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I. Introduction
) i oeddbbafdiciats

In an earlier report we lhlave studied the routing of messages in
a de Bruijn network (SchTh]. Messages go in a "store and forward' way
from node to node before reaching their final destination, In a de
Bruijn graph, a node of address M has for de;cendunts ihe nodes of

addresses

d*M + j) mod n, for sach such that 0 £ J < d~1
2

and where n is the number of nodes in the network,
, In the previous report, all nodes arc operative all of the time, This
report studles the pessibilities of a network with a certain number of

nodes that fail, A step is the operation that sends a message from one

node to one of its neighbors, The distance between two nodes is the

smallest number of steps needed for a message to go from one node to the

other. The diamcter of a network is the largest distance between any

two hodes in the network. The number of directly accessible neighbors to
a given node is, by definition, the degrec of that node. The degree of a
network is the largest degree of all nodes of that network,

We can use such a network in two ways, either orlented or unoriented,
In on oriented network, the conmections are unidirectional, going from a
node to its descendants., In an unoriented network, the connections are
bidirecectional, This 1s the same as two unidirectional connections, We

should then cxpect much better characteristics in an unoriented network

than in an oriented one.



. The degree of a de Bruijn network is the same as ?ha? of all
the nodes. If the out~degree is d and the number of nodes in the
network is n, the digmeter of the oriented network is rlogd nl, Tais
diameter i8 the same when the network is unoriented,
When a single node is not working, we show schemes that reroute

messages arouud that node in at most s$ix steps, when @2 or when

We also study the vulnerability of the network., If the uaoriented
network has degree 2-d and n nodes, we show that the number of wodes with
less than 2+d distinct neighbors is smaller than 2-d2, and that for
sufficlently large netﬁorks, no node has less than & d-2 distinct neiphbors,
We find an upper and lower hound for the commectivity of the network to be
respectively 2¢d-2 and d-1. We know that the minimum number of node-
independent paths between two points 1n a network is equal to the
connectivity of the network, Iocking then at node-independent paths
between nodes in the network, we show how to construct such paths in a
retwork with d'p nodes once we know how Lo construet them in a network
with p nedes, Using such paths, we ulso show that the conncctivity of

an orientcd network with dk nordes s d-1. In a similar unoriented network,
there aro at least d node-independent paths between two nodes, In an
unoriented network with degree h, and an even number of nodes, there ure

at least two node independent paths between any two nodes,



11, DLy=passimg o foulty node

When all poedes of 2 uetlwork are operative, the control of the
message flow 1is donc loeally at each node, and is independent vf whau
happens in the reost of the network., We would like this to also apply
when only one rode is faulty,

In some cuses a node may becowe inoperative, It is overloaded, or
soine link to the nowe is out of service, This provents the gencral routing
scheme from working., we must find wn alicrnate path that by-pasces the
. o . K s
faulty node, We shew such a path, lirst when therc are d nedes in the
rctwork, then in the general casc, In general, there is a by-pass if

. “
d>2, or if n ic a multiple of d .

We show a by-puss sround un inoperalive node, six-steps long, when

e .
d > 2, or n=k‘d”, This shows that when a node becomes inoperative, the
maximum number of extra steps necded for a message to rcach its destination
is four. This alse reqguires only local knowledge of the network as the
detour has a finite number of steps. A message taking the detour shoaid
carry information about the detour path for the length of the detour,

A possible solution to the detour preblem, although terribl; waste-
ful, is to send the message Lo any nceighlbor but the bad node, and restart
the routing ol the message from there, This reguires up to an ext.a k
ateps in a netvork with diameter k and does 2t dnsure that the bad node
is not encountered ggein, or that the message reaches 1ts destination un

w finite time. We show here o ov-pass of 2 btad node that tokes only six



==

steps, or four pore ‘han the path throupgh the bad node,

Suppose that the node with the felloving address s dnoperative:

k
and that there arec ¢ nodes in the network with degree 2.d.  The message

comes from:

XX Koo Xy ) o

and the path, going thr>ugh the bad node, leads to:

Pore B Xy

The path in Table Z-1 links the above twa addresses without going through
the bad node., One sheculd note that this path does not follew the
orientation of the edges, at some point the path requires an "ancestor”
transformation instead of the "d. scendant” transformation used up to ncw.

The various restrictions on the right insure that no intermediate
node has the same address as the inoperative node if d > 1, 1f the bad
node is the final destination of the message, then not much can be done.

This shows 1in general for all nectworks with dk nodes, the existance
of a 6&-step detour or an B-step unoriented cycle, Wwhen messages in the
system encounter o bad node, they go into a special "detour state’”, and
g0 around the bad node hefore resuming normal routing. When the message

"

encounters another bad node while in "detour state”, we nced a control
stnrk to come back to the prev.ous detour state once we arc out of the

new onc., If there are too many bad nodes, the message may go into an



Table Z-1:

step nunmber

address

L% S

L% S ST
X2X3...Xk_1am
bxe"'xk-la
cbxz...xk_1

bX . . X 1%,

x2x3- o Xh K+1

Addresses of nodes in a detour.

comments

a # xk
2 # X,

b # X



infinite loop.

¥When the nusber of nodes in the network is not a power of the
out-deg ree, this detour mechanism does not always work, For example,
let n=10, d=2, and assume we ¥'+n° to transit a message from node L to
node 6 when node 9 is out oy . The schene gives the nodes in
Table 2-2, After © steps, the scheme does not route the message to
its destination, 1In general the scheme works when the number ot nodes
in the nctwork is a multiple of d2, where 4 15 the out-degrec of the
network, or when d > 2.

In order to prove the existence ©of dctours in these cases, we study
the graph consist:.ng of the detours and the direct path between twe nodes
separated by one pode. We count the number of node independent paths in
this graph between the origin gnd destination nodes. DBefore studying this

graph, we prove some lemmas related to the expression:
Y=x~- ((x+ ry)uodd) (2-1)
wvhere x, y and » »re integers between O and d-1,

Lemma 2-1:
When x is inecreased by one in (P-1), Y is either unchanged, or changes
by an amount of d. This change occurs at mosu once, for x's in the

interval 0 < x < d.

Proof;

Tnls proof shows where the changr happens and that it is the only one,



Table 2-2: Addresses of nodes in a detour whzn n=10, d=2,

from node 4 to node & when node 8§ is inoperative.

step addresses of the nodes comments
g 4 origin
1 8,9 Descerdants of Step 0; node 8 is not possible
because of failure.
z 8,9 Descendants of Step 1; node 8 is not possible
because of fallure,
3 L, 9 Ancestors of Step 2; node 9 is its own alcestor,
4 2,7 5, 4,9 Ancestors of Step 3.
5 y,5,8,09 Descendants of Step 4; nodes 2 and 7 have nodes

Oy

L and @ as descendants, nodes L and 9 have

nodes 8 and 9 as descendants snd node 8§ is

not possible.

Descendants of Step 5; nodes 4 and 9 have nodes
€ and § as descendants, noce 5 has nodes O

and 1 as descendants,

‘A-



The replacencntof x by xo = xY An {(2=1) glves;

1

Y = x) - ((x1 + rry) mod d) ,

.
II

x4+l -~ ((x+1 + rey} mod d) (2-2)

If x+1 + r*y # 0 mod ¢, then rhe value »f Y in (2-2} is the same as in
{2-1) as both terms of the right-hand-side have increased by one,
As x increases from O to d-1, therc can be cnly one time where the

value of Y changes when x increases, 1t is when:
X, + 7y =0 mod d .

When » is less than (-r‘y rod d), then Y = -(r*y mod d), and otherwise,
Y =d - (ry mod d), When ry = 0 mod d, Y is equal to zero for all x

such that C £ x < d. R E. B,

Lemma 2-2:

In (2-1); v < O for preciscly d-(r*y mod d4) x's in the interval

C < x < d,

Proot:
When x-C, Y is nonpesitive, and equal to -(r+y mod d;. As x

increases, Y changes only rer x = d - {r'y mod d} Foi all x's smaller

than d -~ {rey mod d), Y is nonpositive. This tappens for d - (rry mod d)

values of x. When x is larger than this value, Y increpses by d ond

becomes strictly positive, Q.E.D.



Lervia 2=30
If, in (Z-1), ped(y,d) - g and d :- g* b, then the value of Y as o

function of r, is periodic in r with period §&.

Proof;

—

The replacement of r by r+6 in (2-1) does not change the value of Y,
x = ({x + rry+bry) mod d) = x - ((x + r*y) mod d), as
ey = 0 mod d. Q. E.D.

We can now study the detour scheme in general, between a node of
3
address M and a node of address ¢ *M + d'h + j, with h and j between G
and d-1. We first restate a result from a previous report on tLhe

connections between nodes,

Lemm=n 2-l:

The ancestors of a node with address B have ns uddresses:
(M + ken)/d] mod n, with 0 s k < d .

Prool:
The detailed proof is in a previous report [Sch?h}, and sYows that

one descendant from cach of these addresses has M &8s an address. QL E,D.

Table £~3 shows the possible addresses of the nodes in the detour
2
when n = d *z + dvy + x. 1hese addresses are derived from the definition
of a de Bruijn network for the addresses of the descendants ot a node
and Lemma 2-4 for the addres:es of the ancestors of o node. lor example

B lal
the addresses of the ancestors of the node with addresses da-M + d'p o+ g



Takle g:;: Possible addresses for the nodes in a detour

. 2
whenn =d "z + dy + x,

2
address modulo n =d *z + d*y + x

step comments
o] M origin
1 d*M + p ~escendatiio. of Step 0: choose
cCoffftiont n
2 d2'M + d*p + q Desceundants of Step 1; choose
coefficient q.
3 @&'M + p o+ re(dzty) + L(qtr-x)/d] Ancestors »f Step 2; choose
coefficient r,
L Mir-z+s: (d*2+y) + L(ptrey+s-x+(gq+r x)/d] )/d] Arcestors of Step 3; choose
coefficient s.
5 deMtre (d- z+y )+ L{q+r-x)/d] +p=-2+t Descendznts of Step h; choose
coefficient t; nere f f{s:
f = ptrey+sex+[(q+r-x)/d] mod n.
- 2
5 d™*M + d+ (p-f+t) + g-gtu Descendants of Step 5; choose

= %M + d*h + &

coefficient u, this is the
destinatior and g is:

g = q+ rx mod d.

We have thie following inequalities;

0= pgq,r,s,t,ux,y<4d, as (p,q,r,s,t,u) are

coefficients for the transformation of addresses hetween a node arnd its Jdescendants

or wacestors, and (x,y) come from the division of n by powers of d,
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(in Step o of Table I-3) arc:
{(d“*M + d'p + q + r'n)/d mod n ,

or, using the value of n, n = d2-z + d*y + x, and dividing when

possible,
{a'M + p +(qg + r*x)/d + r-(d*z +y )] modn,

ahd, taking the integers out of tke floor function we obtain the

expressiun of the addresses of Step 3 in Table 2-3.
d*M+ p+ r(dz+y)+ [(gtrx)/d modn.

There a.e a few obvious constraints on the coefficients in the

eteps of Table Z-3. The definitions of f and g in Sieps 5 and § are:
f=p+ry+ s x+ [(q+trx)/d mod d and
E= q+ r'x mod d ,

If the bad node has address d*M + h and the destination node has address

d2°M + d'h + 1, the constraints are:

p #h mod n, for Step 1 to aveid the faulty node (C—l)
p-f+t = h mod n, for Step 6 to be the destination (c-2)
g-g+u = 1 mod n, for Step 6 to be the destination (c-3)

re (dez+y) + L(qtr-x)/d|# O mod n, for Step 5 to avoid

the faulty node, (C-h)
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We now prove a fow lemmas related to the addresses in the detour

before showing how many node-independent detours tlhore are,

Lemma 2-5:

When n 2 d, constraint (C-4) is equivalent to r#0 .

Proof:

We first sk w that (C-4) implies r#0, then that for n 2 d,
r#0 implies (C-4).
Let r=0 in {c-4), This gives:

Qr(d*z+y) + [(q+C-x)/dl # O mod n, or, after simplifications
lg/d] # mod n ,

But q is by definition less than d, and the resulting contragiction
implies r#0.

In order to prove the converse part of the lemma, we show that
r#0 implics (C-4),

When r#0, re(d'z+y) = r-p/d] # O mod n. So (C-4) can only te

false when ry¥0, if

re(dx+y) + {(q+r'x)/d| =0 mod n (2-3)

= k*n, for some positive integer k.
We show that the exrression on the left-hand-side of (2-3) is always
less than n when n 2 d, hence that (2-3) carnot be satisfied for r#0.

Let A(x,y,z) be the expression on the lelt-hond-side of (2-3). By sectting
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r=q=d-1, we obtain an upper bound on A(x,y,z):
(d-1) ¢ (dez+y) + L(d-1) * (x41)/d] = U(x,y,z) 2 A(x,y,z) .
2
We now show that U(x,y,z) is less than n = d *z+d* y+x .

U(x,y,z) = d2‘z+d'y - {d*z+y) + x4 + [~(x+1l)/d] .

n~ (dz+y) + 1 + |-(x+1)/d]
and as 1 < n+l £ d, we have:

Yx,v,2) = n =(drz+y) .

< n, wvher n 2 d ,

Hence, when n 2 d, A(x,y,2z) < n, and r#0 implies (C-i), Q.E.D.
Lemra 2-6:

In the general detour scheme, at most one value of the parameter

q yields addresses that do not satisfy (C-3).

Proof:

The destinaiion address is:

2
A% M 4 Goh o+ 4= d oM+ d*(p-f+t) + gq-g+u mod n , (2-4)

where

o
n

€ =q+ rx mod d .
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Coastraint (C-3) requires:

g-g+a = 1 .

If 10, this implies that gq-g < 0, The expression for g-g is:

g-g = q -{(q + rx) mod d) .,

This is the same expression as (2-1), with a change of variables,

Lemma 2-2 shows then that g-g < O for precisely d-(r*x med d) values of o,
1f ged{x,d) # 1, we can always choose an r such that g-g € O for

211 values of g in C < 4 < d, as there is an rj0 such that r+x = C mod d.

If gecd(x,d) =1, then r=C is the only r for which there :re d values of

q such that g-g s C.

We have seen in Lemma -5 that r must be different frem zero,
However, by choosing r to be the sclution of the congruence r+:2 = 1 mod d,
wkich is possible as ged(x,d) = 1, it is possitle to find d-1 values of
q such that g-g < 0, There are then always at least d-1 valvcs of g for
vhich condition (C-3) 1is satisfied. Q.E.D,

We first show how to satisfy conditions (C-2) and (C-") when h and 1
are equal to zero., We then show how te extend those results to any values

of h and 1 less than d.

Lemma 2-7:

In the genersi detour scheme, there exists a one-to-one correspondence

between values of the parameters g and r that satisfy condition (C-3),
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Proof:

Lemma 0-G has shoan which valucs of r satisfy (C-3) for a
given value of q. We now show that for ecach value of q we can assign
a different valuc of r such that condition (C-3) is satisfied,

We do the correspondence sequentially, keceping (C—3) satisfied,
Let ged(x,d) = t, Using Lemma 2-3 and the ﬁroper change o1 variables,
we know that {r-x) mod d and g-g in (2-4) are periodic in r with period
d/t. This implies that (r.x) mod d takes d/t different valucs and cach
of these values is taken for t different values of r, We assign values

of r to corresponding values of g in the following way that satisfics

(c-3) .

(0) Set i to zero., Let R and Q be respectively the sets of all
possible values of r and g. Both these sets have cardinality d.

(1) Take, in R, the t values of r that maximize (r°x) mod d. They
correspond to the values of ¢ that l.ave the least number of
possible values of r so that [C-3) is satisfied, Associate
these values of r arbitrarily with the values of q between
i aro .+t-1,

{2) Delete from R the values that have been assigned. Set i to
i+1, If i+t = 4 then stop, all valucs have been assigned,

(3) go to Step 1.

We now have to show that, using this correspoundence, the expression
of q-g in (2-4) stays less than one., Using a change of variable, the

proof of Lemma 2-2 shows that the first d-{r*x)mod d valves of q satisfy
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this condition. 1In Step 1, we assoclate with the t values of r that
give the same value for (rex) mod d, t valucs of q betwcen d-{(r+x) mnd d} -}
and d-t-{r*x) mod d. This association satisfies {C-3) . Q.E.D.
Table 2-L shows an example of possible matches between the parameters
g and r that satisfies (C-3) when t=1.
This coirespondence has auother propcrt} that is useflul laticer,

wvhen finding a correspondence hetween parameters p and r of the detour,

Lemma 2-8:

Condition (C-3) gives a correspondence between the parameters ¢ and
r such that |(g+r*x)/d] = (i+r*x)/d}, when i is the parameter of the

destination in (C-3).

Proog:

We can write the addresses of Step & in two different ways,
depending on the method used to obtain them, They are either a

descendant of Step L, or an ancestor of Step 5, This gives the equality:

d'M + p-f+t + [(gtr'x)/d] = d'M + h + [(i+r-x)/d] mod n .

As condition (C-2) implies that p-f't = h, the equality becomes

L{gtr x)/d] = L{i+r-x)/d] Q.E.D,

Using this correspondence between Q and R, we cshow what happens
with condition (C~2), Once q or r is chosen this is very similar to

(0-3), and we can find a one-tc-one correspondence between the parameters



Table 2-4: Matching the parameters q and r when t=]1,

The table shows the values of q-(g+r x) mod d,
vhen x=1, d-7. The shaded arcas indicate where there
is no possibtle match. The matches in the one-to-one

correspondence fall on a diagonal and encircled.

O U bhH W N

s
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p and r that satisfy conditicns (C-2) and (C-3).

Let A(r) be the part in the expression of f that depends on g and r:
A(r) = (ry + L(g+r x)/d] ) mod 4 . (2-%)
Condition (C-2) is satisfied 1f:
p-f <0, or, using A(r)
p-(p+sx+4 A(r)) mod d =0 ,

We now show an important property on A(r), when 1 < ¢/2. By symnmetry,

a similar property is true when i 2 d/2,

Lemma 2-9:

¥hen i < d/2, for all h less than t, there are at least h different

values of r70 such that A(r) mod t < h.

Proof:

Let z{r) = A(r) mod t. We have, using the correspondence of Lemma 2-7

between q and r z=d Lem. > 2-8:
Z(r) = r'y + [(i+r'x)/dj mod t,
wi{h D £ x,y < d, We can rewrite this as:
2(r) = L(r*(d y+x} + 1)/d| mod t.
The expression within the floor function is less thin h for:

rJ$r<rJ+61, (2-6)
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where

"~
i)

(jet*d-2*i}/{d y+x) , and

>
n

hed/(d-y+x) .

We want to show that for all h less than t, there are at least h

different integer r that satisfy (2-6). Let then
ged(dr t,d y+x) = u ,

As t=gcd{d,x), we have u 2 t, Using u, we can express r,6 differently,

J
It 1is:
ry = Jetrd/(drytx) - 204/ (d y+x) ,
= By = Ay, With b, = 2°1/(d y+x) ,
= Lst + (J*t*4 mod (dry+x))/(d y+x) - A, -
= LsJJ + mru/(dey+x) - B, with the integer m such (2-7)

that O < m < (d'y+x)/u, and m
can alsc be egual to zero when u > 1,

There are then a: least u-1 different values of j for which there is
en integer r satisfytag (2-5) with b=l. These values of j correspond to
those where m=0 in (Z-7), and there is an integer satisfying (2-5) taen
as d > 21,

When u=1l, the lemma is verified, as t is also equal to one. Assume

now that u > 1. The integers satisfying (2-0) with m=0 in (2-7) are:

PUR SISy



isJ = Litted/(eryax)), for j = ke (dyex)/(teu), and k=1,...,u-1

If u £ d, this gives u-1 different integers, hence at lcast t~1 of them,
and the lemma is verified. 1If u > d, this gives d-1 diffecrent integers,
and the lemma is also verified, Q.E.D,

We are now ready to show the cxis<tance of a one~to-one corresps.adence
between the parasmeters p and r of the add:sesses of the nodes of the

detour that satisfy conditions (C-1) to (C-4).

Lemma 2-10:

In the general detour scheme, there exists a one-to-one correspondence
between thez values of the parameters p, q and r that satisiy conditions
(C-2) to {C-L4), when the parameters h and i of the destination address are

equal to zero,

Proof;

Lemma 2-7 has shown such a corrzspoilence between the paremeters g
and r for condition (C-3). Coaditicn (C-4) restricts the values of r to
be nonzero, as shown in Lemma Z-5. We now focus on conditions (C-1) ana

(c-2).

Condition (C-2) is very similar to {C-3), 1t is satisfied if
p~f <0, or using A'r) in the expression of f
p~-(p+s'x+A{r)) mdd<O. (2-8)

Lemma 2-2 and a change of variables show that (2-8) is satisfied for
(d -~ {s*x + A(r)) mod d) values of p, By definitlon of t, (s'x + A(r))

mod d, 1s periodic in s with period d/t, 1n order to be able to have ull
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the values of p and r # O corresponding, we must show that for any
h less than d, ({(s*x + A(r)}) wod d} is less than h for r different
values of r # O, This is proven, for s=k't, in Lemma 2-9. All
values of r # C have a correspoading p., Because of the freedom of
the choices of p, we can choose the p corresponding to r=0 to be the
cne avolded hy condition (C-l). This shows the existence of a one-
to—-one correspondence hetween the d-1 nonzero valucs of r and the
parameters p and q satisfying conditions (C-1) to (C-L). Q.E.D.
We now show that these results can be extended to values of the

parameters of h and 1 other than zero.

Lemma 2-11:
The results of Lemmas 2-6, 2-7, 2-9 and 2-10, are also valid if

the parameters h and i of the faulty node are different from zero.

Proof;

¥e prove this only for i # 0, as the proof for h is the same with
a change of variables., We also restrict o:r vroof to Lemma 2-7 as the
others follow from it,

Condition (C-3) is eguivalent to:
1-d< g-i7 s 4

We know how to find a correspondence tetween vulues of q and r,
that is one to onc and satisfies (C-3) when 1=0, or, by symmetry when
1=d=-1l. The reason why we find a correspondence in this case, is because
for any m le.s than d, there are at least m possible porameters g that

have at least d-m possible matches in r, We show that this properiy is
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kept when i1 increases from O to {d/3), or by symmetry, decreases from
d-1 to ¢/, Llet t = ged{x,d). Let Q be the nurmber of pararmeters
q that huve at least d-j*t possible matches in r that satisfy (C-3)
for a given i, Lemma 2-7 uses the fact that for 1=0, we have

QJ = (j+1)*t. Let ":=" indicate an update. When i incrzases Irui

zero to t, we have the following changes,
QJ 1= QJ + t, for J = 1,...’d/t - 2 3

as t parametérs r that coulu only be matched with d/t g's can now be
matched only with the other d-d/t g's. Similarly, when 1 increases to

i+t, the changes are, when i+t < [d/Z|

QJ 1= QJ +t, for j =1 4 4/t,...,d/t - 2 - 1/t ,

As all these changes only increase the QJ'S, we keep the property tuat
allowed for the cne-to-one correspondence, Q.E.D.

Teble 2-5 shows an example of possible matches between the para-
meters q and r that satisfy (C~3), when t=1, for various values of the
parameter i,

We nc¢v show an example of a correspondence betweoen the various
parameters that satisfy (C—l) to (C-h) when h and 1 are nonzero.
Example:

Take d:lg, X:g, y:e, h:51 1=3

This gives t=3, j=4. We compute the values of rrx mod d, for O s r < d,
then matcl the parameters q to each valuc of r, We then compute rey mod d,

l{r-x+1)/d) and A(r). We tncn show what valucs of p arc impossible to



Table 2«2:

Corresponding values of g and r when t=1,

We show the values of q - (grr-x)mod d, when x=1, d=7 aud indicate the areas of the

table for which therz is no possible match,

M H N

(o)

(3]
o
o
N

e

- -2 3_r/

Uik

77

‘\

ON

Qu
\A
O

NN
O

N

O

Q
O

i=0

The shad:d sreas are those where there 1s no possible match,

the correspcnding values,

The circled squares are

The numbers in the table sre the same for all 1, but the

¢circles and shaded areas depend on i,
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associate to a given value of r, and choose the matches among the
romaining onhes, avolding p=5, For ecach choesen value of p, we give o
possible valuc for s, All this is summarized in Table 2-6.

In order to find how many node-independent detours there are, we

first check what nodes may be common tu two different steps of the detour,

Lemma 2-12:
ifn> de, there is no common node between Steps 1, 3 and 5 of the

detour.

Prooi:

We show that the address of the nodes are different in each step.

First we look for nodss common to Steps 1 an& 3. This is possible when

d*M+ p=dM+p + [(rn+tq)/d mod n,
This gives, after simplifications:
p-p' = (r'n+q)/d] mod n , (2-9)

As, in the detour (C-L) implies r#0, (2-9) is impossible to satisfy
for n > d°,
There can be some noies in common between Steps 1 and 5 if
d°M + p=dM+h+ ((rntq)/d] mod n ,
o
As T#0, this is a2lgo impessible, for n > d°,

There can be some nodes in comron beiween Steps 3 and 5§ if



Table 2-(:

Setting the paramcters in order
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to by-pass a faulty node,

d=12, x=9, y=2, h=5, 1i=3.

l r 0 1 3 L 5 6 7 & 10 11

g.r mod 12 Q g 3 0 9 6 3 0 9 6 3

i q 1n 3 6 9 L 1 7 10 5 2 8

2°r mod 12 o) 2 6 8 10 0 2 h 6 8 10

(9.r+3)/12) Q 1 2 3 Y 4 5 6 7 7 &8

A(r) 0 3 8 11 2 I 7 10 1 3 6

impnssible / 11 / / / 11 11 11 11 11 11
p's 10 10 10 10

P 5 T g 10 1 0 1 2 3 L 6

s 0 0 1 1 0 0 1 0 0 0
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d*M + p + [(r'n+q)/d] = d*M + h + {(r'+n+q')/d| mod n,

-

As (C-1) requires pgFh, this is impossible for n > da. Q.E.D.

We now study what bhappens when two steps have nodes in common,

We start with one node in common between Steps 1 and 2.

Lemma 2-13:

When there is a node in common between Steps 1 and 2, there can be
no other steps in the detour with nodes in common when n is larger

than dh.

Proof:

The relation satisfied by the address of a node common to Steps 1

and 2 is:

¢M4+p=doN+dp +q modn. (2-10)

Lemma 2~-11 has shown that there is no common node between Steps 1, 3
and 5 in the detour when n > d2. If there were a node common to Steps 1

end 4, its address would satisfy the relation:

&M+p =M+ L (h+sn0+ [(L+ rn)d)/d modn,
Muitiplying this by d gives:

d2-u + dp’ =d'M + h + [(i+r'n)/d] - £ mod n,

where f 1s less than d. This is impossible to satisfy along with (2-10)

when n > dh, as r#0,



Similarly, as r#d, there is no common node between Step 2 and
Steps 3 and 5, or between Step 4% aied Step 3 and o, and between
Steps 2 and 4. This finishes the proof as there is no other commen
node between two steps possible. Q.E.D.

We should note that the common node between Steps 1 &« ’ 2 may be

the faulty node responsihis for the detour. We now show a similar

result when there is a node in common between Steps 1 and k4.

Lemma 2-1lh:
When there is a node in commen between Steps 1 and 4, there can be

no other node in common between twe steps of the detour when n > dh + d3.

Proof:

If there is a node in common to steps 1 and 4, .t(s address satisfies

the relation:
dM+p =M+ t(h+ sn+ [t r*n}/dj mod n,
or multiplying both sides by d,
a%om + d*p = d'M+ U+ {{i*r'n)/d] - £ mod n, (2-11

where f < d.

L.emma 2-11 shows that there 18 no node in common hetween any two of
the Steps 1, 3 or 5. lLemma 2-13 shows that there is no node in common
between Steps 1 and 2. If there is g node in common between Steps 2 and 3,

some set nf parameters satlsfies the following relation:
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d2-M + d'p' +q' = d'M+ h+ {1+ n)/d] - £' mod n,

where f' < d. If n > du, this can only be verified, along with (2-11),
if they have the seme set of parameters, This alsc implies that these
nodes are the same. But we have seen that there is nc common node
between Steps 1 and 2, the relation cannot ‘be satisfied., There is no
common node betwecen Steps 2 and 3,

Similarly, there is no common node between Steps 2 and 5 between
Steps 3 and 4. By changing the orientation of the network, Step i is
change~ into Step £-1, but the topology of the network is maintained.
Lemma 2-13 chows then that there is no common node between Steps & and 5,
aé they corr-espond to Steps 1 and 2 in the other orientation,

If there is a node in common between Steps 2 and 4, there are para-

meters that satisfy:
aCem + d'p' +q' =M+ (b + s'*n + L(i+x:"-n}/dJ )J/dj mod n, (2-12)
Subtracting (2-12) from (2-11) gives:
d*M + h + |(i+r'n)/d] - £ = d (p-p') - q' +
K+ (b +s"'n+ (145" +n)/d] )/d] mod n
This gives, after nultiplication by d:
4% M + de (t-1) + i-g = de'(p-p‘) - dq" +

d*M + h + [(1+4r'*n)/d] - g’ mod r, (2-13)

where g and g'- are less than d.
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Subtracting {2-11) from (2-13) gives:
2 ' ' - o
d- (h-f-p) + t-g = d"*(p-p') - d*q' + L{(i+<"*n)/d) - g" -
t{i+r'n)/d] mod n.

This is impossible to satisf., if r#r" and n > du + d3, as the diZference
of the two Iloor functions is larger than the rest of the elements,
This finishes the proof, showing that there iz nc common node to two

steps, but the first one, Q.E.D,

This takes care of all the cases where Step 1 has some node in
common with some other Step in the detour, Py reciprocity, it also
takes care of Step 5. We assume now that Steps 1 and 5 have no node in

common with any other step,

Lemma 2-15:
When Step 1 has no common node with any other step, there can be
at most one common node between Step 2 end any other step, elther between

|
Steps 2 and 3 or between Steps 2 and 4, when n is larger than d4 + d3 .

Proof:

We consider what happens is'hen we reverse the orientation of the
network, The primed numbers denote step numbers when the corientation
1s reversed. Assume that there is a common node between Steps 2 and 3,
or 3' and L',

There cannot be any new node in common between Steps 2 and 5, as this

corresponds to 1' and 4', and this would contredict Lemma 2-1k.
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Similarly, a common node is impossible between Steps L and &
(1* and 2'), because of Lemma 2-17.

A node in common between Steps 3 und 4 is the same as the node
in common between Steps 2 acd 3, as shown in Lemma 2-14. Assume now
that there are both a node in common between Steps 2 and ? and 2 and 4.

This implies theoexistence of sets of param‘eters satisfying the eguations:

de'M + d'p+q=dM+p'+ Lr- n/d mod n, {2—1&)

for a common node between Steps 2 and 3 and

d2'M +dp' +qg =M+ l_(p1 + s *n + L(rl-n)/d_] )/d/ mod n, (2-15)

1

for a common node between Steps 2 and 4,

Subtracting (2-14) from (2-15) give.:
d (p'-p) + q'-q + &M +p' + {r''n/d] =
M+ L(p1 + 8)'n + L(rl-n)/qj)/qj mod n,

We multiply <h's by d, and get:

a2 (p'=p') + a* (q'-qrp’) + oM - g' =

@M + p + Lr*n/d - £, uod n. (2-16)

Subtracting (2-1L4) from (2-16) gives:

d® (p"-p') + d*(q"-q+p'-p) - g'- q =

-p' + Lrl-n/d_j -2 - Lr''n/dj mod n.

P 1



This is impossible to satisty, if r* # ry and n > dl‘ + da, as the

diffcrence of the floor fuaction is larger than the rest of the elenents,
This finishes the proof, showing that there can only be one common

node under those conditions, between Step 2 and either Step 3 or 4. Q.E.D.

If we assume that there is no common node between Steps 1 and 2 and
the rest of the detour, we can, by reciprocity, assume the same of Steps
5 and 4, which takes care of all possible ceses.

In summary, there can be only one node common to two different

b

steps when n > d + d3. We can now count the number of = independent

detours,

Xheorew 2-1:

In a de Druijn network with out-degree d > 2, there are at least
d-? node-independent detours between a node with address M and a node
with address dE-M + d*h + i, when the node with address d*M + h is in-
operative, the addresses are taken modulo n -the number ¢f nodes in the

L 3

network-, O < h, 1 < d and there are at least d + d~ nodes in the network.

Proot:
We court how many nodes must fail in the detour graph before all
detours can be cut, Frank and Frisch [Fra7l), among others have shown
that this is the number of node-independent paths betweer the origin and
destinationr of such a grarh.
‘Lemmas 2-13 to 2-15 show that when £ nodes fail, at most [f+2 paths

mgy be cut, as nt most two nodes are comnon to two different steps. In

order to cut all detours, a minimum of "d-3 nodes must then fail, as
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Lemma 2-9 shows the extistence of d-1 independent sets of paramctcers

for the addresses of the detour. Q.E.D.

When n is a multiple of de, some of the restrictions for the

detours disappear.

Theorem 2-2:
There exist d-1 node-independent six-step detours betwern a node
of address M and a node of address d2'M+d'h+1, with h and { between O

and d-1, wnen the node d*M + h is inoperative, and when n = k-dg.

FProof:

We use the same notations as for the gencral detour. The steps are
now as shown in Table 2-7.

If there is a total of § bac nodes in the detorrs, including the
original bad node, there are at least d-S possible parameters possible
for each step, when n is large enough so that nodes in Steps 1, 3, and 5
are dilstinct, except the original bad node. At least d-1 ncdes need
then to become inoperative before there is no detcur left. There are

then d-1 node-irdeopendent detours, Q.E.D,

We nov show an example of detours around a faulty node, in the same
case as Table 2-5, The parameters of the system are. n=24035, d=12,
h=5, i=3. This gives the set of detours shown in Table 2-8, We use
the parameters chosen in Table 2-5, We should note that there only are
10 independent detours, as the acddresses of the ncde in Step 1 with p=8

is the same as the node in Step 2 with p=1.
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Table 2-7: Possible addresses for the nodes in a detour

when n = k-d2 .

atep address comments

0 M origin

1 d'M + p p#h

2 de'M +d'» +q choose g

3 d*M + p + redrz

b M+ 12 + 5°1°2 choose s

5 d'M+h+rdz r#0

6 d®M + d'h + 1 destination
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Table 7=-3: A set of detours when n = 24035, d = 12,

M= 172, de'M + d*h + 1 = 2237 mod n.

P Step 0 1 2 3 4 5 6
o 2184 2174 14201 1183 14206
1 2185 2192 16205 1350 16209
2 2186 2207 18209 3520 18212

2187 2214 20213 16ThL 20215

(%]

i 2186 2223 22217 1841 22218
5 182 2189 2236
6 2190 2241 185 2008 186
T 2191 2248 19k 349 big2
8 2192 2257 6198 2519 6195
9 2193 2275 8202 683 8198
10 2194 2290 10205 2852 10200
11 2195 2297 12209 3020 12203

The entry for p=5 is not a detour, but the regular path between

the nodes in Steps O and 6.
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The method given here requires the edges of the network to be
unoriented in order to by-pass a foulty node., Previous knovledge of
the bad nodes within the detour is nceded in order to avoid them, as
shown in Theorems 2-~1 and 2-2, However a limited knowledge of the
state of the nodes in the ne'work 1is needed, as all the nodes of a
detour are at most & steps apart, This stilﬁ insures the locality of
the control.

If unoriented routing is used in general, another kind of detcur
is necessary as a message must by-~pass in a small number of steps the
node with address d*} + k on its way from M to M + |(k+j'n)/d] med n,

The following theorems show the existence and the number of such

detours,

Theorem 2-3:

There exist at least d-Z node¢-independent paths of six steps or
less between a node of address M and a node of address M + [(k+j*n)/d],
with k and j between O and -1, and when there are at least d2 nodes in

the network.

Prootf:

The two schemes below, used together, fulfill the conditions,

* The first screme gives d-gcd{d,n)-1 node-independent paths, the
second one gives the remaining gcd(d,n)-1. The first scheme is two or
four sieps long, These steps are shown in Table 2-9.

¥lgure 2- | shows an example of such a set of paths. The destination

uddress is of the form:
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Table 2-9: Possible addressces for the nodes in Theorcem £-3,

step address modulo n comrents

] M origin

1 d*M + p

2 M+ L(p+q'n)/dl may be the destination
3 &M+ p-f +r f =(p+ qn) modd
4 ¥ + L{p-f+r + s+'n)/d! destination

Tahle 2-10: Possible addresses in the second scheme

of Theorem -3,

step address modulo n . comnents

0 _ M origin

1l a'M + p g possibilities

2 M+ qn/g could be M again

3 L(M + g'n/g + r'n)/dj ancestor to M + g'n/g and

M + g'n/g+h, where h=tl,

depending on e,
'y M+ q'n/g +h
5 d°M + ¢t € unused descendauts of
the destination,

6 M+ L(j+k n)/q destination
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M+ L{j+k'n)/d mod n,

this gives a restriction on the possible values for p-t+r. For n

large cnough, p-f+r must be between e and e+d-1, where e is equal to
J = (j+k*n mod d) .
If g is the gcd{n,d), we can write, using lemma 2-3:

e = -d + a*g , with a between 2 and (2-d/g)-1 ,

depending on the value of j.

Lemma 2-2 shows that the first g values of p-f, for all p's arc less
th#n one, If e is then larger than g there are at most d-g independent
paths, as thuse that start with a p less than g cannot go to an address
larger than d*M + d-1.

The comment in Table 2-Q vor Step 2 says that this address may be the
destination, This happens when p is b=2tween e and e#d-l and g=k. Steps
3 and 4 then become useless,

Another restriction appears when (in Fi;. 2-1) M2 is beiwveen d'M + e
and d*M + d-1 (one of the intermediate nodes on the "direct” Z-stips path,.
Fewer 1independent paths exist., We show later that for n-large enough, at
most one node in ¢°d nodes with consecutive addresses can be like that,
This restricts the minimum number of node-independent paths to d-g-1.

This finishes the discussion of the first scheme. The second cne
glves‘g-l new independent poths and 1s four or six steps long. Figure -,

shows such a detour in the some case as Figure -1, The steps are shown

in Teble 22-10, .
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Figurce 2-.: Possible connectioas for the paths of Theorcm 2-3,

M+ L(2+h-n)/6) = M2

destination: M s+ _(4%+k-n)/¢] =1

0

M., + nf2

d'M+ e {e=4 here) .

The edges uscd by the paiins are dark .incs,



There are three cases where those paths are not node--independent,
when the poths of the first detour are included,

The first case of dependence is when a node of address M+h+q'n/g
is between a-li+e and d+M+e+d-1. There is at most one such node, for n
large enough, as these nodes are n/g apart.

The second case of dependence is when ;n aiicestor to a node with
address M+h+q'n/g s the same as an gncestor to one of the nodes of
addresses between d*M+e and d*M+e+d-1 already used in some path, This
is included in the first case.

The last case of qependence is when one of those ancestors to a
node with address M+h+q'n/g 1s the same as one of the nodes of addresses
between d'M + e and d-M + € + d-1 already used in some path, Such a
node canh always be svoided as there are d-g possible sich ncdes per path,

and thelr addresses are cf the order of n/d apart, Q.E.D,

Theorem 2~4:
There exist at leas* d node-independent paths of two steps or less

between two nc s with the same descendants 1n a network where n is a

nultiple of d.

Proof:

The two nodes have d descend2uts in common, this gives d rode-inde-

pendent paths, Q.E.D.

In summary, we have shown the existence of at least d-1 node-

2
independent dectours around a faulty node, when n # k-d“, and 4 node-

independent detours when n = k'dz. Similarly we have shown the existence
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Figure 3-2: Possi'fﬂ_e connections for the theorem of 2-3,

when the two types of paths are used.,

d=‘6, 8=2 .

L(M+q'n/g + r+n)/d] = M'1

(destinatiom™
My
M+1

A

7
N
X

da'M

The edges used by the paths are dark lines,
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of d-1 or d node-independent paths between two ncdes with common
descondants, depending on the divisibllity of n by de.
We have shown a six-step by-pass mechanism that allows a message

to avoid an lnoperative node. This does not change the locality of

the controls of the network, but requires a stack, when the network

is used in an oriented manner, in order to h;ndle possible bad nodes
encountered during the detcur. This stack could be incorporated in

the control part of the message, If too many nodes are inoperative,

or 1f the degree of the network is fnur, the detour mechanism might

fail, This leads us to study the conditions under whici communications

are possible between tw§ nodes in the network, and tle number of nodes that

can become inoperative without impairing the ccmmunications within the

rest of the svstem,
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III. Vulner:sbility of a de Bruijn nectwork

" 1is sectlon studies in which ways portions of the system can
become inoperative without* impairing the rest of the system. We
discuss the sens.tivity of the network toc the destruction of a given
number of nodes or :dges. By counting the number of distinct neighbors
& node has, we show that the number of nodes with less than 2°d distinct
nelghbors, where d is the out-degree of the network, is independent of
the size of the network, We then study cycles and show the existence
of oriented cycles of variocus lengths, Theexistence of such cycles 1is
useful in studying how to isolate a group of nodeé from the rest of the
network, Finally a study of node-independent paths shows that there
are at lesst d-1 node independent paths in an oriented de Bruijn network
with dk nodes and out-degree d.

The connectivity of a network is the smallest number of nodes that

aust be removed from the network, for the network to be disconnected,
Similarly, the cohesion of a network is the smsllest number of edges
needed (o dicsconnect the network, As we have allowed self-loops and
perallel edges, the degree of a node does not indicate the number of

independent neighbors a node has. The node and edge vulnerability of a

node are the minimum number of nodes and edges, respectively, that must
be removed in order to disconnect that node from the rest of the network,

The node and edge vulnerability of a network are the minimum, respuctively,

of the node and edge viulnerability of individual nodes.

We lcok for bounds on the connectivity and conesion of de Bruijn
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networks of depgree Z°d, The detour mechanisms outlined in the

previous sections give g lower bound on the <onnectivity of the

network., This lower bound is d-1 if n is not divisible by da, and

d if n is divisible by d2. The node and edpe vulnerability in such

netwurks give an upper bound on the cohesion and vulnerability of

d-1 or 2*d-2 in oriented or unoriented networks, respectively.
Denoting the connectivity of a network as Cn, and the cohsion

as Ch, Boesch aud Thomas [BoeTOJ derived the following relation in an

unoriented network with n nodes and e edges:
"€ns Ch £ 2*e/n

Thus, in order to find a lower bound for both the connectivity and the

cohesion, we only have to find one for the comnesctivity.

Lemma 3-1:
The connectivity cf an unorierced de Bruljn networx is at least
k+1 when there are at least X independent detours oetween two nodes

separated by z bad node,

Proof;

The connectivity of the network is equal to the least numbe ' of
nodes needed to disconnect the network,

The theorems of the previous section show how many node-independent
detours exist between two nodes separated by one bad node. When there
are k such detours at each node, we use a proof by induction to show

that the connectivity is ut least k+l,
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Supposc k=0. As wc¢ are in a network, the connectivity is one,
Now supposc that there are k 2 1 detours, the connectivity is at
lecast k, 1In order to cut a node from another, at least k nodes must
fail, If only k nodes fall, there still ex!sts a path connecting any
two nodes, as there still is one detour among the k node-independent
detours, that does not fail around any of tﬁe bad nodes, as there only
are k-1 other bad nodes. The connectivity of the network is at least

k+l. Q.E.D,

Theorem 3-1:
Let 2°*d be the cegree of an unoriented de¢ Bruijn network, The

connectivity of this network is at least:

d, when the number of nodes in the network is a

multiple of d2 »
d-1, otherwise,

Proof:

The proof follows immediately from Theorems 2-1 and 2-2 and Lemma

3-1. Q.E.D.

We now look fo, an upper bound orn the connectivity and cohesion of
the network. The node and edge vulnerability is such a bound, becuuse if
all the independent neighbors to a node fail, there is not path left
between that node and the rest of the network,

An immediate upper bound for the node and edge vulnerability is

the degree of the network, as all nodes have the same degree. In same
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cases, a node may have a lower node or edge vulncrability., We look

at those cases and count the nunber of loeps there are in some networhs.

Theorem 3-2;

In a networhk where d is the nut-degree, n the number of nodes and
g the gecd(n,d-1}; thae number of self-loops is equal to d+g-1, when n is

larger thar d-1.

Proof:
In general a node with address M has as descendants the nodes with

addresses:
d*M + § mod n,

where j is between O and d-1, and n is the number of nodes in the network.

The o {resses of the nodes that have themselves as descendants satisfy:
M =d*M + j mod n,
We can rewrite this as:
M = (k*n - j)/(d-1; , where O s k < d, and k is an

r

integer that corresponds to the "mod n” in the

above equation,.

Let g = gcd(n,d-2). The possible values of M are:

M) = L(k*n)/{d-1})] , with k=C,...,d-2 ,



46~

and

M, = k'n/(d-1) - 1, when this is a positive integer.

This also is:

ME = g'n/g - 1, with q=1,...,g"

There are <¢d-1 incependent M.'s, and g independent M.'s. A repetition

1 2

might occur between an M1 and an M2 if two Ml's are only one apart, as

ell ¥_'s are one away from a given M

2 This gives for the repetitions:

1
(k*n ~ 3)/(d-1) = (k'mn + n - d+1)/(d-1) .
or
n=d=1-j .

This is possible only if n < d. This gives us, for n 2 d, a total of

d+g-~1l independent nodes with a self-loop. Q.E.D.

The nodes #ith self-loeps, in an oriented network, have & node and
edge vuluersbility of d-1, If n is smaller itiian d, the node and edge
vulnerability may ge larger,

We now look at node and edge vulnerability in an unoriented network.
The cases wlere the edge or node vulnerability are less than the degree
occur when a node has a self-loop, or when two edges are parallel. Those
two examples are shown in Figure 3-1. The numbering of the nodes is taken

from a de Bruijn graph with 8 nodes and degree 4.
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000

00l

self-loop

1o OIO

parallel edges

Fig. ’~1: Cases where edge or node vulnerability are less

thzn the degree 2f a node,



We first show th:t in large cnough a network, there is no node

with both a sclf-loop and parallel edges.

Lemma 3-2:
In an unoriented network with more than d2 nodes, a node cannot

have both a self-loop and parallel edges.

Proof;

If j,k,p avre integers between O and d-1 included, the arddress of M
of a node with both a self-loop and parallel edges satisfies the

relations modulo n:
' 2
M=dM+ J=d M+dj+]J,
for the self-loop, and

M= doM+ dk +p, with k#), for the parallel edges.

This glves, modulo n:

da'r +dJ+J= d2°M + d'k + p,

and;
d*(J-k) = p-j, which is impossible, with j#k, when
2

n&d ., Q.E.D,

We alresdy have found the occurrences of seclf-loops. Wwhen a node

has & self-loop in an unorientea network, its edge and node vulnerability
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become 2-d-z if the degree of the network is 2.d, In case of parallel
edges, the edge vulnerability is unchanged, but the node vulnerability

goes to 2-d-1,

Theorem 3-3:

In an unoriented de Bruijn network, where n is the number of rodes
and 2°d the degree of the network, if n is larger than da, and
g = gcd(n,de-l), the number of nodes with parallel edges is equal to

aCrg-1.

Proof:
Parallel edges happen when 2 node has one of its "descendants”

among its ancestors, for n larger than d, Thils occurs for:

M= d2'M +dJ+ i mod n, where i and J are d-ary digilts.

1If g = gcd(n,dz-l), the solutions to this congruence are, including

some repetitlons:

M) = L(k-n)/(de—llj , with k = 3,..,,d"-2 ,
and

M, =qn/g-1, withq=1,...,8 .

A3 in Theorem 3~2 we caa count the repetitions, and similarly, when n

is larger than d2, the congruence has dgvg-l independent solutions, Q,E,D,
Some - f those "paranllel edges” are actually self-loops uscd twice,

the actual number of nodes with parallel edges that are not self-loops

is then:
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d2-d+gcd(n,d2—1)—gcd(n,d-l) .

We can now find the node and edge vulnerability of an unoriented

de Bruijn network with more than d2 nodes,

Theorem 3-L:
The node and edge vulnerability of an unoriented de Bruijn network

with wore than d2 nodes is z-d-2, where 2°d is the degree of the network.

Proof:

When the number of nodes is larger than d2, there is not overlap
begween self-loops and parallel edges: all self-loops are considered
as parallel edges, and there is at most one self-loop per node.

The node and edge vulnerability of the network is then that of

the nodes with self-loops, 2+'d-2 . Q.E.D.

We study now the node and edge vulnerability of an oriented network,
then count the number of cycles of various lengths that exist in those

networks.

Theorem 3-5:

Let d be the out-degree of an oriented de Bruijn network, The node
and edge vulnerability of such a network is d-1, when the number of nodes

in the network is larger than d,

Proof:

when the number of nodes in the network is larger than d, no two
descendants of a given node con be the same, The only case where the

number of distinct neighbors of o node is less thon d is when one
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of those descendants 1s the node 1itself, The edge and node vulnera-
bility of such a node is d-1. This is also the node and cdge

vulnerchility of the network, Q.E.L.

Cycles in the graph show how strongly nodcs are connected, and help
in defiring measures of connectivity that include a group of nodes

[Boe?l]. We show the existence and count various cycles in the networi,

Theorem 3-6:

In an oriented de Bruiin network with n nodes and cut-degree d,
the number of cycles of length L and no less, with L < Llogaqj, is
equal to:

(D maa)-1(wa) L,

q
ajL
where mu(q) is the Mchius function:

1 if g=1,

(-1)T if q 1s the product of r distinct

mu(q) = primes,

O 1f q contains any repeated prime
factors.

and f{q) as:
2(q) = d% + ged(n,d%1)-1 .

Proof:

Berlekamp [BerG8,pp. 81-85], has proven this theorem in h!s book,

for general fuihctions £(q). Q.E.D.
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We now have upper and lower bounds for cchesion and connectivity

of an unoriented de Bruijn netvork with o nodes and degrec 2d:

If n 1is not divisible by d2:

d-l1 s Cn s Ch s 2=-2,
o
and, when n is divisible by d~ :
d = Cn £ Ch s 2+d-2 .
For 2n oriented network, we have:
l<¢Cns<_hzs<d-1,

Another way to look a% the comnectivity of a graph is to look at
the number of nouc-independent paths hetween any two nodes in the graph
[Fra71, Berf2 .

Two paths between two nodes are called '"node-independent" if they
have only the origin and destination nodes in common. Two paths are
called edge-independent if they have nuo eige in common., We already
know that the nuaber of node-indenendent paths in a network is egual to
the connectivity of that network.

This section studies the construction of node-independent paths
in networks with d‘n nodes, from the construction of corresponding paths
in networks with n nodes, It shows in particular that there are at
least d-1 node-independent paths between any two nodes in an oriented
network with dk nodes., It also shows that for unoriented networks with
dezree 4 and 2:m nodes, there are at least 2 node-independent paths

between any two nodes,



In the rest of this section, we call a de Bruijn network with

degrec 2°d and n nodes as o (d,n} nctwork, As usual, the definition

for the integer k is;:

dk'1<n5dk,

an earlier report [Sch?h] shows that k is a; upper bound for the
diameter of the network., A path is monotone if it is possible to go
from ore end of the‘path to the other end, following the orientation
of the edges, A path is singular if it consists of at most two monotone
subpaths.

We first extend a result that is already koowa for (d,dk) networks
[601671: there is an isomor;hism between the oriented edges of a
(¢,p) network znd the nodes of a (d,d-p) network, We then prove a theorem
on node-independent singular paths, constructing such paths in a (d, d*p)
network from corresponding paths := a {d,p) network. Another theorem
shows tha*t i 5 node-independent monotone paths exist between any two
podes of a (d,p; network, the same is true of a (d,d*p) network. This
theorem applied to (d,dk\ networks shows the existance of at least d-1
node-independent paths between any two ncdes in such networks. This also
glves a good lower bound for the conhectivity of such networks,

We now show how the edges of a (d,p) network cecrrespond to the nodes
of a (d,d'p) network. Figure 3-2 shows possible addresses for the cdges

of a (3,7) network.



Fig. 3-2:

Addresses of edges in a (3,7) network.



Lemma 3-3:
There exists an isomorphism between the edges of a (d,p)

network and the nodes of a (d,d*'p) network,

Proof:

To each edge in the (d,p) network, we associate a node of the
(d,d*p) network in the following manner:

If the address of the origin of the edge is M, and that of the
destination is d*M + j mod p, the node in the (d,d*p) network

_associated to that edge of the (d,p) network has an address of:
Cd'M+ J moddep

wWe define the descendants of an edge as the edges leaving from
the destination node of that edge. If a node assoclated with a given

edge has addres3s M, its descendant nodes have addresses:

d*M + jJ wod d'p, with j} between O and d-1 ,
Theze addres;et =re the same as those 0f the nodes associated with the
descendant edges of the ~dge associated wit* ‘he node of address M,

The correspondence between the nodes and edges keeps the connection
patterns, To each edge in the (d,p) network, we can associate z node in
the (d,d'p) network, and to each node in the {d,d-p) network, we cu.n
associate an edge in the {d,p) network: If there is a node without an

assocliated edge, the same is true of all its descendant nodes, and we

know that any node has eventually all the nodes in the network as
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descendants. [f there is then onc node without an assoctated edue,
there is no node with an associated edge, which is in contradiction
with the possibility of associating a node with any edge. In con-
clusion, as there is the same number of edges and nodes, there is an
isomorphism between the edges of a (d,p) network and the nodes of a

(d,d*p) metwork, Q.E.D.

¥p particular an oriented path along the edges of a (d,p) network
corresponds to an oriented path between nodes of a (d,d*p) network.

We can then extend to all ({d,d*p) networks the known result [Gol67)
that ell (d,dk} networks have an Hamiltonian circuit: 1t corresponds to
the Eulerian circuit in the (d,p) network.

¥We now show how to go from a singular path in a (d,p) netwosk

a singular path in a (d,d'p) network.

Transformation 3-1:

-1t the singular path is a monotone path in the (d,p) network, the
transiormation is immediate, the path, instead of going from edge to
edge in the (d,p) network, goes from node to node ir the (d,d*p) network,
and t ose nodes are associated to the edges in the same way as in
Theorem 3-3,

-If there is a change of orientation, the two monotone subpaths
cau be transformed as above. The resultinrg path is not complete, but the
open ends, not the origin and destination, come from the same ancestor or

go to the same descendant, as the corresponding edges join in one node in

Lo
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the (d,p) nctwork. Adding one node to the paths bridges the gap,

and keeps the singularity of the resultirg path, as shown in Fig. -

7
.

Definition: A forward singular path is a singular path which in an

oriented network takes an sdge out of at least one of

its extremities.

For example a monotone path is a forward singular path, Figure 3-4
shows a path that is not forward singular.

We are now ready to prove the following theorem:

Theorem 3-7:

| If there exist s node-~independent forward singular paths between
any two nodes in a (d,p; network, with s < d, then there are s node-
independent forward singular paths between any two nodes in a (d,d-p)
network, These paths are the transformed by transformation 3-1 of the
forward singular paths between the destination nodes of the edges

corresponding to the extremities of the paths in the (d,d'p) network,

Proof:

This proof shows that such paths keep their independence and forward-
ness in transformation 3-1,

The node-independence of the paths in the (d,p) network implies
the edge-independeiice of these paths, The transformed paths in the
(d,d*p) network ccrrespond to edge paths with an extra edge at the summit
of the forwari singuler paths, As the degree of the net is 2-d, and there

is at most one seli-loop per ncde, it is always possible to choose that
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Fig. 3-3: Transforming singula~ paths in Transformation L-1,

14

d'e+e mod d-p.

dbip ¢ d-f+p mod d'p
mod d-p

da+
mod d+p f
in the (d,p) network
glves
db + B de + ¢
df + ¢

da + QO

. in the (d, d-p) network,



Fig. 3-L: A path that is not forward singular,

- - ez

monotone p:ath
/ e
[ 3
.

d-1 other paths s

d edges to

choose from

summit is an extremity summit 13 not an extremity

Fig. 3-5° How to choosc the last node,
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l2st edge independently from the other s-1 poths, when s £ d, When

the summit is not an extremity, we can choose any edge out of this
summit because of the node-independence of the paths., Wwhen the

summit is an extremity, the choice goes as follows: each node has

at most one self-loop, hence at least 2'd-1 independent edges (Thm 3-2).
At most d-1 incoming paths use 2¢d-2 edges,_as they actuall. use the
extremity as a summit, and the last path goes directly to the

destination edge and does not need an extra edge, Q.E.D.

Figure 3~5 shows such choices,
The paths that we get may still be shortened if the extra node
is linked to some other node in that path.

We now prove a similar theorem for monotone paths:

Theorem 3-8:
If there exist 9 rode-independent monotone paths between any
nodes in a (d,p) network, then there are at least s node-independent

monotone paths between any nodes in a (d,d'p) network,

Proo?:

In the (d,p) network we look for edge-independent paths between
thg nodes corresponding to the destination of the origin edge and the
origin of the destination edge. as shown in Figure 3-6,

If those two nodes are different, there are s node~independent
paths between them in the (d,p)} network, which transformation 3-1
transforms into s node-independent paths in the (d,d*p) network. Boesch
and Frisch [30968], have shown that this 1s enough for the connectivity

of the path to be s, and for s node-independent paths to exist between
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any two nodes, Q.E.D.

In some cases, thls theorem gives a better lower bound than
the general cne on the number of pode-independent paths between two
nodes in a de Bruijn network., We look at the number o node-independent

monotone paths in a (d,d) network,

Lemma 3-4:
There are at least d-1 monotone nodz~independent paths between two

nodes in a (d,d) network.

Prouof:

The connection pattern of the (d,d) network is the complete directed
graph with d nodes and a loop on each node. There always are d-1 inde-
pendent paths between any two nodes made of the edges from the origin node
to all other nodes, and if necessary the edges to the destination node.

Q.E.D.
Theorem 3-9 generalizes this result *o a larger class of networks:

Theorem 3-0:
k
For any (d,d ) network, with d and k being integers, there are at

least d-1 menotone node-~independent paths between any two hodes,

Proof:

The proof follows immediately from the above lemma and theorem, Q.E.D.

This gives a better lower bound for the connectivity of an oriented
k
(d,d ) network: monotone paths are paths in such a network, and the

connectivity is at most d-1. This gives:



de + ¢

' d-e + ¢ mod d*p
mod d-p ATION

d:d + § mod d-p

db + B
mod d+p b d'b + g mod d-p
ORIiGIN
:;;f . d-a + @ nod dp
P in the (d,p) network in the (d, d'p) network

Fig. 3-6: Trransforming a monotoneous path.

)

Fig. 3-7: The (3,3) network.
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Theorem 3-10:

The connectivity of an oriented (d,dk) network is 4-1.

Proof:

The proof follows immediately from the above theorem. Q.E.D.
Going back to unoriented networks, we can tell a little more

about the case where d=2:

Theorem 3-11:

There are at least 2 node-independent paths between any two

nodes of a (2,2-p) network,

Proot:

This 15 an immediate derivatica from the existance of a Hamiltonian

circuit in those networks, Q.E.D.

“ulnerability in a de Bruijn network is & function of the dsgree
of that network. For an unorientei (d,d*p) network, the connectivity
snd cohes:.on increase with d., For (d,dk) oriented networks, the
connectivity is d-1, for unoriented ne-works 1t is at least d; for small

values of k, the comnectivity is :n fact 2:d-2,
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1v. Conclusion

De Bruijn networks have interesting properties for communications
networks: a small diameter with respect to the number of nodes in the
network, and an easy routing and rerouting scheme. The control
liformation for the by-rass of a bad node c;n easily be added to the
header of the messege. In case of a single bad node, it takes only
an extra four steps o go around it. A limited number of nodes,
independently of the size of the network are more vulnerable than the
rest of the nodes in the network. The larger the network, the more
"invulnerable"” it is, the same is true when the degrze increases,

An open problem i35 the statistical analfsis of the message flow

inside such a network. This problen is studied in a coming report.
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