B, realize the single output function

Zz, (c,f). Then the set of testable faults of the bit

_ slice 1s the set !

Fo = (f| (f affects only B,)

- A (cec, s.t. Zz, (c,t) - Z_(c, A}.

Lo Theorem 5.2: A bit-sliced circuit with distance-two output code S 1s

self-testing for the fault set F, = U a
i

Proof: For any fault f in any F.» there 1s an input c¢ in C, and a

-— corresponding circult input 1' in N such that z (c,f) = 2 (c,}).
Furthermore, no other ouput bit is affected by f. Thus the

— circuit output Z(i',f) is distance one from Z(i',A) € S and

| therefore not in S. So the circuit 1s self-testing for any
—

fault in any F., and hence 1t 1s self-testing for any fault in

C. Fm UE a

_ Due to Thm 5.2 we may prove self-testing of a bit-sliced circuit by

considering each bit slice separately. The problem is further reduced

— in many cases because the bit slices B. are 1ldentical, as are the sets

of active input combinations C, The problem is then that of showing

” - that the set Fo of testable faults for the standard bit slice contains

_ all reasonable faults. The standard set Cp of active input combinations
1s determined by inspection of N. In the remainder of this section we

— suggest how to determine Fa for a bit slice, given a structural specifi-

| cation of the circuit and Cg

- The problem of determining Fo can be attacked using any method of

“-
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finding which faults in a circuit are detected by a particular test.

Such a method would be used to find the set of faults detected by each

active input combination to a bit slice, and the union of these sets

would be the tested fault set for the bit slice. Examples of existing

methods of finding faults detected by a test are Roth's "test-detect” [7]

and Armstrong's deductive method [8]. Another method, described in [9],

employs Reese's gate equivalent model (GEM) [10]. In this method, the

GEM of a bit slice 1s derived, and tested faults are determined by assign-

ing input literals the values they receive in active input combinations.

This method was used to generate Table 6.2 in the next section.

An alternative approach to verifying the self-testing property 1s

to fix Fo as some known fault set and then prove that all faults in that

. set are tested by some active input combination. This could be done

using conventional test generation techniques, generating tests for each

fault until a test which 1s also an active input combination is found;

such a procedure would be rather inefficient. However, Wakerly and

McCluskey [11] give a Karnaugh map method which can be used to verify

that any particular test set detects all single stuck-at faults 1n a

general single-output network. The method requires deriving the GEM of

the network, mapping the PI-sets or SI-sets[10], marking the active

input combinations, and visually checking for "growth" and "existence"

tests. The method can also be used to determine which faults are

detected by a particular test and was used by the author to verify the

correctness of Table 6.2 in the next section.
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6. A PARTIALLY SELF-CHECKING NETWORK FOR ARITHMETIC AND LOGICAL

_ OPERATIONS

_ The circuit of Fig. 6.1 can be used to perform all 16 Boolean

| functions of two input variables A, and B, by appropriately settingi

-

the control input vector <$S;8,5,5,>- The circuit may be replicated
I

L to form a bit-sliced functional circuit to perform any of these opera-

tions on two input vectors A and B. For each value of Jj = <$;55,5,8,>,

- Table 6.1 gives f, (A,B).
If input vectors A and B are encoded in a distance-two error

- —. %*

detecting code S, and 1f a function t; (A/B) preserves this encoding,

L then according to Thm 5.1 the functional circuit is fault-secure.
The secure fault set of the circuit contains all faults which affect

only a single bit slice, and the secure input set is

I, = (<5;5,5,8AB> | (<5;8,8,8,> = 3) A (4, )]
L

If the encoding 1s preserved by £,(4,B) for a number of Jj, say je J,

then the secure input set of the circuit is I = U Lye
j ed

. Due to Thm 5.2, the functional circuit 1s also self-testing for

.

certain faults when the function f,(A,B) preserves the encoding of

A and B. Assuming that input bits A and B, take on all four possible

combinations and that the function f,(4,B) 1s code-preserving, Table
he 6.2 shows which single stuck-at faults 1n a bit slice are tested by

selected functions. (The table includes only one member from each

he

class of structurally equivalent faults.)

~ *A function f.(A,B) preserves S if A,B € S implies f,(4,B) € s.

L
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TABLE 6.1

j = S.S j =
J Sa5, 150 t; (A,B) | J 535,5,5, oF (A,B)

-

0000 A 1000 A+B

- 0001 A+B 1 001 A®B

0010 A+B 1010 B

[-
0011 0 1 011 A*B

0100 A*B 1100 1
-

0101 B 1101 A+B

- 0110 A®B 1110 A+B

0111 A+B 1111 A

Table 6.1: Functions performed by the circuit

of Fig. 6.1
.

.

For example, suppose A and B are vectors from an error-detecting

i code S consisting of all even parity n-bit vectors where n 1s even.

The code S is preserved by the operations A @ B, A @® B, A, B, A, B, 0,

and 1. Inspection of Table 6.2 reveals that all single stuck-at

faults in a bit slice are detected by A ®B and A ® B or by A, B, A,

and B. If the normal input set of the functional circuit contains any

- such set of code-preserving operations which tests all faults in each

bit slice, then the circuit is self-testing. The circuit 1s also

fault-secure for code-preserving operations and hence 1t 1s totally

self-checking.
L

-
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TABLE 6.2

stuck—-at-0

"8S P Z
£,(4,B) A Al B B, So 5, S, 3 Py 9 P P,

0 X X X X

1 xX xX X X X

A®B X X X X X X X X X

A®B X X X X X X X X

A X X X X xX X X X X X

B X X X X X X X

A X X X

B X X X X X X X

stuck-at-1

A A£, (A,B) A " 5 B B, B, B, B, B So S, S, S, Q Q, y/

0 X X X

1 X X X X

) A®B X x X X X X X X X X X

A®B X X X X X X X X X X

A X X X X

B X x x X X X X X X

A X xX X X X X X

B x x X X X X X X X

Table 6.2: Fault tests for the circuit of Fig. 6.1
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Since the bit-sliced functional circuit of Fig. 6.1 1s totally

- self-checking when used in the manner described above, it can be

| employed in a partially self-checking network which re-encodes the
[|—-—

output for those functions which are not code-preserving. For example,

_ we can use the circuit in a partially self-checking two-input univer-

sal logic unit 1n a machine whose data 1s parity-encoded as described

— above. The function selection vector <$5,5,8,> and the checker

enable control <c,cy> could be. supplied by a microprogrammed control

= unit. (Checking the control 1s discussed in [12].) The logic unit

_ would operate in secure mode for the code-preserving operations and

in insecure mode for the non-code-preserving operations such as AND

Es and OR.

Four copies of the bit slice of Fig. 6.1 are used along with

some carry logic in an existing MSI chip, the 74181 4-bit arithmetic

and logic unit [13,14]. In this chip, the logic functions of Table

6.1 are performed when a control lead M is set to 1 to disable inter-

— nal carries. When M is set to 0, internal carries are enabled and the

unit performs arithmetic operations.

=~ Because of its carry logic the 74181 is not a bit-sliced circuit.

However, 1f the input operands A and B are encoded in a distance-two
-

arithmetic error-detecting code, then the output is a code word for

— the addition and subtraction operations. A single stuck-at fault

causes an error with arithmetic weight at most one, producing a non-

= code word. Thus it is possible to show that for code-preserving

operations the circuit 1s fault-secure for all single faults.

*Except faults on control leads S,, S,, S,, S,., and M which occur before
these leads fan out to the indivi dual®bit slides.
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When used to perform addition and subtraction on data in an

arithmetic code the 74181 1s self-testing for faults which affect the

carry logic. Faults in the logic unit bit slices (Fig. 6.1) are

also tested. With carries disabled (M=1l), logic unit operations are

performed and faults are tested by code-preserving operations accord-

ing to Table 6.2. Code-preserving operations are A andB for any

arithmetic code, and also A, B, 0, and 1 for the low-cost codes [15].

With carries enabled (M=0), arithmetic operations are performed.

During addition and subtraction the A®B and A ® B functions of the

logic unit are used, and the corresponding faults indicated 1n Table

6.2 are tested. Thus the 74181 is self-testing for all single faults.

provided that the following occur 1n normal operation: (a) either

addition or subtraction to test the carry logic; (b) any combination

of addition, subtraction, and code-preserving logic unit operations

which tests all logic unit faults; and (c) at least one arithmetic

and one logic unit operation to test the carry-enabling circuitry.

Under the conditions outlined above, the 74181 4-bit ALU is

- self-testing and fault-secure when used to perform code-preserving

operations on data in an arithmetic code; hence it 1s totally self-

checking. Fig. 6.2 shows an implementation using 74181's in a

totally self-checking arithmetic and logic unit for 16-bit operands

with 4-bit check symbols in a low-cost residue code [15]. Addition

here 1s in the 1's-complement system; addition in the 2's-complement

system requires additional circuitry to correct the check symbol when

a carry out of the high order data bit position occurs [15]. The
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|

functional circult can be employed in a partially self-checking network

— which performs non-code-preserving operations 1n 1nsecure mode.

|

T T T T

415.17 d11-g 4d) 4 d3_0

|

7418 7418_ C, 181 Cc, Cc, 181 C. , 74181 Cy Cs 74181 Cy

A B A B A B A B |
d15 1295-12 411-8 411-8 47-4 47-4 43-0 43-0

~— Et SFR

Te
3-0

] |
C 74181 c

Oo i

1

B Ac B,
3-0 3-0

—

MS,S,8,8,

Fig. 6.2 Partially self-checking ALU using 74181 4-bit ALU chips
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1. OTHER APPLICATIONS

An existing use of the partially self-checking concept 1s in

arithmetic processors for addition, subtraction, and iterative

algorithms such as multiplication and division. If data is encoded

in an arithmetic code, then the adder circuit is self-testing and

fault-secure for the addition and subtraction operations. However,

during iterative operations the checker may be disabled until the

end to increase speed, and undetected errors due to repeated use

faults [15] can occur. Thus the arithmetic processor 1s partially

self-checking, operating in secure mode for addition and subtraction

and in insecure mode for the iterative algorithms.

Any totally self-checking functional circult may be 1incorpora-

ted in a partially self-checking network. Such a network is useful

1f in addition to secure mode the functional circuit has a useful mode

of operation in which the output 1s not a code word.
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8. CONCLUSION

N—

Several techniques are available for providing fault-detection
—

in fault-tolerant computers. In simple systems duplication and

w matching might be the most inexpensive method because it requires the

least control circuitry and the least design effort. However, in

== systems with a large number of fast registers which must be checked,

or in systems which are to be made as small as possible for LSI

B implementation, the use of error-detecting codes 1s the most inexpen-

. sive means of fault-detection. Unfortunately, there 1s no simple code

for checking logical operations such as AND and OR, and previous SyS-—

he tems using coding have resorted to duplication for these operations.

In this report we have developed a theory of partially self-checking

circuits, and shown how partially self-checking networks may be used

to perform logical operations. The use of partially self-checking

networks 1s a low-cost method of performing these operations in

— systems employing error-detecting codes for checking arithmetic and

data transfer operations.

—
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