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In an earlier report we have studied the routing of messages in

a de Bruijn network [Sch7h]. Messages go in a "store and forward’ way

from node to node before reaching their final destination, In a de

Bruijn graph, a node of address M has for dos cendunis the nodes of

addresses |

{d*M + 0) mod n, for each J such that 0 5 J <€ d-1

and where nh is the number of nodes in the network,

. In the previous report, all nodes are operative all of the time, This

report studies the possibilities of a network with a certain number of

nodes that fail, A step is the operation that sends a message from one

node to one ¢i its neighbors, The distance between two nodes is the

smallest number of steps needed for a message to go from one node to the

other. The diemeter of a network is the largest distance between any

two nodes in the network. The number of directly accessible neighbors to

a given node is, by definition, the degree of that node, The degree of a

network is the largest degree of all nodes of that network,

| We can use such a network in two ways, either oriented or unoriented,

In on oriented network, the connections are unidirectional, going from a

node to its descendants, In an unorienfed network, the connections are

bidirectional, This 1s the same as twe unidirectional connections, We

should then cxpect much better characteristics in an unoriented network

than ih an oriented one,
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~The degree of a de Bruijn network is the same as thatof all

the nodes. Jf the out-degree is d and the number of nodes in Lhe

network is n, the diameter of the oriented network is log, nl, This
diameter 18 the same when the network is unoriented,

When a single node is not working, we show schemes that reroute

messages arouad that node in at most six steps, whieh (>a Or wlien

n = x* a”,

We also study the vulnerability of the network, If the uaorlented

network has degree 2-d and n nodes, we show that the number of wodes with

less than 2+d distinct neighbors is smaller than na and that for

sufficlently large networks, no node has less than & d-2 distinct neighbors,
We find an upper and lower hound for the connectivity of the network to be

respectively 2¢d-2 and d-1., We know that the minimum number of node-

independent paths between two points in a network is equal to the

connectivity of the network, Looking then at node-independent paths

between nodes in the network, we show how to construct such paths in =a

network with d'p nodes olce we know how to construct them in a network

with p nodes, Using such paths, we glso show that the connectivity of

an oriented network with a" norleg 1s d-1. In a simllar uncriented network,

there aro at least d node-indepéendent paths between two nodes, In an

unoriented network with degree h, and un even number of nodes, there ure

at least two node independent paths between any two nodes,
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11. DLy=passiiur oo foulty node

When all podes of 2 neiwork are operative, the control of the

message flow 1s done locally at each node, and is independent vf vhau

happens in the rest of the network. We would like this to also apply

when only one rode 1s faulty,

In some uses g@ nede mpy becone inoperative, It is overloaded, or

some link to the nooae is out of service, This prevents the gencral routing

scheme from working. We must find un alicrnate path that by-pasces the

. : K
faulty node, We show such a path, lirst when there are d nodes in the

rectwork, then in the general case. In general, there is a by-pass if

” } <
d >, or if n ic a maltiple of d .

we show a Ly-pass ground an inoperative node, six-steps long, when

& 1 - 1 1
d > 2, or n=k*d , This shows that when a node becomes inoperative, the

maximum number of extra steps needed for a message to rcach its destination

is four. This alse requires only local knowledge of the network as the

detour has a finite aumber of steps. A message taking the detour shoaid

carry information about the detour path for the length of the detour,

A possible solution to the detour problem, although terribly waste-

ful, 1s to send the message to any neighbor but the bad node, and restart

the routing ol the message from there, Thi: reguires up to an ext.a k

steps in on network with diameter k and does 231 insure that the bad node

is not encountered goin, er that the message reaches its destination un

w finite time, We show here ao ov-pass of a bad node thant tokes only six
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steps, or four nore “han the path through the bad node,

Suppose that the node with the Tellowing address La Ino erat dvi:

Xi Xone ee Xp .

and that there are i nodes in the network with degree 2.d. The message

comes Jrom: |

XoX Xo ro Xe 2 ‘

and the path, going thrrugh the bad node, leads to:

Hore BX

The path in Table 5-1 links the above two addresses without going through

the bad node, One shceuld note that this path does not follow the

orientation of the edges, at some point the path requires an "ancestor

transformation instead of the "d¢ scendant” transformation used up to now.

The various restrictions on the right insure that no intermediate

node has the same address as the inoperative node if d > 1, 1f the bad

node is the final destination of the message, then not much can be done,

This shows in general for all nctworks with a" nodes, the existance

of a &-step detour or an Bestep unoriented cycle. When messages in the

system encounter a bad node, they go into a special "detour state’, and

go around the bad node hefore resuming normal routing. When the message

encounters another bad node while in "detour state’, we nrted a control

stnrk to come back to the previous detour state once we arc out of the

new onc. If there are too many bad nodes, the message mav go Into an
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Table 2-1: Addresses of nodes in a detour.

step number address | comments

0 KoXyeeeXp 4

1 L90 FU TL a FX

| 2 KoKqeoo Ky pom m 7 x

3 bX... X 8 | b # X,

it bX... X cit Xx

5 bX. XL 1%

6 XXge oo X, cal |
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infinite loop.

When the number of nodes in the network 1s not a power of the

oui-deg ree, this detour mechanism does not always work, For example,

let n=10, d=2, and assume we vo»° to transit a message from node L to

node & when node # is out ci . The schene gives the nodes in

Table 2-2, After 6 steps, the scheme does not route the message to

its destination, In general the scheme works when the number otf nodes

ln the notwork is a multiple of a”, where 4 is the out-degree of the

network, or when d > 2,

In order to prove the existence of detours in these cases, we study

the graph consist_ng of the detours and the direct path between twe nodes

separated by one pode. We count the number of node independent paths in

this graph between the origin ond destination nodes. Before studying this

graph, we prove some lemmas related to the expression:

Y=x- {((x+ ry) mod d) (2-1)

where x, y andl > ~re integers between 0 and d-1,

Lemma 2-1:

Ynen x is increased by one in (2-1), Y is either unchanged, or changes

by an amount of d. This change occurs at most once, for x's in the

interval 0 < x < d,

Thls proof shows where the change happens and that it 1s the only one,



Table 2-2: Addresses of nodes in a detour whan n=10, d=2,

from node L to node © when node 8 is inoperative.

| :

| step addresses of the nodes coments
| |
| j

| J L origin
| 1 8,9 Descendants of Step 0: node 8 is not possible

] | because of failure,
< | 8, 9 Descendants of Step 1; node 8 is not possible]

| because of failure,

| 3 | L , © | Ancestors of Step 2; node 9 1s 1lts own alcestor,j hh

| 4 | 2,7 , 4,9 Ancestors of Step 3.
| 3 4,5, 8,9 Descendants of Step 4; nodes 2 and 7 have nodes

| | 4 and © as descendants, nodes L and 9 have
| | nodes & and 9 as descendants snd node 8 1s
| not possible.

'

5 | 2,1,8,9 Descendants of Step 5; nodes 4 and 9 have nodes

| | € and G as descendants, noce 5 has nodes 0
| and 1 as descendants.

| |
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The replacencntef x by Xp = MI dn (e=1) gives;

Y= xp - (xg + ry) mod d) ,

Y = x+1 - ({x+) + rey} mod d) (2-2)

If Xx+1 + r*y # 0 mod d, then the value of Y in {2-2} is the same as in

{8-1) as both terms of the right-hand-side have increased by one,

As x increases {rom O to d-1, therc can be only one time where the

value of Y changes when x increases, Tt is when:

When » is less than [-r+y rod d), then Y¥ = -(r‘y mod d), and otherwise,

Y =d- (ry mod d}), When ry = 0 mod d, Y is equal to zerv for all x

such that C = x < d, PED.

Lerma 2-2;

In (2-1);vy < C for precisely d-(r'y mod ¢) x's in the interval

C <= x < d,

Proof:

When x-0, Y is nonpesitive, and equal to - (rey mod d), As Xx

increases, Y changes only 1or x = d - {ry mod d;. Fui all x's smaller

than d ~- {ry mod d}, Y is nonpositive. This tappens for d - (rey mod d)

values of x. When x 1s larger than this value, Y increases by d ond

becomes strictly positive. Q.E.D.
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Lovilg o= ES

If, in (2=1), ged{y,d) = g and d : g*&, then the value of ¥ as o

function of r, is periodic in r with period §.

Proof;

The replacement of r by r+d in (2-1) does not change the value of Y,

x = ({x + rey+bry) mod d) = x - {{x + r*y) med d), as

f+y = 0 mod «. Q. E.D.

We can now study the detour scheme in general, between a node of

2
address M and a node of address ¢ 'M + d*h + j, with h and j between CG

and d-1. We first restate a result from a previous report on Lhe

connections between nodes,

Lemmn 2-l:

The ancestors of a node with address M have os addresses:

{(M + k*n)/d] mod n, with 0 5s k < d .

Proof:

The detalled proof is in a previous report [Sch7h], and shows that

one descendant from cach of these addresses has M as an address. QE, D.

Table ~3 shows the possible addresses of the nodes in the detour

2
when n = d +2 + dey + x. 1These addresses are derived from the definition

of a de Bruijn network for the addresses of the descendants ot a node

and L.cmma 2-4 for the addres:es of the ancestors of oo node. lor example

¢
the addresses of the aninestors of the node with pddresses d *M + d'p + g



Table ©-3: Possible addresses for the nodzs in a detour

: 2
when n =d "z + dy + x.

| 2
step address modulo n= d *z + d*'y + x comments

QO M origin

1 d*M + p "escendalii. of Step 0: choose

: | coeffi iont nn,

- 2
2 | d M+ dp + ¢q Descendants of Step 1; choose

; | coefficient q.
3 d"M + p + re(d-z+y) + L(q+r x)/d] Ancestors 2» Step ¢; choose

coefficient r,

L Mtr z+: {de 2+y) + L(ptre y+s-x+[(q+r-x)/d) )/d] Ancestors of Step 3; choose JS
coefficient s. ‘

5 deMtre (d- z+y )+L{q+r-x)/d] +p=2+t Descendants of Step 4; choose

coefficient t; nere f is:

i f = ptrey+sex+l(q+r-x)/d] mod n,

- z
5 d *M + d* (p-f+t) + g-gtu Descendants of Step 5; choose

-

_ QM + d'h + i coefficient u, this is the
destination and g is:

g = q+ rx mod d,

We have the following inequalities: O x p,q,r,s,t,u,x,y< 4d, as {(p.q,T,s,t,u) are

coefficients for the transformation of addresses between a node and its Jescendants

or ancestors, and (x,y) come from the division of n by powers of d.
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(in Step oof Table -3) arc:

{(d“*M + d'p + gq + r'n)/d] wod n ,

2
or, using the value of nh, n = d *z + d*y + x, and dividing when

possible,

{dM + p +{g + r*x)ad + r{dz + vy }J mod n ,

ahd, taking the integers out of tre floor function we obtain the

gxpressivun of the addresses of Step 3 in Table 2-3.

d*M + p+ rr (dz + y) + L{g+rex)/d mod no.

There a.e a few obvious constraints on the coefficients in the

eteps of Table 2-3, The definitions of f and g in Steps 5 and 6 are:

f=pP+ry+ sx+ (qtr x)/d] mod d and

E= q+ rx mod d ,

If the bad node has address d*M + h and the destination node has address

a< + u + d*h + 1, the constraints are:

p ££ h mod n, for Step 1 to avoid the faulty node (C-1)

p-f+t = h mod n, for Step £ to be the destination (C-2)

q-g+u = 1 mod n, for Step & to be the destination (C-3)

re (de z+y) + L{q+r-x)/d]# O mad n, for Step 5 ro avoid

the faulty node, (C-4)



-12.

We now prove a fow lemnns related to the addresses in the detour

before showing how many node-independent detours tlhore arc,

Lempa 2-5;

When n 2 d, constraint (C-4) is equivalent to r#0 .

Proof:

We first skw that (C-4) implies r#0, then that for n 2 d,

r#0 implies (C-4).

Let r=0 in {C-4), This gives:

Q: (de z+y) + (q+C*x)/dl # 0 mod n, or, after simplifications

lg/d] # mod n ,

But gq is by definition less than d, and the resulting coutradiction

implies r#0.

In order to prove the converse part of the lemma, we show that

r#O implies (C-4},

When r#0, re(d z+y) = r'{/d] # O mod n, So (C-4) can only te

false when rf0, if

| re{d-x+y) + {(q+r'x)/dl = 0 mod n (2-3)

= k*n, for some positive integer Kk.

We show that the expression on the left~hand-side of (2-3) is always

less than n when n 2 d, hence that (2-3) carnot be satisfied for ry0.

Let Alx,y,z) be the expression on the lelt-hond-side of (2-3). By sctting

|
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r=q=d-1, we obtain an upper bound on A(x,y,2):

(d-1) « (drz+y) + L(d-1) * [x+1)/d| = U(x,y,z) 2 A(x,y,z) .

We now show that U(x,y,z) is less than n = 4% z4de y4x .

2 ;
U(x,y,z) = d *z+d'y - (d°z+y) + x+1 + [~(x+1}/d] .

=n ~ {(dz+y) + 1 + [-(x+1)/d]

and as 1 < =+l1 < d, we have;

| «<n, wher nx d ,

Hence, when n 2 d, A(x,y,z) < n, and r#0 implies (C-4), Q.E.D.

Lemna 2-6:

In the general detour scheme, at most one value of the parameter

gq yields addresses that do not satisfy (C3).

Proof:

The destinavr.ion address is:

2 2
dM + ¢*h + i =d *M+ d* (p-f+t} + g-g+u mod n , (2-4)

where

f =p + ry +ae'x+ [q+ rex)/d mod d, and

g = q + rex med 4 ,
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Constraint (C-3) requires:

g-gt+a = 1

If 1=0, this implies that q-g s 0. The expression for g-g is:

g-g = q -((q + rx) mod d},

This is the same expression as (2-1), with a change of variables,

Lemma 2-2 shows then that gq-g < QO for precisely d-(r'x mod d) values of ua.

If ged{x,d) # 1, we can always choose an r such that g~g € O for

211 values of q in 0 £ ¢ < d, as there is an ry0 such that rx = Q mod d.

If ged(x,d) =1, then r=0 is the only r for which there :re d values of

q such that g-g s 0.

We have seen in Lemma Z-fF that r must be different from zero,

However, by choosing r to be the sclution of the congruence r+: = 1 mod d,

wkich is possible as ged(x,d} = 1, 1t is possitle to find d-1 values of

q Such that gq-g £ 0, There are then alwavs at least d-1 valuvu<s of gq for

vhich condition (C-3) Is satisfied. Q.E.D,

We first show how to satisfy conditions (C-2) and (C-") when h and 1

are equal to zero, We then show how to extend those results to any values

of h and 1 less than d.

Lemma 2-7:

In the genera: detour scheme, there exists a one-to-one correspondence

between values of the parameters 4 and r that satisfy condition (C-3).
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lemma 0-0 has shoan which values of r satisfy {(C-3) for a

given value of q. We now show that for each value of q we can assign

a different value of r such that condition (C-3) is satisfied,

We do the correspondence sequentially, keeping (C-3) satisfied,

Let ged(x,d) = t, Using Lemma 2-3 and the proper change oi variables,

we know that (rx) mod d and g-g in (2-4) are periodic in r with period

d/t. This implies that (r.x) mod d takes d/t different values and cach

of these values is taken for t different values of r. We assign values

of r to corresponding values of g in the following way that satisfies

(c-3) .

(0) Set i to zero. Let R and Q be respectively the sets of all

possible values of r and gq. Both these sets have cardinality d.

(1) Take, in R, the t values of r that maximize (r*x) mod d. They

correspond to the values of q that l.ave the least number of

possible values of r so that [C-3) is satisfied, Associate

these values of r arbitrarily with the values of gq between

i ana L+t-1,

(2) Delete from R the values that have been ausigned, Set i to

i+1, If it = d then stop, all values have been assigned,

(3) go to Step 1.

We now have to show that, using this correspondence, the expression

of q-g in (2-4) stays less than one, Using a change of variable, the

proof of Lemma 2-2 shows that the first d-{r*x)mod d values of q satisfy
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this condition. In Step 1, we associate with the t values of r that

give the same value for (rex) mod d, t values of q between d-{(r*x) mod d} -)

and d-t-{r*x) mod d. This association satisfies {C-3) . Q.E.D.

Table 2-4 shows an example of possible matches between the parameters

g and r that satisfies (C-3) when t=1.

This co.respondence has another propocrly Lhat is useful later,

when finding a correspondence between parameters p and r of the detour,

Lemma 2-8:

Condition (C-3) gives a correspondence between the parameters ¢ and

r such that |(g+r*x)/d] = (i+r*x)/d}, when 1 is the parameter of the

destination in (C-3).

Proof:

We can write the addresses of Step 5 in two different ways,

depending on the method used to obtain them, They are either a

descendant of Step 4, or an ancestor of Step 5, This gives the equality:

d*M + p-f+t + |(g+rx)/d] = d*M + h + |(i+r'x)/d] mod n .

As condition (C-2) implies that p-f't = h, the cquality becomes

{qtr x)/d] = [(1+r-x)/d] Q.E.D.

Using this correspondence between Q and R, we show what happens

with condition {Cc~-2), Once q or r is chosen this is very similar to

(c-3), and we can find a one-to-one correspondence between the parameters



Table 2-4: Matching the parameters q and r when t=l,

The table shows the values of q-{q+r x) mod d,

when x=1, d=7. The shaded arcas indicate where there

: | is no possible match. The matches in the one-to-one

correspondence fall on a diagonal and encircled.

ee Ea |

aN oO 1 2 3 4 5 6
| 0 0 «1 -2 -3 -4 -5 (6)

2%
0 -t -2 -3 -4 (3 <

7

2 0 -1 2 -3 QF
3 ou 2 OV

J (7

¢] 3/

ER x

Y6 OV 7 |



p and r that satisfy conditicns (C-2) and {(C-3).

Let A{rj be the part in the expression of f£ that depends on g and r:

A{r) = (ry + |(q+r-x)/d]) mod 4 . (2-9)

Condition [C-2) 1s satisfied 1f:

p-f <0, or, using A(r)

p- (p+ sx+ A(r)) mod d =O ,

We now show an important property on A{r), when i < d/2. Ry symmetry,

a similar property is true when iI 2 d/2,

Lemma 2-9:

¥Yhen { < d/2, for all h less than t, there are at least h different

values of r70 such that A(r) mod t < h,

Proof:

Let Z{r) = A(r) mod t. We have, using the correspondence of Lemma 2-7

between q and 7 zd Lem.: 2-8;

Z(r) = ry + [(i+r'x)/d] mod t,

with 0 = x,y< d., We can rewrite this as:

2(r} = L(r*(d y+x} + 1)/d] mod t.

The expression within the floor furction 1s less thin h for:

< -

rySrrg Ay (2-6)



where

ry = (Jet d-2:1i}/{d"y+x) , and

A = h*d/(d-y+x) .

We want to show that for all h less than t, there are at least h

different integer r that satisfy (2-6). Let then

ged(deL,d y+x) = u ,

As t=gcd{d,x), we have u 2 t, Using u, we can express Tr differently,
| It 1s:

ry = Jrted/(doyex) = 201/(dr yx)

= By - Ap, with 4, = 2:1/(d-y+x) ,

= Ls + (j*t-d mod (dry+x))/(dy+x) - Ay -

= Ls J + mr u/ (de y+x).- A,, with the integer m such (2-7)

that O < m < (d'y+x)/u, and m

can alsc be egual to zero when u > 1,

There are then at least u-1 different values of j for which there is

en integer r satisfying (2-6) with h=l. These values of j correspond to

those where m=0 in (2-7), and there is an integer satisfying (2-6) then

as d > 2*'1,

When u=1l, the lemma is verified, as t is also equal to one. Assume

now that u > 1,” The integers satisfying [2-0) with m=0 in (2-7) are:

|
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tsJ = Littra/ (dry), for j = ke (dey+x)/ (teu), and k=l,...,u-1 |.

If u £ d, this gives u-1 different integers, hence at least t-]1 of them,

and the lemma is verified. If u > d, this gives d-1 different integers,

and the lemma is also verified, Q.E.D,

We are now ready to show the existance of a one-to-one correspr.dence

between the parameters p and r of the aidd.esses of the nodes of the

detour that satisfy conditions (C-1) tu (C-4).

Lemma 2-10:

In the general detour scheme, there exists a one-to-one correspondence

between tlie values of the parameters pp, gq and r that satisiy conditions

(C-1) to {C-4), when the parameters h and i of the destination address are

equal to zero.

Proof;

Lemma 2-7 has shown such a corrzspoilence between the parameters g

and r for condition (C-3). Coaditicn {C-4) restricts the values of r to

be nonzero, as shown in Lemma Z-5. We now focus on conditions (C-1) ana

(c-2). |

Condition (C-2) is very similar to {C-3), Lt is satisfied if

p~f <0, or using A'r)} in the expression of f

p- (p+ s'x + A{r)) mod d € O , (2-8)

Lemma 2-2 and a change of variables show that (2-8) is satisfied for

(d - {sx + A{r)) mod d)} values of p. By definition of t, (s*x + A(r))

mod d, 1s periodic ins with period d/t, 1n order to be able to have all
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the values of p and r # O corresponding, we must show that for any

h less than d, ((s*x + A(r)) mod d} is less than h for r different

values of r # 0, This is proven, for s=k't, in Lemma 2-9. All

values of r # 0 have a correspoading p. Recause of the freedom of

the choices of p, wa can choose the p corresponding to r=0 to be the

¢ne avoided by condition (C-1). This shows the existence of a one-

to—-one correspondence hetween the d-1 nonzero values of r and the

parameters p and q satisfying conditions (¢-1) to (C-4), Q.E.D.

We now show that these results can be extended to values of the

parameters of h and 1 other than zero,

Lemma 2-11:

The results of Lemmas 2-6, 2-7, 2-9 and 2-10, are also valid if

the parameters h and i of the faulty node are different from zero.

Proof; :

We prove this only for i # O, as the proof for h is the same with

a change of variables, We also restrict our vroof to Lemma 2-7 as the

others follow from it,

Condition (C-3) is equivalent to:

: j-d< g=-1z <1

We know how to find a correspondence between vulues of q and r,

that is one to onc and satisfies (C-3) when i=0, or, by symmetry when

i=d-1., The reason why we find a correspondence in this case, 1s because

for any m le.s than d, there are at least m possible parameters gq that

have at lenst d-m possible matches in rr, We show that thls propertly is
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kept when 1 increases from O to {d/Z], or by symmetry, decreases fron

d-1 to .¢/51. Let t = ged{x,d). Let R, be the number of parameters
q that have at least d-j*t possible matches in r that satisfy (C-3)

for a given 1, Lemma 2-7 uses the fact that for 1=0, we have

Q, = (+1)t. Let ":=" indicate an update. When i Increases Irui
zero to t, we have the following changes,

| Q =e th for j = 1,,..,d/t- 2,

as t parameters r that couly only be matched with d/t q's can now be

matched only with the other d-d/t g's. Similarly, when 1 lncreases to

i+t, the changes are, when itt < ra/2l

As all these changes only increase the Q's, we keep the property tuat
allowed for the cne-to-one correspondence. Q.E.D.

Table 2-5 shows an example of possible matches between the para-

meters q and r that satisfy (C-3), when t=1, for various values of the

parameter 1,

We n¢vv show an example of a correspondence between the various

parameters that satisfy (C-1) to {(C-%4) when h and i are nonzero.

Exnmple:

Take d=12, x=9, y=2, h=5, t=3 |

This gives t=3, j=4. Wc compute the values of rx mod d, for O s r < d,

then match the parameters q to each value of r, We tien compute rey mod d,

L{r*x+1}/d] and 'A{r). We tncn show what valucs of p arc impossible to



Table 2-5: Corresponding values of g and r when t=1,

We show the values of q - {grr x)mod d, when x=1, d=7 aud indicate the areas of the

table for which therz is no possible match,

[Nr 01 2 3 a5 6[l0o) 23 4¢ 6l01 234 56l01 2345 6
‘ N ”

0 0-1 -2-3 -4 5 (6) QO O O
IT o0- 2-3-4035) O @, O

, L/

2| 0-1 2 la OF O 0 A

31 0-1-2307 0 OV 0 ~
0 2 QF 7 2 2OAT or %

| QW/%/4/2 7/0 A O77 V7
i=0 i= 1 i=2 i=3

The shad:d areas are those where there 1s no possible match, The circled squares are

. the correspcnding values, The numbers in the table sre the same for all 1, but the

circles and shaded areas depend on 1, |
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associate to a given value of rr, and choose the matches among the

ropaining ones, avoiding p=, For cach chesen value of p, wo give oa

possible value for s., All this is summarized in Table 2-06,

In order to find how many node-independent detours there are, we

first check what nodes may be common tu two different steps of the detour,

| Lemma 2-12: |

. if n> d=, there is no common node between Steps 1, 3 and 5 of the
detour.

Prooi:

We show that the address of the nodes are different in each step.

First we look for nodss common to Steps 1 and 3. This is possible when

dM +p =dM+p + L{rn+tq)/d mod n,

This gives, after simplifications:

p-p' = (r°n+q)/d] mod n , (2-9)

As, in the detour (C.-L) implies r#0, (2-9) is impossible to satisfy

for n > a“,

There can be some nodes in common between Steps 1 and 5 if

dM + p= dM + h + L(r n+q)/d mod n ,

2
As r#0, this is alco impessible, for n > d |

There can be some nodes in common between Steps 3 and 5 if
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Table 2-0: Setting the paramcters in order

to by-pass a faulty node, d=12, x=8, y=2, h=5, i=3.

| r | 0 1 2 3 4 5 6 T & 9 10 11
g.r mod 12 Q g 6 3 0 9 6 3 0 9g 6 3

q 11 3 0 6 g L 1 7 10 5 2 8

Pr mod 12 0 2 L 6 8 10 0 2 4 6 8 10

(9.r+3)/12 Q 1 1 2 3 4 4 5 6 T T 8

A(r) 0 3 5 8 11 2 4 7 10 1 3 6

impossible / 11 / / / / 11 11 11 1} 11 11

p's 10 10 10 10

| P 5 7 8 g 10 11 0 1 2 3 4 6

| 0 1 0 1 1 0 C 1 0 C C



d*M + p + [(r'n+q)/d] = d*M + h + [(r'*n+q')/d] mod n,

Co e
As (C-1) requires pgfh, this is impossible for n > Q. Lk.D,

We now study what happens when two steps have nodes in common,

We start with one node in common between Steps 1 and 2. |

Lemma 2-13:

When there is a node in common between Steps 1 and Z, there can be

no other steps in the detour with nodes in common when n is larger

than at,

Proof: |

The relation satisfied by the address of a node common tc Steps 1

and 2 1s:

2 ' 1
M+ p=d"M+ dp + q mod n, (2-10)

Lemma 2-11 has shown that there is no common node between Steps 1, 3

and 5 in the detour when n > a. If there were a node common to Steps 1

and 4, its address would satisfy the relation:

&*M+p' =M+ (hh +s n+ (2+ rn)/d)/d mod n,

Multiplying this by d gives:

2 1"
dM + dp’ = dM + h + [(i+r'n)/d] - £ mod n,

where f 1s less thon d, This is impossible to satisfy along with (2-10)

when n > ng as r#0.
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Similarly, as rfy, there is no common node between Step 2 and

Steps 3 and 5, or between Step 4 aed Step 3 and , and botwecen

Steps 2 and 4. This finishes the proof as there is no other commen

node between two steps possible. Q.E.D.

We should note that the common node between Steps 1 a °° 2 may be

the faulty node responsitis for the detour. We now show a similar

result when there is a node in common between Steps 1 and 4.

Lemma Z-1k4;

When there is a node in commen between Steps 1 and L, there can be

no other node in common between two steps of the detour when n 2: a + YE

Proof:

If there is a node in common to steps 1 and 4, its address satisfies

the relation:

dM+p=M+ {(h+ sn+ {t+ rn)/d modn,

or multiplying both sides by d,

pe :
d“*M + d*p = dM + I + I{i*rn)/d] - £f mod n, (2-11,

where  < d.

Lemma 2-11 shows that there 18 no node in common hetween any two of

the Steps 1, 3 or 5. lemma 2-13 shows that there is no node in common

between Steps 1 and 2, If there is g& node in common between Steps 2 and 3,

some set of parameters satisfies the following relation:
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res ' 1 } 1d”*M + dp" + q' = d'M+ h+ [(L+rn)/d] - £' mod n,

where f' <d. If n > dt, this can only be verified, along with (2-11),

if they have the seme set of parameters. This alsc implies that these

nodes are the same. But we have seen that there is no common node

between Steps 1 and 2, the relation cannot‘be satisfied, There 1s no

common node betwcen Steps 2 and 3,

Similarly, there is no common node between Steps 2 and 5 between

Steps 3 and 4. By changing the orientation of the network, Step i is

charge into Step £-1, but the topology of the network is maintained.

Lemma 2-13 chows then that there is no common node between Steps 4 and 5,

as they c¢o:r-espond to Steps 1 and 2 in the other orientation,

If there is a node in common between Steps 2 and 4, there are para-

meters that sotisfy:

d= M + dp" +q' =M+ (bh + s'*n + {(i+r''n}/d])/d] mod n, (2-12)

Subtracting (2-12) from (2-11) gives:

dM + h + |[{4+r'n)/d] - £ = ad (p-p') - q' +

M+ [(h + s"*n + L(i+4r"+n)/d] )/d] mod n

Thls gives, after nultiplication by d:

2 e '
47M + d* (1-1) + 1-g = d"+(p~p') - dq" +

d*M + h + [{i+r'*n}/d] - g mod n, (2-13)

where g and g'- are less than d,
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Subtracting (2-11) from {2-13) gives:

d- (h-f-p) + i-g = d (p-p') - dq" + L(i+v"*n)/d] - g" ~

L{i+ren)/d] mod n.

This is impossible to satisf., if r#r"” andn > a + a3, as the dif Ffarernce

of the two floor functions is larger than the rest of the elements,

This finishes the proof, showing that there is nc common node to two

steps, but the first one, Q.E.D,

This takes care of all the cases where Step 1 has some node in

common with some other Step in the detour, Py reciprocity, it also

takes care of Step 5, We assume now that Steps 1 and 5 have no node in

common with any other step,

Lemma 2-15:

When Step 1 has no common node with any other step, there can be

at most one common node between Step 2 end any other step, elther between
|

Steps 2 and 3 or between Steps 2 and 4, when n is larger than a” + re ‘

~~ Proof:

We consider what happens «hen we reverse the orientation of the

network. The primed numbers denote step numbers when the crientation

is reversed. Assume that there is a common node between Steps 2 and 3,

or 3' and 4',

There cannot be any new node in common between Steps 2 and 5, as this |

corresponds to 1' and 4’, and this would contradict Lemma 2-1k,
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Similarly, a common node is impossible between Steps 4 and &

(1* and 2'), tecause of Lemma 2-17.

A node in common between Steps 3 und 4 is the same as the node

in common between Steps 2 and 3, as shown in Lemma 2-14. Assume now

that there are both a node in common between Steps 2 and ? and 2 and 4.

This implies the axistence of sets of parameters satisfying the ejuations:

4° + dp + gq =d'M+ p' + Lr' n/d mod n, (2-14)

for a common node between Steps 2 and 3 and

2 i ar

d-M+ dp +g =M+ L(p, + son + L(r,-n}/d )/d] mod n, (2-15)

for a common node between Steps 2 and 4, |

Subtracting (2-14) from (2-15) give_:

d{p'-p) + d-q + &*M+p' + {rnd =

M+ L(py + s;°n + Ur;*n)/d] )/d] mod mn,

We multiply <h's by d, and get:

1 2 TZe (p'-p')+ d-(q'-qtp')+ aM - g' =

a¥ + py + Lryen/d] - £,  uod n. (2-16)

Subtracting (2-14) from (2- 16} gives:

po [1] 3 mn . "n ws! |de (p"~p’) + d*(q"-q+p'=p)- g'- q =

P,-P’ + Lr, nd, - 1, - Lr'*n/dj mud n,
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This is impossible to satisfy, If r' # r and n > a" + a3, as the
difference of the floor function is larger than the rest of the elements,

This finishes the proof, showing that there can only be one common

node under those conditions, between Step 2 and either Step 3 or 4, Q.E.D.

If we assume that there is no common node between Steps 1 and 2 and

the rest of the detour, we can, by reciprocity, assume the same of Steps

5 and 4, which takes care of all possible cases.

In summary, there can be only one node commen to two different

steps when n > at + as, We can now count the number of ‘= independent

detours, |

Theorem 2-1:

In a de Cruijn network with out-degree d > 2, there are at least

d+? node-independent detours between a node with address M and a node

with address au + dh + i, when the node with address d*M + h 1s in-

operative, the addresses are taken modulo n -the number of nodes in the

network-, O < h, 1 < d and there are at least a* + a3 nodes in the network,

Prof:

: We court how many nodes must fall in the detour graph before all

detours can be cut. Frank and Frisch [Fra7l], among others have shown

that this is the number of node-independenit paths between the origin and

destination of such a grarh,

Lemmas 2-13 to 2-15 show that when f nodes fail, at most f+ paths

may be cut, as nt most two nodes are common to two different steps. In

order to cut all detours, a minimum of "d-13 nodes must then fail, as
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Lemma 2-Q shows the existence of d-1 independent sets of parameters

for the addresses of the detour. Q.E.D,

When n is a multiple of ac, some of the restrictions for the

detours disappear.

Theorem 2-2: |

There exist d-1 node-independent s5ix-step detours between a node

of address M and a node of address 4% Mate ht 1, with h and i between 0

and d-1, when the node d*M + h is inoperative, and when n = ke d=.

"We use the same notations as for the general detour, The steps are

now as shown in Table 2-7.

If there is a total of § bac nodes in the detorrs, including the

original bad node, there are at least d-S possible parameters possible

for each step, when n is large enough so that nodes in Steps 1, 3, and 5

are distinct, except the original bad node. At least d-1 ncdes need

then to become inoperative before there is no detcur left. There are

then d-1 node-irdependent detours, Q.E.D,

| We nov show an example of detours around a faulty node, in the same

case as Table 2-5. The parameters of the system are. n=24035, d=12,

h=5, i=3. This gives the set of detours shown in Table 2-8, We use

the parameters chosen in Table 2-5, We should note that there only are

1C independent detours, as the addresses of the nede in Step 1 with p=

is the same as the node in Step 2 with p=1.
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Table 2-7: Possible addresses for the nodes in a detour

when n = ke d° .

step address comments

0 M origin

1 d*M + p p#h

2
2 d*M+ d'» + q choose ¢

3 dM+ p + rdz

4 M4 rez + sdz choose s

5 d*M + h + red z r#0

& a> M + dh + 1 destination ]
| |
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Table 7-3: A set of detours when n= 24073, 4 = 12,

Mo= 107, a + dvh + 4 = 2034 mod n.

Cp Step 0 1 2 3 h 5 6 |
Q 2184 2174 14201 1183 14206

1 2185 2192 16205 1350 16209

2 2186 2207 18209 3520 18212

3 2187 2214 20213  16hThL 20215

4 2188 2223 22217 1841 22218

5 182=

6 | 2190 2241 185 2008 186

T 2191 2248 high 349  Lig2

8 2192 2257 6198 2519 6195

9 2193 2275 8202 683 8198

10 2194 2290 10205 285: 10200

11 2195 2297 12209 3020 12203

The entry for p=5 is not a detour, but the regular path between

the nodes in Steps O and 6.
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The method given here requires the edges of the network to be

unoriented in order to by-pass a foulty node, Previous knowledge of

the bad nodes within the detour is needed in order to avoid them, as

shown in Theorems 2-1 and 2-2, However a limited knowledge of the

state of the nodes in the ne’ work is needed, as all the nodes of a

detour are at most © steps apart, This still insures the locality of

| the control.

| If unoriented routing is used in general, another kind of detcur
is necessary as a message must by-pass in a small number of steps the

node with address d*) + k on its way from M to M + | (k+j*n)/d] mod n,

. The following theorems show the existence and tae number of such

detours.

There exist at least d-Z node-independent paths of six steps or

less between a node of address M and a node of address M + L(k+j*n)/d,

with k and j between O and rl-1, and when there are at least 4° nodes in

the network.

The two schemes below, used together, fulfill the conditions,

© The first scteme gives d-gcd{d,n)-1 nude-independent paths, the

second one gives the remaining gcd(d,n)-1. The first scheme is two or

four sieps lone, These steps are shown in Table 2-9,

Flgure 2-| shows an example of such a set of paths, The destination

address is of the form:



Table 2-9; Possible addresses for the nodes in Theorem 2-3,

step address modulo n comments

0 M origin

3 1 d*M + p

. 2 M + |(p+q'n}/dl may be the destination

3 d'M+p-f +r f = (p+ qn) mod d

4 ¥ + L{p-f+r + s'n)/d destination

Tahle 2-10: Possible addresses in the second scheme

of Theorem z-3,

step address modulo n comments

0 | | origin

i a’'M + p g possibilities

2 M+ q'n/g could be M again

3 L(M + g'n/g + r'n)/dj ancestor to M + q'n/g and

M+ q'n/g+h, where h=t1l,

depending on e,

k M+ q'n/g + h

5 d*M + t g unused descendants of

) the destination,

6 M+ L{J+k'n)q) destination
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M+ [{(j+k n)/d mod n,

this gives a restriction on the possible values for p-f+r. For n

large c¢nough, p~-f+r must be between e and e+d-1, where e is equal to

j = (j+k°n mod d) ,

If g is the gcd{n,d), we can write, using lemma 2-3:

e ~-d + ag , with a between 2 and (2-d/g)-1 ,

depending on the value of j.

Lemma 2-2 shows that the first g values of p-f, for all p's arz less

than one, If e is then larger than g there are at most d-g independent

paths, as thuse that start with a p less than g cannot go to an address

larger than dM + d-1.

The comment in Table 2-Q sor Step 2 says that this address may be the

destination, This happens when p is Letween e and e+d-1 and g=k. Steps

3 and 4 then become useless,

Another restriction appears when (in Fig, 2-1; M, is beiween d'M + e

and d*M + d-1 (one of the intermediate nodes on the “direct” Z-steDps path.

Fewer 1lndependent paths exist, We show later that for n large enough, at

most one node in ¢°d nodes with consecutive addresses can be like that,

This restricts the minimum number of node-independent paths to d-g-1.

This finishes the discussion of the first scheme. The second one

gives g-1 new independent poths and 1s four or six steps long. Figure 0-0

shows such a detour in the sme case as Figure J-1, The steps are shown

in Table 2-10,|
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Figure 2-.: Possible connections for the paths of Theorcm 2-3,

d=6, g=2 .

M + L(2+h-nj/6 = M,

FIN r destination: M = Li+tkon)/G] = 1

. d-M (12 4 $ dM + 2d - 2N

bi4
TA

JN

M+ n/2 N M, + nS?
\ M, + n/2

d'M + e (e=4 here) .

The edges uscd by the pals are dark ines,
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There are three cases where those paths are not node- independent,

when the poths of the first detour are included,

The first case of dependence is when a node of address M+h+qen/g

is between a+li+e and d-M+e+d-1, There is at most one such node, for n

large enough, as these nodes are n/g apart.

The second case of dependence is when an ancestor to a node with

address M+h+q'n/g 1s the same as an gncestor to one of the nodes of

addresses between deM+e and d*Mtet+d-1 already used in some path, This

is included in the first csse.

The last case of dependence is when one of those ancestors to a

node with address M+h+q*'n/g 1s the same as ohe of the nodes of addresses

between d°'M + e and d-M + € + d-1 already used ia some path, Such a

node can always be avoided as there are d-g possible such nodes per path,

and thelr addresses are cf the order of n/d apart, Q.E.D,

Theorem 2-4: |

There exist at least d node-independent paths of two steps or less

between two no 3s with the same descendants i1n g8 network where n is a

nultiple of d.

The two nodes have d descend=uts in common, this gives d rode-inde-

pendent paths, Q.E.D.

In summary, we have shown the existence of at least d-1 node-

independent detours around a faulty node, when n # k. d°, and <4 node-

independent detours when n = ke d, Similarly we have shown the existence
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Figure 3-2: possible connections for the theorem of 2-3,

. when ¢he two types of paths are used.

) d=0, g=2 *

L(Mta'n/g + ren)/d] = M'

/ (destinatiom |
Mo MyM |

. {origin} INN M+1an af AEEdm + 2+d |
k+n/ 2 ANS oF Min/2 + 1

MY,

The edges used by the paths are dark lines,
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of d-l or d node-independent paths between two nodes with common

descendants, depending on the divistibllity of n by a°.

We have shown a six-step by-pass mechanism that allows a message

to avoid an lnoperative node. This does not change the locality of

the controls of the network, but requires a stack, when the network

is used in an oriented manner, in order to handle possible bad nodes

encountered during the detour. This stack could be incorporated in

the control part of the message, If too many nodes are inoperative,

or 1f the degree of the network is four, the detour mechanism might

fail, This leads us to study the conditions under whici communications

are possible between two nodes in the network, and tke number of nodes that

can become inoperative without impairing the communications within the

rest of the svstem,
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III. Vulner:bility of a de Bruijn nctwork

"11s section studies in which ways portions of the system can

become inoperative without impairing the rest of the system. We

discuss the sens.tivity of the network tc the destruction of a given

number of nodes or :dges. By counting the number of distinct neighbors

a node has, we show that the number of nodes with less than 2°d distinct

nelghbors, where d 1s the out-degree of the network, is independent of

the size of the network, We then study cycles and show the existence

of oriented cycles of various lengths, The existence of such cycles 1s

useful in studying how to isolate a group of nodes from the rest of the

network. Finally a study of node-independent paths shows that there

are at lesst d-1 node independent paths in an oriented de Bruijn network

with ak nodes and out-degree d.

The connectivity of a network 1s the smallest number of nodes that

must be removed from the network, for the network toc be disconnected,

Similarly, the cohesion of a network is the smallest number of edges

needed (0 disconnect the network, As we have allowed self-loops and

~ parallel edges, the degree of a node does not indicate the number of

independent neighbors a node has. The node and edgevulnerability of a

node are the minimum number of nodes and edges, respectively, that must

be removed in order to disconnect that node from the rest of the network,

The node and edge vulnerability of a network are the minimum, respuctively,

of the node and edge vulnerability of individual nodes.

We look for bounds on the connectivity end conesion of de Bruijn
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networks of degree 2Z2°d. The detour mechanisms outlined in the

previous sections give a lower bound on the «connectivity of the

network. This lower bound is d-1 if n is not divisibie by a” and

d if n is divisible by a°, The node and edpe vulnerability in such

networks give an upper bound on the c¢ohesion and vulnerability of

- d-1 or 2°d-2 in oriented or unoriented networks, respectively.

Denoting the connectivity of a network as Cn, and the cohsiocn

as Ch, Boesch and Thomas [ Boe70] derived the following relation in an

unoriented network with n nodes and e edges:

"€Cns Ch <€ 2*e/n .

Thus, in order to find a lower bound for both the connectivity and the

cohesion, we only have to find one for the connectivity.

Lemma 3-1:

The connectivity cf an unorierced de Bruijn network is at least

k+l when there are at least kX independent detours wetween two nodes

separated by 2 bad node,

The connectivity of the network is equal to the least numbe' of

nodes needed to disconnect the network,

The theorems of the previous section show how many node-independent

detours exist between two nodes separated by one bad node. When there

are k such detours at each node, we use a proof by induction to show

that the connectivity 1s at least k+l,
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Suppose k=0. As wc are in a network, the connectivity is one,

Now supposc that there are k 2 1 detours, the connectivity is ot

least k, In order to cut a node from another, at least X nodes must

fail. If only k nodes fail, there still exists a path connecting any

two nodes, as there still is one detour among the kK node-independent

detours, that does not fail around any of the bad nodes, as there only

are k-1 other bad nodes. The connectivity of the network is at least

k+l, Q.E.D.

Theorem 3-1:

Let 2*d be the degree of an unoriented de Bruijn network, The

connectivity of this network is at least:

d, when the number cof nodes in the network is a

2
multiple of dd ,

d-1, otherwise.

Proof;

The proof follows immediately from Theorems 2-1 and 2-2 and Lemma

We now look fo. an upper bound orn the connectivity and cohesion of

the network. The node and edge vulnerability is such a bound, because if

all the independent neighbors to a node fall, there is not path left

between that node and the rest of the network,

An immediate upper bound for the node and edge vulnerability is

the degree of the network, as all nodes have the same degree. In some
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cases, a node may have a lower node or edge vulnerability. We look

at those cases and count the number of loeps there are in some networks.

Theorem 3-2;

In a netweorlk where d is the out-degree, n the number of nodes and

g the ged(n,d-1), the number of self-loups is equal to d+g-1, when n is

larger thar d-1,.

Proof:

i In general a node with address M has as descendants the nodes with

addresses:

d*M + J mod n,

where J is between O and d-1, and n is the number of nodes in the network.

The oplresses of the nodes that have themselves as descendants satisfy:

M =d*M + J mod n,

We can rewrite this as:

M = (k*n - j)/(d-1; , where O 5s k < d, and kK is an

integer that corresponds to the "mod n” in the

sbove equation,

Let zg = gcd(n,d~2). The possible values of M are:

M) = L(k*n)/{a-1} , with k=C,...,d-2 ,

;
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and

M, = k*n/{d-1) - 1, when this is a positive integer.

This also is:

M, = gq*'n/g ~- 1, with q=1,...,g"

There are d-1 incependent M,'s, and g independent My" 5. A repetition

might occur between an My and an M, if two M's are only one apart, as

all Mo's are one away from a given N, This gives for the repetitions:

(k*n = 3)/(d-1) = (k'm + n - d+1)/(d-1)} .

or

This is possible only if n< d. This gives us, for n 2 d, a total of

d+g-1 independent nodes with a self-loop. Q.E,D.

The nodes #ith self-loops, in an oriented network, have & node and

edge vuluerability of d-1, If n is smaller irhan d, the node and edge

| vulnerability may be larger,

We now look at node znd edge vulnerability in an unoriented network.

The cases wlere the edge or node vulnerability are less than the degree

occur when a node has a self-loop, or when two edges are parallel. Those

two examples are shown in Figure 3-1. The numbering of the nodes is taken

from a de Bruijn graph with 8 nodes and degree 4.
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self-loop

S —L
parallel edges

Fig. ’-1: Cases where edge or node vulnerability are less

thn the degree 2f a node,
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We first show th:it in large cnough a network, there is no node

with both a sclf-loop and parallel edges.

Lerma 3-2:

In an unoriented network with more than a® nodes, a node cannot

have both a self-loop and parallel edges.

Proof;

If j,k,p are integers between O and d-1 included, the address of M

of a node with both a self-loop and parallel edges satisfies the

relations modulo n:

2
M=dM+ j=d-M+dj+ J,

for the self-loop, and

M= dm + d*k +p, with k#j, for the parallel edges.

This gives, modulo n:

4% + d'J + J = FEY + dk +p,

and;

d*(J-k! = p-3j, which ls impossible, with j#k, when

n & a® ‘ Q.E.D,

We alreedy have found the occurrences of self-loops., when a node

has a self-loop in an unorientea network, its edge and node vulnerability
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become 2:d-c if thc degree of the network is 2.d, In case of parallel

edges, the edge vulnerability is unchanged, but the node vulnerability

goes to Z-d-1,

| Theorem 3-3:

In an unoriented de Bruijn network, where n is the number of rodes

and 2*d the degree of the network, if n is larger than a°, and
: 2

g = ged{n,d -1), the number of nodes with parallel edges is equal to
e

Proof:

| . Parallel edges happen when z node has one of its "descendants"

among its ancestors, for n larger than d, This occurs for:

M=d ‘M+d J+ 1 mod n, where i and J are d-ary diglts,

I1f g = ged(n,d-1), the solutions to thls congruence are, including

some repetitions:

M L(k® )/ (a°-1) ithk = % 4-2y = L(k'n Ho, wit = peed Tey,
and

As in Theorem 3~2 we cal count the repetitions, and similarly, when n

18 larger than a”, the congruence has 4%g-1 independent solutions, Q,E,D,

Some -f those ''parnllel edges” are actually self-loops uscd twice,

the actual number of nodes with parallel edges that are not self-locops

is then:
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2 2
d“-d+gcd(n,d ~1)-ged{n,d-1) .

We can now find the node and edge vulnerability of an unoriented

de Bruijn network with more than d° nodes,

Theorem 3-4:

The node and edge vulnerability of an unoriented de Bruijn network

with wore than a° nodes is cz d-2, where 2+d is the degree of the network.

Proof:

When the number of nodes is larger than a2, there is not overlap

between self-loops and parallel edges: all self-loops are considered

as parallel edges, and there is at most one self-lcop per node.

| The node and edge vulnerability of the network is then that of

the nodes with self-loops, 2:d-2 . Q. E.D.

We study now the node and edge vulnerability of an oriented network,

then count the number of cycles of various lengths that exist in those

networks.

Theorem 3-3:

Let d be the out-degree of an oriented de Bruijn network, The node

and edge vulnerability of such a network is d-1, when the number of nodes

in the network is larger than d,

Proof:

When the number of nodes in the network 1s larger than d, no two

descendants of a given node con be the same, The only case where the

number of distinct neighbors of a node is less than d is when one
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of those descendants 1s the node itself, The edge and node vulnera-

bility of such a node 1s d-1. This is 2lso the node and cdge

vulneraohility of the network, Q.E.I.

Cycles in the graph show how strongly nodcs are connected, and help

in defiring measures of connectivity that include a group of nodes

[BoeT71]. We show the existence and count various cycles in the networil,

Theorem 3-6:

In an oriented de Bruiin network with n nodes and cut-degree d,

the number of cycles of length L and no less, with L = Llog nj, is

equal to:

(2. mula) r(wa) iL,
q

a|L

where mu(q) is the Mcbhius function: °°

(-1)° if g 1s the product of r distinct
primes,

O 1f q contains any repeated prime
factors.

and f{q) as:

£(q) = d% + ged(n,d%-1)-1 .

Proof:

| Berlekaomp {Ber(S,pp. 81-85], has proven this theorem in h!s book,

for general functions f(a). Q.E.D.
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| We now have upper and lower bounds for cohesion and connectivity

of an unoriented de Bruijn network with a nodes aod degree 2d:

a
If n 1s not divisible by d:

d-1 < Cn ss Ch 5 2-2,

and, when n is divisible by d~ :

For #n oriented network, we have:

| l<Cn=< _h << d-1,

Another way to lock a: the connectivity of a graph is to look at

the number of nour-independent paths hetween any two nodes in the graph

L¥ra7l, Berf2].

Two paths between two nodes are called '"node-independent” if they

have only the origin and destination nodes in common. Two paths are

called edge-independent if they have no eige in common, We already

know that the number of hode-indenendent paths 1n a network is equal to

the connectivity of that network.

This section studies the construction of node-independent paths

in networks with d¢n nodes, from the construction of corresponding paths

in networks with n nodes, It shows in particular that there are at

least d-1 node-independent paths between any two nodes in an oriented

k
network with d nodes. It also shows that for unoriented networks with

degree 4 and 2'qm nodes, there are at least 2 node-independent paths

| between any two nodes,



In the rest of this section, we call a de Bruijn network with

degree 2*d and n nodes as a (d,n} nctwork, As usual, the definition

for the integer k is:

a ens a

an earlier report [ Sehh] shows that k 1s an upper bound for the

diameter of the network, A path is monotone if it is possible to go

from ore end of the path to the other end, following the orientation

of the edges, A path is singular if it consists of at most two monotone

sabpaths.

" We first extend a result that is already knoowa for (d,d") networks

[Go167]: there is an isomor;hism between the oriented edges of a

(¢,p)} network znd the nodes of a (d,d-p) network, We then prove a theorem

on node-independent singular paths, constructing such paths in a (d, d:p)

| network from corresponding paths :: a {d,p) network. Another theorem
shows tha i. 5 node-independent monotone paths exist between any two

podes of a (d,p; network, the same is true of a (d,d*p) network. This

theorem applied to (d,d™) networks showg the existance of at least d-1

; ~ node-independent paths between any two nodes in such networks. This also

glves a good lower bound for the connectivity of such networks,

We now show how the edges of a (d,p) network ccrrespond to the nodes

of a {(d,d*p) network. Figure 3-2 shows possible addresses for the cdges

of a (3,7) network.
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Fig. 3-2: Addresses of edges in a (3,7) network.
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Lemma 3-3:

There exists an isomorphism between the edges of a (d,p)

network and the nodes of a (d,d*p) network,

Proof; :

To each edge in the (d,p) network, we asgsoclate a node of the

(d,d*p) network in the following manner:

If the address of the origin of the edge is M, and that of the

destination is d*M + j mod p, the node in the (d,d:p) network

‘associated to that edge of the (d,p) network has an address of:

: dM+ J mod dz .

We define the descendants of an edge as the edges leaving from

the destination node of that edge. If a node assoclated with a given

edge has address M, its descendant nodes have addresses:

dM+ J wod d'p, with j between 0 and d-1 ,

These addres;e+t =2re the same as those of the nodes associated with the

descendant edges of the ~dge associated wit} ‘he node of address M,

y The correspondence between the nodes and edges keeps the connection

patterns, To each edge in the {d,p) network, we can associate z node in

the (d,d'p) network, and to each node in the {(d,d-p) network, we cun

associate an edge in the (d,p) network: If there is a node without an

associated edge, the same is true of all its descendant nodes, and we

know that any node has eventually all the nodes in the network as
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descendants. [If there is then once node without an assoctated edge,

there 1s no node with an associated edge, which is in contradiction

| with the possibility of associating a node with any edge. In con-

clusion, as there is the same number of edges and nodes, there is an

isomorphism between the edges of a (d,p) network and the nodes of a

(d,d*p) network, Q.E.D. |

yn particular an oriented path along the edges of a (d,p) network

corresponds to an oriented path between nodes of a (d,d*p) network,

We can then extend to all (d,d*p) networks the known result [Gol67)

that ell (¢,d%) networks have an Hamiltonian circuit: 1it corresponds to

the Eulerian circuit in the (d,p) network.

¥e now show how to go from a singular path in a (d,p) netwosk

a singular path in a (d,d'p) network.

Transformation 3-1:

-1f the singular path is a monotone path in the (d,p) network, the

transiormation is immediate, the path, instead of going from edge to

edge in the (d,p) network, goes from node to node ir the (d,d*p) network,

snd t ose nodes are associated to the edges in the same way as in

Theorem 3-3,

-If there is a change of orientation, the two monotone subpaths

can be transformed as above. The resulting path is not complete, but the

open ends, not the origin and destination, come from the same ancestor or

go to the same descendant, as the corresponding edges join in one node in

;
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the (d,p) nctwork. Adding one node to the paths bridges the gap,

and keeps the singularity of the resulting path, as shown in Fig, °-2,

Definition: A forward singular path is a singular path which in an

oriented network takes an edge out of at least one of

its extremities. .

For example a monotone path 1s a forward singular path, Figure 3-4

shows a path that ls not forward singular.

We are now ready to prove the following theorem:

Theorem 3-7: |

| If there exist s node-independent forward singular paths between

any two nodes in a (d,p, network, with s £ d, then there are s node-

independent forward singular paths between any two nodes in a (d,d-p)

network, These paths are the transformed by transformation 3-1 of the

forward singular paths between the destination nodes of the edges

corresponding to the extremities of the paths in the (d,d'p) network,

Proof:

This proof shows that such paths keep their independence and forward-

ness in transformation 3-1,

"The node- independence of the paths in the (d,r) network implies

the edge-independence of these paths, The transformed paths in the

(d,d*p) network ccrrespond to edge paths with an extra edge at tho summit

of the forwarl singuler paths, As the degree of the net is 2d, and there

is at most one seli-loop per ncde, it 1s always possible to choose that
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Fig. 3-3: Transforming singula= paths in Transformation 4-1,

- dre+e mod d-p.
C ~

dbp : @ d.f+p mod d'p
mod d-p

da+x

mod J-p a f

in the (d,p) network

gives

db +B de + ¢

df + ¢
da + CQ

. in the (d, d+p) network,
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Fig. 3-5: How to choose the last node,
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12st edge independently from the other s-1 prths, when 8 < d, When

the summit is not an extremity, we can choose any edge out of this

summit because of the node-independence of the paths. When the

summit 1s an extremity, the choice goes as follows: each node has

at most one self-loop, hence at least 2'd-1 independent edges (Thm 3-2).

At most d-1 incoming paths use 2¢d-2 edges, as they actuall, use the

extremity as a summit, and the last path goes directly to the

destination edge and does not need an extra edge, Q.E.D.

Figure 3-5 shows such choices,

The paths that we get may still be shortened if the extra node

is linked to some other node in that path.

We now prove a similar theorem for monotone paths:

Theorem 3-8:

If there exist 8 rode-independent monotone paths between any

nodes in a (d,p) network, then there are at least s node-independent

monotone paths between any nodes in a (d,d*p) network,

In the (d,p) network we look for edge-independent paths between

the nodes corresponding to the destination of the origin edge and the

origin of the destination edge. as shown in Figure 3-6,

If those two nodes are different, there are s node~independent

paths between them in the (d,p) network, which transformation 3-1

transforms into s node-independent paths in the (d,d*p) network, Boesch

and Frisch [Boel8], have shown that this 1s enough for the connectivity

| of the path to be s, and for s node-independent paths to exist between
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any two nodes, Q.E.D.

In some cases, thls theorem gives a better lower bound than

the general cne on the number of pode-independent paths between two

nodes in a de Bruijn network, We look at the number 0’ node-independent

monotone paths in a (d,d)} network,

Lemma 3-4:

There are at least d-1 monotone nodz-independent paths between two

nodes in a (d,d) network.

Proof: |

The connection pattern of the (d,d) network is the complete directed

graph with d nodes and a loop on each node, There always are d-1 inde-

pendent paths between any two nodes made of the edges from the origin node

to all other nodes, and if necessary the edges to the destination node,

qQ. E. D.

Theorem 3-Q generalizes this result to a larger class of networks:

Theorem 3-G:

: k

For any (d,d ) network, with d and k being integers, there are at

least d-1 menotone node~independent paths between any two nodes,

Proof:

The proof follows immediately from the above lemma and theorem. Q.E.D.

This gives a better lowcr bound for the connectivity of an oriented

k

(d,d ) network: monotone paths are paths in such a network, and the

connectivity is ot most d-1. This gives;
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Theorem 3-10: |

The connectivity of an oriented (a,d") network is 4-1.

Proof:

The proof follows immediately from the above theorem. Q.E.D.

Going back to unoriented networks, we can tell a little more

about the case where d=2:

Theorem 3-11:

There are at least 2 node-independent paths between any two

nodes of a (2,2*p) network,

Proo:l:

This 15 an immediate derivatica from the existance of a Hamiltonian

circuit in those networks, Q. E.D.

“ulnerabllity in a de Bruljn network is a function of the drgree

of that network. For an unorientel (d,d*p) network, the connectivity

k

snd cohes:.on increase with d. For (d,d ) oriented networks, the

connectivity is d-1, for unoriented ne-works 1t is at least d; for small

values of k, the comnectivity 1s in fact 2.d-2.
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lV. Conclusion |

De Bruijn networks have interesting properties for communications

networks: a small diameter with respect to the number of nodes in the

network, and an easy routing and rerouting scheme. The control

- li.formation for the bhy-rass of a bad node can easily be added to the
header of the messege., In case of a single bad node, it takes only

| an extra four steps Io go around it. A limited number of nodes,

independently of the size of the network are more vulnerable than the

rest of the nodes in the network. The larger the network, the more

"invulnerable" it is, the same is true when the degr-e increases,

An open problem i353 the statistical analysis of the message flow

inside such a network, Thls problem is studied in a coming report,
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